WO2022239170A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022239170A1
WO2022239170A1 PCT/JP2021/018146 JP2021018146W WO2022239170A1 WO 2022239170 A1 WO2022239170 A1 WO 2022239170A1 JP 2021018146 W JP2021018146 W JP 2021018146W WO 2022239170 A1 WO2022239170 A1 WO 2022239170A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal hole
terminal
pole
switching element
conductor
Prior art date
Application number
PCT/JP2021/018146
Other languages
English (en)
French (fr)
Inventor
優介 檜垣
拓志 地道
公之 小柳
拓也 梶山
暁斗 中山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023520669A priority Critical patent/JP7459379B2/ja
Priority to EP21941904.1A priority patent/EP4340206A1/en
Priority to PCT/JP2021/018146 priority patent/WO2022239170A1/ja
Publication of WO2022239170A1 publication Critical patent/WO2022239170A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • This application relates to a power converter.
  • a modular multilevel converter (hereinafter referred to as MMC (Modular Multilevel Converter)) is known as a power converter used for DC power transmission.
  • An MMC is a power conversion device composed of a plurality of unit converters.
  • the unit converter is composed of paired switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and DC capacitors.
  • multi-level power converters are known for distributed power sources and motor drive applications.
  • a multi-level power conversion device may also be composed of a plurality of unit converters, and a power conversion device has been proposed with the aim of equalizing the responsibilities of a plurality of DC capacitors (see, for example, Patent Document 1). .).
  • JP 2015-115974 A paragraphs 0011 to 0022, FIGS. 1 to 3
  • power converters used for DC power transmission often handle high voltages and large currents, so the switching elements, DC capacitors, and wiring are large, and the structures that support them are also large. Therefore, miniaturization is an important issue for power converters used for DC power transmission or the like.
  • the present application discloses a technique for solving the above problems, and aims to obtain a compact power converter used for DC power transmission.
  • a power conversion device disclosed in the present application includes a pair of unit converters and a cooling device, and each of the pair of unit converters has a condenser, a cooling surface, and a connection surface opposite to the cooling surface.
  • two electrodes through which main electric power flows are formed on the connection surface, forming a pair of switching elements forming a leg for power conversion; a first conductor plate formed with a second terminal hole for fixing an electrode of an element and having a first terminal hole formed at the other end for fixing an electrode of the capacitor corresponding to the first pole; and
  • a second terminal hole is formed at one end for fixing the electrode of the pair of switching elements corresponding to the second pole of the leg, and the electrode of the capacitor corresponding to the second pole is fixed at the other end.
  • a first terminal hole for connecting is formed, and a second conductor plate is disposed so as to overlap in the thickness direction while maintaining insulation with the first conductor plate, and the pair of unit converters is one of the unit converters.
  • the cooling surfaces of the paired switching elements are opposed to the cooling surfaces of the paired switching elements of the other unit converter with the cooling device interposed therebetween.
  • the power conversion device can be configured by sharing the cooling device for the switching elements, so that the number of parts can be reduced, and a small power conversion device used for DC power transmission or the like can be obtained. .
  • FIGS. 5A and 5B are schematic diagrams of P-pole connection conductor portions for explaining the wiring lengths of switching elements connected in parallel in the power converters according to the comparative example and the first embodiment, respectively.
  • FIG. 3 is a perspective view of a P-pole connection conductor for explaining terminal positions for electrical connection with a capacitor in the power converter according to the first embodiment
  • FIG. 7A and 7B are a perspective view and a plan view of the power conversion device, respectively, for explaining electrical connection between unit converters in the power conversion device according to the first embodiment
  • 8A to 8C are plan views of wiring members having different shapes for electrically connecting unit converters in the power converter according to the first embodiment.
  • FIG. 4 is a schematic side view for explaining the configuration of a power converter according to a modification of Embodiment 1
  • FIG. 9 is a perspective view for explaining the configuration of a unit converter of the power conversion device according to the second embodiment;
  • FIG. 7 is a perspective view for explaining the configuration of the power conversion device according to the second embodiment;
  • FIG. 7 is a schematic circuit diagram for explaining the configuration of an MMC power converter according to a third embodiment;
  • FIG. 7 is a schematic circuit diagram for explaining the configuration of a power conversion device according to a third embodiment;
  • FIG. 11 is a perspective view for explaining the configuration of a power conversion device according to a third embodiment;
  • FIG. 11 is a side view for explaining the configuration of a power conversion device according to a third embodiment;
  • Embodiment 1. 1A to 8C are for explaining the configuration and operation of the power conversion device according to the first embodiment
  • FIG. 1A is a perspective view showing the configuration of the power conversion device when viewed obliquely from above
  • FIG. 1B 2 is a circuit diagram showing the configuration of the unit converter
  • FIG. 2 is a perspective view of the unit converter as viewed obliquely from above
  • 3A is a perspective view of FIG. 2 showing the configuration of the P-pole connection conductor
  • FIG. 3B is a perspective view of FIG. 2 showing the configuration of the N-pole connection conductor, with the composition turned upside down. It is a diagram.
  • FIG. 4 is a circuit diagram showing the configuration of a leg in which three switching elements are connected in parallel
  • FIG. FIG. 5B is a schematic diagram of a connection conductor portion
  • FIG. 5B is a schematic diagram of a P-pole connection conductor portion for explaining the wiring length of parallel-connected switching elements in the power converter according to the first embodiment.
  • FIG. 6 is a perspective view corresponding to FIG. 3A of the P-pole connection conductor for explaining the terminal positions for electrical connection with the capacitor.
  • FIG. 7A is a perspective view of the power conversion device corresponding to FIG. 1A for explaining electrical connections between unit converters
  • FIG. 7B is a plan view when viewed from above.
  • 8A to 8C are plan views of wiring members having different connection objects or shapes for electrically connecting unit transducers.
  • the power conversion device disclosed in the present application is used for DC power transmission, and assumes the MMC method, which will be described in detail in Embodiment 3, which will be described later. Then, as shown in FIG. 1A, a power conversion device 9 is configured by sandwiching the cooling device 4 between two unit converters 3 (details will be described later).
  • the unit converter 3 is composed of a capacitor 1 as a storage element and two or more switching elements 2 .
  • the unit converter 3 has a leg 20 in which two or more switching elements 2 are connected in series, and a capacitor 1 connected in parallel with the leg 20 to form a half bridge circuit.
  • the middle of the leg 20 in which two or more switching elements 2 are connected in series becomes the AC pole 20p3.
  • One end of the leg 20 serves as a P pole 20p1, and the other end opposite to the P pole 20p1 serves as an N pole 20p2.
  • a drain terminal or a collector terminal of the switching element 2 is connected to the P pole 20p1.
  • a source terminal or an emitter terminal of the switching element 2 is connected to the N pole 20p2.
  • a variety of storage elements such as film capacitors, electrolytic capacitors, and electric double layer capacitors can be applied to the capacitor 1.
  • Various semiconductor elements such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) can be applied to the switching element 2 .
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a package described later is used in which regions are divided on one side and the power is supplied.
  • the object is a switching element 2 formed with two electrodes through which the current flows.
  • the electrodes are assumed to have a form such as a screw hole raised from the surface of an insulating package, which allows mechanical fixation and electrical connection with bolts or the like.
  • an N-pole connection conductor 6 an AC-pole connection conductor 7 serving as AC-pole wiring, and a cooling device 4 for cooling the switching element 2 are required.
  • Metal plates are used for the conductors such as the P-pole connection conductor 5, the N-pole connection conductor 6, and the AC-pole connection conductor 7, and a cooling device 4 in the form of a thick plate is used to assemble the elements constituting the half-bridge circuit, as shown in the figure.
  • a unit converter 3 as shown in 2 can be constructed.
  • three legs 20 are connected in parallel (see FIG. 6).
  • FIG. 1B a 2-in-1 package in which two switching elements 2 are integrated is assumed, and the package forming the leg 20 is depicted as one switching element 2, but the present invention is not limited to this.
  • two 1-in-1 packages containing one switching element 2 may be arranged in the series connection direction to configure the leg 20, and then three legs 20 may be arranged in the parallel connection direction.
  • the cooling device 4 an example of a structure assuming a water-cooled fin is shown, provided with a water-cooled valve port 4v as an entrance and exit of the refrigerant, and supported by the structural component 4s.
  • the structural part 4 s is connected and fixed to a housing (not shown) containing the unit converter 3 .
  • the capacitor 1 and various conductors are also fixed to the housing by some structural parts such as bolts and metal fittings if necessary.
  • the P-pole connection conductor 5 and the N-pole connection conductor 6 are arranged so as to overlap in the thickness direction. However, a certain gap or an insulating member is provided between the P-pole connection conductor 5 and the N-pole connection conductor 6 to electrically separate them from each other.
  • the capacitor 1 also has a P-pole terminal 1p1 and an N-pole terminal 1p2. A P-pole terminal 1p1 and an N-pole terminal 1p2 of the capacitor 1 are provided on the same surface of the capacitor 1 .
  • the P-pole connection conductor 5 and the N-pole connection conductor 6 are provided with a first terminal hole 6t1 of the N-pole connection conductor 6 and a first terminal hole 6t1 of the P-pole connection conductor 5, respectively.
  • a through hole 5h and a through hole 6h are formed in alignment with the position of the hole 5t1.
  • a second terminal hole 5t2 (hidden and not visible in FIG. 2) formed at the end of the P-pole connection conductor 5 opposite to the first terminal hole 5t1 in the plane is attached to the P-pole 20p1 of the leg 20 with a bolt or the like. are connected by the mechanism of A second terminal hole 6t2 formed at the end of the N-pole connection conductor 6 opposite to the first terminal hole 6t1 in the plane is connected to the N-pole 20p2 of the leg 20 by a mechanism such as a bolt.
  • the three bolts without reference numerals at the connection points between the N-pole connection conductor 6 and the leg 20 correspond to the three legs 20, respectively.
  • the P-pole connection conductor 5 is bent at an angle of 90 degrees at an intermediate portion (bending portion 5b) between the first terminal hole 5t1 and the second terminal hole 5t2.
  • the N-pole connection conductor 6 is also bent at an angle of 90 degrees at an intermediate portion (bending portion 6b) between the first terminal hole 6t1 and the second terminal hole 6t2. The reason for bending will be described later.
  • a third terminal hole 5t3 is provided at a location different from the first terminal hole 5t1 and the second terminal hole 5t2 of the P-pole connection conductor 5 (details will be described later) to connect the unit converter 3 to the outside.
  • a third terminal hole 6t3 is provided at a location different from the first terminal hole 6t1 and the second terminal hole 6t2 of the N-pole connection conductor 6, and is used for connecting the unit converter 3 and the outside.
  • the first terminal hole 7t1 provided at one end of the AC pole connection conductor 7 is connected to the AC pole 20p3 of the leg 20 by a mechanism such as a bolt, and the three bolts at the connection point between the AC pole connection conductor 7 and the leg 20 are , corresponding to the three legs 20 respectively.
  • a second terminal hole 7t2 located at one end of the AC pole connection conductor 7 opposite to the first terminal hole 7t1 in the plane is connected to the outside of the unit converter 3 and used as an input/output terminal.
  • the switching element 2 has a plate shape including a 2-in-1 package, and has various conductors (a P-pole connection conductor 5, an N-pole connection conductor 6, and an AC-pole connection conductor 7) on one of two main surfaces. Electrodes to be connected are formed in divided regions.
  • the P-pole connection conductor 5 and the N-pole connection conductor 6 are supposed to be bent at 90 degrees in the middle, but bending at an angle of 90 degrees is a simple example. The angle does not necessarily have to be 90 degrees, and may be another angle as in a modified example to be described later.
  • the thickness of the capacitor 1 is equal to or less than the thickness of the switching element 2, the P-pole connection conductor 5 and the N-pole connection conductor 6 do not need to be bent halfway for the reason described later.
  • the surface of the switching element 2 opposite to the surface on which various electrodes are provided is flat and used as a cooling surface without electrical connection.
  • various losses such as switching loss and conduction loss occur, which causes the temperature of the switching element 2 to rise. Since the temperature rise of the switching element 2 causes performance degradation or failure of the switching element 2, it must be suppressed.
  • the unit converter 3 is provided with a cooling device 4.
  • the cooling device 4 must have a cooling capacity capable of processing the amount of heat generated by the loss generated in the switching element 2 .
  • Thermal resistance (K/W) for example, is used as an index of cooling capacity. This expresses the temperature difference (K) required for heat transfer per 1 watt (W), and the smaller the thermal resistance, the less temperature difference heat can be transferred. Become.
  • a power conversion device 9 using two unit converters 3 has two unit converters 3 facing each other as shown in FIG. 1A. At this time, the cooling surfaces of the switching elements 2 of the unit converters 3 are arranged to face each other. By arranging the two unit converters 3 so as to face each other in this manner, the cooling device 4 that originally needed to be provided for each unit converter 3 can be integrated (common).
  • the mounting height of the capacitor 1 is higher than that of the switching element 2. Therefore, the P-pole connection conductor 5 and the N-pole connection conductor 6 are bent by 90 degrees at intermediate portions (bent portions 5b and 6b) between the region connecting the switching element 2 and the region connecting the capacitor 1.
  • FIG. The mounting direction of the switching element 2 (horizontal direction in the figure) and the mounting direction of the capacitor 1 (vertical direction in the figure) were made to differ by 90 degrees. As a result, the cooling surfaces of the switching elements 2 of the two unit converters 3 can be brought close to each other so as to face each other.
  • the bent portion 5b and the bent portion 6b are required when, among the elements constituting the unit converter 3, there is a constituent element exceeding the height of the switching element 2 or the package. Therefore, if the capacitor 1 does not exceed the height of the switching element 2, there is no need to bend the P-pole connection conductor 5 and the N-pole connection conductor 6 halfway. Therefore, the P-pole connection conductor 5 and the N-pole connection conductor 6 can be flat plates that are not bent.
  • the switching element 2 may be connected to one surface of the P-pole connection conductor 5 and the N-pole connection conductor 6, and the capacitor 1 may be connected to the opposite surface thereof. In such installation, it is not necessary to bend the P-pole connection conductor 5 and the N-pole connection conductor 6 even if the mounting height of the capacitor 1 is higher than that of the switching element 2 .
  • the cooling device 4 shared by the two unit converters 3 is required to have a cooling capacity corresponding to the amount of heat generated by the switching elements 2 of the two unit converters 3 .
  • the integrated cooling device 4 for two unit converters 3 does not need to cool the temperature rise caused by twice the loss by simple calculation. be. If the cooling device 4 is an air-cooling fin, the heat resistance may be reduced by increasing the air volume or changing the shape of the fin.
  • the thermal resistance can be reduced by increasing the flow rate, changing the shape of the fins, and changing the composition of the cooling water to improve the thermal conductivity.
  • One example of how to improve the thermal conductivity of cooling water is to take advantage of the temperature dependence of thermal conductivity in general. By using cooling water with a composition that increases thermal conductivity as the cooling water temperature rises, the amount of heat generated increases and when the cooling water temperature rises, it is possible to compensate for the decrease in temperature difference and maintain the cooling capacity. Become.
  • the cooling device 4 used for the unit converter 3 in Embodiment 1 is drawn assuming water cooling fins.
  • the cooling device 4 integrated in the two unit converters 3 does not necessarily have to change the outer shape of the single independent cooling device when an independent cooling device is provided for each unit converter 3 .
  • a cooling device 4 having the same external shape as that of the cooling device provided for each unit converter 3 is originally used, and one cooling device 4 is installed for two unit converters 3. ing. Therefore, the number of cooling devices mounted on the power converter 9 can be halved.
  • the pressure-contact type semiconductor element described in Patent Document 1 it is necessary to mount cooling devices on both sides of the semiconductor element. A number of cooling devices should be provided and at least three cooling devices should be used. That is, more cooling devices are required than the number of unit converters.
  • the structural part 4s is, for example, a metal framework (frame) and is connected and fixed to a housing (not shown) containing the power converter 9 therein.
  • a rectangular parallelepiped box made of metal or resin is used for the housing.
  • the thickness and strength of the structural component 4s must be adjusted according to the weight of the object to be supported, and the number of structural parts must be increased according to the number of objects to be supported. Therefore, halving the number and weight of the cooling devices 4 has the effect of reducing not only the cooling devices 4 but also the structural parts 4s.
  • the wiring length when a plurality of switching elements 2 are connected in parallel in the above configuration will be described.
  • the switching element 2 has a plate-like shape, and two electrodes are formed on one side thereof to pass a current as a half bridge. Connection electrodes protrude.
  • the switching elements 2 used in the power conversion device 9 may change the number of parallel connections according to the magnitude of the rated current of the power conversion device 9 .
  • one switching element 2 for the rated current of the power conversion device 9 one or more switching elements 2 are used. Three or more switching elements 2 are used when the desired current can finally be reached by using, for example, three switching elements 2 with respect to the rated current of the power conversion device 9 .
  • the magnitude of the current flowing through the switching element 2 changes depending on the easiness of current flow in the switching element 2 and the easiness of current flow in the path through which the current flows.
  • the magnitude of the current flowing through each switching element 2 varies depending on the easiness of current flow in each switching element 2 and the easiness of current flow in each current path. variation occurs.
  • a metal plate may be used for wiring and bolted to the switching element.
  • the wiring length of the current path of each switching element depends on the physical arrangement.
  • FIG. 5A For example, a description will be given using the comparative example shown in FIG. 5A.
  • three switching elements 2 arranged side by side are connected through a terminal hole 5t2C at the lower end of a metal conductor 5C corresponding to the P-pole connection conductor 5 of the present application, and a terminal hole 5t1C (first It is electrically connected to the outside via the terminal hole 5t1 (corresponding to the branch point Ps in FIG. 4).
  • “C" is attached to the end of the reference numerals to distinguish the corresponding parts in the embodiment of the comparative example.
  • the wiring length differs according to the positional relationship between the arrangement of the switching element 2 and the terminal hole 5t1C. cannot be equalized.
  • openings are provided in the metal plate (P-pole connection conductor 5) connected to three or more switching elements 2.
  • the slit 5s portion serves as an insulating portion such as air, and the current path from the first terminal hole 5t1 to each switching element 2 (second terminal hole 5t2) is formed avoiding the slit 5s.
  • a method of providing an opening such as the slit 5s in the metal plate can be performed by a general method such as press processing or laser processing.
  • simple processing such as providing openings (slits 5s and slits 6s) can make the current uniform.
  • the current uniformity of each switching element 2 has the effect of uniformly improving the current utilization rate of each switching element 2 .
  • the current utilization rate here is a ratio when the rated current value of the switching element 2 is used as the denominator and the maximum flowing current value is used as the numerator. If the currents of the switching elements 2 are not uniform, the current utilization factor of the switching element 2 through which the current flows most easily is restricted not to exceed one. As a result, the current utilization rate of the switching element 2 through which current hardly flows is lower than 1, and the switching element 2 is not fully utilized. However, due to the uniformity provided by the openings, each switching element 2 can be fully utilized.
  • the AC pole connection conductor 7 used in the power conversion device 9 of the present application has a shape in which two of the four corners of a rectangle are obliquely cut. Since there is no conductor at the two corners cut from the rectangular conductor, it is no longer a current path. Two corners cut from a rectangular conductor are closer to each other than the switching element 2 located in the center of the three switching elements 2 . Therefore, cutting two corners from a rectangular conductor tends to affect the easiness of current flow to the two switching elements 2 arranged on the outer side, and the current flow to the switching element 2 arranged on the central side is likely to be affected. It does not affect the ease of flow of water.
  • the shape of the cut-out portion of the rectangular shape that is, by narrowing the width of the end portion where the number of terminal holes is formed is narrowed, the easiness of current flow to the outer switching element 2 is adjusted. can do.
  • the openings (slits 5s and 6s) provided inside the rectangular shape made it difficult for the current to flow through the switching element 2 on the central side.
  • the ease of current flow to each switching element 2 is adjusted by combining the adjustment of the outer peripheral shape of the conductor used for electrical connection and the adjustment of the shape of the opening provided inside. As a result, the effect of equalizing the current utilization rate of each switching element 2 is obtained.
  • the AC pole connection conductor 7 has been described as an example here, it is not limited to the AC pole connection conductor 7 .
  • the adjustment of the ease of current flow to the switching element 2 has been described, it can also be used to adjust the ease of current flow to the capacitor 1 .
  • the shape obtained by obliquely cutting the corners of the conductor is shown, the shape to be cut is not limited to a triangle.
  • the P-electrode connection conductor 5 is formed with a first terminal hole 5t1 connected to the electrode of the capacitor 1, a second terminal hole 5t2 connected to the switching element 2, and a third terminal hole 5t3 connected to the outside. Abrupt voltage and current changes that occur in the switching operation of switching element 2 are absorbed by the smoothing action of capacitor 1, which is a power storage element. The impedance of the current path between the switching element 2 and the capacitor 1 must be low in order to smoothly perform the smoothing action.
  • the third terminal hole 5t3 of the P-pole connection conductor 5 formed of a metal plate electrical connection is formed by tightening the bolt to the mounting hole, so contact resistance occurs. Therefore, it is desirable that the position of the third terminal hole 5t3 of the P-pole connecting conductor 5 should avoid the route connecting the first terminal hole 5t1 and the second terminal hole 5t2.
  • the third terminal hole 5t3 of the P-pole connection conductor 5 is installed on the path connecting the first terminal hole 5t1 and the second terminal hole 5t2, the sharp voltage change and current change generated by the switching operation are caused by the third terminal hole 5t3. It becomes easier to flow to the outside through the terminal hole 5t3. However, if the impedance connected to the outside is sufficiently high, it will not flow outside.
  • the third terminal hole 5t3 is arranged so as to avoid the path connecting the first terminal hole 5t1 and the second terminal hole 5t2.
  • Paths P1 and P2 indicated by arrows in FIG. 6 are paths connecting the first terminal hole 5t1 and the second terminal hole 5t2.
  • the third terminal hole 6t3 of the N-pole connection conductor 6 is also arranged so as to avoid the route connecting the first terminal hole 6t1 and the second terminal hole 6t2.
  • ⁇ Wiring member between unit converters> In addition to the current paths in the P-pole connection conductor and the N-pole connection conductor in the unit converters described above, an electrical connection method for forming current paths between the unit converters will be described.
  • a third terminal hole 5t3 is arranged in a positional relationship with the above-described first terminal hole 5t1 and second terminal hole 5t2, and is used for connection between the unit converter 3 and the outside. Two locations are provided on the side of the portion 51 (FIG. 3A) where the hole 5t1 is formed.
  • a third terminal hole 6t3 is arranged in a positional relationship with the above-described first terminal hole 6t1 and second terminal hole 6t2, and is used for connecting the unit converter 3 to the outside. Two locations are provided on the side of the portion 61 (FIG. 3B) where the first terminal hole 6t1 is formed.
  • the two third terminal holes 5t3 of the P-pole connection conductor 5 extend toward the portion 52 side (downward in FIG. are arranged symmetrically about the center in the direction ).
  • the two third terminal holes 6t3 of the N-pole connection conductor 6 also extend toward the portion 62 side (downward in FIG. are arranged symmetrically with respect to the center in the left-right direction).
  • the third terminal hole 5t3 of the P-pole connection conductor 5 and the third terminal hole 6t3 of the N-pole connection conductor 6 are connected to the unit In the transducer 3, it is divided into two locations and arranged at positions adjacent to each other in the left-right direction.
  • the third terminal holes 5t3 are arranged at symmetrical (equidistant) positions with respect to the center.
  • the ends of the two third terminal holes 5t3 of the respective P-pole connection conductors 5 come close to each other in the extending direction.
  • the tips of the two third terminal holes 6t3 of the respective N-pole connection conductors 6 come close to each other in the extending direction.
  • the third terminal hole 5t3 of the P-pole connection conductor 5 of the unit converter 3 and the third terminal hole 6t3 of the N-pole connection conductor 6 are provided at positions adjacent to each other in the left-right direction as described above. Therefore, the third terminal hole 5t3 of the P-pole connection conductor 5 and the third terminal hole 6t3 of the N-pole connection conductor 6 of the two unit converters 3 incorporated as the power converter 9 are close to each other. Therefore, the connection between the two unit converters 3 can be made with short wiring.
  • the two unit converters 3 When connecting the third terminal holes 5t3 of the P-pole connection conductors 5 and the third terminal holes 6t3 of the N-pole connection conductors 6 of the two unit converters 3, for example, as shown in FIG. It can be realized by a linear wiring member 10 having a thickness of 10t.
  • a linear wiring member 10 having a thickness of 10t.
  • FIG. 8B When connecting the third terminal hole 5t3 of the P-pole connection conductor 5 of one unit converter 3 and the third terminal hole 6t3 of the N-pole connection conductor 6 of the other unit converter 3, it is shown in FIG. 8B. , or an S-shaped wiring member 10 as shown in FIG. 8C.
  • the two unit converters 3 are connected using the wiring member 10 for connection, and can be connected in series or in parallel by selecting the shape of the wiring member 10 . Only by selecting the shape of the wiring member 10 for connection, it is possible to easily select between the serial connection application and the parallel connection application.
  • the two unit converters 3 constituting the power conversion device 9 are arranged such that the P-pole connection conductors 5 are connected to each other and the N-pole connection conductors 6 are connected to each other. have the same shape. That is, the two unit converters 3 constituting the power conversion device 9 use the P-pole connection conductors 5 of the same shape (FIG. 3A) and the N-pole connection conductors 6 of the same shape (FIG. 3B).
  • the P-pole connection conductor 5 and the N-pole connection conductor 6 of the two unit converters 3 constituting the power conversion device 9 can be shared, respectively.
  • An effect such as simplification of manufacturing of the conversion device 9 can be obtained.
  • FIG. 9 is a schematic side view for explaining the configuration of the power converter according to this modification.
  • the configuration other than the shape of the P-pole connecting conductor and the N-pole connecting conductor corresponding to the shape of the capacitor is basically the same as that of the above-described embodiment, and the description of the same part will be omitted.
  • the power conversion device 9 has a triangular prism shape, and the axis of the column is horizontal to the ground surface (for example, the surface in which the first terminal hole 5t1 is formed) instead of the end surfaces of the column such as the top surface and the bottom surface.
  • a capacitor 1 is installed with one side facing the ground plane.
  • the P-pole connection conductor 5 and the N-pole connection conductor 6 are bent in an angle range of more than 0° and less than 90° in accordance with the angles of the corners of the triangular prism. , 6b.
  • the capacitor 1 can be accommodated on the front side of the switching element 2 in each unit converter 3 (for example, the portion 62 side of the extension line of the portion 52), and the switching elements 2 are opposed to each other to cool the cooling device. 4 can be shared.
  • the third terminal holes 5t3 of the P-pole connection conductors 5 and the third terminal holes 6t3 of the N-pole connection conductors 6 of the two unit converters 3 are, for example, halfway when extending in parallel from the portions 51 and 61. , so as to be perpendicular to the parts 52 and 62. By doing so, the two third terminal holes 5t3 of the P-pole connection conductors 5 of the two unit converters 3 are brought closer in the extending direction. Similarly, the two third terminal holes 6t3 of each N-pole connection conductor 6 are close to each other in the extending direction. As a result, the wiring member 10 described with reference to FIGS. 8A to 8C enables electrical connection between the unit converters 3 easily.
  • the third terminal holes 5t3 of the P-pole connection conductors 5 and the third terminal holes 6t3 of the N-pole connection conductors 6 of the two unit converters 3 remain parallel to extend from the portions 51 and 61. Even in this case, for example, by bending the intermediate portion of the wiring member 10 described with reference to FIGS. 8A to 8C in the thickness direction, the electrical connection between the unit converters 3 can be easily made.
  • Embodiment 2 In the first embodiment, the case where one capacitor is provided for each unit converter has been described. In the second embodiment, a case in which a plurality of capacitors are provided for each unit converter will be described. 10 and 11 are for explaining the configuration and operation of the power converter and the unit converter according to the second embodiment, and FIG. 10 is a diagram for explaining the configuration of the unit converter of the power converter. 2, and FIG. 11 is a perspective view corresponding to FIG. 1A for explaining the configuration of the power converter.
  • the configuration other than the shape of the P-pole connection conductor and the N-pole connection conductor corresponding to the arrangement of the capacitors is basically the same as that of the above-described embodiment, and the description of the same part will be omitted, and the description of the first embodiment will be omitted.
  • FIG. 1B, FIG. 4, FIG. 9, etc. used are referred to.
  • the power conversion device 9 includes two capacitors 1 of the same specification in the unit converter 3 (when distinguishing the two, one capacitor 1 is a capacitor 1A and the other The capacitor 1 of is referred to as a capacitor 1B.) is provided.
  • the two capacitors 1 are arranged symmetrically with respect to a plane including the center line X3 in the horizontal direction of the unit converter 3 .
  • the center position between the P-pole terminal 1p1A and the N-pole terminal 1p2A of the capacitor 1A (divided equally by the distance L1A) and the center position between the P-pole terminal 1p1B and the N-pole terminal 1p2B of the capacitor 1B (distance L1B ), the center position PX1 (where the distances L2A and L2B match) is located on the center line X3.
  • the unit converter 3 containing one capacitor 1 since the capacitor 1 is arranged on the center line X3, the center position PX1 between the P-pole terminal 1p1 and the N-pole terminal 1p2 is on the center line X3. Therefore, in the unit converter 3 having two capacitors 1A and 1B and the unit converter 3 having one capacitor 1, the current paths between the capacitor 1 and the switching element 2 are equivalent.
  • a power conversion device 9 as shown in FIG. 11 is obtained.
  • Embodiment 3 an example in which a bypass switch, which is device protection means, is provided for the power conversion device in which two unit converters are combined while sharing one cooling device, as described in each of the above embodiments. , and MMC combining them. 12 to 15 are for explaining the configuration and operation of the power converter and the unit converter according to the third embodiment, and FIG. 12 is a schematic diagram for explaining the configuration of the MMC power converter.
  • FIG. 13 is a schematic circuit diagram of a power converter equipped with a bypass mechanism suitable for the MMC system.
  • FIG. 14 is a perspective view of a portion corresponding to FIG. 1A of the power converter with the bypass mechanism
  • FIG. 15 is a side view of the power converter with the bypass mechanism. Note that.
  • the configuration other than the provision of the bypass mechanism is basically the same as that of the above-described first and second embodiments, and the description of the same parts is omitted, and the configuration used in the first or second embodiment is omitted. 2 to 11 are referred to.
  • the power converter 9 according to the third embodiment is configured by connecting the AC poles 20p3 of the two unit converters 3 via the bypass switch 14, as shown in FIG.
  • the N-pole connection conductor 6 of one unit converter 3 and the P-pole connection conductor 5 of the other unit converter 3 are connected by the wiring member 10 described in the first embodiment.
  • the P-pole connection conductor 5 of the unit converter 3 on the P-pole side of a certain power conversion device and the N-pole side of the adjacent power conversion device 9 and the N-pole connection conductor 6 of the unit converter 3 are connected.
  • an arm 30 is configured by connecting cells of a plurality of power converters 9 in series to form an MMC power converter 9M.
  • the power conversion device 9M of the MMC system includes a plurality of arms 30, which are divided into the arms 30 connected to the positive voltage terminal 9Mt2 and the arms 30 connected to the negative voltage terminal 9Mt3. AC terminal 9Mt1.
  • bypass mechanism is bypass switch 14 .
  • an element that short-circuits when a voltage higher than a predetermined voltage is applied may be used.
  • bypass mechanism when a short-circuit accident occurs outside the power conversion device 9, the power conversion device 9 is bypassed in order to avoid failure due to overcurrent flowing through the power conversion device 9.
  • bypass mechanisms in this case are commutation diodes or bypass switches.
  • the own unit converter 3 is bypassed when the energized operation load state is reached.
  • a bypass switch 14 having a rectangular parallelepiped shape is used as the bypass mechanism, for example, as shown in FIGS. .
  • the bypass mechanism is fixed with a mechanism such as a bolt. That is, since the unit converter 3 is configured so that the capacitor 1 does not protrude beyond the switching element 2, one bypass switch 14 can be shared by the two unit converters 3 as in the case of the cooling device 4. can.
  • bypass mechanism bypass switch 14
  • the external connection wiring 15 by fixing the bypass mechanism (bypass switch 14) and the external connection wiring 15 by a common mechanism, the number of structural parts can be reduced.
  • the positional relationship between the switching element 2 and the capacitor 1 is not limited to the exemplified form. may be made available.
  • various modifications are possible for the shapes of the capacitor 1, the P-pole connection conductor 5, and the N-pole connection conductor 6, and the like.
  • the pair of unit converters 3 and the cooling device 4 are provided.
  • Two electrodes through which the main power flows are formed on the connection surface, forming a pair of switching elements 2 that constitute a leg 20 for power conversion, and a first electrode in the leg 20 at one end.
  • a second terminal hole 5t2 is formed for fixing the electrodes of the paired switching element 2 corresponding to the P pole 20p1 (for example), and a capacitor corresponding to the first pole (P pole 20p1) is formed at the other end.
  • a first conductor plate (for example, P-pole connection conductor 5) formed with a first terminal hole 5t1 for fixing one electrode (terminal 1p1), and a second pole (for example, N-pole A second terminal hole 6t2 for fixing the electrode of the paired switching element 2 corresponding to 20p2) is formed, and the electrode (terminal 1p2) is formed, and a second conductor plate (for example, N pole connection A pair of unit converters 3 are arranged such that the cooling surface of the paired switching element 2 of one unit converter 3 faces the cooling surface of the paired switching element 2 of the other unit converter 3. , and are opposed to each other with the cooling device 4 interposed therebetween. That is, the cooling surfaces of the switching elements 2 are opposed to each other, and one cooling device 4 is sandwiched (shared) to configure the power conversion device 9 . Therefore, the number of parts is reduced, and a compact power conversion device 9 can be obtained.
  • each of the pair of unit converters 3 is positioned so that the capacitor 1 is located on the front side in the direction away from the second terminal hole 5t2 (and the second terminal hole 6t2) with respect to the cooling surface of the switching element 2. Configured. Therefore, without the capacitors 1 interfering with each other, the switching elements 2 (flat surfaces thereof) face each other, and one cooling device 4 is sandwiched (shared) to configure the power conversion device 9 .
  • the first conductor plate (P-pole connection conductor 5) and the second conductor plate (N-pole connection conductor 6) are respectively formed with portions (regions 51 and 61) in which first terminal holes 5t1 and 6t1 are formed and second terminals Since the bent portions (bent portions 5b, 6b) are formed in the intermediate portion so as to form an angle with the portions (portions 52, 62) in which the holes 5t2, 6t2 are formed, the switching element 2 is bulkier than the switching element 2.
  • a tall capacitor 1 can be easily accommodated on the front side.
  • a pair of unit converters 3 should be configured so that their first conductor plates (P-pole connection conductors 5) and their second conductor plates (N-pole connection conductors 6) have the same shape. For example, by standardizing parts, productivity is further improved.
  • Three or more second terminal holes 5t2, 6t2 are arranged along one end of each of the first conductor plate (P-pole connection conductor 5) and the second conductor plate (N-pole connection conductor 6), and are arranged in the center. If the openings (slits 5s, 6s) are formed on the line connecting the first terminal hole and the first terminal holes 5t1, 6t1, connection to the central terminal hole can be made depending on the position and size of the openings.
  • the shortest path (current path P1 , P2), the third terminal holes 5t3 and 6t3 for electrical connection with the outside are formed at positions away from the terminal holes 5t3 and 6t3. Outflow can be suppressed.
  • a first conductor plate (P-pole connection conductor 5), a second conductor plate (N-pole connection conductor 6), and a terminal hole (first terminal hole 7t1) corresponding to the AC pole (AC pole 20p3) in the leg 20 at one end is formed, and a terminal hole (second terminal hole 7t2) for electrical connection to the outside is formed at the other end of the third conductor plate (AC pole connection conductor), which is formed at one end
  • the number of terminal holes formed at the other end is larger than the number of terminal holes formed at the other end, and the width of the other end is narrower than the width of the one end, parallel connection can be achieved. It is possible to equalize the lengths of the current paths from the elements that pass through the conductor plate.
  • bypass switch 14 for bypassing between the pair of unit converters 3
  • a conversion device 9 can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

コンデンサ(1)、一方の面が平坦なスイッチング素子(2)、一端部にスイッチング素子(2)のP極(20p1)対応の電極を固定するための第二端子孔(5t2)が、他端部にコンデンサ(1)の端子(1p1)を固定するための第一端子孔(5t1)が形成されたP極接続導体(5)、および一端部にスイッチング素子(2)のN極(20p2)対応の電極を固定するための第二端子孔(6t2)が、他端部にコンデンサ(1)の端子(1p2)を固定するための第一端子孔(6t1)が形成され、絶縁を保って厚み方向に重ねて配置されたN極接続導体(6)を備えた単位変換器(3)どうしが、冷却装置(4)を挟んで、スイッチング素子(2)の冷却面を対向させている。

Description

電力変換装置
 本願は、電力変換装置に関するものである。
 直流送電などに用いられる電力変換装置として、モジュラーマルチレベル変換器(以下、MMC(Modular Multilevel Converter)と称す)が知られている。MMCは、複数の単位変換器で構成された電力変換装置である。単位変換器は、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの対をなすスイッチング素子と直流コンデンサで構成されている。
 また、分散電源、モータードライブ用途ではマルチレベル電力変換装置が知られている。マルチレベル電力変換装置でも、複数の単位変換器から構成される場合があり、複数の直流コンデンサの責務を均一にすることを課題とした電力変換装置が提案されている(例えば、特許文献1参照。)。
特開2015-115974号公報(段落0011~0022、図1~図3)
 一方、直流送電などに用いられる電力変換装置では、高電圧と大電流を扱うことが多く、スイッチング素子、直流コンデンサ、および配線が大型化し、これらを支持する構造物も大型化する。したがって、直流送電などに用いられる電力変換装置では、小型化が重要課題となる。
 本願は、上記のような課題を解決するための技術を開示するものであり、直流送電等に用いる小型の電力変換装置を得ることを目的とする。
 本願に開示される電力変換装置は、一対の単位変換器、および冷却装置を備え、前記一対の単位変換器それぞれは、コンデンサ、冷却面と、前記冷却面の反対側になる接続面とを有し、主電力が流れる2つの電極が前記接続面に形成され、対をなして電力変換のためのレグを構成するスイッチング素子、一端部に前記レグにおける第一極に対応する前記対をなすスイッチング素子の電極を固定するための第二端子孔が形成され、他端部に前記第一極に対応する前記コンデンサの電極を固定するための第一端子孔が形成された第一導体板、および一端部に前記レグにおける第二極に対応する前記対をなすスイッチング素子の電極を固定するための第二端子孔が形成され、他端部に前記第二極に対応する前記コンデンサの電極を固定するための第一端子孔が形成され、前記第一導体板と絶縁を保って厚み方向に重ねて配置された第二導体板を備え、前記一対の単位変換器は、一方の単位変換器の前記対をなすスイッチング素子の前記冷却面が、他方の単位変換器の前記対をなすスイッチング素子の前記冷却面に対して、前記冷却装置を挟んで対向していることを特徴とする。
 本願に開示される電力変換装置によれば、スイッチング素子の冷却装置を共通化して電力変換装置を構成できるので、部品数が削減され、直流送電等に用いる小型の電力変換装置を得ることができる。
図1Aと図1Bは、それぞれ実施の形態1にかかる電力変換装置の構成を説明するための斜視図と単位変換器の構成を示す回路図である。 実施の形態1にかかる電力変換装置の単位変換器の構成を説明するための斜視図である。 図3Aと図3Bは、それぞれ実施の形態1にかかる電力変換装置のP極接続導体とN極接続導体の構成を示す斜視図である。 実施の形態1にかかる電力変換装置において、3つのスイッチング素子を並列接続したレグの構成を示す回路図である。 図5Aと図5Bは、それぞれ比較例と実施の形態1にかかる電力変換装置における並列接続されたスイッチング素子の配線長について説明するためのP極接続導体部分の模式図である。 実施の形態1にかかる電力変換装置におけるコンデンサとの電気接続を行うための端子位置について説明するためのP極接続導体の斜視図である。 図7Aと図7Bは、それぞれ実施の形態1にかかる電力変換装置における単位変換器間の電気接続について説明するための電力変換装置の斜視図と平面図である。 図8A~図8Cは、それぞれ実施の形態1にかかる電力変換装置における単位変換器間を電気接続するための形状の異なる配線部材の平面図である。 実施の形態1の変形例にかかる電力変換装置の構成を説明するための模式的な側面図である。 実施の形態2にかかる電力変換装置の単位変換器の構成を説明するための斜視図である。 実施の形態2にかかる電力変換装置の構成を説明するための斜視図である。 実施の形態3にかかるMMC方式の電力変換装置の構成を説明するための模式的な回路図である。 実施の形態3にかかる電力変換装置の構成を説明するための模式的な回路図である。 実施の形態3にかかる電力変換装置の構成を説明するための斜視図である。 実施の形態3にかかる電力変換装置の構成を説明するための側面図である。
実施の形態1.
 図1A~図8Cは実施の形態1にかかる電力変換装置の構成および動作について説明するためのものであり、図1Aは電力変換装置の構成を示す斜め上方から見たときの斜視図、図1Bは単位変換器の構成を示す回路図、図2は単位変換器を斜め上方から見たときの斜視図である。そして、図3AはP極接続導体の構成を示す図2における上下を逆転させた構図での斜視図、図3BはN極接続導体の構成を示す図2における上下を逆転させた構図での斜視図である。
 また、図4は3つのスイッチング素子を並列接続したレグの構成を示す回路図であり、図5Aは比較例にかかる電力変換装置における並列接続されたスイッチング素子の配線長について説明するためのP極接続導体部分の模式図であり、図5Bは実施の形態1にかかる電力変換装置における並列接続されたスイッチング素子の配線長について説明するためのP極接続導体部分の模式図である。さらに、図6はコンデンサとの電気接続を行うための端子位置について説明するためのP極接続導体の図3Aに対応する斜視図である。
 一方、図7Aは単位変換器間の電気接続について説明するための図1Aに対応する電力変換装置の斜視図であり、図7Bは上方から見たときの平面図である。そして、図8A~図8Cは、それぞれ単位変換器間を電気接続するための接続対象、あるいは形状の異なる配線部材の平面図である。
 本願で開示する電力変換装置は、直流送電に用いるものであり、後述する実施の形態3で詳細な説明を行うMMC方式を想定している。そして、図1Aに示すように、冷却装置4を2つの単位変換器3で挟み込む(詳細は後述)ようにして電力変換装置9を構成している。単位変換器3は、蓄電要素としてのコンデンサ1と、2つ以上のスイッチング素子2とで構成する。ここで、本願の特徴的な構成の説明の前に、前提となる基本的な構成について説明する。
 単位変換器3は、より具体的には、図1Bに示すように、2つ以上のスイッチング素子2を直列接続したレグ20と、レグ20と並列に接続されるコンデンサ1により、ハーフブリッジ回路を構成する。ここで、2つ以上のスイッチング素子2を直列接続したレグ20の中間がAC極20p3となる。レグ20の一端はP極20p1となり、P極20p1とは反対側の他端がN極20p2となる。P極20p1にはスイッチング素子2のドレイン端子、あるいはコレクタ端子が接続される。N極20p2にはスイッチング素子2のソース端子、あるいはエミッタ端子が接続される。
 コンデンサ1には、フィルムコンデンサ、電解コンデンサ、電気二重層キャパシタなど、多様な蓄電素子が適用できる。スイッチング素子2には、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)など、多様な半導体素子が適用できる。ただし、本願では、特許文献1に開示された電力が流れる電極が両面に分かれて形成される圧接型の半導体素子ではなく、後述するパッケージとしても、一方の面の中で領域を分けて、電力が流れる2つの電極が形成されるスイッチング素子2を対象としている。電極としては、例えば、絶縁性のパッケージの面から浮かせたねじ穴のように、ボルト等で機械的な固定と電気接続が可能な形態を想定している。
 ここで、図1Bで説明した単位変換器3を実際に構成するには、ハーフブリッジ回路を構成する素子のほかに、P極の配線となるP極接続導体5と、N極の配線となるN極接続導体6と、AC極の配線となるAC極接続導体7と、スイッチング素子2を冷却する冷却装置4とが必要となる。
 P極接続導体5、N極接続導体6、AC極接続導体7といった導体には金属板を用い、厚板状の冷却装置4を用いて、ハーフブリッジ回路を構成する素子とを組み上げると、図2に示すような単位変換器3が構成できる。図2においては、3つのレグ20が互いに並列に接続されている(図6参考)。図1Bでは、2つのスイッチング素子2が一体になっている2in1パッケージを想定し、レグ20を形成するパッケージをひとつのスイッチング素子2のように描画しているが、これに限ることはない。例えば、1つのスイッチング素子2が収められている1in1パッケージを2つ直列接続方向に配置してレグ20を構成したうえで、3つのレグ20を並列接続方向に配置しても良い。
 なお、冷却装置4としては、水冷フィンを想定した構造の例を示していて、冷媒の出入り口である水冷バルブ口4vを備え、構造部品4sによって支持されるものとする。構造部品4sは、単位変換器3を内蔵する図示しない筐体に連結・固定される。本願では詳しく説明しないが、コンデンサ1、および各種導体も必要があれば、ボルト、金具といった何らかの構造部品類によって筐体に固定される。
 P極接続導体5とN極接続導体6とは、厚み方向に重なるように配置される。ただし、P極接続導体5とN極接続導体6との間には、一定の隙間または絶縁部材を設け、互いに電気的に切り離される。また、コンデンサ1は、P極の端子1p1と、N極の端子1p2とを備えている。コンデンサ1のP極の端子1p1、N極の端子1p2はコンデンサ1の同一面に設けられている。そして、その面に、図3Aに示すP極接続導体5の一端に形成された第一端子孔5t1、および図3Bに示すN極接続導体6の一端に形成された第一端子孔6t1がボルトなどの機構で固定される。なお、P極接続導体5とN極接続導体6それぞれには、端子1p1と端子1p2との干渉を避けるため、N極接続導体6の第一端子孔6t1とP極接続導体5の第一端子孔5t1の位置に合わせて、貫通孔5hと貫通孔6hが形成されている。
 P極接続導体5の第一端子孔5t1とは面内における反対側の端部に形成された第二端子孔5t2(図2では隠れて見えない)は、レグ20のP極20p1にボルトなどの機構で接続される。N極接続導体6の第一端子孔6t1とは面内における反対側の端部に形成された第二端子孔6t2は、レグ20のN極20p2にボルトなどの機構で接続される。
 なお、図2において、N極接続導体6とレグ20との接続箇所にある符号を付さない3つのボルトは、3つのレグ20にそれぞれ対応する。P極接続導体5とレグ20のP極20p1との接続箇所にも同様に3つのボルトがあるが、N極接続導体6によって隠れて見えない。P極接続導体5は第一端子孔5t1と第二端子孔5t2との中間部分(屈曲部5b)で角度90度だけ折れ曲がる。N極接続導体6も第一端子孔6t1と第二端子孔6t2との中間部分(屈曲部6b)で角度90度だけ折れ曲がる。折れ曲がる理由は後述する。
 また、P極接続導体5の第一端子孔5t1、および第二端子孔5t2とは異なる箇所(詳細は後述)に第三端子孔5t3が設けられて、単位変換器3と外部との接続に使用される。同様にN極接続導体6の第一端子孔6t1、および第二端子孔6t2とは異なる箇所に第三端子孔6t3が設けられて、単位変換器3と外部との接続に使用される。
 AC極接続導体7の一端に設けられた第一端子孔7t1はレグ20のAC極20p3にボルトなどの機構で接続され、AC極接続導体7とレグ20との接続箇所にある3つのボルトは、3つのレグ20にそれぞれ対応する。AC極接続導体7の第一端子孔7t1とは面内における反対側の一端に位置する第二端子孔7t2は単位変換器3の外部と接続され、入出力端子として使用される。
 スイッチング素子2は、2in1のパッケージも含め、板状をなし、2つの主面のうち、一方の面内に各種導体(P極接続導体5、N極接続導体6、AC極接続導体7)と接続する電極が領域に分かれて形成されている。P極接続導体5、およびN極接続導体6は、途中で90度だけ折れ曲がる、としているが、角度90度だけ折れ曲がるのは簡単な例である。角度は必ずしも90度でなくても良く、後述する変形例のように別の角度でもよい。極端な例として、コンデンサ1の厚みがスイッチング素子2と同等以下の厚みの場合、P極接続導体5、およびN極接続導体6は、後述の理由により、途中で折り曲げる必要がない。
 スイッチング素子2の各種電極が設けられる面とは反対側の面は平坦状をなし、電気的な接続を伴わない冷却面として使用される。スイッチング素子2を通電させると、スイッチング損失、および導通損失などの各種損失が発生して、スイッチング素子2の温度上昇の要因となる。スイッチング素子2の温度上昇は、スイッチング素子2の性能低下、あるいは故障の要因となるため、抑制する必要がある。
 そこで、スイッチング素子2の温度上昇を抑制するために、単位変換器3には冷却装置4を備える。冷却装置4はスイッチング素子2で発生する損失に伴う発熱量を処理できる冷却能力を備える必要がある。冷却能力の指標は、例えば、熱抵抗(K/W)が使われる。これは1ワット(W)あたりの伝熱に必要な温度差(K)を表し、熱抵抗が小さいほど、少ない温度差で伝熱が可能、つまり冷却対象の到達温度を低く抑えることが可能となる。
 上述した基本構成を前提として、2つの単位変換器3で1つの冷却装置4を共有するようにして構成した本願の電力変換装置9の特徴的部分についての説明に入る。単位変換器3を2つ用いた電力変換装置9は、図1Aに示すように、2つの単位変換器3を互いに向かい合わせて配置する。このとき、各単位変換器3のスイッチング素子2の冷却面が互いに対向するように配置する。このように2つの単位変換器3を対向させて配置することで、本来、単位変換器3ごとに設ける必要のあった冷却装置4を一体化(共通化)することができる。
 ここで、単位変換器3ごとの冷却装置4を一体化するためには、各単位変換器3のスイッチング素子2あるいはパッケージの冷却面同士が近接する必要がある。したがって、単位変換器3を構成する素子のうち、スイッチング素子2、あるいはパッケージの高さを超える構成要素は、スイッチング素子2とは異なる方向に設置する必要が生じる。
 例えば、図2に示す単位変換器3では、コンデンサ1の方が、スイッチング素子2よりも実装高さが高い。そこで、P極接続導体5、およびN極接続導体6をスイッチング素子2と接続する領域とコンデンサ1と接続する領域の中間部分(屈曲部5b、および屈曲部6b)で90度だけ折り曲げる。そして、スイッチング素子2の実装方向(図では水平方向)と、コンデンサ1の実装方向(同垂直方向)とが、90度異なるようにした。その結果として、2つの単位変換器3に対して、それぞれのスイッチング素子2の冷却面同士を対向させて近接させることができる。
 上述したように、屈曲部5b、屈曲部6bは、単位変換器3を構成する素子のうち、スイッチング素子2、あるいはパッケージの高さを超える構成要素がある場合に必要としたものである。そのため、コンデンサ1がスイッチング素子2の高さを超えない場合は、P極接続導体5、およびN極接続導体6を途中で折り曲げる必要は生じない。よって、P極接続導体5、およびN極接続導体6は折り曲げていない平板で良くなる。また、P極接続導体5およびN極接続導体6の一面にスイッチング素子2が接続され、その反対の面にコンデンサ1が接続されてもよい。そのように設置する際は、コンデンサ1の方が、スイッチング素子2よりも実装高さが高い場合でも、P極接続導体5およびN極接続導体6を折り曲げる必要はない。
 一方、2つの単位変換器3において共有する冷却装置4には、2つの単位変換器3のスイッチング素子2で生じる発熱量に対応した冷却能力が求められる。単位変換器3ごとに独立した冷却装置4を設けた場合と比べて、2つの単位変換器3において一体化した冷却装置4では、単純計算で2倍の損失によって生じる温度上昇を冷却する必要がある。冷却装置4が空冷フィンである場合、風量の増大、あるいはフィン形状の変更等により、熱抵抗を低減すればよい。
 冷却装置4が水冷フィンである場合は、流量の増大、あるいはフィン形状の変更等に加え、冷却水の組成を変えて熱伝導率を向上させることで熱抵抗を低減すればよい。冷却水の熱伝導率を向上させる方法の一例として、一般的に熱伝導率が温度に依存することを利用することがあげられる。冷却水温が高くなると熱伝導率が上がる組成の冷却水を使用することで、発熱量が増加し、冷却水温が上昇した場合に、温度差の低下を補って、冷却能力を保つことが可能となる。
 本実施の形態1における単位変換器3に用いる冷却装置4については、水冷フィンを想定して描画している。冷却装置4の冷却能力を向上させる場合において、冷却風、冷却液等の冷媒の条件で改善するかぎりでは、冷却装置4自体の外形を大型化させることは必ずしも必要ではない。よって、2つの単位変換器3において一体化した冷却装置4は、単位変換器3ごとに独立した冷却装置を設けた場合の一個の独立した冷却装置に対して、必ずしも外形を変える必要はない。
 そこで、本願の電力変換装置9では、本来、単位変換器3それぞれに設ける仕様の冷却装置と同じ外形の冷却装置4を用い、2つの単位変換器3に対して1つの冷却装置4を設置している。よって、電力変換装置9に搭載する冷却装置の数を半減させることができる。なお、特許文献1に記載の圧接型の半導体素子を用いる場合、半導体素子の両側に冷却装置を搭載する必要があり、仮に、単位変換器間でひとつの冷却装置を共有した場合でも、さらに素子数に応じた冷却装置を設け、少なくとも3つの冷却装置を用いる必要がある。つまり、単位変換器の数よりも多い冷却装置が必要となる。
 冷却装置の材質は、一般的にアルミニウム(Al)、銅(Cu)、あるいはそれらを主体とした合金が使用されることが多い。銅を使用する場合は冷却能力に優れるが重量が重くなりやすい。アルミニウムを使用する場合は銅と比べると軽量となる。このような冷却装置4を電力変換装置9に組み込むためには、固定用の構造部品4sが必要となる。構造部品4sは例えば金属製の枠組み(フレーム)であり電力変換装置9を内蔵する、図示しない筐体に連結・固定される。
 筐体は、例えば金属、あるいは樹脂で作られた直方体の箱が用いられる。構造部品4sは支持対象物の重量に応じて厚みと強度を調整する必要があり、また、支持対象物の数に応じて数を増加させる必要がある。よって、冷却装置4の数および重量を半減させることは、冷却装置4の削減のみならず、構造部品4sの削減の効果も得る。
<開口部>
 上述した構成において、スイッチング素子2を複数個並列接続した際の配線長について説明する。スイッチング素子2には、板状をなし、片面にハーフブリッジとしての電流を流す2つの電極が領域を分けて形成されたものであり、例えば直方体の樹脂ケースに半導体チップが封入されていて上面に接続用電極が出ているものである。電力変換装置9に用いるスイッチング素子2は、電力変換装置9の定格電流の大きさに応じて並列接続数を変えることがある。
 電力変換装置9の定格電流に対して、スイッチング素子2を1つ使用することで所望の電流に到達できる場合は、スイッチング素子2は1つ以上使用する。電力変換装置9の定格電流に対して、例えばスイッチング素子2を3つ使用することで、ようやく所望の電流に到達できる場合は、スイッチング素子2は3つ以上使用する。
 このように、スイッチング素子2を並列接続する場合の配線長に関する課題について説明する。スイッチング素子2を流れる電流は、スイッチング素子2の電流の流れやすさと、電流が流れる経路の電流の流れやすさに応じて大小が変化する。並列接続した複数のスイッチング素子2では、それぞれのスイッチング素子2での電流の流れやすさのばらつきと、それぞれの電流経路での電流の流れやすさのばらつきに応じて、それぞれを流れる電流の大きさにばらつくが生じる。
 例えば、図4に示すように、3つのスイッチング素子2を並列接続した場合について検討する。この場合、中央に位置するスイッチング素子2の電流経路P2のインピーダンスR2が他の電流経路P1、P3のインピーダンスR1、R3よりも小さく、電流が流れやすい場合、中央のスイッチング素子2に電流が集中する。例えば、横並びに配置した3つのスイッチング素子2それぞれに対し、分岐点Psで3つに分割した電流経路P1~P3で各スイッチング素子2へ配線する場合が相当する。この場合、両側のスイッチング素子2それぞれの電流経路P1、P3に要する配線の長さよりも、中央のスイッチング素子2の電流経路P2に要する配線の長さの方が物理的に短くなる。その結果、インピーダンスR1とR3は、インピーダンスR2よりも大きくなる。
 一方、2つのスイッチング素子2を横並びに配置して、電流経路を2分割してそれぞれの2つのスイッチング素子2へ配線する場合は、2つの電流経路の配線は対称で長さが等しくなる傾向にある。したがって、3つ以上のスイッチング素子2を並列接続する場合は、2つのスイッチング素子2を並列接続する場合と比べて、各スイッチング素子2へ流れる電流を均一化することが困難になりやすい。
 スイッチング素子が、大電流用途向けのモジュール型の形状をしている場合は、配線に金属板を使用してスイッチング素子にボルトで固定することがある。金属板を使用して3つ以上のスイッチング素子を並列接続すると、スイッチング素子それぞれの電流経路の配線長は物理配置に左右される。
 例えば、図5Aに示す比較例を用いて説明する。比較例では、横並びに配置された3つのスイッチング素子2を本願のP極接続導体5に対応する金属導体5Cの下端の端子孔5t2Cで接続し、上端中央部の端子孔5t1C(本願の第一端子孔5t1、図4の分岐点Psに対応)を介して外部と電気接続する。なお、比較例における実施の形態における対応する部分に対しては、符号の末尾に「C」を付して区別している。この場合、スイッチング素子2の配置と端子孔5t1Cとの位置関係に応じて配線長が異なり、配線長L1C、L3Cに対して、配線長L2Cは短くなり(不一致)、各スイッチング素子2へ流れる電流を均一化できない。
 それに対して、本願の電力変換装置9では、図5Bに示すように、3つ以上のスイッチング素子2と接続する金属板(P極接続導体5)に開口部(スリット5s)を設けた。なお、図示しないがスリット5s部分は空気などの絶縁部となり、第一端子孔5t1から各スイッチング素子2(第二端子孔5t2)へ電流経路はスリット5sを避けて形成される。これにより、外側のスイッチング素子2への配線長L1(=Lm+Ls1)と、中央のスイッチング素子2への配線長L2(=Lm+Ls2)は等しくなる。これは、スリット6sを設けたN極接続導体6でも同様である。
 よって、各スイッチング素子2へ流れる電流のばらつきのうち、配線長の違いによって発生する分は抑制されることになる。金属板にスリット5sのような開口部を設ける手法は、プレス加工、レーザー加工などの一般手法にて行える。このように並列接続するスイッチング素子2の接続に用いる金属板(P極接続導体5とN極接続導体6)において、開口部(スリット5s、スリット6s)を設けるといった簡易な加工により、電流均一化を実現する。
 各スイッチング素子2の電流均一化は、各スイッチング素子2の電流利用率を一様に向上させる効果を得る。ここでの電流利用率は、スイッチング素子2の定格電流値を分母として、最大通流電流値を分子としたときの割合である。各スイッチング素子2の電流が均一でない場合は、最も電流が流れやすいスイッチング素子2の電流利用率が1を超えないように制約される。その結果、電流が流れにくいスイッチング素子2の電流利用率が1よりも低下することになり、そのスイッチング素子2を十分に活用していないことになる。しかし、開口部を設けたことによる均一化により、各スイッチング素子2を十分に活用することが可能となる。
 <端部形状>
 本願の電力変換装置9で用いるAC極接続導体7は、図2に示すように、矩形における4つの角のうち、2つの角を斜めに切り取った形状にしている。矩形の導体から切り取られた2つの角の部分に導体は存在しないため、電流経路ではなくなる。矩形の導体から切り取られた2つの角は、3つのスイッチング素子2のうち、外側に配置される2つのスイッチング素子2の方が中央に配置されるスイッチング素子2よりも近い位置にある。よって、矩形の導体から2つの角の部分を切り取ることは、外側に配置される2つのスイッチング素子2への電流の流れやすさに影響しやすく、中央側に配置されるスイッチング素子2への電流の流れやすさには影響しにくい。したがって、矩形形状に対する角の切り取り部分の形状を調整する、つまり、端子孔が形成された数の少ない方の端部の幅を狭めることで、外側のスイッチング素子2に対する電流の流れやすさを調整することができる。
 一方で、矩形形状の内側に設けた開口部(スリット5s、6s)は中央側のスイッチング素子2の電流を流れにくくするものであった。以上のように、電気接続に用いる導体の外周形状の調整と、内側に設けた開口部の形状の調整とを組み合わせることで、各スイッチング素子2への電流の流れやすさを調整する。その結果、各スイッチング素子2の電流利用率を均一化する効果を得る。
 ここでは、AC極接続導体7を例として説明したが、AC極接続導体7に限るものではない。スイッチング素子2への電流の流れやすさを調整することを説明したが、コンデンサ1への電流の流れやすさの調整に用いることも同様に可能である。導体の角を斜めに切り取った形状を示したが、切り取る形状は三角形に限定するものではなく、四角、あるいはその他の形状で切り取っても、同様の効果を得る。
<コンデンサへの電流経路>
 上述した分岐点Psとスイッチング素子間の電流経路の配線長に加え、P極接続導体とN極接続導体におけるコンデンサへの電流経路として、それぞれの第三端の位置について説明する。P極接続導体5には、コンデンサ1の電極と接続する第一端子孔5t1、スイッチング素子2と接続する第二端子孔5t2、および外部と接続する第三端子孔5t3が形成されている。スイッチング素子2のスイッチング動作で発生する急峻な電圧変化および電流変化は、蓄電要素であるコンデンサ1の平滑作用によって吸収される。平滑作用を円滑に行うためには、スイッチング素子2とコンデンサ1との間の電流経路のインピーダンスを低くする必要がある。
 しかし、金属板で形成されたP極接続導体5の第三端子孔5t3では、取付穴に対してボルト締め付けにより電気接続が形成されるため、接触抵抗が生じる。よって、P極接続導体5の第三端子孔5t3の位置は、第一端子孔5t1と第二端子孔5t2とを結ぶ経路を避けることが望ましい。それに対し、P極接続導体5の第三端子孔5t3、第一端子孔5t1と第二端子孔5t2とを結ぶ経路上に設置すると、スイッチング動作で発生する急峻な電圧変化および電流変化が第三端子孔5t3を介して外部に流れやすくなる。ただし、外部に接続されるインピーダンスが十分に高い場合は、外部に流れることはない。
 そこで、本願の電力変換装置のP極接続導体5は、図6に示すように、第一端子孔5t1と第二端子孔5t2とを結ぶ経路を避けるようにして第三端子孔5t3を配置した。図6において矢印で示す経路P1、P2が第一端子孔5t1と第二端子孔5t2とを結ぶ経路となる。N極接続導体6の第三端子孔6t3についても、P極接続導体5と同様に、第一端子孔6t1と第二端子孔6t2を結ぶ経路を避けるように配置した。このように、第三端子孔5t3、6t3の位置を設定することで、電力変換装置9のスイッチング動作を安定にすることができる。
<単位変換器間の配線部材>
 上述した単位変換器内のP極接続導体内とN極接続導体内での電流経路に加え、単位変換器間の電流経路を形成する電気接続方法について説明する。P極接続導体5には、上述した第一端子孔5t1、第二端子孔5t2との位置関係で配置され、単位変換器3と外部との接続に用いる第三端子孔5t3が、第一端子孔5t1が形成された部位51(図3A)側に2か所設けられている。同様に、N極接続導体6にも、上述した第一端子孔6t1、第二端子孔6t2との位置関係で配置され、単位変換器3と外部との接続に用いる第三端子孔6t3が、第一端子孔6t1が形成された部位61(図3B)側に2か所設けられている。
 そして、P極接続導体5の2つの第三端子孔5t3は、それぞれ部位52側(図3Aにおける下方)に向かって延び、かつP極接続導体5の(同、左右方向(屈曲部5bの延びる方向)での)中心に対して対称の位置に配置されている。同様に、N極接続導体6の2つの第三端子孔6t3も、それぞれ部位62側(図3Bにおける下方)に向かって延び、N極接続導体6の(同、左右方向(屈曲部6bの延びる方向)での)左右方向の中心に対して対称の位置に配置される。
 そして、単位変換器3に組み込まれた際、図7A、図7Bに示すように、P極接続導体5の第三端子孔5t3と、N極接続導体6の第三端子孔6t3とが、単位変換器3内において、2か所に分かれて、それぞれ左右方向で隣り合う位置に配置されることとする。このとき、上述したように、第三端子孔5t3が、中心に対して対称(等距離)の位置に配置されているので、2つの単位変換器3のスイッチング素子2同士を対向させて配置すると、それぞれのP極接続導体5の2つの第三端子孔5t3の先端が延伸方向において接近することになる。同様に、それぞれのN極接続導体6の2つの第三端子孔6t3の先端が延伸方向において接近することになる。
 また、単位変換器3のP極接続導体5の第三端子孔5t3とN極接続導体6の第三端子孔6t3とは、前述のとおり左右方向で隣り合う位置に設けることとしている。そのため、電力変換装置9として組み込んだ2つの単位変換器3の向かいあうP極接続導体5の第三端子孔5t3とN極接続導体6の第三端子孔6t3とは近接することになる。したがって、2つの単位変換器3間の接続が短い配線で行えるようになる。
 2つの単位変換器3のP極接続導体5の第三端子孔5t3同士およびN極接続導体6の第三端子孔6t3同士を接続する場合、例えば、図8Aに示すような、両端に端子孔10tが形成された直線形状の配線部材10で実現できる。一方の単位変換器3のP極接続導体5の第三端子孔5t3と、もう一方の単位変換器3のN極接続導体6の第三端子孔6t3とを接続する場合は、図8Bに示すような、L字形状、または図8Cに示すようなS字形状の配線部材10で実現できる。このように、2つの単位変換器3は、接続用の配線部材10を用いて接続され、配線部材10の形状を選択することで、直列または並列に接続することができる。接続用の配線部材10形状を選択するのみで、直列接続用途と並列接続用途とを容易に選択することができる。
<部品共通化>
 また、本願の電力変換装置9においては、部品の共通化として、電力変換装置9を構成する2つの単位変換器3は、互いのP極接続導体5どうし、および互いのN極接続導体6どうしが同じ形状を有している。つまり、電力変換装置9を構成する2つの単位変換器3は、それぞれ同じ形状(図3A)のP極接続導体5、同じ形状(図3B)のN極接続導体6を用いている。
 これにより、電力変換装置9を構成する2つの単位変換器3のP極接続導体5、およびN極接続導体6がそれぞれ共通化できるため、部品の共通化による部品製造ラインの削減、および、電力変換装置9の製造の簡易化といった効果を得ることができる。
変形例.
 上記例では、コンデンサが立方体の形状である場合に対して、P極接続導体、N極接続導体に90°の屈曲部を設ける例について説明した。本変形例では、三角柱状のコンデンサを用いる場合について説明する。図9は本変形例にかかる電力変換装置の構成を説明するための模式的な側面図である。コンデンサの形状に応じたP極接続導体、N極接続導体の形状以外の構成については基本的には上述した実施の形態と同様であり、同様部分の説明は省略する。
 本変形例にかかる電力変換装置9では、三角柱状をなし、天面、底面といった柱状の端面ではなく、柱の軸を接地面(例えば、第一端子孔5t1が形成された面)に水平にして、ある側面を接地面に対向させて設置するコンデンサ1を用いたものである。この場合、図9に示すように、P極接続導体5、およびN極接続導体6を、三角柱の角の角度に併せて、0°を超え、90°未満の角度範囲で屈曲する屈曲部5b、6bを形成する。これにより、コンデンサ1を、各単位変換器3におけるスイッチング素子2よりも手前側(例えば、部位52の延長線よりも部位62側)に収めることができ、スイッチング素子2同士を対向させて冷却装置4を共有させることができる。
 この場合、2つの単位変換器3のP極接続導体5の第三端子孔5t3およびN極接続導体6の第三端子孔6t3は、例えば、部位51、部位61から平行に延びた際に途中で部位52、部位62と垂直になるように折り曲げるようにする。このようにすれば、2つの単位変換器3それぞれのP極接続導体5の2つの第三端子孔5t3が延伸方向において接近することになる。同様に、それぞれのN極接続導体6の2つの第三端子孔6t3が延伸方向において接近することになる。その結果、図8A~図8Cで説明した配線部材10により、容易に単位変換器3間の電気接続が可能となる。
 あるいは、2つの単位変換器3のP極接続導体5の第三端子孔5t3およびN極接続導体6の第三端子孔6t3は、部位51、部位61から平行に延びたままとする。この場合でも、例えば、図8A~図8Cで説明した配線部材10の中間部分を厚み方向に折り曲げることで、容易に単位変換器3間の電気接続が可能となる。
実施の形態2.
 実施の形態1では、単位変換器ごとに1つのコンデンサが設けられた場合について説明した。本実施の形態2では、単位変換器ごとに複数のコンデンサが設けられた場合について説明する。図10と図11は実施の形態2にかかる電力変換装置および単位変換器の構成および動作について説明するためのものであり、図10は電力変換装置の単位変換器の構成を説明するための図2に対応する斜視図、図11は電力変換装置の構成を説明するための図1Aに対応する斜視図である。コンデンサの配置に応じたP極接続導体、N極接続導体の形状以外の構成については基本的には上述した実施の形態と同様であり、同様部分の説明は省略するとともに、実施の形態1で用いた図1B、図4、図9等を援用する。
 実施の形態2にかかる電力変換装置9は、図10に示すように、単位変換器3内に2つの同じ仕様のコンデンサ1(2つを区別する際、一方のコンデンサ1をコンデンサ1A、もう一方のコンデンサ1をコンデンサ1Bとする。)を設けている。2つのコンデンサ1は、単位変換器3における左右方向における中心線X3を含む面に対して対称に配置する。すると、コンデンサ1AのP極の端子1p1AとN極の端子1p2Aとの中心位置(距離L1Aで等分)と、コンデンサ1BのP極の端子1p1BとN極の端子1p2Bとの中心位置(距離L1Bで等分)との、中心位置PX1(距離L2AとL2Bが一致)が中心線X3上に位置する。
 なお、1つのコンデンサ1を入れる単位変換器3では、コンデンサ1を中心線X3上に配置するためP極の端子1p1とN極の端子1p2との中心位置PX1は中心線X3上となる。よって、2つのコンデンサ1A、1Bを有する単位変換器3と、1つのコンデンサ1を有する単位変換器3とで、コンデンサ1とスイッチング素子2との間の電流経路は等価となる。なお、2つのコンデンサ1A、1Bを有する単位変換器3と共有する冷却装置4を組み合わせると図11に示すような電力変換装置9になる。
実施の形態3.
 本実施の形態3では、上記各実施の形態で説明した、1つの冷却装置を共有して2つの単位変換器を組み合わせた電力変換装置に対して、装置保護手段であるバイパススイッチを設けた例、およびそれらを組み合わせたMMCについて説明する。図12~図15は実施の形態3にかかる電力変換装置および単位変換器の構成および動作について説明するためのものであり、図12はMMC方式の電力変換装置の構成を説明するための模式的な回路図、図13はMMC方式に好適なバイパス機構を備える電力変換装置の模式的な回路図である。
 そして、図14はバイパス機構を備える電力変換装置の図1Aに対応する部分の斜視図、図15はバイパス機構を備える電力変換装置の側面図である。なお。バイパス機構を備えたこと以外の構成については、基本的には上述した実施の形態1、2と同様であり、同様部分の説明は省略するとともに、実施の形態1、あるいは実施の形態2で用いた図2~図11を援用する。
 本実施の形態3にかかる電力変換装置9は、図13に示すように、バイパススイッチ14を介して、2つの単位変換器3のAC極20p3同士を接続して構成したものである。一方の単位変換器3のN極接続導体6と他方の単位変換器3のP極接続導体5とは実施の形態1で説明した配線部材10で接続される。バイパススイッチ14を有する電力変換装置9の各単位変換器3をセルとして、ある電力変換装置のP極側の単位変換器3のP極接続導体5と、隣接する電力変換装置9のN極側の単位変換器3のN極接続導体6とを接続していく。すると、図12に示すように、複数の電力変換装置9のセルを直列接続したアーム30が構成され、MMC方式の電力変換装置9Mを形成する。
 MMC方式の電力変換装置9Mでは、アーム30を複数備えて、正電圧端子9Mt2側に接続するアーム30と、負電圧端子9Mt3側に接続するアーム30に振り分け、アーム30同士が接続される箇所が交流端子9Mt1となる。
 このとき、特定の電力変換装置9が異常発生などにより通電動作不可状態になった場合、MMC方式の電力変換装置9M全体において動作を継続させるために、通電動作不可状態となった電力変換装置9をバイパスさせる。バイパス機構の例がバイパススイッチ14である。他には所定電圧以上の電圧印加により短絡する素子を用いることもある。あるいは、電力変換装置9の外部で短絡事故が発生した場合に、電力変換装置9に過電流が流れることによる故障を回避するために、当該電力変換装置9をバイパスさせる。この場合のバイパス機構の例は、転流ダイオード、あるいはバイパススイッチである。
 そこで、本実施の形態にかかる電力変換装置9においては、2つの単位変換器3それぞれのAC極20p3間をバイパスさせることで、通電動作負荷状態となったときに自身の単位変換器3をバイパスさせることができる。また、バイパス機構として、例えば、直方体のバイパススイッチ14を用いた場合、図14、図15に示すように、2つの単位変換器3それぞれのAC極接続導体7の間に挟まれる形態で固定できる。
 そして、AC極接続導体7の第一端子孔7t1に接続される外部接続配線15とともに、バイパス機構がボルトなどの機構で固定される。つまり、コンデンサ1がスイッチング素子2より前面に出ないように単位変換器3を構成したので、冷却装置4と同様に、2つの単位変換器3に対して1つのバイパススイッチ14を共有させることができる。
 その結果、1つの単位変換器3につき、1つのバイパス機構を備える場合と比べて、MMC方式の電力変換装置9M全体において必要となるバイパス機構の数を半減させることができた。また、バイパス機構(バイパススイッチ14)と外部接続配線15とを共通の機構で固定することで構造部品数を減らすことができる。
 なお、本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載されたよう様々な特徴、態様、および機能は特定の実施の形態で開示した内容の適用に限られるのではなく、単独で、または様々な組合せで実施の形態に適用可能である。したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態で開示した構成要素と組み合わせる場合が含まれるものとする。
 例えば、スイッチング素子2とコンデンサ1との位置関係についても、例示した形態に限ることはなく、冷却装置4を共通化しているのであれば、一対の単位変換器3のコンデンサ1が一体的に設けられるようにしてもよい。その他、コンデンサ1、P極接続導体5、およびN極接続導体6の形状等についても、様々な変形が可能である。
 以上のように、本願の電力変換装置9によれば、一対の単位変換器3、および冷却装置4を備え、一対の単位変換器3それぞれは、コンデンサ1、冷却面と、冷却面の反対側になる接続面とを有し、主電力が流れる2つの電極が接続面に形成され、対をなして電力変換のためのレグ20を構成するスイッチング素子2、一端部にレグ20における第一極(例えば、P極20p1)に対応する対をなすスイッチング素子2の電極を固定するための第二端子孔5t2が形成され、他端部に第一極(同、P極20p1)に対応するコンデンサ1の電極(端子1p1)を固定するための第一端子孔5t1が形成された第一導体板(例えば、P極接続導体5)、および一端部にレグ20における第二極(例えば、N極20p2)に対応する対をなすスイッチング素子2の電極を固定するための第二端子孔6t2が形成され、他端部に第二極(同、N極20p2)に対応するコンデンサ1の電極(端子1p2)を固定するための第一端子孔6t1が形成され、第一導体板(P極接続導体5)と絶縁を保って厚み方向に重ねて配置された第二導体板(例えば、N極接続導体6)を備え、一対の単位変換器3は、一方の単位変換器3の対をなすスイッチング素子2の冷却面が、他方の単位変換器3の対をなすスイッチング素子2の冷却面に対して、冷却装置4を挟んで対向しているように構成した。つまり、互いのスイッチング素子2の冷却面を対向させ、ひとつの冷却装置4を挟み込んで(共有して)電力変換装置9を構成することになる。そのため、部品数が削減され、小型の電力変換装置9を得ることが可能になる。
 その際、一対の単位変換器3それぞれは、スイッチング素子2の冷却面に対し、第二端子孔5t2(および第二端子孔6t2)から離れる方向において、コンデンサ1が手前側に収まっているように構成した。そのため、コンデンサ1が干渉することなく、互いのスイッチング素子2(の平坦面)を対向させ、ひとつの冷却装置4を挟み込んで(共有して)電力変換装置9を構成することができる。
 とくに、第一導体板(P極接続導体5)と第二導体板(N極接続導体6)は、それぞれ第一端子孔5t1、6t1が形成された部分(部位51、61)と第二端子孔5t2、6t2が形成された部分(部位52、62)との間で角度を有するように中間部分に折り曲げ部(屈曲部5b、6b)が形成されているので、スイッチング素子2よりも嵩の高いコンデンサ1を容易に手前側に収めることができる。
 一対の単位変換器3は、互いの第一導体板(P極接続導体5)どうし、および互いの第二導体板(N極接続導体6)どうしが同じ形状を有しているように構成すれば、部品の共通化により、さらに生産性が向上する。
 第一導体板(P極接続導体5)と第二導体板(N極接続導体6)それぞれには、第二端子孔5t2、6t2が一端部に沿って3つ以上配置され、中央に配置された端子孔と第一端子孔5t1、6t1を結ぶ線上に、開口部(スリット5s、6s)が形成されているように構成すれば、開口部の位置と大きさにより、中央の端子孔に接続されたスイッチング素子2とコンデンサ1との間の電流経路の長さL2(=Lm+Ls2)と外側の端子孔に接続されたスイッチング素子2とコンデンサ1との間の電流経路の長さL1(=Lm+Ls1)を同等に調整し、並列接続されたスイッチング素子2それぞれの電流利用率を一様に向上させることができる。
 第一導体板(P極接続導体5)と第二導体板(N極接続導体6)それぞれには、第二端子孔5t2、6t2と第一端子孔5t1、6t1を結ぶ最短経路(電流経路P1、P2)から離れた位置に、外部と電気接続するための第三端子孔5t3、6t3が形成されているように構成すれば、スイッチング動作で発生する急峻な電圧変化および電流変化の外部への流出を抑制することができる。
 第一導体板(P極接続導体5)、第二導体板(N極接続導体6)、および一端部にレグ20における交流極(AC極20p3)に対応する端子孔(第一端子孔7t1)が形成され、他端部に外部へ電気接続するための端子孔(第二端子孔7t2)が形成された第三導体板(AC極接続導体)のいずれかは、一方の端部に形成された端子孔の方が他方の端部に形成された端子孔の数よりも多く、他方の端部の幅が一方の端部の幅よりも狭くなっているように構成すれば、並列接続された素子から当該導体板を経由する電流経路の長さを均等化することができる。
 とくに、一対の単位変換器3の間をバイパスするバイパス機構(バイパススイッチ14)を備えるようにすれば、特定の電力変換装置9に異常発生が生じても、正常動作が可能なMMC方式の電力変換装置9を形成することができる。
 1:コンデンサ、 1p1:(P極の)端子、 1p2:(N極の)端子、 2:スイッチング素子、 20:レグ、 20p1:P極、 20p2:N極、 20p3:AC極、 3:単位変換器、 30:アーム、 4:冷却装置、 4v:水冷バルブ口、 4s:構造部品、 5:P極接続導体(第一導体板)、 5s:スリット(開口部)、 5t1:第一端子孔、 5t2:第二端子孔、 5t3:第三端子孔、 6:N極接続導体(第二導体板)、 6s:スリット(開口部)、 6t1:第一端子孔、 6t2:第二端子孔、 6t3:第三端子孔、 7:AC極接続導体(第三導体板)、 7t1:第一端子孔、 9:電力変換装置、 9M:電力変換装置、 9Mt1:交流端子、 9Mt2:正電圧端子、 9Mt3:負電圧端子、 10:配線部材、 14:バイパススイッチ(バイパス機構)、 15:外部接続配線。

Claims (8)

  1.  一対の単位変換器、および
     冷却装置を備え、
     前記一対の単位変換器それぞれは、
     コンデンサ、
     冷却面と、前記冷却面の反対側になる接続面とを有し、主電力が流れる2つの電極が前記接続面に形成され、対をなして電力変換のためのレグを構成するスイッチング素子、
     一端部に前記レグにおける第一極に対応する前記対をなすスイッチング素子の電極を固定するための第二端子孔が形成され、他端部に前記第一極に対応する前記コンデンサの電極を固定するための第一端子孔が形成された第一導体板、および
     一端部に前記レグにおける第二極に対応する前記対をなすスイッチング素子の電極を固定するための第二端子孔が形成され、他端部に前記第二極に対応する前記コンデンサの電極を固定するための第一端子孔が形成され、前記第一導体板と絶縁を保って厚み方向に重ねて配置された第二導体板を備え、
     前記一対の単位変換器は、一方の単位変換器の前記対をなすスイッチング素子の前記冷却面が、他方の単位変換器の前記対をなすスイッチング素子の前記冷却面に対して、前記冷却装置を挟んで対向していることを特徴とする電力変換装置。
  2.  前記一対の単位変換器それぞれは、
     前記スイッチング素子の前記冷却面に対し、前記第二端子孔から離れる方向において、前記コンデンサが手前側に収まっていることを特徴とする請求項1に記載の電力変換装置。
  3.  前記第一導体板と前記第二導体板は、それぞれ前記第一端子孔が形成された部分と前記第二端子孔が形成された部分との間で角度を有するように中間部分に折り曲げ部が形成されていることを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記一対の単位変換器は、互いの前記第一導体板どうし、および互いの前記第二導体板どうしが同じ形状を有していることを特徴とする請求項1から3のいずれか1項に記載の電力変換装置。
  5.  前記第一導体板と前記第二導体板それぞれには、前記第二端子孔が前記一端部に沿って3つ以上配置され、中央に配置された端子孔と前記第一端子孔を結ぶ線上に、開口部が形成されていることを特徴とする請求項1から4のいずれか1項に記載の電力変換装置。
  6.  前記第一導体板と前記第二導体板それぞれには、前記第二端子孔と前記第一端子孔を結ぶ最短経路から離れた位置に、外部と電気接続するための第三端子孔が形成されていることを特徴とする請求項1から5のいずれか1項に記載の電力変換装置。
  7.  前記第一導体板、前記第二導体板、および一端部に前記レグにおける交流極に対応する端子孔が形成され、他端部に外部へ電気接続するための端子孔が形成された第三導体板のいずれかは、一方の端部に形成された端子孔の方が他方の端部に形成された端子孔の数よりも多く、前記他方の端部の幅が前記一方の端部の幅よりも狭くなっていることを特徴とする請求項1から6のいずれか1項に記載の電力変換装置。
  8.  前記一対の単位変換器の間をバイパスするバイパス機構を備えたことを特徴とする請求項1から7のいずれか1項に記載の電力変換装置。
PCT/JP2021/018146 2021-05-13 2021-05-13 電力変換装置 WO2022239170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023520669A JP7459379B2 (ja) 2021-05-13 2021-05-13 電力変換装置
EP21941904.1A EP4340206A1 (en) 2021-05-13 2021-05-13 Power conversion device
PCT/JP2021/018146 WO2022239170A1 (ja) 2021-05-13 2021-05-13 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018146 WO2022239170A1 (ja) 2021-05-13 2021-05-13 電力変換装置

Publications (1)

Publication Number Publication Date
WO2022239170A1 true WO2022239170A1 (ja) 2022-11-17

Family

ID=84028065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018146 WO2022239170A1 (ja) 2021-05-13 2021-05-13 電力変換装置

Country Status (3)

Country Link
EP (1) EP4340206A1 (ja)
JP (1) JP7459379B2 (ja)
WO (1) WO2022239170A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236281A (ja) * 1994-02-22 1995-09-05 Toshiba Corp 電力変換装置
JP2001286160A (ja) * 2000-04-03 2001-10-12 Toshiba Corp 電力変換装置
JP2005160248A (ja) * 2003-11-27 2005-06-16 Fuji Electric Systems Co Ltd 3レベルインバータ回路
JP2007049848A (ja) * 2005-08-11 2007-02-22 Hitachi Ltd 電力変換器の主回路構造
JP2015115974A (ja) 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201249A (ja) * 1996-12-27 1998-07-31 Shinko Electric Co Ltd 3レベルインバータのパワーモジュールスタック
JP3046276B2 (ja) * 1998-05-11 2000-05-29 三菱電機株式会社 電力変換装置
JP5132175B2 (ja) * 2007-03-28 2013-01-30 三菱電機株式会社 電力変換装置
US8599554B2 (en) * 2009-07-06 2013-12-03 Mitsubishi Electric Corporation Power converter
JP5249365B2 (ja) * 2011-01-26 2013-07-31 三菱電機株式会社 電力変換装置
JP6470196B2 (ja) * 2016-02-05 2019-02-13 株式会社日立製作所 電力変換装置
CN110168909B (zh) * 2017-01-31 2021-02-12 株式会社日立制作所 电力变换装置
CN208767982U (zh) * 2018-08-31 2019-04-19 北京金风科创风电设备有限公司 模块化多电平换流器子模块及模块化多电平换流器
JP7236281B2 (ja) 2019-02-04 2023-03-09 株式会社S&Sエンジニアリング 気送管ステーション

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236281A (ja) * 1994-02-22 1995-09-05 Toshiba Corp 電力変換装置
JP2001286160A (ja) * 2000-04-03 2001-10-12 Toshiba Corp 電力変換装置
JP2005160248A (ja) * 2003-11-27 2005-06-16 Fuji Electric Systems Co Ltd 3レベルインバータ回路
JP2007049848A (ja) * 2005-08-11 2007-02-22 Hitachi Ltd 電力変換器の主回路構造
JP2015115974A (ja) 2013-12-09 2015-06-22 東芝三菱電機産業システム株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4340206A4

Also Published As

Publication number Publication date
JPWO2022239170A1 (ja) 2022-11-17
JP7459379B2 (ja) 2024-04-01
EP4340206A4 (en) 2024-03-20
EP4340206A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
AU2007232027B2 (en) Power conversion device and fabricating method for the same
US10153708B2 (en) Three-level power converter
EP2568787B1 (en) Semiconductor device and power conversion apparatus using the same
US8520386B2 (en) Power converter module with a cooled busbar arrangement
EP2802198B1 (en) Power conversion apparatus
JP5132175B2 (ja) 電力変換装置
JPS589349A (ja) Gtoスタツク
JP2016208706A (ja) 電力変換装置
WO2018047474A1 (ja) 半導体装置
US11271491B2 (en) Inverter module
JP4356434B2 (ja) 3レベルインバータ回路
WO2022239170A1 (ja) 電力変換装置
JP6526361B2 (ja) 電力変換装置
US20150085549A1 (en) Power conversion apparatus
JP6575072B2 (ja) 相ユニット及びこれを用いた3レベル電力変換装置
JP2002209391A (ja) 半導体電力変換装置
JP7364103B2 (ja) 電力変換装置
US12004333B2 (en) Power converter
JP7278488B1 (ja) 電力変換装置
US20230395457A1 (en) Power Semiconductor Device, Power Conversion Device, and Electric System
JP7136139B2 (ja) 電力変換器
JP3051003B2 (ja) 半導体スタック
WO2023243169A1 (ja) 電力変換装置
JP2021061692A (ja) 電力変換装置
JP2022130197A (ja) 電力変換装置、モータモジュール及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18289899

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021941904

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021941904

Country of ref document: EP

Effective date: 20231213