WO2024067022A1 - 一种液晶聚合物组合物及其制备方法和应用 - Google Patents

一种液晶聚合物组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024067022A1
WO2024067022A1 PCT/CN2023/117734 CN2023117734W WO2024067022A1 WO 2024067022 A1 WO2024067022 A1 WO 2024067022A1 CN 2023117734 W CN2023117734 W CN 2023117734W WO 2024067022 A1 WO2024067022 A1 WO 2024067022A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
filler
crystal polymer
polymer composition
fibrous
Prior art date
Application number
PCT/CN2023/117734
Other languages
English (en)
French (fr)
Inventor
周广亮
陈平绪
叶南飚
宋彩飞
刘尧
肖中鹏
姜苏俊
Original Assignee
金发科技股份有限公司
珠海万通特种工程塑料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通特种工程塑料有限公司 filed Critical 金发科技股份有限公司
Publication of WO2024067022A1 publication Critical patent/WO2024067022A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to the technical field of polymer compound compositions, and more specifically, to a liquid crystal polymer composition and a preparation method and application thereof.
  • Liquid crystal polymers have excellent heat resistance, fluidity, dimensional stability and self-flaming retardancy, and are widely used in small and precise electronic components such as electronic connectors, coil skeletons, relays, etc. Moreover, with the development of electronic technology, electronic connectors on PCB boards are becoming thinner, more integrated, and more complex in function.
  • LCP has many performance advantages in precision electronic connectors
  • LCP has a rigid rod-like molecular chain structure.
  • the molecular chain After injection molding, especially when preparing long strip products (such as FPC/DDR/BtoB, etc.), the molecular chain will be in a highly oriented state, resulting in a large difference in shrinkage rate between the orientation direction (flow direction) and the perpendicular flow direction, which will lead to large variations in the product's peripheral dimensions, diagonal distortion and other problems.
  • the existing public technology mainly solves the problem by adding flaky fillers.
  • the LCP molecular chain has high rigidity and low polarity, and its wettability with inorganic fillers is poor, which makes it extremely difficult to evenly disperse the inorganic fillers in the LCP system, forming large-sized agglomerates, which in turn leads to problems such as gate blockage, product glue deficiency, and white spots on the product surface.
  • the purpose of the present invention is to overcome the defects and shortcomings of the existing flake filler modified liquid crystal polymer, which is difficult to disperse evenly, and to provide a liquid crystal polymer composition, which combines a specific fibrous filler with a small flake filler to improve the dispersion uniformity of large flake fillers in the liquid crystal polymer resin, thereby improving the shrinkage difference between the vertical flow direction (TD) and the flow direction (MD), while reducing molding problems such as plugging of the gate and lack of glue caused by agglomeration of large flake fillers, as well as appearance problems such as surface white spots.
  • TD vertical flow direction
  • MD flow direction
  • Another object of the present invention is to provide a method for preparing the liquid crystal polymer composition.
  • Another object of the present invention is to provide a use of the liquid crystal polymer composition in preparing a thin-walled electronic connector.
  • Another object of the present invention is to provide a thin-walled electronic connector prepared from the above liquid crystal polymer composition as a raw material.
  • a liquid crystal polymer composition comprising the following components in parts by weight:
  • the mass ratio of the fibrous filler to the flaky filler is (0.2-2):1;
  • the weight percentage of the fibrous filler with a retention length of ⁇ 100 ⁇ m in the fibrous filler is ⁇ 50%, and the weight percentage of the fibrous filler with a retention length of ⁇ 250 ⁇ m is 1% to 5%;
  • the flake filler is composed of a small flake filler with a particle size D50 of 2.5 to 4.5 ⁇ m and a large flake filler with a particle size D50 of 48 to 70 ⁇ m in a mass ratio of (0.5 to 2):1.
  • the present invention uses a specific fibrous filler, a small plate filler and a large plate filler to form an inorganic filler in a specific ratio, and by adjusting the content of the fibrous filler with a retention length of less than or equal to 100 ⁇ m and the content of the fibrous filler with a retention length of greater than or equal to 250 ⁇ m in the liquid crystal polymer composition, the fibrous fillers with different retention lengths and the small plate fillers improve the dispersion of the large plate fillers in the liquid crystal polymer composition, wherein the fibrous fillers with different retention lengths are interlaced with each other to form an interlaced structure, and the structure is conducive to reducing the tendency of the large plate fillers to agglomerate, and the small plate fillers can be filled between the large plate filler layers, thereby destroying the original agglomerates, and allowing the liquid crystal polymer resin to infiltrate between the large plate filler layers, thereby achieving uniform dispersion of the large plate fillers.
  • the fibrous fillers distributed in the interlaced structure can effectively inhibit the orientation of the uniform liquid crystal polymer resin molecular chain, and combined with the uniformly dispersed plate fillers, the shrinkage difference between the vertical flow direction (TD) and the flow direction (MD) of the liquid crystal polymer composition can be effectively improved, and the problem caused by the agglomeration of the plate fillers can be effectively solved.
  • the mass ratio of the fibrous filler to the flaky filler is 0.3 to 1.7.
  • the flake filler of the present invention can be mica powder and/or talc powder.
  • the large platelet filler of the present invention is mica powder
  • the small platelet filler is talc powder
  • the melting point Tm of the liquid crystal polymer resin of the present invention is 350 ⁇ 10°C.
  • the average diameter of the fibrous filler of the present invention is 5 to 20 ⁇ m.
  • the weight percentage of the fibrous filler with a retention length of ⁇ 100 ⁇ m in the fibrous filler is 51% to 91%.
  • the present invention also protects a method for preparing a liquid crystal polymer composition, comprising the following steps:
  • Liquid crystal polymer is extruded from the main feeding port of the twin-screw extruder, and fibrous fillers and flake fillers are extruded from the twin-screw extruder.
  • the liquid crystal polymer composition can be obtained by adding the liquid crystal polymer into the feeding port at the outlet side of the machine, and then melting, extruding and granulating at a temperature of Tm ⁇ 30°C; the Tm is the melting point of the liquid crystal polymer.
  • the retention length and content distribution of the fibers in the final liquid crystal polymer composition are mainly regulated by changing the addition position of the fibrous filler.
  • the particle size of the flaky filler and the amount of addition thereof will also affect the retention length and content distribution of the fibers in the liquid crystal polymer composition to a certain extent.
  • liquid crystal polymer composition in the preparation of thin-walled electronic components is also within the protection scope of the present invention.
  • the present invention also protects a thin-wall electronic connector prepared from the liquid crystal polymer composition as a raw material.
  • the present invention has the following beneficial effects:
  • the liquid crystal polymer composition of the present invention is formed by compounding specific fibrous fillers, small plate-shaped fillers and large plate-shaped fillers in a specific ratio to form an inorganic filler, and by adjusting the content of fibrous fillers with different retention lengths in the liquid crystal polymer composition, the fibrous fillers with different retention lengths and small plate-shaped fillers improve the dispersion of large plate-shaped fillers in the liquid crystal polymer composition, and can also effectively improve the shrinkage difference between the vertical flow direction and the flow direction of the liquid crystal polymer composition.
  • the ratio ⁇ of the shrinkage rate in the vertical flow direction (TD) to the shrinkage rate in the flow direction (MD) is 4.1-9.7, and the filler dispersion uniformity reaches Class B or above.
  • the present invention is further described below in conjunction with specific embodiments, but the embodiments do not limit the present invention in any form.
  • the raw materials and reagents used in the embodiments of the present invention are conventionally purchased raw materials and reagents.
  • Liquid crystal polymer resin The melting point Tm of liquid crystal polymer resin is 350 ⁇ 10°C, the manufacturer is Zhuhai Wantong Special Engineering Plastics, the brand is Vicryst R800;
  • Glass fiber A average diameter of 10 ⁇ m, initial average length of 3 mm, manufacturer Owens Corning, brand 923;
  • Glass fiber B average diameter 6 ⁇ m, initial average length 3 mm, manufacturer Owens Corning, brand FT771;
  • the flaky filler A is mica powder, with a particle size D50 of 48 ⁇ m, manufactured by Grey Mining Co., Ltd., model GM-5;
  • the flaky filler B is mica powder, with a particle size D50 of 70 ⁇ m, manufactured by Grey Mining Co., Ltd., brand GP-100;
  • the flaky filler C is mica powder, with a particle size D50 of 24 ⁇ m, manufactured by Yamaguchi Mica Co., Ltd., Japan, with a brand name of AB-25S;
  • the flake filler D is talcum powder, with a particle size D50 of 2.5 ⁇ m, manufactured by Longsheng Huamei Co., Ltd., brand AH-3000;
  • the flake filler E is talcum powder with a particle size D50 of 4.5 ⁇ m.
  • the manufacturer is Liaoning Aihai Talc Co., Ltd., brand AH 51215
  • the flaky filler F is talcum powder with a particle size D50 of 6 ⁇ m.
  • the manufacturer is Liaoning Aihai Talc Co., Ltd. and the brand is AH 51220.
  • the liquid crystal polymer resin is added from the main feed port of the twin-screw extruder;
  • the fibrous filler and the flake filler are added from the side feed port of the twin-screw extruder, mainly by adjusting the position of the fiber filler added to the twin-screw extruder screw to obtain fiber fillers of different lengths and content distributions.
  • the particle size of the flake filler and the amount of the flake filler added will also affect the retention length and content distribution of the fiber in the liquid crystal polymer composition to a certain extent;
  • the melt is blended and modified by a twin-screw extruder with a specific screw combination, passes through a die head, is cooled in a water tank, and is pulled to a pelletizer for pelletizing, thereby finally obtaining a uniform liquid crystal polymer composite material.
  • the specific test method is as follows: first, take the liquid crystal polymer composite material obtained by the twin-screw extruder, and use a single-screw injection molding machine to injection-mold 20 samples (sample size: 70 mm long along the flow direction, 30 mm wide in the vertical flow direction, and 1.5 mm thick) on a single-side injection mold;
  • the actual length of the sample in the vertical flow direction is measured by the second dimension.
  • the ratio of the actual length to the theoretical length of the mold used is the shrinkage rate in the vertical flow direction.
  • the average shrinkage rate in the vertical flow direction of the 20 samples is Y.
  • the actual length of the sample in the flow direction is measured by the second dimension.
  • the ratio of the actual length to the theoretical length of the mold used is the shrinkage rate in the flow direction.
  • the average shrinkage rate in the flow direction of the 20 samples is X.
  • the specific test method is as follows: first, take the liquid crystal polymer composite material obtained by the twin-screw extruder, and use a single-screw injection molding machine to mold 20 square plates of 64mm*64mm*0.8mm;
  • Grade A The number of white spots with a size of 0.2 mm or more is ⁇ 1;
  • Grade B 1 ⁇ Number of white spots with a size of 0.2mm or above ⁇ 10;
  • Grade C 10 ⁇ Number of white spots with a size of 0.2 mm or more ⁇ 30;
  • Grade D 30 ⁇ Number of white spots with a size of 0.2 mm or more.
  • the weight proportions of the components of the liquid crystal polymer compositions in Examples 1 to 14 are shown in Table 1, wherein M1 is the mass ratio of fibrous filler to flaky filler, M2 is the mass ratio of small flaky filler to large flaky filler, N is the weight percentage of fibrous filler with a retained length ⁇ 100 ⁇ m in the fibrous filler, and Z is the weight percentage of fibrous filler with a retained length ⁇ 250 ⁇ m in the fibrous filler.
  • the weight proportions of the components of the liquid crystal polymer compositions in Comparative Examples 1 to 9 are shown in Table 2, wherein M1 is the mass ratio of fibrous filler to flaky filler, M2 is the mass ratio of small flaky filler to large flaky filler, N is the weight percentage of fibrous filler with a length ⁇ 100 ⁇ m in the fibrous filler, and Z is the weight percentage of fibrous filler with a retained length ⁇ 250 ⁇ m in the fibrous filler.
  • the ratio ⁇ of the shrinkage in the direction perpendicular to the flow (TD) to the shrinkage in the flow direction (MD) of the liquid crystal polymer composition of the present invention is 4.1 to 9.7, and the filler dispersion uniformity reaches Class B or above.
  • Example 1 Comparative Example 1 and the comparative example that when too much flake filler is added, the dispersion uniformity of the filler is reduced due to the agglomeration of the flake filler, and when too much fibrous filler is added, it is difficult to effectively improve the ratio ⁇ of the shrinkage in the direction perpendicular to the flow (TD) to the shrinkage in the flow direction (MD) of the liquid crystal polymer.
  • Example 1 Comparative Example 3 and Comparative Example 4 that when too little small flake filler is added, it is difficult to cooperate with fibrous fillers of different retention lengths, thereby improving the dispersion uniformity of large flake fillers; and when too much small flake filler is added, too much small flake filler is easy to agglomerate, which is also not conducive to the dispersion of large flake fillers.
  • Example 1 and Comparative Examples 5 to 7 that when the particle size D50 of the small flake filler is 2.5 to 4.5 ⁇ m and the particle size D50 of the large flake filler is 48 to 70 ⁇ m, the improvement effect of the fibrous filler and the small flake filler on the dispersion uniformity of the large flake filler is limited.
  • Example 1 and Comparative Examples 8 it can be seen from Example 1 and Comparative Examples 8 that when the content of the fibrous filler with a retention length of ⁇ 100 ⁇ m in the fibrous filler is too small and the content of the fibrous filler with a retention length of ⁇ 250 ⁇ m is too large, it is not conducive to reducing the ratio ⁇ of the shrinkage rate in the vertical flow direction (TD) to the shrinkage rate in the flow direction (MD) of the liquid crystal polymer composition, which will lead to a large variation in the peripheral dimensions of the product and serious diagonal distortion.
  • TD vertical flow direction
  • MD shrinkage rate in the flow direction

Abstract

本发明公开了一种液晶聚合物组合物及其制备方法和应用。本发明的液晶聚合物组合物,按重量份数计,包括液晶聚合物树脂100份;纤维状填料10~80份;片状填料15~80份;其中,所述纤维状填料与片状填料的质量比为(0.2~2):1;所述纤维状填料中保留长度≤100μm的纤维状填料的重量百分数≥50%,保留长度≥250μm的纤维状填料的重量百分数为1%~5%;所述片状填料由粒径D50为2.5~4.5μm的小片状填料和粒径D50为48~70μm的大片状填料按质量比(0.5~2):1组成。本发明以不同保留长度的纤维状填料相互穿插形成交织结构,与小片状填料相结合,实现大片状填料均匀分散的同时有效改善液晶聚合物组合物垂直流动方向与流动方向收缩差异,有效解决片状填料团聚带来的问题。

Description

一种液晶聚合物组合物及其制备方法和应用 技术领域
本发明涉及高分子化合物的组合物技术领域,更具体地,涉及一种液晶聚合物组合物及其制备方法和应用。
背景技术
液晶聚合物具有优异的耐热性、流动性、尺寸稳定性及自阻燃等特性,广泛应用于电子连接器、线圈骨架、继电器等小型而精密的电子元器件。而且,随着电子技术的发展,PCB板上的电子连接器越来越趋向于薄壁化、集成化、功能复杂化。
LCP材料虽然在精密电子连接器具有很多性能优势,但LCP具有刚性棒状分子链结构,其在注塑成型后,尤其在制备长条状产品(例如FPC/DDR/BtoB等)时,分子链会处于高度取向状态,从而导致取向方向(流动方向)与垂直流动方向收缩率差异非常大,进而会导致产品外围尺寸变异较大、对角扭曲变形等问题。
为获得尺寸稳定性更好的LCP材料复合材料,现有公开技术中主要通过添加片状填料来解决,但LCP分子链刚性大且极性小,与无机填料之间的浸润性较差,从而导致无机填料在LCP体系中极难均匀分散,形成大尺寸团聚物,进而导致堵浇口、产品缺胶、产品表面白点等不良问题。
发明内容
本发明的目的是克服现有片状填料改性液晶聚合物时难以均匀分散的缺陷和不足,提供一种液晶聚合物组合物,以特定的纤维状填料与小片状填料相配合,提高大片状填料在液晶聚合物树脂中的分散均匀性,从而实现改善垂直流动方向(TD)与流动方向(MD)收缩差异的同时,减少因大片状填料团聚所导致堵浇口、缺胶等成型问题以及表面白点等外观问题。
本发明的另一目的是提供一种液晶聚合物组合物的制备方法。
本发明的又一目的是提供上述液晶聚合物组合物在制备薄壁电子连接器中的应用。
本发明的又一目的是提供一种由上述液晶聚合物组合物为原料制备得到的薄壁电子连接器。
本发明上述目的通过以下技术方案实现:
一种液晶聚合物组合物,按重量份数计,包括以下组分:
液晶聚合物树脂 100份;
纤维状填料     10~80份;
片状填料       15~80份;
其中,所述纤维状填料与片状填料的质量比为(0.2~2):1;
所述纤维状填料中保留长度≤100μm的纤维状填料的重量百分数≥50%,保留长度≥250μm的纤维状填料的重量百分数为1%~5%;
所述片状填料由粒径D50为2.5~4.5μm的小片状填料和粒径D50为48~70μm的大片状填料按质量比(0.5~2):1组成。
本发明以特定的纤维状填料、小片状填料和大片填料以特定的配比复配形成无机填料,并通过调控液晶聚合物组合物中保留长度小于等于100μm的纤维填料含量及保留长度大于等于250μm的纤维状填料含量,使得不同保留长度的纤维状填料与小片状填料改善大片状填料在液晶聚合物组合物中分散,其中不同保留长度的纤维状填料相互穿插形成交织结构,而该结构有利于降低大片状填料的团聚的倾向,同时小片状填料可以填充于大片状填料片层之间,从而破坏原有的团聚体,并使得液晶聚合物树脂浸润到大片状填料片层之间,进而实现大片状填料均匀分散。而且,以交织结构分布的纤维状填料能够有效抑制均匀液晶聚合物树脂分子链发生取向,结合均匀分散的片状填料,可以有效改善液晶聚合物组合物垂直流动方向(TD)与流动方向(MD)收缩差异,并有效解决片状填料团聚带来的问题。
优选地,所述纤维状填料与片状填料的质量比为0.3~1.7。
在具体实施方式中,本发明所述片状填料可以为云母粉和/或滑石粉。
在具体实施方式中,本发明所述大片状填料为云母粉,且所述小片状填料为滑石粉。
在具体实施方式中,本发明所述液晶聚合物树脂的熔点Tm为350±10℃。
在具体实施方式中,本发明所述纤维状填料的平均直径为5~20μm。
具体地,所述纤维状填料中保留长度≤100μm的纤维状填料的重量百分数为51%~91%。
本发明还保护一种液晶聚合物组合物的制备方法,包括以下步骤:
将液晶聚合物从双螺杆挤出机主喂料口,纤维状填料和片状填料从双螺杆挤 出机侧喂料口加入,然后在Tm±30℃温度下熔融挤出、造粒,即可获得液晶聚合物组合物;所述Tm为液晶聚合物的熔点。
在本发明液晶聚合物组合物的制备方法中,主要通过改变纤维状填料的加入位置以调控最终液晶聚合物组合物中纤维的保留长度和含量分布,此外片状填料的粒径及其添加量也会在一定程度上影响液晶聚合物组合物中纤维的保留长度和含量分布。
一种液晶聚合物组合物在制备薄壁电子元器件中的应用,也在本发明的保护范围之内。
本发明还保护一种由上述液晶聚合物组合物为原料制备得到一种薄壁电子连接器。
与现有技术相比,本发明的有益效果是:
本发明的液晶聚合物组合物,以特定的纤维状填料、小片状填料和大片填料以特定的配比复配形成无机填料,并通过调控液晶聚合物组合物中不同保留长度纤维状填料含量,使得不同保留长度的纤维状填料与小片状填料改善大片状填料在液晶聚合物组合物中分散,还可以有效改善液晶聚合物组合物垂直流动方向与流动方向收缩差异,垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值α为4.1~9.7,填料分散均匀性达到B级以上。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但实施例并不对本发明做任何形式的限定。除非另有说明,本发明实施例采用的原料试剂为常规购买的原料试剂。
1、原料试剂
液晶聚合物树脂:液晶聚合物树脂的熔点Tm为350±10℃,厂家珠海万通特种工程塑料,牌号Vicryst R800;
玻璃纤维A,平均直径为10μm,初始平均长度为3mm,厂家欧文斯科宁,牌号923;
玻璃纤维B:平均直径为6μm,初始平均长度为3mm,厂家欧文斯科宁,牌号FT771;
片状填料A为云母粉,粒径D50为48μm,厂家格瑞矿业有限公司,型号为GM-5;
片状填料B为云母粉,粒径D50为70μm,厂家格瑞矿业有限公司,牌号GP-100;
片状填料C为云母粉,粒径D50为24μm,厂家日本山口云母公司,牌号AB-25S;
片状填料D为滑石粉,粒径D50为2.5μm,厂家龙胜华美有限公司,牌号AH-3000;
片状填料E为滑石粉,粒径D50为4.5μm,厂家辽宁艾海滑石有限公司,牌号AH 51215
片状填料F为滑石粉,粒径D50为6μm,厂家辽宁艾海滑石有限公司,牌号AH 51220。
2、本发明实施例及对比例液晶聚合物组合物通过如下制备方法制备得到:
S1.将各个组分按配方比例进行称量;
S2.将双螺杆挤出机加工温度设置320℃~380℃;
S3.将液晶聚合物树脂从双螺杆挤出机主喂料口加入;
S4.将纤维状填料和片状填料从双螺杆挤出机侧喂料口加入,主要通过调节纤维填料加入双螺杆挤出机螺杆的位置,得到不同长度和含量分布的纤维填料,片状填料的粒径及其添加量也会在一定程度上影响液晶聚合物组合物中纤维的保留长度和含量分布;
S5.通过特定螺杆组合的双螺杆挤出机共混改性之后熔体,经过模头出条、水槽冷却、牵引至切粒机进行切粒,最终获得均匀的液晶聚合物复合材料。
3、性能测试
(1)玻璃纤维的保留长度及重量占比
具体测试方法为:取双螺杆挤出机获得的液晶聚合物复合材料,参照ISO3451-1,获得复合材料的灰分;将灰分置于100mL浓度为95%的工业酒精中用超声机分散2min,然后用移液管从底部吸取2mL放于干净载玻片上,用光学显微镜放大500倍进行拍照,用统计学方法计算玻璃纤维的保留长度,随机选取测量1000根玻璃纤维,统计特定长度以下或以上的玻璃纤维的总长度(L1)及所有玻璃纤维的总长度(L0);由于玻璃纤维的直径及密度是固定的,因此特定长度以下或以上的玻璃纤维的重量百分数=L1/L0×100%。
(2)垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值α
具体测试方法为:先取双螺杆挤出机获得的液晶聚合物复合材料,用单螺杆注塑机,在单边进胶模具上注塑样板(样板尺寸:沿流动方向长70mm,垂直流动方向宽30mm,厚度1.5mm),20块;
然后采用二次元测量样板垂直流动方向的实际长度,实际长度与所用模具理论长度的比值即为垂直流动方向收缩率,20块样板垂直流动方向收缩率的均值为Y;再采用二次元测量样板流动方向的实际长度,实际长度与所用模具理论长度的比值即为流动方向收缩率,20块样板流动方向收缩率的均值为X;
最后通过公式α=Y/X,即可获得垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值。
(3)填料分散均匀性
具体测试方法为:先取双螺杆挤出机获得的液晶聚合物复合材料,用单螺杆注塑机,模制样品64mm*64mm*0.8mm方板,20块;
然后,使用光学显微镜,放大200倍,统计样板正反两面表面的白点大小及数量;
最后,根据如下判断标准评价填料填料分散均匀性;
A级:尺寸0.2mm以上白点数量≤1;
B级:1<尺寸0.2mm以上白点数量≤10;
C级:10<尺寸0.2mm以上白点数量≤30;
D级:30<尺寸0.2mm以上白点数量。
实施例1~14
实施例1~14中液晶聚合物组合物的各组分的重量份数如表1所示,其中M1为纤维状填料与片状填料的质量比,M2为小片状填料与大片状填料的质量比,N为纤维状填料中保留长度≤100μm的纤维状填料的重量百分数,Z为纤维状填料中保留长度≥250μm的纤维状填料的重量百分数。
表1实施例1~14中液晶聚合物组合物

对比例1~9
对比例1~9中液晶聚合物组合物的各组分的重量份数如表2所示,其中M1为纤维状填料与片状填料的质量比,M2为小片状填料与大片状填料的质量比,N为纤维状填料中长度≤100μm的纤维状填料的重量百分数,Z为纤维状填料中保留长度≥250μm的纤维状填料的重量百分数。
表2对比例1~9中液晶聚合物

按照上述提及的方法对各实施例和对比例中液晶聚合物组合物的性能测试结果如表3所示。
表3各实施例和对比例的测试结果

本发明液晶聚合物组合物垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值α为4.1~9.7,填料分散均匀性达到B级以上。同时由实施例1、对比例1和对比例可看出,片状填料添加过多时,会因为片状填料团聚降低填料的分散均匀性,而纤维状填料添加过多则难以有效改善液晶聚合物垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值α。
由实施例1、对比例3和对比例4可看出,小片状填料添加过少时,难以与不同保留长度的纤维状填料相互配合,从而改善大片状填料的分散均匀性;而小片状填料添加过多时,过多的小片状填料易团聚,同样不利于大片状填料的分散。
由实施例1和对比例5~7可知,当无法同时满足小片状填料粒径D50为2.5~4.5μm且大片状填料粒径D50为48~70μm时,纤维状填料与小片状填料对大片状填料的分散均匀性的改善效果有限。此外,从实施例1和对比8可知,当纤维状填料中保留长度≤100μm的纤维状填料含量过少,保留长度≥250μm的纤维状填料的含量过多时,不利于降低液晶聚合物组合物垂直流动方向收缩率(TD)与流动方向收缩率(MD)比值α,从而会导致产品外围尺寸变异较大、对角扭曲变形问题严重。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均 应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种液晶聚合物组合物,其特征在于,按重量份数计,包括以下组分:
    液晶聚合物树脂  100份;
    纤维状填料      10~80份;
    片状填料        15~80份;
    其中,所述纤维状填料与片状填料的质量比为(0.2~2):1;
    所述纤维状填料中保留长度≤100μm的纤维状填料的重量百分数≥50%,保留长度≥250μm的纤维状填料的重量百分数为1%~5%;
    所述片状填料由粒径D50为2.5~4.5μm的小片状填料和粒径D50为48~70μm的大片状填料按质量比(0.5~2):1组成。
  2. 如权利要求1所述液晶聚合物组合物,其特征在于,所述纤维状填料与片状填料的质量比为0.3~1.7。
  3. 如权利要求1所述液晶聚合物组合物,其特征在于,所述片状填料为云母粉和/或滑石粉。
  4. 如权利要求3所述液晶聚合物组合物,其特征在于,所述大片状填料为云母粉,且所述小片状填料为滑石粉。
  5. 如权利要求1所述液晶聚合物组合物,其特征在于,所述液晶聚合物树脂的熔点Tm为350±10℃。
  6. 如权利要求1所述液晶聚合物组合物,其特征在于,所述纤维状填料的平均直径为5~20μm。
  7. 如权利要求1所述液晶聚合物组合物,其特征在于,所述纤维状填料中保留长度≤100μm的纤维状填料的重量百分数为51%~91%。
  8. 一种权利要求1~7任一项所述液晶聚合物组合物的制备方法,其特征在于,包括以下步骤:
    将液晶聚合物从双螺杆挤出机主喂料口加入,纤维状填料和片状填料从双螺杆挤出机侧喂料口加入,然后在Tm±30℃温度下熔融挤出、造粒,即可获得液晶聚合物组合物;所述Tm为液晶聚合物的熔点。
  9. 一种权利要求1~7任一项所述液晶聚合物组合物在制备薄壁电子连接器中的应用。
  10. 一种薄壁电子连接器,其特征在于,由权利要求1~7任一项所述液晶聚 合物组合物为原料制备得到。
PCT/CN2023/117734 2022-09-30 2023-09-08 一种液晶聚合物组合物及其制备方法和应用 WO2024067022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211213811.0 2022-09-30
CN202211213811.0A CN115433473B (zh) 2022-09-30 2022-09-30 一种液晶聚合物组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024067022A1 true WO2024067022A1 (zh) 2024-04-04

Family

ID=84251977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117734 WO2024067022A1 (zh) 2022-09-30 2023-09-08 一种液晶聚合物组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115433473B (zh)
WO (1) WO2024067022A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433473B (zh) * 2022-09-30 2023-05-09 金发科技股份有限公司 一种液晶聚合物组合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138228A (ja) * 2008-12-09 2010-06-24 Nippon Oil Corp 液晶ポリエステル樹脂組成物
CN102649869A (zh) * 2011-02-28 2012-08-29 住友化学株式会社 液晶聚酯组合物及其制备方法
CN102796351A (zh) * 2012-08-01 2012-11-28 浙江俊尔新材料股份有限公司 一种防起泡的液晶聚合物组合物及其制备方法
CN112126243A (zh) * 2020-09-09 2020-12-25 金发科技股份有限公司 一种液晶聚合物组合物
CN115433473A (zh) * 2022-09-30 2022-12-06 金发科技股份有限公司 一种液晶聚合物组合物及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294038A (ja) * 2001-03-28 2002-10-09 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JP5730704B2 (ja) * 2011-07-27 2015-06-10 上野製薬株式会社 液晶ポリマー組成物
CN112126244B (zh) * 2020-09-09 2022-06-07 金发科技股份有限公司 一种液晶聚合物组合物
CN112409582B (zh) * 2020-11-16 2022-12-02 金发科技股份有限公司 一种液晶聚合物树脂及其制备方法和应用
CN113201229A (zh) * 2021-05-14 2021-08-03 金发科技股份有限公司 一种液晶聚合物复合材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138228A (ja) * 2008-12-09 2010-06-24 Nippon Oil Corp 液晶ポリエステル樹脂組成物
CN102649869A (zh) * 2011-02-28 2012-08-29 住友化学株式会社 液晶聚酯组合物及其制备方法
CN102796351A (zh) * 2012-08-01 2012-11-28 浙江俊尔新材料股份有限公司 一种防起泡的液晶聚合物组合物及其制备方法
CN112126243A (zh) * 2020-09-09 2020-12-25 金发科技股份有限公司 一种液晶聚合物组合物
CN115433473A (zh) * 2022-09-30 2022-12-06 金发科技股份有限公司 一种液晶聚合物组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN115433473B (zh) 2023-05-09
CN115433473A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
JP5385609B2 (ja) 液晶性ポリエステル組成物の製造方法
US9994771B2 (en) Liquid crystal polyester resin composition, connector, and method for producing liquid crystal polyester resin composition
JP3387766B2 (ja) 液晶ポリエステル樹脂組成物
KR100706653B1 (ko) 열전도성 수지 조성물 및 플라스틱 성형품
CN112126244B (zh) 一种液晶聚合物组合物
WO2024067022A1 (zh) 一种液晶聚合物组合物及其制备方法和应用
CN112126243B (zh) 一种液晶聚合物组合物
CN102061069A (zh) 专用于大型薄壁制件的玻纤增强pbt组合物及其制备方法
WO2022237349A1 (zh) 一种液晶聚合物复合材料及其应用
TW200537757A (en) Planar connector
KR102034670B1 (ko) 전도성 수지 조성물 및 그 제조방법
JP6837184B2 (ja) 液晶性樹脂組成物
WO2018012371A1 (ja) 液晶性樹脂組成物
KR100885653B1 (ko) 고방열성 하이브리드 충진재 타입 복합수지 조성물
JP5717347B2 (ja) 射出成形用液晶性樹脂組成物、成形体及び耐ブリスター性を向上する方法
JP2007016221A (ja) 成形用樹脂材料および成形品
WO2022237350A1 (zh) 一种液晶聚合物复合材料及其应用
JP3007409B2 (ja) ポリブチレンテレフタレート樹脂製薄肉成形品
CN107915974A (zh) 导热树脂组合物及其制备方法
KR20130118078A (ko) 열전도성 및 내열성을 갖는 고분자 조성물의 성형품 제조방법 및 이에 의해 제조되는 열전도성 및 내열성을 갖는 고분자 조성물의 성형품
JP7038260B2 (ja) 液晶性樹脂組成物、及び当該液晶性樹脂組成物の成形品を含む電子部品
JP3170552B2 (ja) 射出成形品
CN114395242A (zh) 高导热pok复合材料及其制备方法与应用
JP2004168962A (ja) Tab生産工程用スペーステープ
JP2004123852A (ja) 芳香族樹脂組成物並びにフィルム及びシート