WO2022237349A1 - 一种液晶聚合物复合材料及其应用 - Google Patents

一种液晶聚合物复合材料及其应用 Download PDF

Info

Publication number
WO2022237349A1
WO2022237349A1 PCT/CN2022/083073 CN2022083073W WO2022237349A1 WO 2022237349 A1 WO2022237349 A1 WO 2022237349A1 CN 2022083073 W CN2022083073 W CN 2022083073W WO 2022237349 A1 WO2022237349 A1 WO 2022237349A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
composite material
polymer composite
fibrous filler
Prior art date
Application number
PCT/CN2022/083073
Other languages
English (en)
French (fr)
Inventor
周广亮
宋彩飞
刑羽雄
罗德彬
黄国栋
刘尧
肖中鹏
姜苏俊
黄险波
Original Assignee
金发科技股份有限公司
珠海万通特种工程塑料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通特种工程塑料有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022237349A1 publication Critical patent/WO2022237349A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention relates to the technical field of special engineering plastics, in particular to the field of liquid crystal polymer materials, in particular to a liquid crystal polymer composite material and its application.
  • liquid crystal polymers Due to the excellent fluidity and dimensional stability of liquid crystal polymers, they are widely used in small electronic devices such as electronic connectors, coil bobbins, and relays; in recent years, with the steady development of domestic liquid crystal polymer technology and the substantial increase in production capacity, the cost Because of its high heat resistance, high rigidity, high fluidity, high dimensional stability, self-flammability, and stable dielectric properties at high frequencies, it has attracted attention in the fields of new energy vehicles and communications, and is used to prepare Complex structure, large size and ultra-thin functional or structural parts; however, when the existing liquid crystal polymers are used in the preparation of large-scale ultra-thin devices for use in the communication field, fillers need to be filled to achieve dimensional stability of large-scale ultra-thin devices ; However, the addition of fillers increases the dielectric loss of the device, which has a greater impact on the integrity of communication signals and increases energy consumption.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a liquid crystal polymer composite material and its application.
  • the technical solution adopted by the present invention is: a liquid crystal polymer composite material, which includes the following components in parts by weight: 40-95 parts of liquid crystal polymer resin and 5-95 parts of fibrous filler 40 parts; in the fibrous filler, fibers with a length of less than 200 ⁇ m account for 5% to 30% of the total weight of the fibrous filler, fibers with a length of 200 ⁇ m to 400 ⁇ m account for 25% to 55% of the total weight of the fibrous filler, and fibers with a length greater than 400 ⁇ m The fibers account for 15% to 70% of the total weight of the fibrous filler.
  • the above-mentioned liquid crystal polymer composite material can be applied to the preparation of large-scale ultra-thin devices, the length of the longest direction of the device is more than 100mm, the thickness of the device can reach less than 5mm, and has a small dielectric loss.
  • fibrous fillers with different length distributions can be added to the extruder by adding fibers of a certain length or different length ratios and liquid crystal polymer resins together.
  • Melt extrusion can also be achieved by adding fibers of different lengths to feed ports at different positions, or adding different proportions of fibers to feed ports at different positions, which can be based on the type of extruder, screw combination, and feeding The mouth position and the length of the fiber raw material are determined.
  • fibers with a length of less than 200 ⁇ m account for 16% to 29% of the total weight of the fibrous filler
  • fibers with a length of 200 ⁇ m to 400 ⁇ m account for 34% to 46% of the total weight of the fibrous filler
  • fibers with a length greater than 400 ⁇ m The fibers account for 25% to 50% of the total weight of the fibrous filler.
  • the dielectric loss of the product made by the fibrous filler within the above length distribution range is lower.
  • the fibrous filler includes at least one of glass fiber, alumina fiber, carbon fiber, potassium titanate fiber, boric acid fiber, quartz fiber and wollastonite fiber; preferably, the fibrous filler is glass fiber .
  • the liquid crystal polymer resin is a liquid crystal polymer resin with a melting point Tm above 270°C.
  • Tm melting point
  • the liquid crystal polymer resin is a liquid crystal polymer resin with a melting point Tm of 350°C ⁇ 30°C.
  • the liquid crystal polymer resin is a liquid crystal polymer resin with a melting point Tm of 350°C ⁇ 10°C.
  • the fibrous filler includes at least one of glass fiber, alumina fiber, carbon fiber, potassium titanate fiber, boric acid fiber, quartz fiber and wollastonite fiber; more preferably, the fibrous filler is glass fiber.
  • the cross-section of the fibrous filler may be one of circular cross-section, oval cross-section and rectangular cross-section or an optional combination.
  • the liquid crystal polymer composite material further comprises 5 to 40 parts by weight of flaky fillers; more preferably, the flaky fillers are mica powder and/or talc powder; most preferably mica powder.
  • the inventor found through research that adding the above-mentioned amount of flake mica to the liquid crystal polymer composite material can not only improve the plasticity and mechanical properties of the liquid crystal polymer composite material, but also control lower dielectric loss.
  • the particle size of the platy filler is within this range, the dimensional stability of the liquid crystal polymer can be improved.
  • the average diameter of the fibrous filler is 5-20 ⁇ m.
  • the present invention also provides the application of the above-mentioned liquid crystal polymer composite material in electronic devices.
  • the length of the longest direction of the device can reach more than 100mm, the thickness of the device can reach less than 5mm, and has relatively small dielectric loss.
  • the present invention also provides the application of the above-mentioned liquid crystal polymer composite material in electronic communication devices.
  • the present invention provides a liquid crystal polymer composite material and its application.
  • the different sizes of fibrous fillers and the ratio of different sizes have a great influence on the dielectric loss;
  • the liquid crystal polymer composite material of the present invention is obtained, which has lower dielectric loss.
  • the liquid crystal polymer composite material of the present invention can be applied to the preparation of large-scale ultra-thin devices, the length of the longest direction of the device is more than 100 mm, the thickness of the device can reach less than 5 mm, and has relatively small dielectric loss.
  • Liquid crystal polymer resin purchased from Zhuhai Wantong Special Engineering Plastics, the model is Vicryst R800, a liquid crystal polymer resin with a melting point Tm of 350°C ⁇ 10°C;
  • Glass fiber A purchased from Owens Corning, model 923, with an average diameter of 10 ⁇ m and an initial average length of 3 mm;
  • Glass fiber B purchased from Owens Corning, the model is FT771, the average diameter is 6 ⁇ m, and the initial average length is 3 mm;
  • Mica powder purchased from Yamaguchi Mica Company, Japan, the model is AB-25S, and the average particle size D50 is 24 ⁇ m.
  • the formulations (parts by weight) of the liquid crystal polymer composites of Examples 1 to 21 and Comparative Examples 1 to 10 are shown in Table 1.
  • the length of the glass fiber is obtained by using The proportion of feeding amount at the feed port is controlled differently.
  • the characterization method of the length and distribution of glass fibers is as follows: take the liquid crystal polymer composite material obtained by the twin-screw extruder, refer to ISO 3451-1, and obtain the ash content of the composite material; place the ash content in 100 mL of industrial alcohol with a concentration of 95%. Use an ultrasonic machine to disperse for 2 minutes, then use a pipette to draw 2 mL from the bottom and put it on a clean glass slide, use an optical microscope to magnify it 500 times to take pictures, measure the length of the glass fiber, and use statistical methods to calculate the length, distribution and weight of the glass fiber. Compare.
  • liquid crystal polymer composite materials described in Examples and Comparative Examples were prepared by the following methods:
  • each component is weighed according to the formula ratio
  • liquid crystal polymer resin is added in proportion from the first feeding port through the metering scale; the mica powder is added in proportion from the third feeding port through the metering scale; the glass fiber is added in proportion from the second feeding port and the Four feeding ports are added;
  • the modified melt is blended by a twin-screw extruder, passed through a die head, cooled in a water tank, pulled to a pelletizer for pelletizing, and finally a uniform liquid crystal polymer composite material is obtained.
  • Dielectric loss test method The injection molding machine is injected into a 100mm*100mm*2mm square plate, referring to IEC62562, and testing the dielectric loss Df at 2.5GHz.
  • Low dielectric loss especially fibers with a length of less than 200 ⁇ m account for 16% to 29% of the total weight of glass fibers; fibers with a length of 200 ⁇ m to 400 ⁇ m account for 34% to 46% of the total weight of glass fibers; When the total weight of glass fiber is 25% to 50%, lower dielectric loss can be achieved.

Abstract

本发明公开了一种液晶聚合物复合材料,所述液晶聚合物复合材料包括以下重量份的组分:液晶聚合物树脂40~95份和纤维状填料5~40份;所述纤维状填料中,长度小于200μm的纤维占纤维状填料总重量的5%~30%,长度200μm~400μm的纤维占纤维状填料总重量的25%~55%,长度大于400μm的纤维占纤维状填料总重量的15%~70%。本发明液晶聚合物复合材料可以应用于大尺寸超薄器件制备,器件的最长方向的长度为100mm以上,器件的厚度可达到5mm以下,而且具有较小的介电损耗。

Description

一种液晶聚合物复合材料及其应用 技术领域
本发明涉及特种工程塑料技术领域,尤其涉及液晶聚合物材料领域,具体涉及一种液晶聚合物复合材料及其应用。
背景技术
由于液晶聚合物具有优异的流动性和尺寸稳定性,因而广泛应用于电子连接器、线圈骨架、继电器等小型电子器件;近年来随着国产液晶聚合物的技术稳步发展及产能大幅提高,成本逐年降低,又因具有高耐热、高刚性、高流动性、高尺寸稳定性、自阻燃、高频下稳定的介电性能等特征,而被新能源汽车、通讯等领域关注,用于制备结构复杂、大尺寸且超薄的功能件或结构件等;但是现有的液晶聚合物在制备大尺寸超薄器件应用于通讯领域时,需要通过填充填料来实现大尺寸超薄器件尺寸稳定性;然而填料的添加增大了器件的介电损耗,对通讯信号的完整性带来较大影响,同时会增加能源消耗。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种液晶聚合物复合材料及其应用。
为实现上述目的,本发明采取的技术方案为:一种液晶聚合物复合材料,所述液晶聚合物复合材料包括以下重量份的组分:液晶聚合物树脂40~95份和纤维状填料5~40份;所述纤维状填料中,长度小于200μm的纤维占纤维状填料总重量的5%~30%,长度200μm~400μm的纤维占纤维状填料总重量的25%~55%,长度大于400μm的纤维占纤维状填料总重量的15%~70%。
发明人通过研究发现液晶聚合物复合材料中,纤维状填料尺寸不同及不同尺寸的比例对介电损耗存在较大影响;最终通过控制纤维状填料的尺寸及不同尺寸的比例,获得了上述液晶聚合物复合材料,具有更低的介电损耗。上述液 晶聚合物复合材料可以应用于大尺寸超薄器件制备,器件的最长方向的长度为100mm以上,器件的厚度可达到5mm以下,而且具有较小的介电损耗。
本发明中,由于纤维状填料在挤出机中会发生断裂长度变短,因此不同长度分布的纤维状填料可以通过将一定长度或者不同长度配比的纤维和液晶聚合物树脂一同加入挤出机熔融挤出来实现,也可以通过在不同位置的喂料口添加不同长度的纤维,或者在不同位置的喂料口添加不同比例的纤维实现,具体可以根据挤出机的型号、螺杆组合、喂料口位置和纤维原料的长度等来确定。
优选地,所述纤维状填料中,长度小于200μm的纤维占纤维状填料总重量的16%~29%,长度200μm~400μm的纤维占纤维状填料总重量的34%~46%,长度大于400μm的纤维占纤维状填料总重量的25%~50%。在上述长度分布范围内的纤维状填料制得的制件介电损耗更低。
优选地,所述纤维状填料包括玻璃纤维、氧化铝纤维、碳纤维、钛酸钾纤维、硼酸纤维、石英纤维和硅灰石纤维中的至少一种;优选地,所述纤维状填料为玻璃纤维。
优选地,所述液晶聚合物树脂为熔点Tm在270℃以上液晶聚合物树脂。选择该熔点的液晶聚合物能满足大尺寸超薄制件的制备需求。更优选地,所述液晶聚合物树脂为熔点Tm在350℃±30℃的液晶聚合物树脂。最优选地,所述液晶聚合物树脂为熔点Tm为350℃±10℃的液晶聚合物树脂。液晶聚合物树脂选择该熔点范围时制得的大尺寸超薄制件的合格率更高。
优选地,所述纤维状填料包括玻璃纤维、氧化铝纤维、碳纤维、钛酸钾纤维、硼酸纤维、石英纤维和硅灰石纤维中的至少一种;更优选地,所述纤维状填料为玻璃纤维。所述纤维状填料的横截面可以是圆形横截面、椭圆形截面和矩形横截面中的一种或任选组合。
优选地,所述液晶聚合物复合材料还包含片状填料5~40重量份;更优选地,所述片状填料为云母粉和/或滑石粉;最优选为云母粉。
发明人通过研究发现液晶聚合物复合材料中添加上述含量的片状云母既可 以提高液晶聚合物复合材料的可塑性和机械性能,而且能够控制更低的介电损耗。优选地,所述片状填料的平均粒径为D50=20~80μm。所述片状填料的粒径在该范围内时,能够提高液晶聚合物的尺寸稳定性。
优选地,所述纤维状填料的平均直径为5~20μm。
本发明还提供上述所述液晶聚合物复合材料在电子器件中的应用。
上述液晶聚合物复合材料在电子器件中的应用,器件的最长方向的长度可达到100mm以上,器件的厚度可达到5mm以下,而且具有较小的介电损耗。
本发明还提供上述所述液晶聚合物复合材料在电子通讯器件中的应用。
本发明的有益效果在于:本发明提供了一种液晶聚合物复合材料及其应用,本发明液晶聚合物复合材料中,纤维状填料尺寸不同及不同尺寸的比例对介电损耗存在较大影响;最终通过控制纤维状填料的尺寸及不同尺寸的比例,获得了本发明液晶聚合物复合材料,具有更低的介电损耗。本发明液晶聚合物复合材料可以应用于大尺寸超薄器件制备,器件的最长方向的长度为100mm以上,器件的厚度可达到5mm以下,而且具有较小的介电损耗。
具体实施方式
实施例和对比例中各原料的来源信息如下:
液晶聚合物树脂:购自珠海万通特种工程塑料,型号为Vicryst R800,熔点Tm在350℃±10℃的液晶聚合物树脂;
玻璃纤维A:购自欧文斯科宁,型号为923,平均直径为10μm,初始平均长度为3mm;
玻璃纤维B:购自欧文斯科宁,型号为FT771,平均直径为6μm,初始平均长度为3mm;
云母粉:购自日本山口云母公司,型号为AB-25S,平均粒径D50为24μm。
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对 本发明作进一步说明。
实施例1~21和对比例1~10的液晶聚合物复合材料的配方(重量份)见表1,实施例和对比例所述液晶聚合物复合材料中,玻璃纤维的长度通过采用在不同喂料口投料量的比例不同控制。
玻璃纤维的长度及分布的表征方法为:取双螺杆挤出机获得的液晶聚合物复合材料,参照ISO 3451-1,获得复合材料的灰分;将灰分置于100mL浓度为95%的工业酒精中用超声机分散2min,然后用移液管从底部吸取2mL放于干净载玻片上,用光学显微镜放大500倍进行拍照,测量玻璃纤维长度,用统计学方法计算玻璃纤维的长度、分布及重量占比。
实施例和对比例所述液晶聚合物复合材料采用以下方法制备而成:
(1)将各个组分按配方比例进行称量;
(2)将双螺杆挤出机加工温度设置320℃~380℃;
(3)液晶聚合物树脂通过计量称按比例从第一喂料口加入;云母粉通过计量称按比例从第三喂料口加入;玻璃纤维通过计量称按比例从第二喂料口和第四喂料口加入;
(4)通过双螺杆挤出机共混改性之后熔体,经过模头出条、水槽冷却、牵引至切粒机进行切粒,最终获得均匀的液晶聚合物复合材料。
介电损耗测试方法:注塑机注塑为100mm*100mm*2mm方板,参照IEC62562,测试2.5GHz下介电损耗Df。
表1
Figure PCTCN2022083073-appb-000001
Figure PCTCN2022083073-appb-000002
从表1可以看出,玻璃纤维尺寸不同及不同尺寸的占总纤维比例对介电损耗存在较大影响;发现在玻璃纤维填充比例相同的情况下,长度200μm以下的纤维占玻璃纤维总重量的5%~30%,长度200μm~400μm的纤维占玻璃纤维总重量的25%~55%,长度在400μm以上的纤维占玻璃纤维总重量的15%~70%时,液晶聚合物复合材料具有较低的介电损耗,尤其是长度200μm以下的纤维占玻璃纤维总重量的16%~29%,长度200μm~400μm的纤维占玻璃纤维总重量的34%~46%,长度在400μm以上的纤维占玻璃纤维总重量的25%~50%时,能实现更低的介电损耗。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本 发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种液晶聚合物复合材料,其特征在于,所述液晶聚合物复合材料包括以下重量份的组分:液晶聚合物树脂40~95份和纤维状填料5~40份;所述纤维状填料中,长度小于200μm的纤维占纤维状填料总重量的5%~30%,长度200μm~400μm的纤维占纤维状填料总重量的25%~55%,长度大于400μm的纤维占纤维状填料总重量的15%~70%。
  2. 根据权利要求1所述的液晶聚合物复合材料,其特征在于,所述纤维状填料中,长度小于200μm的纤维占纤维状填料总重量的16%~29%,长度200μm~400μm的纤维占纤维状填料总重量的34%~46%,长度大于400μm的纤维占纤维状填料总重量的25%~50%。
  3. 如权利要求1所述液晶聚合物复合材料,其特征在于,所述液晶聚合物树脂为熔点Tm在270℃以上液晶聚合物树脂;优选地,所述液晶聚合物树脂为熔点Tm在350℃±30℃的液晶聚合物树脂;更优选地,所述液晶聚合物树脂为熔点Tm在350℃±10℃的液晶聚合物树脂。
  4. 如权利要求1所述液晶聚合物复合材料,其特征在于,所述纤维状填料包括玻璃纤维、氧化铝纤维、碳纤维、钛酸钾纤维、硼酸纤维、石英纤维和硅灰石纤维中的至少一种;优选地,所述纤维状填料为玻璃纤维。
  5. 如权利要求1所述液晶聚合物复合材料,其特征在于,所述液晶聚合物复合材料还包含片状填料5~40重量份。
  6. 如权利要求5所述液晶聚合物复合材料,其特征在于,所述片状填料为云母粉和/或滑石粉。
  7. 如权利要求6所述液晶聚合物复合材料,其特征在于,所述片状填料的平均粒径为D50=20~80μm。
  8. 如权利要求1所述液晶聚合物复合材料,其特征在于,所述纤维状填料的平均直径为5~20μm。
  9. 如权利要求1~8任一项所述液晶聚合物复合材料在电子器件中的应用。
  10. 如权利要求1~8任一项所述液晶聚合物复合材料在电子通讯器件中的应用。
PCT/CN2022/083073 2021-05-14 2022-03-25 一种液晶聚合物复合材料及其应用 WO2022237349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110532057.6 2021-05-14
CN202110532057.6A CN113201229A (zh) 2021-05-14 2021-05-14 一种液晶聚合物复合材料及其应用

Publications (1)

Publication Number Publication Date
WO2022237349A1 true WO2022237349A1 (zh) 2022-11-17

Family

ID=77031296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083073 WO2022237349A1 (zh) 2021-05-14 2022-03-25 一种液晶聚合物复合材料及其应用

Country Status (2)

Country Link
CN (1) CN113201229A (zh)
WO (1) WO2022237349A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201229A (zh) * 2021-05-14 2021-08-03 金发科技股份有限公司 一种液晶聚合物复合材料及其应用
CN115433473B (zh) * 2022-09-30 2023-05-09 金发科技股份有限公司 一种液晶聚合物组合物及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313997A (ja) * 1991-03-26 1992-11-05 Mitsubishi Electric Corp スピーカ振動板
JPH08246356A (ja) * 1995-03-13 1996-09-24 Kuraray Co Ltd 柔軟性および引裂強力に優れた繊維質シート状物
CN1934756A (zh) * 2004-03-26 2007-03-21 宝理塑料株式会社 平面状连接器
CN101307174A (zh) * 2007-05-14 2008-11-19 上野制药株式会社 表面安装型电子元件
CN101506311A (zh) * 2006-08-24 2009-08-12 宝理塑料株式会社 非对称电子部件
JP2009191088A (ja) * 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品
CN102782042A (zh) * 2010-12-28 2012-11-14 东丽株式会社 液晶性聚酯树脂组合物及其制造方法以及由该组合物形成的成型品
CN102822273A (zh) * 2010-12-28 2012-12-12 东丽株式会社 液晶性聚酯树脂组合物及其制造方法以及由该组合物形成的成型品
CN103930464A (zh) * 2011-11-15 2014-07-16 提克纳有限责任公司 紧凑型相机模块
CN103930952A (zh) * 2011-11-15 2014-07-16 提克纳有限责任公司 细间距电连接器及用于其中的热塑性组合物
CN110172230A (zh) * 2019-05-09 2019-08-27 英特尔产品(成都)有限公司 用于制造半导体元件的托盘的复合材料
CN112126243A (zh) * 2020-09-09 2020-12-25 金发科技股份有限公司 一种液晶聚合物组合物
CN113201229A (zh) * 2021-05-14 2021-08-03 金发科技股份有限公司 一种液晶聚合物复合材料及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891938A (zh) * 2010-07-16 2010-11-24 金发科技股份有限公司 一种非圆形横截面玻璃纤维增强液晶聚合物材料及其制备方法
CN112126244B (zh) * 2020-09-09 2022-06-07 金发科技股份有限公司 一种液晶聚合物组合物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313997A (ja) * 1991-03-26 1992-11-05 Mitsubishi Electric Corp スピーカ振動板
JPH08246356A (ja) * 1995-03-13 1996-09-24 Kuraray Co Ltd 柔軟性および引裂強力に優れた繊維質シート状物
CN1934756A (zh) * 2004-03-26 2007-03-21 宝理塑料株式会社 平面状连接器
CN101506311A (zh) * 2006-08-24 2009-08-12 宝理塑料株式会社 非对称电子部件
CN101307174A (zh) * 2007-05-14 2008-11-19 上野制药株式会社 表面安装型电子元件
JP2009191088A (ja) * 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品
CN102782042A (zh) * 2010-12-28 2012-11-14 东丽株式会社 液晶性聚酯树脂组合物及其制造方法以及由该组合物形成的成型品
CN102822273A (zh) * 2010-12-28 2012-12-12 东丽株式会社 液晶性聚酯树脂组合物及其制造方法以及由该组合物形成的成型品
CN103930464A (zh) * 2011-11-15 2014-07-16 提克纳有限责任公司 紧凑型相机模块
CN103930952A (zh) * 2011-11-15 2014-07-16 提克纳有限责任公司 细间距电连接器及用于其中的热塑性组合物
CN110172230A (zh) * 2019-05-09 2019-08-27 英特尔产品(成都)有限公司 用于制造半导体元件的托盘的复合材料
CN112126243A (zh) * 2020-09-09 2020-12-25 金发科技股份有限公司 一种液晶聚合物组合物
CN113201229A (zh) * 2021-05-14 2021-08-03 金发科技股份有限公司 一种液晶聚合物复合材料及其应用

Also Published As

Publication number Publication date
CN113201229A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2022237349A1 (zh) 一种液晶聚合物复合材料及其应用
CN112126244B (zh) 一种液晶聚合物组合物
CN112126243B (zh) 一种液晶聚合物组合物
CN108976700B (zh) 基于高堆砌度石墨烯改性高导热碳塑合金的可控制备方法
CN112500644B (zh) 一种导电聚丙烯组合物及其制备方法
CN107641255B (zh) 玻璃纤维增强聚丙烯复合材料及其制备方法
Saw et al. Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites
WO2021115096A1 (zh) 纳米注塑复合材料及其制备方法、壳体组件和电子设备
CN102061069A (zh) 专用于大型薄壁制件的玻纤增强pbt组合物及其制备方法
Kim et al. Effects of matrix viscosity, mixing method and annealing on the electrical conductivity of injection molded polycarbonate/MWCNT nanocomposites
CN110564059A (zh) 一种高导热聚丙烯复合材料及其制备方法
WO1994020575A1 (en) Resin composition and molding produced therefrom
WO2022237350A1 (zh) 一种液晶聚合物复合材料及其应用
JP2016088955A (ja) 透明abs樹脂組成物
EP3650589A1 (en) Thermally conductive particle-filled fiber
WO2024067022A1 (zh) 一种液晶聚合物组合物及其制备方法和应用
JP6837184B2 (ja) 液晶性樹脂組成物
CN111073230A (zh) 一种低介电常数pc/pbt合金材料及其制备方法
CN105440679A (zh) Pps复合导电增强材料及其制备方法
CN104817813A (zh) 一种abs复合材料及其制备方法
CN107915974A (zh) 导热树脂组合物及其制备方法
CN101982487A (zh) 一种专用于聚乙烯轮胎包装膜的耐热新材料及其制备方法
WO2023103273A1 (zh) 快速注塑成型的液晶高分子复合材料及其制备方法和快速注塑成型所用的注塑螺杆
CN103144392A (zh) 一种光稳定抗菌聚丙烯材料制品及其制备方法
JP7038260B2 (ja) 液晶性樹脂組成物、及び当該液晶性樹脂組成物の成形品を含む電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE