WO2022234860A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022234860A1
WO2022234860A1 PCT/JP2022/019573 JP2022019573W WO2022234860A1 WO 2022234860 A1 WO2022234860 A1 WO 2022234860A1 JP 2022019573 W JP2022019573 W JP 2022019573W WO 2022234860 A1 WO2022234860 A1 WO 2022234860A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
indoor
condition
heating operation
cooling operation
Prior art date
Application number
PCT/JP2022/019573
Other languages
English (en)
French (fr)
Inventor
健浩 直井
雄太 福山
喬也 中西
竜太 大浦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280033251.2A priority Critical patent/CN117280165B/zh
Priority to EP22798964.7A priority patent/EP4336116A4/en
Publication of WO2022234860A1 publication Critical patent/WO2022234860A1/ja
Priority to US18/387,260 priority patent/US12055312B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-051700
  • the cooling operation or heating operation is stopped. There are techniques for starting cooling operation or heating operation accordingly.
  • the air conditioner of the first aspect includes an indoor unit, an outdoor unit, a flow rate adjustment mechanism, and a controller.
  • the indoor unit is installed in a space to be air-conditioned.
  • the outdoor unit is installed outside the target space.
  • the flow rate adjustment mechanism adjusts the flow rate of the refrigerant.
  • the control unit performs cooling operation or heating operation, first control, and second control.
  • the cooling operation or heating operation brings the room temperature of the target space closer to the set temperature by circulating the refrigerant in the indoor unit and the outdoor unit.
  • the first control stops the cooling operation or the heating operation when the first condition is satisfied while performing the cooling operation or the heating operation, and then starts the cooling operation or the heating operation when the second condition is satisfied.
  • the first condition is a condition indicating that the heat load of the target space is low.
  • the second condition is a condition regarding the heat load of the target space. In the second control, the degree of opening of the flow regulating mechanism when starting the cooling operation or the heating operation is made larger than the degree of opening when the
  • the air conditioner of the first aspect makes the opening of the flow rate adjustment mechanism when starting the cooling operation or heating operation larger than the opening when the first condition is satisfied. As a result, since the air conditioner starts the cooling operation or the heating operation with the flow rate adjusting mechanism open, it is possible to prevent a decrease in operating efficiency.
  • the air conditioner of the second aspect is the air conditioner of the first aspect, and the first condition and the second condition are conditions based on the temperature difference between the set temperature and the room temperature.
  • the air conditioner of the second aspect can accurately grasp the heat load of the target space.
  • An air conditioner according to a third aspect is the air conditioner according to either the first aspect or the second aspect, wherein the second control is such that the cooling operation or the heating operation is stopped and started by the first control within a predetermined time. is repeated a predetermined number of times.
  • the air conditioner of the third aspect performs the second control when the load is low such that the stopping and starting of cooling operation or heating operation are repeated a predetermined number of times within a predetermined time. As a result, the air conditioner can reduce the load on the compressor.
  • An air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the opening degree of the flow rate adjustment mechanism when starting the cooling operation or the heating operation in the second control is This is the degree of opening obtained by increasing the degree of opening when the first condition is satisfied by a predetermined ratio.
  • the air conditioner of the fourth aspect can start operation more efficiently.
  • An air conditioner according to a fifth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the opening degree of the flow rate adjustment mechanism when starting the cooling operation or the heating operation in the second control is This is the degree of opening when the temperature difference between the set temperature and the room temperature reaches a predetermined value before the first condition is satisfied.
  • the air conditioner of the fifth aspect can start operation more efficiently.
  • FIG. 3 is a control block diagram of the air conditioner;
  • FIG. 4 is a diagram showing an example of operations of various devices during first control and second control in cooling operation;
  • FIG. 5 is a diagram showing an example of operations of various devices during first control and second control in heating operation;
  • 4 is a flow chart for explaining the processing of first control and second control in cooling operation or heating operation;
  • FIG. 1 is a diagram showing a refrigerant circuit 50 of an air conditioner 1.
  • the air conditioner 1 mainly includes an indoor unit 20 and an outdoor unit 30.
  • the indoor unit 20 and the outdoor unit 30 are connected via a liquid refrigerant communication pipe 51 and a gas refrigerant communication pipe 52 to form a refrigerant circuit 50 .
  • the indoor unit 20 and the outdoor unit 30 are communicably connected by a communication line 80 .
  • the indoor unit 20 is installed in a space to be air-conditioned, such as a room in a building where the air conditioner 1 is installed.
  • the indoor unit 20 is, for example, a ceiling-embedded unit, a ceiling-suspended unit, a floor-standing unit, or the like.
  • the indoor unit 20 mainly includes an indoor expansion valve 23 (flow control mechanism) and an indoor controller 29 .
  • the indoor unit 20 also has an indoor heat exchanger 21 , an indoor fan 22 , an indoor temperature sensor 61 , a gas side temperature sensor 62 and a liquid side temperature sensor 63 .
  • the indoor unit 20 connects a liquid refrigerant pipe 53a that connects the liquid side end of the indoor heat exchanger 21 and the liquid refrigerant communication pipe 51, and a gas side end of the indoor heat exchanger 21 and the gas refrigerant communication pipe 52. It has a gas refrigerant pipe 53b.
  • (2-1-1) Indoor heat exchanger
  • the structure of the indoor heat exchanger 21 is not limited, for example, a cross fin composed of a heat transfer tube (not shown) and a large number of fins (not shown) fin-and-tube heat exchanger.
  • the indoor heat exchanger 21 exchanges heat between the refrigerant flowing through the indoor heat exchanger 21 and the air in the target space.
  • the indoor heat exchanger 21 functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the indoor fan 22 sucks air in the target space into the indoor unit 20, supplies it to the indoor heat exchanger 21, and heat-exchanges the air with the refrigerant in the indoor heat exchanger 21, Supply to the target space.
  • the indoor fan 22 is, for example, a centrifugal fan such as a turbo fan or a sirocco fan.
  • the indoor fan 22 is driven by an indoor fan motor 22m.
  • the rotation frequency of the indoor fan motor 22m can be controlled by an inverter.
  • the indoor expansion valve 23 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 53a.
  • the indoor expansion valve 23 is provided in the liquid refrigerant pipe 53a.
  • the indoor expansion valve 23 is an electronic expansion valve whose degree of opening can be adjusted.
  • the indoor temperature sensor 61 measures the temperature of the air (room temperature) in the target space.
  • the indoor temperature sensor 61 is provided near the air inlet of the indoor unit 20 .
  • the gas-side temperature sensor 62 measures the temperature of the refrigerant flowing through the gas refrigerant pipe 53b.
  • the gas side temperature sensor 62 is provided in the gas refrigerant pipe 53b.
  • the liquid side temperature sensor 63 measures the temperature of the refrigerant flowing through the liquid refrigerant pipe 53a.
  • the liquid side temperature sensor 63 is provided in the liquid refrigerant pipe 53a.
  • the indoor temperature sensor 61, the gas side temperature sensor 62, and the liquid side temperature sensor 63 are, for example, thermistors.
  • the indoor control section 29 controls the operation of each section that constitutes the indoor unit 20 .
  • the indoor controller 29 is electrically connected to various devices of the indoor unit 20, including the indoor expansion valve 23 and the indoor fan motor 22m.
  • the indoor controller 29 is communicably connected to various sensors provided in the indoor unit 20, including the indoor temperature sensor 61, the gas-side temperature sensor 62, and the liquid-side temperature sensor 63.
  • the indoor control unit 29 has a control arithmetic device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic device reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the indoor unit 20 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the indoor controller 29 has a timer.
  • the indoor control unit 29 is configured to be able to receive various signals transmitted from an operating remote controller (not shown).
  • the various signals include, for example, signals for instructing start and stop of operation and signals for various settings.
  • Signals related to various settings include, for example, signals related to set temperature and set humidity.
  • the indoor controller 29 exchanges control signals, measurement signals, signals relating to various settings, etc. with the outdoor controller 39 of the outdoor unit 30 via the communication line 80 .
  • the indoor controller 29 and the outdoor controller 39 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
  • the outdoor unit 30 is installed outside the target space, such as on the roof of the building where the air conditioner 1 is installed.
  • the outdoor unit 30 mainly includes an outdoor expansion valve 34 (flow control mechanism) and an outdoor control section 39 .
  • the outdoor unit 30 includes a compressor 31, a flow direction switching mechanism 32, an outdoor heat exchanger 33, an accumulator 35, an outdoor fan 36, a liquid side shutoff valve 37, a gas side shutoff valve 38, a suction pressure It has a sensor 64 and a discharge pressure sensor 65 .
  • the outdoor unit 30 also has a suction pipe 54a, a discharge pipe 54b, a first gas refrigerant pipe 54c, a liquid refrigerant pipe 54d, and a second gas refrigerant pipe 54e.
  • the suction pipe 54 a connects the flow direction switching mechanism 32 and the suction side of the compressor 31 .
  • An accumulator 35 is provided in the intake pipe 54a.
  • the discharge pipe 54 b connects the discharge side of the compressor 31 and the flow direction switching mechanism 32 .
  • the first gas refrigerant pipe 54 c connects the flow direction switching mechanism 32 and the gas side of the outdoor heat exchanger 33 .
  • the liquid refrigerant pipe 54 d connects the liquid side of the outdoor heat exchanger 33 and the liquid refrigerant communication pipe 51 .
  • An outdoor expansion valve 34 is provided in the liquid refrigerant pipe 54d.
  • a liquid-side shut-off valve 37 is provided at the connecting portion between the liquid refrigerant pipe 54 d and the liquid refrigerant communication pipe 51 .
  • the second gas refrigerant pipe 54 e connects the flow direction switching mechanism 32 and the gas refrigerant communication pipe 52 .
  • a gas side shutoff valve 38 is provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 .
  • the compressor 31 sucks low-pressure refrigerant in the refrigeration cycle from the suction pipe 54a, compresses the refrigerant with a compression mechanism (not shown), and compresses the refrigerant. It is a device that discharges the discharged refrigerant to the discharge pipe 54b.
  • the compressor 31 is, for example, a volumetric compressor such as a rotary type or a scroll type.
  • a compression mechanism of the compressor 31 is driven by a compressor motor 31m.
  • the rotation frequency of the compressor motor 31m can be controlled by an inverter.
  • the flow direction switching mechanism 32 is a mechanism that switches the flow path of the coolant between the first state and the second state.
  • the flow direction switching mechanism 32 When the flow direction switching mechanism 32 is in the first state, as indicated by solid lines in the flow direction switching mechanism 32 in FIG. Communicate with tube 54c.
  • the intake pipe 54a When the flow direction switching mechanism 32 is in the second state, the intake pipe 54a communicates with the first gas refrigerant pipe 54c, and the discharge pipe 54b communicates with the second gas refrigerant pipe, as indicated by the dashed lines in the flow direction switching mechanism 32 in FIG. Communicate with tube 54e.
  • the flow direction switching mechanism 32 puts the flow path of the refrigerant in the first state during cooling operation. At this time, the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the outdoor heat exchanger 33, the outdoor expansion valve 34, the indoor expansion valve 23, and the indoor heat exchanger 21, and returns to the compressor 31. .
  • the outdoor heat exchanger 33 functions as a condenser and the indoor heat exchanger 21 functions as an evaporator.
  • the flow direction switching mechanism 32 puts the flow path of the refrigerant in the second state during the heating operation. At this time, the refrigerant discharged from the compressor 31 flows through the refrigerant circuit 50 in order of the indoor heat exchanger 21, the indoor expansion valve 23, the outdoor expansion valve 34, and the outdoor heat exchanger 33, and returns to the compressor 31. .
  • the outdoor heat exchanger 33 functions as an evaporator and the indoor heat exchanger 21 functions as a condenser.
  • Outdoor Heat Exchanger 33 In the outdoor heat exchanger 33, heat is exchanged between the refrigerant flowing through the outdoor heat exchanger 33 and the outdoor air.
  • the structure of the outdoor heat exchanger 33 is not limited, for example, it may be a cross-fin fin-and-tube heat exchanger composed of a heat transfer tube (not shown) and a large number of fins (not shown). Exchanger.
  • the outdoor expansion valve 34 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 54d.
  • the outdoor expansion valve 34 is an electronic expansion valve whose degree of opening can be adjusted.
  • the accumulator 35 is a container having a gas-liquid separation function to separate the inflowing refrigerant into gas refrigerant and liquid refrigerant.
  • the refrigerant flowing into the accumulator 35 is separated into gas refrigerant and liquid refrigerant, and the gas refrigerant collected in the upper space flows into the compressor 31 .
  • the outdoor fan 36 sucks outdoor air into the outdoor unit 30, supplies it to the outdoor heat exchanger 33, and heat-exchanges the outdoor air with the refrigerant in the outdoor heat exchanger 33. , are fans for discharging the air to the outside of the outdoor unit 30 .
  • the outdoor fan 36 is, for example, an axial fan such as a propeller fan.
  • the outdoor fan 36 is driven by an outdoor fan motor 36m.
  • the rotation frequency of the outdoor fan motor 36m can be controlled by an inverter.
  • the suction pressure sensor 64 is a sensor that measures the suction pressure.
  • the suction pressure sensor 64 is provided on the suction pipe 54a. Suction pressure is the low pressure value of the refrigeration cycle.
  • the discharge pressure sensor 65 is a sensor that measures the discharge pressure.
  • the discharge pressure sensor 65 is provided on the discharge pipe 54b.
  • the discharge pressure is the high pressure value of the refrigeration cycle.
  • the gas side shutoff valve 38 is a valve provided at the connecting portion between the second gas refrigerant pipe 54 e and the gas refrigerant communication pipe 52 .
  • the liquid-side shut-off valve 37 and the gas-side shut-off valve 38 are, for example, manually operated valves.
  • the outdoor control section 39 controls the operation of each section that constitutes the outdoor unit 30 .
  • the outdoor control section 39 is electrically connected to various devices of the outdoor unit 30, including the compressor motor 31m, the flow direction switching mechanism 32, the outdoor expansion valve 34, and the outdoor fan motor 36m.
  • the outdoor control section 39 is communicably connected to various sensors provided in the outdoor unit 30 including the suction pressure sensor 64 and the discharge pressure sensor 65 .
  • the outdoor control unit 39 has a control arithmetic device and a storage device.
  • the control arithmetic device is a processor such as a CPU or GPU.
  • the storage device is a storage medium such as RAM, ROM and flash memory.
  • the control arithmetic unit reads out a program stored in the storage device and performs predetermined arithmetic processing according to the program, thereby controlling the operation of each part that constitutes the outdoor unit 30 . Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the outdoor controller 39 has a timer.
  • the outdoor control section 39 exchanges control signals, measurement signals, signals related to various settings, etc. with the indoor control section 29 of the indoor unit 20 via the communication line 80 .
  • the outdoor controller 39 and the indoor controller 29 cooperate to function as a controller 70 . Functions of the control unit 70 will be described later.
  • the control section 70 is configured by connecting the indoor control section 29 and the outdoor control section 39 via a communication line 80 so as to be able to communicate with each other.
  • cooperation between the indoor controller 29 and the outdoor controller 39 functions as a controller 70 that controls the operation of the air conditioner 1 .
  • FIG. 2 is a control block diagram of the air conditioner 1.
  • the controller 70 is communicably connected to the room temperature sensor 61, the gas side temperature sensor 62, the liquid side temperature sensor 63, the suction pressure sensor 64, and the discharge pressure sensor 65.
  • the control unit 70 receives measurement signals transmitted from various sensors.
  • the controller 70 is also electrically connected to the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow direction switching mechanism 32, the outdoor expansion valve 34, and the outdoor fan motor 36m.
  • the control unit 70 operates the indoor expansion valve 23, the indoor fan motor 22m, the compressor motor 31m, the flow direction switching mechanism 32, the outdoor expansion valve 34 based on the measurement signals of various sensors according to the control signal transmitted from the operation remote controller. , and the outdoor fan motor 36m.
  • the control unit 70 mainly performs cooling operation or heating operation, first control, and second control.
  • the controller 70 opens the outdoor expansion valve 34 step by step, and adjusts the degree of opening of the indoor expansion valve 23 so that the degree of superheat of the refrigerant at the gas-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of superheat. .
  • the degree of superheat of the refrigerant at the gas side outlet of the indoor heat exchanger 21 can be obtained, for example, by subtracting the evaporation temperature converted from the measured value (suction pressure) of the suction pressure sensor 64 from the measured value of the gas side temperature sensor 62. Calculated.
  • control unit 70 controls the operating capacity of the compressor 31 so that the evaporation temperature converted from the measured value of the suction pressure sensor 64 approaches a predetermined target evaporation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational frequency of the compressor motor 31m.
  • the controller 70 controls various devices such as the compressor 31, the outdoor expansion valve 34, and the indoor expansion valve 23 so that the room temperature of the target space approaches the set temperature.
  • the high-pressure gas refrigerant flows through the first gas refrigerant pipe 54 c via the flow direction switching mechanism 32 and is sent to the outdoor heat exchanger 33 .
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 33 exchanges heat with the outdoor air supplied by the outdoor fan 36, condenses, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has passed through the outdoor heat exchanger 33 flows through the liquid refrigerant pipe 54 d, passes through the outdoor expansion valve 34 , and is sent to the indoor unit 20 .
  • the high-pressure liquid refrigerant sent to the indoor unit 20 is decompressed by the indoor expansion valve 23 to near the suction pressure of the compressor 31 and sent to the indoor heat exchanger 21 as a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant exchanges heat with the air in the target space supplied to the indoor heat exchanger 21 by the indoor fan 22, and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the outdoor unit 30 via the gas refrigerant communication pipe 52 and flows into the accumulator 35 via the flow direction switching mechanism 32 .
  • the low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again.
  • the temperature of the air supplied to the indoor heat exchanger 21 is lowered by heat exchange with the refrigerant flowing through the indoor heat exchanger 21, and the air cooled by the indoor heat exchanger 21 is blown out to the target space.
  • the control unit 70 adjusts the degree of opening of the indoor expansion valve 23 so that the degree of supercooling of the refrigerant at the liquid-side outlet of the indoor heat exchanger 21 reaches a predetermined target degree of supercooling.
  • the degree of supercooling of the refrigerant at the liquid side outlet of the indoor heat exchanger 21 is obtained, for example, by subtracting the measured value of the liquid side temperature sensor 63 from the condensation temperature converted from the measured value (discharge pressure) of the discharge pressure sensor 65. Calculated.
  • controller 70 adjusts the opening degree of the outdoor expansion valve 34 so that the refrigerant flowing into the outdoor heat exchanger 33 is decompressed to a pressure that can evaporate in the outdoor heat exchanger 33 .
  • control unit 70 controls the operating capacity of the compressor 31 so that the condensation temperature converted from the measured value of the discharge pressure sensor 65 approaches a predetermined target condensation temperature. Control of the operating capacity of the compressor 31 is performed by controlling the rotational frequency of the compressor motor 31m.
  • the controller 70 controls various devices such as the compressor 31, the outdoor expansion valve 34, and the indoor expansion valve 23 so that the room temperature of the target space approaches the set temperature.
  • Refrigerant flows through circuit 50 as follows.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 31 and compressed by the compressor 31 to become the high-pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the indoor heat exchanger 21 via the flow direction switching mechanism 32, exchanges heat with the air in the target space supplied by the indoor fan 22, and condenses to become a high-pressure liquid refrigerant.
  • the temperature of the air supplied to the indoor heat exchanger 21 rises by exchanging heat with the refrigerant flowing through the indoor heat exchanger 21, and the air heated by the indoor heat exchanger 21 is blown out into the target space.
  • the high-pressure liquid refrigerant that has passed through the indoor heat exchanger 21 passes through the indoor expansion valve 23 and is decompressed.
  • the refrigerant decompressed by the indoor expansion valve 23 is sent to the outdoor unit 30 via the liquid refrigerant communication pipe 51 and flows into the liquid refrigerant pipe 54d.
  • the refrigerant flowing through the liquid refrigerant pipe 54 d is decompressed to near the suction pressure of the compressor 31 when passing through the outdoor expansion valve 34 , becomes a gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 33 .
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 33 exchanges heat with the outdoor air supplied by the outdoor fan 36 and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows into the accumulator 35 via the flow direction switching mechanism 32 .
  • the low-pressure gas refrigerant that has flowed into the accumulator 35 is sucked into the compressor 31 again.
  • the first control is a condition indicating that the heat load of the target space is low.
  • the first condition is a condition based on the temperature difference between the set temperature and the room temperature.
  • the first condition in the cooling operation of this embodiment is a condition that is satisfied when the room temperature is 1° C. or more lower than the set temperature.
  • the first condition in the heating operation of the present embodiment is a condition that is met when the room temperature is higher than the set temperature by 1° C. or more.
  • the second condition is a condition regarding the heat load of the target space.
  • the second condition is a condition based on the temperature difference between the set temperature and the room temperature.
  • the second condition in the cooling operation of this embodiment is a condition that is met when the room temperature is higher than the set temperature by 1° C. or more.
  • the first condition in the heating operation of the present embodiment is a condition that is met when the room temperature is lower than the set temperature by 1° C. or more.
  • FIG. 3 is a diagram showing an example of operations of various devices during first control and second control in cooling operation.
  • the upper graph in FIG. 3 shows the transition of the room temperature of the target space around the set temperature, with the horizontal axis as the time axis.
  • the graph on the lower side of FIG. 3 shows changes in the rotation frequency of the compressor motor 31m of the compressor 31 and changes in the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23, with the horizontal axis as the time axis.
  • the control unit 70 performs cooling operation as the first control. to stop. Specifically, the control unit 70 stops the compressor motor 31m and fully closes the outdoor expansion valve 34 and the indoor expansion valve 23 .
  • the control unit 70 performs cooling operation as the first control. Start. Specifically, as shown in “cooling operation 2", the control unit increases the rotation frequency of the compressor motor 31m and the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 stepwise. At this time, the controller 70 increases the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 from the fully closed state.
  • the control unit 70 performs cooling operation as the first control. to stop. Specifically, the control unit 70 stops the compressor motor 31m and fully closes the outdoor expansion valve 34 and the indoor expansion valve 23 .
  • FIG. 4 is a diagram showing an example of operations of various devices during first control and second control in heating operation.
  • the upper graph in FIG. 4 shows the transition of the room temperature of the target space around the set temperature, with the horizontal axis as the time axis.
  • the graph on the lower side of FIG. 4 shows changes in the rotation frequency of the compressor motor 31m of the compressor 31 and changes in the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23, with the horizontal axis as the time axis.
  • the control unit 70 performs the heating operation as the first control. Stop. Specifically, the control unit 70 stops the compressor motor 31m and fully closes the outdoor expansion valve 34 and the indoor expansion valve 23 .
  • the control unit 70 performs heating operation as the first control. to start. Specifically, as shown in “heating operation 2", the control unit increases the rotation frequency of the compressor motor 31m and the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 stepwise. At this time, the controller 70 increases the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 from the fully closed state.
  • the control unit 70 performs the heating operation as the first control. Stop. Specifically, the control unit 70 stops the compressor motor 31m and fully closes the outdoor expansion valve 34 and the indoor expansion valve 23 .
  • Second control In the second control, the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when the cooling operation or the heating operation is started is controlled by the first control when the first condition is satisfied. Make the opening larger than the opening at the time of In the present embodiment, the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when the cooling operation or the heating operation is started in the second control is set to the degree of opening at the time when the first condition is satisfied. This is the degree of opening that is made relatively large.
  • the predetermined percentage is, for example, 30%.
  • the second control may be performed after stopping and starting the cooling operation or the heating operation by the first control is repeated a predetermined number of times within a predetermined time. For example, the second control may be performed after stopping and starting the cooling operation or heating operation by the first control is repeated five times within 30 minutes.
  • the control section 70 performs the first control and the second control.
  • the cooling operation is started. Specifically, as shown in “cooling operation 3", the control unit increases the rotation frequency of the compressor motor 31m and the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 stepwise. At this time, the controller 70 increases the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 by a predetermined ratio from the opening degrees at the time when the first condition is satisfied (points ⁇ and ⁇ in FIG. 3). ), and then increase.
  • the control section 70 performs the first control and the second control.
  • the heating operation is started. Specifically, as shown in “heating operation 3", the control unit increases the rotation frequency of the compressor motor 31m and the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 stepwise. At this time, the controller 70 increases the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 by a predetermined ratio from the opening degrees at the time when the first condition is satisfied (points ⁇ and ⁇ in FIG. 4). ), and then increase.
  • step S1 the control unit 70 starts the cooling operation or the heating operation according to an instruction from the operation remote controller or the like.
  • the control unit 70 waits for a predetermined time T1.
  • the predetermined time T1 is, for example, 5 minutes.
  • step S3 the control unit 70 determines whether or not the first condition is satisfied. If the first condition is satisfied, the process proceeds to step S4. If the first condition is not satisfied, the control unit 70 returns to step S2 and waits for the predetermined time T1 again. In other words, the control unit 70 determines whether or not the first condition is satisfied every predetermined time T1.
  • control unit 70 stops cooling operation or heating operation.
  • the control unit 70 waits for a predetermined time T2.
  • the predetermined time T2 is, for example, 5 minutes.
  • step S6 the control unit 70 determines whether or not the second condition is satisfied. If the second condition is satisfied, the process proceeds to step S7. If the second condition is not satisfied, the control unit 70 returns to step S5 and waits for the predetermined time T2 again. In other words, the control unit 70 determines whether or not the second condition is satisfied every predetermined time T2.
  • step S6 the control unit 70 determines whether the stopping and starting of the cooling operation or the heating operation by the first control has been repeated a predetermined number of times within a predetermined time. If the process has been repeated a predetermined number of times within the predetermined time, the process proceeds to step S8. If the process has not been repeated the predetermined number of times within the predetermined time, the process proceeds to step S9.
  • control unit 70 increases the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 by a predetermined ratio from the opening degrees at the time when the first condition is satisfied ( With second control), (return to step S1) to start cooling operation or heating operation.
  • control unit 70 When proceeding from step S7 to step S9, the control unit 70 fully closes the outdoor expansion valve 34 and the indoor expansion valve 23 (no second control), (returns to step S1), and starts the cooling operation or the heating operation. Start.
  • the control unit 70 continues this process until the cooling operation or the heating operation is stopped according to an instruction from the operation remote controller or the like.
  • the air conditioner 1 of this embodiment includes an indoor unit 20, an outdoor unit 30, an outdoor expansion valve 34 and an indoor expansion valve 23, and a controller 70.
  • the indoor unit 30 is installed in a space to be air-conditioned.
  • the outdoor unit 30 is installed outside the target space.
  • the outdoor expansion valve 34 and the indoor expansion valve 23 adjust the flow rate of the refrigerant.
  • the control unit 70 performs cooling operation or heating operation, first control, and second control. In the cooling operation or heating operation, the room temperature of the target space approaches the set temperature by circulating the refrigerant in the indoor unit 20 and the outdoor unit 30 .
  • the first control stops the cooling operation or the heating operation when the first condition is satisfied while performing the cooling operation or the heating operation, and then starts the cooling operation or the heating operation when the second condition is satisfied. .
  • the first condition is a condition indicating that the heat load of the target space is low.
  • the second condition is a condition regarding the heat load of the target space. In the second control, the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when the cooling operation or the heating operation is started is made larger than the degree of opening when the first condition is satisfied. .
  • the air conditioner 1 of the present embodiment makes the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 23 when starting the cooling operation or the heating operation larger than the opening degrees when the first condition is satisfied. . As a result, the air conditioner 1 starts the cooling operation or the heating operation with the outdoor expansion valve 34 and the indoor expansion valve 23 opened, so that it is possible to prevent a decrease in operating efficiency.
  • the first condition and the second condition are conditions based on the temperature difference between the set temperature and the room temperature of the target space. As a result, the air conditioner 1 can accurately grasp the heat load of the target space.
  • the second control is performed after stopping and starting the cooling operation or the heating operation by the first control is repeated a predetermined number of times within a predetermined time.
  • the air conditioner 1 of the present embodiment performs the second control when the load is low such that the cooling operation or the heating operation is repeatedly stopped and started a predetermined number of times within a predetermined time. As a result, the air conditioner 1 can reduce the load on the compressor 31 .
  • the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when starting the cooling operation or the heating operation in the second control is set to the degree of opening when the first condition is satisfied. is the degree of opening obtained by increasing the degree of opening by a predetermined ratio. As a result, the air conditioner 1 can start operating more efficiently.
  • the air conditioner 1 has one indoor unit 20 .
  • the air conditioner 1 may have more indoor units 20 .
  • the controller 70 controls the operation of the indoor expansion valve 23 associated with the first control and the second control, for example, for each indoor unit 20 .
  • the control unit 70 determines the indoor unit 20 whose cooling operation or heating operation was last stopped by the first control (as a result, all the indoor units 20 are stopped by the first control), The operation of the compressor 31 and the outdoor expansion valve 34 according to the first control and the second control in accordance with the indoor unit 20 that has started the cooling operation or the heating operation (other than the indoor unit 20 is stopped by the first control) to control.
  • the air conditioner 1 is a building multi-type air conditioning system in which the indoor unit 20 has the indoor expansion valve 23 .
  • the air conditioner 1 may be one in which the indoor unit 20 does not have the indoor expansion valve 23, such as a domestic room air conditioner.
  • the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when the cooling operation or the heating operation is started in the second control is set to the degree of opening at the time when the first condition is satisfied. It was a relatively large opening.
  • the degree of opening of the outdoor expansion valve 34 and the indoor expansion valve 23 when starting the cooling operation or the heating operation in the second control is the temperature difference between the set temperature and the room temperature of the target space before the first condition is satisfied.
  • the opening degree at the time when the difference reaches a predetermined value may be used.
  • the predetermined value is, for example, 0.5° C. (room temperature of target space ⁇ set temperature).
  • the air conditioner 1 can start operating more efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷房運転又は暖房運転を停止した後、流量調整機構を閉じた状態から冷房運転又は暖房運転を開始すると、流量調整機構が適切な開度になるまでに時間がかかり、運転効率が低下する、という課題がある。空気調和装置は、室内ユニットと、室外ユニットと、室外膨張弁及び室内膨張弁と、制御部と、を備える。制御部は、第1制御と、第2制御と、を行う。第1制御は、冷房運転又は暖房運転を行っている間に、第1条件が満たされると冷房運転又は暖房運転を停止し、その後、第2条件が満たされると冷房運転又は暖房運転を開始する。第1条件は、対象空間の熱負荷が低いことを示す条件である。第2条件は、対象空間の熱負荷に関する条件である。第2制御は、第1制御により、冷房運転又は暖房運転を開始するときの室外膨張弁及び室内膨張弁の開度を、第1条件が満たされた時点での開度よりも大きくする。

Description

空気調和装置
 空気調和装置に関する。
 特許文献1(特開2020-051700)に示されているように、冷房運転又は暖房運転時に、対象空間の熱負荷が低くなると冷房運転又は暖房運転を停止し、その後、対象空間の熱負荷に応じて冷房運転又は暖房運転を開始する技術がある。
 特許文献1のように冷房運転又は暖房運転を停止した後、流量調整機構を閉じた状態から冷房運転又は暖房運転を開始すると、流量調整機構が適切な開度になるまでに時間がかかり、運転効率が低下する、という課題がある。
 第1観点の空気調和装置は、室内ユニットと、室外ユニットと、流量調整機構と、制御部と、を備える。室内ユニットは、空気調和の対象空間に設置される。室外ユニットは、対象空間の室外に設置される。流量調整機構は、冷媒の流量を調整する。制御部は、冷房運転又は暖房運転と、第1制御と、第2制御と、を行う。冷房運転又は暖房運転は、室内ユニット、及び室外ユニットに冷媒を循環させることによって、対象空間の室温を設定温度に近づける。第1制御は、冷房運転又は暖房運転を行っている間に、第1条件が満たされると冷房運転又は暖房運転を停止し、その後、第2条件が満たされると冷房運転又は暖房運転を開始する。第1条件は、対象空間の熱負荷が低いことを示す条件である。第2条件は、対象空間の熱負荷に関する条件である。第2制御は、第1制御により、冷房運転又は暖房運転を開始するときの流量調整機構の開度を、第1条件が満たされた時点での開度よりも大きくする。
 第1観点の空気調和装置は、冷房運転又は暖房運転を開始するときの流量調整機構の開度を、第1条件が満たされた時点での開度よりも大きくする。その結果、空気調和装置は、流量調整機構を開いた状態から冷房運転又は暖房運転を開始するため、運転効率の低下を防ぐことができる。
 第2観点の空気調和装置は、第1観点の空気調和装置であって、第1条件及び第2条件は、設定温度と室温との温度差に基づく条件である。
 第2観点の空気調和装置は、このような構成により、対象空間の熱負荷を正確に把握することができる。
 第3観点の空気調和装置は、第1観点又は第2観点のいずれかの空気調和装置であって、第2制御は、第1制御による冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返された後に行われる。
 第3観点の空気調和装置は、冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返されるような低負荷時に、第2制御を行う。その結果、空気調和装置は、圧縮機の負荷を減らすことができる。
 第4観点の空気調和装置は、第1観点から第3観点のいずれかの空気調和装置であって、第2制御における、冷房運転又は暖房運転を開始するときの流量調整機構の開度は、第1条件が満たされた時点での開度を、所定の割合大きくした開度である。
 第4観点の空気調和装置は、このような構成により、より効率的に運転を開始することができる。
 第5観点の空気調和装置は、第1観点から第3観点のいずれかの空気調和装置であって、第2制御における、冷房運転又は暖房運転を開始するときの流量調整機構の開度は、第1条件が満たされる前に、設定温度と室温との温度差が、所定の値となった時点での開度である。
 第5観点の空気調和装置は、このような構成により、より効率的に運転を開始することができる。
空気調和装置の冷媒回路を示す図である。 空気調和装置の制御ブロック図である。 冷房運転における第1制御及び第2制御時の各種機器の動作の一例を示す図である。 暖房運転における第1制御及び第2制御時の各種機器の動作の一例を示す図である。 冷房運転又は暖房運転における第1制御及び第2制御の処理を説明するためのフローチャートである。
 (1)全体構成
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを構成し、対象空間の冷房又は暖房を行う。本実施形態では、空気調和装置1は、いわゆるビル用マルチ式空気調和システムである。図1は、空気調和装置1の冷媒回路50を示す図である。図1に示すように、空気調和装置1は、主として、室内ユニット20と、室外ユニット30と、を備える。室内ユニット20と、室外ユニット30とは、液冷媒連絡配管51及びガス冷媒連絡配管52を介して接続されることで、冷媒回路50を構成している。室内ユニット20と、室外ユニット30とは、通信線80によって、通信可能に接続されている。
 (2)詳細構成
 (2-1)室内ユニット
 室内ユニット20は、空気調和装置1が設置される建物の室内等、空気調和の対象空間に設置される。室内ユニット20は、例えば、天井埋込型のユニットや、天井吊下型のユニットや、床置型のユニット等である。図1に示すように、室内ユニット20は、主として、室内膨張弁23(流量調整機構)と、室内制御部29と、を備える。また、室内ユニット20は、室内熱交換器21と、室内ファン22と、室内温度センサ61と、ガス側温度センサ62と、液側温度センサ63と、を有する。また、室内ユニット20は、室内熱交換器21の液側端と液冷媒連絡配管51とを接続する液冷媒配管53aと、室内熱交換器21のガス側端とガス冷媒連絡配管52とを接続するガス冷媒配管53bとを有する。
 (2-1-1)室内熱交換器
 室内熱交換器21は、構造を限定するものではないが、例えば、伝熱管(図示省略)と多数のフィン(図示省略)とにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器21は、室内熱交換器21を流れる冷媒と、対象空間の空気と、の間で熱交換を行う。
 室内熱交換器21は、冷房運転の際には蒸発器として機能し、暖房運転の際には凝縮器として機能する。
 (2-1-2)室内ファン
 室内ファン22は、室内ユニット20内に対象空間の空気を吸入して室内熱交換器21に供給し、室内熱交換器21において冷媒と熱交換した空気を、対象空間へと供給する。室内ファン22は、例えば、ターボファンやシロッコファン等の遠心ファンである。室内ファン22は、室内ファンモータ22mによって駆動される。室内ファンモータ22mの回転周波数は、インバータにより制御可能である。
 (2-1-3)室内膨張弁
 室内膨張弁23は、液冷媒配管53aを流れる冷媒の圧力や流量を調節するための機構である。室内膨張弁23は、液冷媒配管53aに設けられる。本実施形態では、室内膨張弁23は、開度調節が可能な電子膨張弁である。
 (2-1-4)センサ
 室内温度センサ61は、対象空間の空気の温度(室温)を測定する。室内温度センサ61は、室内ユニット20の空気の吸入口付近に設けられている。
 ガス側温度センサ62は、ガス冷媒配管53bを流れる冷媒の温度を計測する。ガス側温度センサ62は、ガス冷媒配管53bに設けられている。
 液側温度センサ63は、液冷媒配管53aを流れる冷媒の温度を計測する。液側温度センサ63は、液冷媒配管53aに設けられている。
 室内温度センサ61、ガス側温度センサ62、及び液側温度センサ63は、例えば、サーミスタである。
 (2-1-5)室内制御部
 室内制御部29は、室内ユニット20を構成する各部の動作を制御する。
 室内制御部29は、室内膨張弁23、及び室内ファンモータ22mを含む、室内ユニット20が有する各種機器と電気的に接続されている。また、室内制御部29は、室内温度センサ61、ガス側温度センサ62、及び液側温度センサ63を含む、室内ユニット20に設けられている各種センサと通信可能に接続されている。
 室内制御部29は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室内ユニット20を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室内制御部29は、タイマーを有する。
 室内制御部29は、操作用リモコン(図示省略)から送信される各種信号を、受信可能に構成されている。各種信号には、例えば、運転の開始及び停止を指示する信号や、各種設定に関する信号が含まれる。各種設定に関する信号には、例えば、設定温度や設定湿度に関する信号が含まれる。また、室内制御部29は、通信線80を介して、室外ユニット30の室外制御部39との間で制御信号、計測信号、各種設定に関する信号等のやりとりを行う。
 室内制御部29と、室外制御部39とは、協働して制御部70として機能する。制御部70の機能については後述する。
 (2-2)室外ユニット
 室外ユニット30は、空気調和装置1が設置される建物の屋上等、対象空間の室外に設置される。図1に示すように、室外ユニット30は、主として、室外膨張弁34(流量調整機構)と、室外制御部39と、を備える。また、室外ユニット30は、圧縮機31と、流向切換機構32と、室外熱交換器33と、アキュムレータ35と、室外ファン36と、液側閉鎖弁37と、ガス側閉鎖弁38と、吸入圧力センサ64と、吐出圧力センサ65と、を有する。また、室外ユニット30は、吸入管54aと、吐出管54bと、第1ガス冷媒管54cと、液冷媒管54dと、第2ガス冷媒管54eと、を有する。
 図1に示すように、吸入管54aは、流向切換機構32と圧縮機31の吸入側とを接続する。吸入管54aには、アキュムレータ35が設けられる。吐出管54bは、圧縮機31の吐出側と流向切換機構32とを接続する。第1ガス冷媒管54cは、流向切換機構32と室外熱交換器33のガス側とを接続する。液冷媒管54dは、室外熱交換器33の液側と液冷媒連絡配管51とを接続する。液冷媒管54dには、室外膨張弁34が設けられている。液冷媒管54dと液冷媒連絡配管51との接続部には、液側閉鎖弁37が設けられている。第2ガス冷媒管54eは、流向切換機構32とガス冷媒連絡配管52とを接続する。第2ガス冷媒管54eとガス冷媒連絡配管52との接続部には、ガス側閉鎖弁38が設けられている。
 (2-2-1)圧縮機
 図1に示すように、圧縮機31は、吸入管54aから冷凍サイクルにおける低圧の冷媒を吸入し、圧縮機構(図示せず)で冷媒を圧縮して、圧縮した冷媒を吐出管54bへと吐出する機器である。
 圧縮機31は、例えば、ロータリ式やスクロール式等の容積圧縮機である。圧縮機31の圧縮機構は、圧縮機モータ31mによって駆動される。圧縮機モータ31mの回転周波数は、インバータにより制御可能である。
 (2-2-2)流向切換機構
 流向切換機構32は、冷媒の流路を、第1状態と第2状態との間で切り換える機構である。流向切換機構32は、第1状態のとき、図1の流向切換機構32内の実線で示されるように、吸入管54aを第2ガス冷媒管54eと連通させ、吐出管54bを第1ガス冷媒管54cと連通させる。流向切換機構32は、第2状態のとき、図1の流向切換機構32内の破線で示されるように、吸入管54aを第1ガス冷媒管54cと連通させ、吐出管54bを第2ガス冷媒管54eと連通させる。
 流向切換機構32は、冷房運転時には、冷媒の流路を第1状態とする。このとき、圧縮機31から吐出される冷媒は、冷媒回路50内を、室外熱交換器33、室外膨張弁34、室内膨張弁23、室内熱交換器21の順に流れ、圧縮機31へと戻る。第1状態では、室外熱交換器33は凝縮器として機能し、室内熱交換器21は蒸発器として機能する。
 流向切換機構32は、暖房運転時には、冷媒の流路を第2状態とする。このとき、圧縮機31から吐出される冷媒は、冷媒回路50内を、室内熱交換器21、室内膨張弁23、室外膨張弁34、室外熱交換器33の順に流れ、圧縮機31へと戻る。第2状態では、室外熱交換器33は蒸発器として機能し、室内熱交換器21は凝縮器として機能する。
 (2-2-3)室外熱交換器
 室外熱交換器33では、室外熱交換器33を流れる冷媒と、室外の空気と、の間で熱交換が行われる。室外熱交換器33は、構造を限定するものではないが、例えば、伝熱管(図示せず)と多数のフィン(図示せず)とにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。
 (2-2-4)室外膨張弁
 室外膨張弁34は、液冷媒管54dを流れる冷媒の圧力や流量を調節するための機構である。本実施形態では、室外膨張弁34は、開度調節が可能な電子膨張弁である。
 (2-2-5)アキュムレータ
 アキュムレータ35は、流入する冷媒を、ガス冷媒と液冷媒とに分ける気液分離機能を有する容器である。アキュムレータ35に流入する冷媒は、ガス冷媒と液冷媒とに分離され、上部空間に集まるガス冷媒が圧縮機31へと流入する。
 (2-2-6)室外ファン
 室外ファン36は、室外ユニット30内に室外の空気を吸入して室外熱交換器33に供給し、室外熱交換器33において冷媒と熱交換した室外の空気を、室外ユニット30の外に排出するファンである。室外ファン36は、例えばプロペラファン等の軸流ファンである。室外ファン36は、室外ファンモータ36mによって駆動される。室外ファンモータ36mの回転周波数は、インバータにより制御可能である。
 (2-2-7)センサ
 吸入圧力センサ64は、吸入圧力を計測するセンサである。吸入圧力センサ64は、吸入管54aに設けられている。吸入圧力は、冷凍サイクルの低圧の値である。
 吐出圧力センサ65は、吐出圧力を計測するセンサである。吐出圧力センサ65は、吐出管54bに設けられている。吐出圧力は、冷凍サイクルの高圧の値である。
 (2-2-8)液側閉鎖弁及びガス側閉鎖弁
 図1に示すように、液側閉鎖弁37は、液冷媒管54dと液冷媒連絡配管51との接続部に設けられた弁である。ガス側閉鎖弁38は、第2ガス冷媒管54eとガス冷媒連絡配管52との接続部に設けられた弁である。液側閉鎖弁37及びガス側閉鎖弁38は、例えば、手動で操作される弁である。
 (2-2-9)室外制御部
 室外制御部39は、室外ユニット30を構成する各部の動作を制御する。
 室外制御部39は、圧縮機モータ31m、流向切換機構32、室外膨張弁34、及び室外ファンモータ36mを含む、室外ユニット30が有する各種機器に電気的に接続されている。また、室外制御部39は、吸入圧力センサ64、及び吐出圧力センサ65を含む、室外ユニット30に設けられている各種センサと通信可能に接続されている。
 室外制御部39は、制御演算装置及び記憶装置を有する。制御演算装置は、CPUやGPU等のプロセッサである。記憶装置は、RAM、ROM及びフラッシュメモリ等の記憶媒体である。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、プログラムに従って所定の演算処理を行うことで、室外ユニット30を構成する各部の動作を制御する。また、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。また、室外制御部39は、タイマーを有する。
 室外制御部39は、通信線80を介して、室内ユニット20の室内制御部29との間で制御信号、計測信号、各種設定に関する信号等のやりとりを行う。
 室外制御部39と、室内制御部29とは、協働して制御部70として機能する。制御部70の機能については後述する。
 (2-3)制御部
 制御部70は、室内制御部29と室外制御部39とが、通信線80を介して通信可能に接続されることによって構成されている。言い換えると、室内制御部29と室外制御部39との協働が、空気調和装置1の動作を制御する制御部70として機能する。
 図2は、空気調和装置1の制御ブロック図である。図2に示すように、制御部70は、室内温度センサ61、ガス側温度センサ62、液側温度センサ63、吸入圧力センサ64、及び吐出圧力センサ65と通信可能に接続されている。制御部70は、各種センサの送信する計測信号を受信する。また、制御部70は、室内膨張弁23、室内ファンモータ22m、圧縮機モータ31m、流向切換機構32、室外膨張弁34、及び室外ファンモータ36mと電気的に接続されている。制御部70は、操作用リモコンから送信される制御信号に応じて、各種センサの計測信号に基づき、室内膨張弁23、室内ファンモータ22m、圧縮機モータ31m、流向切換機構32、室外膨張弁34、及び室外ファンモータ36mを含む、空気調和装置1の各種機器の動作を制御する。
 制御部70は、主として、冷房運転又は暖房運転と、第1制御と、第2制御と、を行う。
 (2-3-1)冷房運転
 制御部70は、操作用リモコンから、室内ユニット20に冷房運転を行わせる旨の指示を受けると、流向切換機構32内が、図1の実線で示された状態になるように流向切換機構32を制御する。このとき、冷媒の流路は、第1状態となる。
 制御部70は、室外膨張弁34を段階的に開けると共に、室内熱交換器21のガス側出口における冷媒の過熱度が所定の目標過熱度になるように、室内膨張弁23を開度調節する。室内熱交換器21のガス側出口における冷媒の過熱度は、例えば、ガス側温度センサ62の計測値から、吸入圧力センサ64の計測値(吸入圧力)から換算される蒸発温度を、差し引くことで算出される。
 また、制御部70は、吸入圧力センサ64の計測値から換算される蒸発温度が所定の目標蒸発温度に近づくように、圧縮機31の運転容量を制御する。圧縮機31の運転容量の制御は、圧縮機モータ31mの回転周波数を制御することにより行われる。
 以上のように、対象空間の室温を設定温度に近づけるように、制御部70が圧縮機31、室外膨張弁34、及び室内膨張弁23等の各種機器を制御することで、冷房運転時には冷媒回路50を以下のように冷媒が流れる。
 圧縮機31が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機31に吸入され、圧縮機31で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。
 高圧のガス冷媒は、流向切換機構32を経由して、第1ガス冷媒管54cを流れ、室外熱交換器33に送られる。室外熱交換器33に送られた高圧のガス冷媒は、室外ファン36によって供給される室外の空気と熱交換を行って凝縮し、高圧の液冷媒となる。室外熱交換器33を通過した高圧の液冷媒は、液冷媒管54dを流れ、室外膨張弁34を通過し、室内ユニット20に送られる。
 室内ユニット20に送られた高圧の液冷媒は、室内膨張弁23において圧縮機31の吸入圧力近くまで減圧され、気液二相状態の冷媒となって室内熱交換器21に送られる。気液二相状態の冷媒は、室内熱交換器21において、室内ファン22により室内熱交換器21へと供給される対象空間の空気と熱交換を行って蒸発し、低圧のガス冷媒となる。低圧のガス冷媒は、ガス冷媒連絡配管52を経由して室外ユニット30に送られ、流向切換機構32を経由してアキュムレータ35に流入する。アキュムレータ35に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。室内熱交換器21に供給された空気の温度は、室内熱交換器21を流れる冷媒と熱交換することで低下し、室内熱交換器21で冷却された空気が対象空間に吹き出す。
 (2-3-2)暖房運転
 制御部70は、操作用リモコンから、室内ユニット20に暖房運転を行わせる旨の指示を受けると、流向切換機構32内が、図1の破線で示された状態になるように流向切換機構32を制御する。このとき、冷媒の流路は、第2状態となる。
 制御部70は、室内熱交換器21の液側出口における冷媒の過冷却度が所定の目標過冷却度になるように、室内膨張弁23を開度調節する。室内熱交換器21の液側出口における冷媒の過冷却度は、例えば、吐出圧力センサ65の計測値(吐出圧力)から換算される凝縮温度から、液側温度センサ63の計測値を差し引くことで算出される。
 また、制御部70は、室外熱交換器33に流入する冷媒が、室外熱交換器33において蒸発可能な圧力まで減圧されるように、室外膨張弁34を開度調節する。
 また、制御部70は、吐出圧力センサ65の計測値から換算される凝縮温度が所定の目標凝縮温度に近づくように、圧縮機31の運転容量を制御する。圧縮機31の運転容量の制御は、圧縮機モータ31mの回転周波数を制御により行われる。
 以上のように、対象空間の室温を設定温度に近づけるように、制御部70が、圧縮機31、室外膨張弁34、及び室内膨張弁23等の各種機器を制御することで、暖房運転時には冷媒回路50を以下のように冷媒が流れる。
 圧縮機31が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機31に吸入され、圧縮機31で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流向切換機構32を経由して室内熱交換器21に送られ、室内ファン22によって供給される対象空間の空気と熱交換を行って凝縮し、高圧の液冷媒となる。室内熱交換器21へと供給された空気の温度は、室内熱交換器21を流れる冷媒と熱交換することで上昇し、室内熱交換器21で加熱された空気が対象空間に吹き出す。室内熱交換器21を通過した高圧の液冷媒は、室内膨張弁23を通過して減圧される。室内膨張弁23において減圧された冷媒は、液冷媒連絡配管51を経由して室外ユニット30に送られ、液冷媒管54dに流入する。液冷媒管54dを流れる冷媒は、室外膨張弁34を通過する際に圧縮機31の吸入圧力近くまで減圧され、気液二相状態の冷媒となって室外熱交換器33に流入する。室外熱交換器33に流入した低圧の気液二相状態の冷媒は、室外ファン36によって供給される室外の空気と熱交換を行って蒸発し、低圧のガス冷媒となる。低圧のガス冷媒は、流向切換機構32を経由してアキュムレータ35に流入する。アキュムレータ35に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。
 (2-3-3)第1制御
 制御部70は、第1制御として、冷房運転又は暖房運転を行っている間に、第1条件が満たされると、冷房運転又は暖房運転を停止する。第1条件は、対象空間の熱負荷が低いことを示す条件である。本実施形態では、第1条件は、設定温度と室温との温度差に基づく条件である。具体的には、本実施形態の冷房運転における第1条件は、室温が設定温度より1℃以上低くなった場合に成立する条件である。また、本実施形態の暖房運転における第1条件は、室温が設定温度より1℃以上高くなった場合に成立する条件である。
 制御部70は、第1条件が満たされたことによって冷房運転又は暖房運転を停止した後、第2条件が満たされると、冷房運転又は暖房運転を開始する。第2条件は、対象空間の熱負荷に関する条件である。本実施形態では、第2条件は、設定温度と室温との温度差に基づく条件である。具体的には、本実施形態の冷房運転における第2条件は、室温が設定温度より1℃以上高くなった場合に成立する条件である。また、本実施形態の暖房運転における第1条件は、室温が設定温度より1℃以上低くなった場合に成立する条件である。
 以下、冷房運転及び暖房運転それぞれにおける、第1制御時の各種機器の動作について説明する。
 (2-3-3-1)冷房運転における第1制御
 図3は、冷房運転における第1制御及び第2制御時の各種機器の動作の一例を示す図である。図3の上側のグラフは、横軸を時間軸として、設定温度の周辺における対象空間の室温の推移を示している。図3の下側のグラフは、横軸を時間軸として、圧縮機31の圧縮機モータ31mの回転周波数の推移と、室外膨張弁34及び室内膨張弁23の開度の推移と、を示している。
 図3の「冷房運転1」に示すように、冷房運転によって対象空間の室温が設定温度に近づくにつれ、制御部70は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に小さくしていく。
 図3の「第1制御A」に示すように、対象空間の室温が「設定温度-1℃」以下になると(第1条件を満たすと)、制御部70は、第1制御として、冷房運転を停止する。具体的には、制御部70は、圧縮機モータ31mを停止し、室外膨張弁34及び室内膨張弁23を全閉状態にする。
 図3の「運転停止1」に示すように、制御部70が冷房運転を停止している間、対象空間の室温は上昇していく。
 図3の「第1制御B」に示すように、対象空間の室温が「設定温度+1℃」以上になると(第2条件を満たすと)、制御部70は、第1制御として、冷房運転を開始する。具体的には、「冷房運転2」に示すように、制御部は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に大きくしていく。このとき、制御部70は、室外膨張弁34及び室内膨張弁23の開度を、全閉状態から大きくしていく。
 図3の「冷房運転2」に示すように、冷房運転によって対象空間の室温が設定温度に近づくにつれ、制御部70は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に小さくしていく。
 図3の「第1制御C」に示すように、対象空間の室温が「設定温度-1℃」以下になると(第1条件を満たすと)、制御部70は、第1制御として、冷房運転を停止する。具体的には、制御部70は、圧縮機モータ31mを停止し、室外膨張弁34及び室内膨張弁23を全閉状態にする。
 (2-3-3-2)暖房運転における第1制御
 図4は、暖房運転における第1制御及び第2制御時の各種機器の動作の一例を示す図である。図4の上側のグラフは、横軸を時間軸として、設定温度の周辺における対象空間の室温の推移を示している。図4の下側のグラフは、横軸を時間軸として、圧縮機31の圧縮機モータ31mの回転周波数の推移と、室外膨張弁34及び室内膨張弁23の開度の推移と、を示している。
 図4の「暖房運転1」に示すように、暖房運転によって対象空間の室温が設定温度に近づくにつれ、制御部70は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に小さくしていく。
 図4の「第1制御A」に示すように、対象空間の室温が「設定温度+1℃」以上になると(第1条件を満たすと)、制御部70は、第1制御として、暖房運転を停止する。具体的には、制御部70は、圧縮機モータ31mを停止し、室外膨張弁34及び室内膨張弁23を全閉状態にする。
 図4の「運転停止1」に示すように、制御部70が暖房運転を停止している間、対象空間の室温は下降していく。
 図4の「第1制御B」に示すように、対象空間の室温が「設定温度-1℃」以下になると(第2条件を満たすと)、制御部70は、第1制御として、暖房運転を開始する。具体的には、「暖房運転2」に示すように、制御部は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に大きくしていく。このとき、制御部70は、室外膨張弁34及び室内膨張弁23の開度を、全閉状態から大きくしていく。
 図4の「暖房運転2」に示すように、暖房運転によって対象空間の室温が設定温度に近づくにつれ、制御部70は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に小さくしていく。
 図4の「第1制御C」に示すように、対象空間の室温が「設定温度+1℃」以上になると(第1条件を満たすと)、制御部70は、第1制御として、暖房運転を停止する。具体的には、制御部70は、圧縮機モータ31mを停止し、室外膨張弁34及び室内膨張弁23を全閉状態にする。
 (2-3-4)第2制御
 第2制御は、第1制御により、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度よりも大きくする。本実施形態では、第2制御における、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度は、第1条件が満たされた時点での開度を、所定の割合大きくした開度である。所定の割合は、例えば、30%である。第2制御は、第1制御による冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返された後に行われてもよい。例えば、第2制御は、第1制御による冷房運転又は暖房運転の停止及び開始が、30分以内に5回繰り返された後に行われてもよい。
 (2-3-4-1)冷房運転における第1制御及び第2制御
 図3の「運転停止2」に示すように、制御部70が冷房運転を停止している間、対象空間の室温は上昇していく。
 図3の「第1制御D+第2制御A」に示すように、対象空間の室温が「設定温度+1℃」になると(第2条件を満たすと)、制御部70は、第1制御及び第2制御として、冷房運転を開始する。具体的には、「冷房運転3」に示すように、制御部は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に大きくしていく。このとき、制御部70は、室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度を所定の割合大きくした開度(図3のα,β点)、から大きくしていく。
 (2-3-4-2)暖房運転における第1制御及び第2制御
 図4の「運転停止2」に示すように、制御部70が暖房運転を停止している間、対象空間の室温は下降していく。
 図4の「第1制御D+第2制御A」に示すように、対象空間の室温が「設定温度-1℃」になると(第2条件を満たすと)、制御部70は、第1制御及び第2制御として、暖房運転を開始する。具体的には、「暖房運転3」に示すように、制御部は、圧縮機モータ31mの回転周波数、室外膨張弁34及び室内膨張弁23の開度を、段階的に大きくしていく。このとき、制御部70は、室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度を所定の割合大きくした開度(図4のα,β点)、から大きくしていく。
 (3)処理
 冷房運転又は暖房運転における第1制御及び第2制御の処理の一例を、図5のフローチャートを用いて説明する。
 ステップS1に示すように、制御部70は、操作用リモコンからの指示等により、冷房運転又は暖房運転を開始する。
 ステップS1からステップS2に進むと、制御部70は、所定時間T1待機する。所定時間T1は、例えば、5分である。
 ステップS2からステップS3に進むと、制御部70は、第1条件が満たされたか否かを判定する。第1条件が満たされた場合、ステップS4に進む。第1条件が満たされない場合、ステップS2に戻り、制御部70は、再び所定時間T1待機する。言い換えると、制御部70は、所定時間T1ごとに、第1条件が満たされたか否かを判定する。
 ステップS3からステップS4に進むと、制御部70は、冷房運転又は暖房運転を停止する。
 ステップS4からステップS5に進むと、制御部70は、所定時間T2待機する。所定時間T2は、例えば、5分である。
 ステップS5からステップS6に進むと、制御部70は、第2条件が満たされたか否かを判定する。第2条件が満たされた場合、ステップS7に進む。第2条件が満たされない場合、ステップS5に戻り、制御部70は、再び所定時間T2待機する。言い換えると、制御部70は、所定時間T2ごとに、第2条件が満たされたか否かを判定する。
 ステップS6からステップS7に進むと、制御部70は、第1制御による冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返されているか否かを判定する。所定時間内に所定回数繰り返されている場合、ステップS8に進む。所定時間内に所定回数繰り返されていない場合、ステップS9に進む。
 ステップS7からステップS8に進むと、制御部70は、室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度を所定の割合大きくした開度にし(第2制御あり)、(ステップS1に戻り)冷房運転又は暖房運転を開始する。
 ステップS7からステップS9に進むと、制御部70は、室外膨張弁34及び室内膨張弁23の開度を全閉状態にし(第2制御なし)、(ステップS1に戻り)冷房運転又は暖房運転を開始する。
 制御部70は、操作用リモコンからの指示等により、冷房運転又は暖房運転が停止されるまで、本処理を継続する。
 (4)特徴
 (4-1)
 従来、冷房運転又は暖房運転時に、対象空間の熱負荷が低くなると冷房運転又は暖房運転を停止し、その後、対象空間の熱負荷に応じて冷房運転又は暖房運転を開始する技術がある。
 しかし、冷房運転又は暖房運転を停止した後、流量調整機構を閉じた状態から冷房運転又は暖房運転を開始すると、流量調整機構が適切な開度になるまでに時間がかかり、運転効率が低下する、という課題がある。
 本実施形態の空気調和装置1は、室内ユニット20と、室外ユニット30と、室外膨張弁34及び室内膨張弁23と、制御部70と、を備える。室内ユニット30は、空気調和の対象空間に設置される。室外ユニット30は、対象空間の室外に設置される。室外膨張弁34及び室内膨張弁23は、冷媒の流量を調整する。制御部70は、冷房運転又は暖房運転と、第1制御と、第2制御と、を行う。冷房運転又は暖房運転は、室内ユニット20、及び室外ユニット30に冷媒を循環させることによって、対象空間の室温を設定温度に近づける。第1制御は、冷房運転又は暖房運転を行っている間に、第1条件が満たされると冷房運転又は暖房運転を停止し、その後、第2条件が満たされると冷房運転又は暖房運転を開始する。第1条件は、対象空間の熱負荷が低いことを示す条件である。第2条件は、対象空間の熱負荷に関する条件である。第2制御は、第1制御により、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度よりも大きくする。
 本実施形態の空気調和装置1は、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度を、第1条件が満たされた時点での開度よりも大きくする。その結果、空気調和装置1は、室外膨張弁34及び室内膨張弁23を開いた状態から冷房運転又は暖房運転を開始するため、運転効率の低下を防ぐことができる。
 (4-2)
 本実施形態の空気調和装置1では、第1条件及び第2条件は、設定温度と、対象空間の室温との温度差に基づく条件である。その結果、空気調和装置1は、対象空間の熱負荷を正確に把握することができる。
 (4-3)
 本実施形態の空気調和装置1では、第2制御は、第1制御による冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返された後に行われる。
 本実施形態の空気調和装置1は、冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返されるような低負荷時に、第2制御を行う。その結果、空気調和装置1は、圧縮機31の負荷を減らすことができる。
 (4-4)
 本実施形態の空気調和装置1では、第2制御における、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度は、第1条件が満たされた時点での開度を、所定の割合大きくした開度である。その結果、空気調和装置1は、より効率的に運転を開始することができる。
 (5)変形例
 (5-1)変形例1A
 本実施形態では、空気調和装置1は、1つの室内ユニット20を有していた。しかし、空気調和装置1は、より多くの室内ユニット20を有してもよい。このとき、制御部70は、例えば、室内ユニット20毎に、第1制御及び第2制御に伴う室内膨張弁23の動作を制御する。また、制御部70は、例えば、第1制御によって最後に冷房運転又は暖房運転を停止した室内ユニット20(その結果、すべての室内ユニット20が第1制御によって停止)と、第1制御によって最初に冷房運転又は暖房運転を開始した室内ユニット20(当該室内ユニット20以外は第1制御によって停止中)と、に合わせて、第1制御及び第2制御に伴う圧縮機31及び室外膨張弁34の動作を制御する。
 (5-2)変形例1B
 本実施形態では、空気調和装置1は、室内ユニット20が室内膨張弁23を有する、ビル用マルチ式空気調和システムであった。しかし、空気調和装置1は、家庭用ルームエアコン等のように、室内ユニット20が室内膨張弁23を有しないものであってもよい。
 (5-3)変形例1C
 本実施形態では、第2制御における、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度は、第1条件が満たされた時点での開度を、所定の割合大きくした開度であった。
 しかし、第2制御における、冷房運転又は暖房運転を開始するときの室外膨張弁34及び室内膨張弁23の開度は、第1条件が満たされる前に、設定温度と対象空間の室温との温度差が、所定の値となった時点での開度であってもよい。冷房運転の場合、所定の値は、例えば、0.5℃(対象空間の室温-設定温度)である。
 その結果、空気調和装置1は、より効率的に運転を開始することができる。
 (5-4)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 1  空気調和装置
 20 室内ユニット
 30 室外ユニット
 23 室内膨張弁(流量調整機構)
 34 室外膨張弁(流量調整機構)
 70 制御部
特開2020-051700

Claims (5)

  1.  空気調和の対象空間に設置される、室内ユニット(20)と、
     前記対象空間の室外に設置される、室外ユニット(30)と、
     冷媒の流量を調整する、流量調整機構(23,34)と、
     制御部(70)と、
    を備え、
     前記制御部は、
     前記室内ユニット、及び前記室外ユニットに冷媒を循環させることによって、前記対象空間の室温を設定温度に近づける、冷房運転又は暖房運転と、
     冷房運転又は暖房運転を行っている間に、前記対象空間の熱負荷が低いことを示す第1条件、が満たされると冷房運転又は暖房運転を停止し、その後、前記対象空間の熱負荷に関する第2条件、が満たされると冷房運転又は暖房運転を開始する、第1制御と、
     前記第1制御により、冷房運転又は暖房運転を開始するときの前記流量調整機構の開度を、前記第1条件が満たされた時点での開度よりも大きくする、第2制御と、
    を行う、
    空気調和装置(1)。
  2.  前記第1条件及び前記第2条件は、前記設定温度と前記室温との温度差に基づく条件である、
    請求項1に記載の空気調和装置(1)。
  3.  前記第2制御は、前記第1制御による冷房運転又は暖房運転の停止及び開始が、所定時間内に所定回数繰り返された後に行われる、
    請求項1又は2に記載の空気調和装置(1)。
  4.  前記第2制御における、冷房運転又は暖房運転を開始するときの前記流量調整機構の開度は、前記第1条件が満たされた時点での開度を、所定の割合大きくした開度である、
    請求項1から3のいずれか1つに記載の空気調和装置(1)。
  5.  前記第2制御における、冷房運転又は暖房運転を開始するときの前記流量調整機構の開度は、前記第1条件が満たされる前に、前記設定温度と前記室温との温度差が、所定の値となった時点での開度である、
    請求項1から3のいずれか1つに記載の空気調和装置(1)。
PCT/JP2022/019573 2021-05-07 2022-05-06 空気調和装置 WO2022234860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280033251.2A CN117280165B (zh) 2021-05-07 2022-05-06 空调装置
EP22798964.7A EP4336116A4 (en) 2021-05-07 2022-05-06 AIR CONDITIONING DEVICE
US18/387,260 US12055312B2 (en) 2021-05-07 2023-11-06 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079359 2021-05-07
JP2021079359A JP7216309B2 (ja) 2021-05-07 2021-05-07 空気調和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/387,260 Continuation US12055312B2 (en) 2021-05-07 2023-11-06 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022234860A1 true WO2022234860A1 (ja) 2022-11-10

Family

ID=83932785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019573 WO2022234860A1 (ja) 2021-05-07 2022-05-06 空気調和装置

Country Status (5)

Country Link
US (1) US12055312B2 (ja)
EP (1) EP4336116A4 (ja)
JP (1) JP7216309B2 (ja)
CN (1) CN117280165B (ja)
WO (1) WO2022234860A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023093Y2 (ja) * 1983-10-27 1990-01-24
JPH04251158A (ja) * 1990-12-28 1992-09-07 Daikin Ind Ltd 冷凍装置の運転制御装置
JPH10238867A (ja) * 1997-02-28 1998-09-08 Matsushita Refrig Co Ltd ヒートポンプ式空気調和機
JP2006118764A (ja) * 2004-10-20 2006-05-11 Matsushita Electric Ind Co Ltd 空気調和機
JP2007178051A (ja) * 2005-12-27 2007-07-12 Toshiba Kyaria Kk 空気調和装置および空気調和装置の制御方法
JP2008286464A (ja) * 2007-05-17 2008-11-27 Fuji Koki Corp 弁制御装置
JP2016138711A (ja) * 2015-01-28 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP2018128158A (ja) * 2017-02-06 2018-08-16 ダイキン工業株式会社 空気調和機
JP2020051700A (ja) 2018-09-27 2020-04-02 株式会社デンソーエアクール 空調システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071838A (ja) * 1983-09-27 1985-04-23 Toshiba Corp 空気調和機
JPH023093A (ja) 1988-06-20 1990-01-08 Hitachi Ltd 表示制御回路
AU2012378582B2 (en) * 2012-04-26 2015-07-30 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104633835A (zh) * 2013-11-14 2015-05-20 珠海格力电器股份有限公司 空调器的除霜控制方法
WO2018062316A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和機
JP6716030B2 (ja) * 2017-05-15 2020-07-01 三菱電機株式会社 冷凍サイクル装置
EP3680565B1 (en) * 2017-09-07 2021-11-10 Mitsubishi Electric Corporation Air conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023093Y2 (ja) * 1983-10-27 1990-01-24
JPH04251158A (ja) * 1990-12-28 1992-09-07 Daikin Ind Ltd 冷凍装置の運転制御装置
JPH10238867A (ja) * 1997-02-28 1998-09-08 Matsushita Refrig Co Ltd ヒートポンプ式空気調和機
JP2006118764A (ja) * 2004-10-20 2006-05-11 Matsushita Electric Ind Co Ltd 空気調和機
JP2007178051A (ja) * 2005-12-27 2007-07-12 Toshiba Kyaria Kk 空気調和装置および空気調和装置の制御方法
JP2008286464A (ja) * 2007-05-17 2008-11-27 Fuji Koki Corp 弁制御装置
JP2016138711A (ja) * 2015-01-28 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP2018128158A (ja) * 2017-02-06 2018-08-16 ダイキン工業株式会社 空気調和機
JP2020051700A (ja) 2018-09-27 2020-04-02 株式会社デンソーエアクール 空調システム

Also Published As

Publication number Publication date
CN117280165A (zh) 2023-12-22
EP4336116A4 (en) 2024-10-23
US12055312B2 (en) 2024-08-06
JP7216309B2 (ja) 2023-02-01
EP4336116A1 (en) 2024-03-13
US20240068695A1 (en) 2024-02-29
JP2022172976A (ja) 2022-11-17
CN117280165B (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
JP4849095B2 (ja) 空気調和装置
JP2002147823A (ja) 空気調和装置
WO2007094343A1 (ja) 空気調和装置
JPWO2003029728A1 (ja) 空気調和装置
JP6918221B2 (ja) 空気調和機
US20230366582A1 (en) Air blower
WO2022234860A1 (ja) 空気調和装置
JP4039100B2 (ja) 空気調和機
JP7406124B2 (ja) 空気調和装置
JP4288979B2 (ja) 空気調和装置、及び空気調和装置の運転制御方法
US20240175613A1 (en) Refrigeration cycle device
JP7545086B2 (ja) 空気調和装置
WO2023074621A1 (ja) 空気調和装置
JP7493126B2 (ja) 空気調和機
WO2024166938A1 (ja) 冷凍サイクル装置
WO2024034328A1 (ja) 空調機及び制御方法
JP6630923B2 (ja) 空気調和機
WO2022163624A1 (ja) 暖房装置
KR101965182B1 (ko) 공기조화기 및 그 제어방법
KR101854336B1 (ko) 공기조화기 및 그 제어방법
JP2023064265A (ja) 空気調和装置
JP2022162266A (ja) 空気調和装置
JP2022037288A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033251.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022798964

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798964

Country of ref document: EP

Effective date: 20231207