WO2022233133A1 - 一种薄膜电池及电芯印刷方法 - Google Patents

一种薄膜电池及电芯印刷方法 Download PDF

Info

Publication number
WO2022233133A1
WO2022233133A1 PCT/CN2021/136138 CN2021136138W WO2022233133A1 WO 2022233133 A1 WO2022233133 A1 WO 2022233133A1 CN 2021136138 W CN2021136138 W CN 2021136138W WO 2022233133 A1 WO2022233133 A1 WO 2022233133A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
negative
electrode
collector
separator
Prior art date
Application number
PCT/CN2021/136138
Other languages
English (en)
French (fr)
Inventor
聂赞相
罗师强
希亚拉普里帖斯
奥兹特迪乐克
斯帕莱克卡罗琳娜
Original Assignee
深圳新源柔性科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新源柔性科技有限公司 filed Critical 深圳新源柔性科技有限公司
Publication of WO2022233133A1 publication Critical patent/WO2022233133A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular, to a thin film battery and a method for printing a battery cell.
  • Thin-film batteries have the advantages of low explosion risk, excellent thermal stability, and low discharge rate.
  • the existing separator-printed battery is a sandwich structure, it is easy to cause a short circuit of the battery under this structure, thus causing danger.
  • the traditional coplanar battery not only has low electric capacity, but also has a relatively simple battery structure.
  • how to prevent the short-circuit of the thin-film battery prepared by the method of printing a separator so as to be used safely is a technical problem that needs to be solved urgently.
  • the main purpose of the present application is to provide a thin film battery and a method for printing a battery cell, which aims to solve the technical problem that it is difficult to provide a thin film battery that prevents battery short circuit in the prior art.
  • the present application proposes a thin film battery, the thin film battery includes: a thin film battery cell and a casing, and the thin film battery cell includes: a separator, a positive electrode, a negative electrode, a positive collector and a negative collector ;
  • the positive electrode and the negative electrode are separately arranged on the diaphragm, the positive collector is arranged on the positive electrode, and the negative collector is arranged on the negative electrode; or the positive collector Integrated with the positive electrode, the negative collector is integrated with the negative electrode.
  • the positive electrode portion formed by the positive electrode and the positive collector electrode and/or the negative electrode portion formed by the negative electrode and the negative collector electrode is arranged on the diaphragm through the separator, and the The positive electrode and the positive collector are penetratingly connected, and the penetrating negative electrode and the negative collector are penetratingly connected.
  • the positive collector terminal of the thin-film battery cell is provided with a positive electrode ear; the negative collector terminal is provided with a negative electrode ear, and the positive electrode ear and the positive collector are integrated, so The negative electrode tab and the negative collector electrode are integrated, and the positive electrode tab and the negative electrode tab are arranged on one side or both sides of the separator through the separator.
  • the thin film battery cell further comprises: an electrolyte; the thickness of the separator is greater than the thickness of the positive electrode and the thickness of the negative electrode infiltrated into the separator, and the electrolyte is provided in the separator. inside the diaphragm.
  • the thin film battery cell further includes: an encapsulation structure; the encapsulation structure is disposed between the separator containing the electrolyte and the positive electrode tab, and the between the diaphragm and the negative tab.
  • the thin film battery cells are provided with two sets of the positive electrodes and the positive collector electrodes at opposite positions on both sides of the separator, or the thin film battery cells are positioned on both sides of the separator relative to each other. Two sets of the negative electrodes and the negative collectors are arranged at the same time.
  • the two sets of the positive electrodes and the positive collectors that are arranged opposite to each other have a gap in the separator, and the two sets of the positive collectors on both sides of the separator are connected at the side or at the position of the positive electrode ear,
  • the two sets of the negative electrodes and the negative collectors disposed opposite to each other have a gap in the separator, and the two sets of the negative collectors on both sides of the separator are connected at the sides or the negative tabs.
  • the positive electrode and the negative electrode of the thin-film battery cell are disposed opposite to each other on the diaphragm, the positive collector is connected to the positive electrode, and the positive collector is connected to the The projections of the positive electrode in the direction of the diaphragm are staggered, the negative collector is connected to the negative electrode, the projections of the negative collector and the negative electrode in the direction of the diaphragm are staggered, and the positive collector is connected to the negative electrode.
  • the positive electrode, the negative collector and the negative electrode are arranged on one side or both sides of the diaphragm.
  • the positive collector electrode and the negative collector electrode of the thin film battery cell are interdigitated collector electrodes, and the positive collector electrode and the positive electrode are arranged on one side or both sides of the diaphragm. And the positive electrode penetrates the diaphragm and is distributed on one or both sides of the positive collector, the negative collector and the negative electrode are arranged on one or both sides of the diaphragm, and the negative electrode penetrates the The separator is distributed on one side or both sides of the negative collector.
  • the thin film battery cell includes: a plurality of positive electrodes, a plurality of negative electrodes, a plurality of positive collector electrodes, and a plurality of negative collector electrodes;
  • the plurality of positive electrodes and the plurality of negative electrodes are both disposed on the diaphragm, the plurality of positive collector electrodes are correspondingly disposed on the plurality of positive electrodes, and the plurality of negative collector electrodes are correspondingly disposed on the plurality of positive electrodes.
  • the positive tab of the positive collector is connected to the negative tab of the negative collector in sequence.
  • the present application also proposes a cell printing method, wherein the cell printing method prints a plurality of the above thin film battery cells at one time by penetrating the separator.
  • the present application provides a thin film battery and a cell printing method.
  • the thin film battery cell of the thin film battery includes: a separator, a positive electrode, a negative electrode, a positive collector and a negative collector; the positive electrode and the negative electrode Separately arranged on the diaphragm, the positive collector is arranged on the positive electrode, and the negative collector is arranged on the negative electrode; or the positive collector is integrated with the positive electrode, and the negative collector is arranged on the positive electrode.
  • a collector is integrated with the negative electrode.
  • the positive collector electrode is arranged on the positive electrode and the negative collector electrode is arranged on the negative electrode, or the The thin-film battery in which the positive collector and the positive electrode are integrated and the negative collector and the negative electrode are integrated realizes the safe use of the thin-film battery.
  • FIG. 1 is a schematic structural diagram of a thin-film battery proposed in a first embodiment of a thin-film battery of the present application
  • FIG. 2 is a schematic structural diagram of a thin-film battery cell according to a second embodiment of the thin-film battery of the present application
  • FIG. 3 is a right side view of a thin-film battery cell according to the second embodiment of the thin-film battery of the present application.
  • FIG. 4 is a left side view of a thin-film battery cell of the second embodiment of the thin-film battery of the present application.
  • FIG. 5 is a front view of a thin-film battery cell according to a second embodiment of the thin-film battery of the present application.
  • FIG. 6 is a front view of a thin-film battery cell including two groups of electrodes according to a second embodiment of the thin-film battery of the present application;
  • FIG. 7 is a top view and a front view of a three-dimensional structure of a thin-film battery cell according to the second embodiment of the thin-film battery of the present application;
  • FIG. 8 is a top view of a thin-film battery cell according to a second embodiment of the present application where the collector electrode is an interdigitated collector electrode;
  • FIG. 9 is a right side view of the thin-film battery cell of the second embodiment of the application where the collector electrode is an interdigitated collector electrode;
  • FIG. 10 is a top view of a thin-film battery cell of the third embodiment of the thin-film battery of the present application.
  • FIG. 1 is a schematic structural diagram of a thin-film battery proposed in the first embodiment of the application.
  • the thin-film battery includes: a thin-film battery cell and a casing, and the thin-film battery
  • the cell includes: a separator 10, a positive electrode 20, a negative electrode 30, a positive collector 40 and a negative collector 50; the positive electrode 20 and the negative electrode 30 are separately disposed on the separator 10, and the positive collector 40 is arranged on the positive electrode 20, and the negative collector 50 is arranged on the negative electrode 30; or the positive collector 40 is integrated with the positive electrode 20, and the negative collector 50 is integrated with the negative electrode 30. Electrodes 30 are integrated.
  • the thin-film battery includes a thin-film battery cell and an external casing for encapsulating the battery.
  • Thin-film battery cells are the parts that undergo chemical reactions to generate voltage or current.
  • the thin film battery cell includes a positive electrode 20, a negative electrode 30 and an electrolyte capable of completing the redox reaction, and of course also includes a positive collector 40 and a negative collector 50 for drawing out the generated voltage or current.
  • the separator 10 isolates the positive electrode 20 and the negative electrode 30 where the electrode reaction occurs, so as to prevent the positive electrode 20 and the negative electrode 30 from directly contacting and reacting directly, thereby causing a short circuit.
  • the performance of the separator 10 determines the interface structure and internal resistance of the battery, and directly affects the capacity, cycle and safety performance of the battery.
  • the separator 10 with excellent performance plays an important role in improving the overall performance of the battery.
  • the housing may consist of two sealing bases and a sealing frame.
  • the positive electrode 20 of the battery in the battery configuration is the electrode that is used to chemically react with the electrolyte to output current or voltage.
  • the negative electrode 30 is opposite to the positive electrode 20 . Outside the cell structure, the potential of the positive electrode 20 is generally higher than the potential of the negative electrode 30 .
  • the collector is the electrode used to draw current or voltage from the electrode.
  • the positive electrode collector 40 and the positive electrode 20 are connected to each other, and a current or voltage is drawn from the positive electrode 20 .
  • the negative collector 50 and the negative electrode 30 are connected to each other.
  • the positive electrode 20 and the negative electrode 30 in the thin film battery cell are respectively arranged on the separator 10, and the positive electrode 20 and the negative electrode 30 are viewed from the projection of the separator 10, and the positive electrode 20 and the negative electrode 30 are separated from each other on the diaphragm 10 .
  • the positive collector 40 can be arranged on any surface of the positive electrode 20, or the positive collector 40 can be integrated with the positive electrode 20 and then arranged on the diaphragm 10.
  • the negative collector 50 which can be arranged on the negative electrode Any surface of the electrode 30 can also be integrated with the negative electrode 30 and disposed on the separator 10 .
  • the thin-film battery cells can be added to the electrolyte and then packaged in the casing to form a complete thin-film battery.
  • a thin film battery is provided, and the thin film battery cell of the thin film battery includes: a separator 10 , a positive electrode 20 , a negative electrode 30 , a positive collector 40 and a negative collector 50 ; the positive electrode 20 and the negative electrode 30 are provided on the diaphragm 10 separately, the positive collector 40 is provided on the positive electrode 20, and the negative collector 50 is provided on the negative electrode 30; or the positive collector The electrode 40 is integrated with the positive electrode 20 , and the negative collector 50 is integrated with the negative electrode 30 .
  • the method of disposing the positive electrode 20 and the negative electrode 30 of the thin-film battery cell at different positions on the diaphragm 10 separately the safe use of the thin-film battery is realized.
  • the positive electrode portion formed by the positive electrode 20 and the positive collector electrode 40 and/or the negative electrode portion formed by the negative electrode 30 and the negative collector electrode 50 is provided through the On the separator 10 , the penetrating positive electrode and the positive collector are penetratingly connected, and the penetrating negative electrode and the negative collecting electrode are penetratingly connected.
  • the positive electrode 20 and the positive collector electrode 40 will penetrate into the separator 10 and be connected inside the separator 10.
  • the positive electrode 20 can also penetrate into the separator 10. And penetrate the diaphragm 10 to connect with the positive collector 40 , and the positive collector 40 can penetrate into and penetrate the diaphragm 10 and connect to the positive electrode 20 .
  • the negative electrode 30 and the negative collector electrode 50 may also be connected to each other through the permeable membrane 10 .
  • the positive electrode portion formed between the positive electrode 20 and the positive collector electrode 40 may also penetrate the separator 10, and the negative electrode 30 and the negative collector electrode 50 are arranged on the separator.
  • the positive electrode part penetrating the separator 10 can be the positive electrode 20 penetrating the separator 10, the positive collector 40 is arranged on one side or both sides of the positive electrode 20, of course, the positive electrode part composed of the positive electrode 20 and the positive collector 40 can also penetrate the separator 10, wherein The joint surface of the positive electrode 20 and the positive collector electrode 40 is inside the separator 10 .
  • the positive electrode 20 can be printed on the upper surface of the separator 10 during printing, and the positive electrode collector 40 can be printed on the lower surface of the corresponding position of the separator 10. Due to the porosity of the separator 10, the positive electrode 20 can penetrate the separator 10 and the lower surface of the separator 10.
  • a positive collector 40 printed on the surface is connected so that the voltage or current generated on the electrode can be drawn out through the collector.
  • the positive electrode 20 and the negative electrode 30 can be respectively disposed on both sides of the diaphragm 10 , and the projections of the positive electrode 20 and the negative electrode 30 on the diaphragm 10 separated from each other.
  • the positive collector 40 can be disposed on any surface of the positive electrode 20, and of course can also be integrated with the positive electrode 20.
  • the negative collector 50 is similar to the positive collector 40, and will not be repeated here.
  • a positive electrode tab 41 is provided at the end of the positive collector electrode 40 of the thin-film battery cell; a negative electrode tab 51 is provided at the end of the negative collector electrode 50 , and the positive electrode tab 41 and the positive collector 40 are integral, the negative tab 51 and the negative collector 50 are integral, the positive tab 41 and the negative tab 51 are arranged on the separator 10 through the separator 10 one or both sides.
  • the tabs are usually metal conductors drawn from the positive and negative poles of the battery.
  • the tabs of the positive and negative poles of the battery are the contact points during charging and discharging.
  • the positive collector electrode 40 is printed or coated longer relative to the positive electrode 20, and the protruding part is reserved as the positive electrode ear 41.
  • any setting of the direction of the positive electrode lug 41 can be realized.
  • the end of the negative collector electrode 50 can be used as the negative electrode lug 51 , and of course both ends of the negative collector electrode 50 can also be used as the negative electrode lug 51 , and the direction of the negative electrode lug 51 can be arbitrarily set.
  • the positive collector electrode 40 can be printed or coated longer relative to the positive electrode 20, and the protruding part is reserved as the positive electrode lug 41.
  • the positive electrode lug 41 can be arranged on one side of the positive electrode 40, or can Both sides of the positive electrode 40 are arranged, and the negative tabs 51 of the negative collector 50 can be arranged similarly.
  • the thin film battery cell further includes: an electrolyte 60 ; the thickness of the separator 10 is greater than the thickness of the positive electrode 20 and the negative electrode 20 infiltrated into the separator 10 The thickness of the electrode 30 and the electrolyte 60 are provided within the separator 10 .
  • the electrolyte 60 can be arranged in the separator 10, and the separator 10 and the electrolyte 60 can be arranged as a whole.
  • the thickness of the electrode refers to the thickness of the electrode infiltrated into the diaphragm under the action of infiltration.
  • the thickness of the separator 10 is greater than the thickness of the electrode. After the electrode is printed or coated, part of the electrode will penetrate into the separator 10 due to the penetration effect of the electrode.
  • the electrodes can directly react chemically with the electrolyte 60 in the separator 10 , and there is no possibility of short circuit between the positive electrode 20 and the negative electrode 30 due to the action of the separator 10 .
  • the thickness of the separator 10 is smaller than the thickness of the positive electrode 20 and the negative electrode 30 penetrating the separator 10
  • the electrolyte 60 can also be arranged in the separator 10 , the positive electrode 20 and the negative electrode 30 It can chemically react with the electrolyte 60 in the separator 10 .
  • some of the electrodes are outside the separator 10 , and a certain amount of electrolyte 60 needs to be added to the casing when packaging the battery to chemically react with the electrodes outside the separator 10 .
  • the thickness of the separator 10 may be selected to be greater than the thickness of the electrode infiltrated into the separator 10 .
  • the diffusion of the electrode can also be controlled to control the thickness of the electrode penetrating into the separator 10 .
  • the separator 10 after coating the electrode and the collector can be put into the electrolyte 60 to soak for a period of time and then taken out to set the electrolyte 60 in the separator 10 .
  • the precise control of the content of the electrolyte 60 in the separator 10 is achieved by controlling the thickness and porosity of the separator.
  • the thin film battery cell further includes: an encapsulation structure 70 ; the encapsulation structure 70 is disposed on the separator 10 containing the electrolyte 60 and the positive electrode tab 41 between the separator 10 containing the electrolyte 60 and the negative electrode tab 51 .
  • the package structure 70 is a structural device for separating the tabs and the electrolyte 60 from each other.
  • the encapsulation structure is composed of a barrier material for the electrolyte 60, which can prevent the electrolyte 60 from permeating in the direction of the tabs.
  • the packaging structure 70 may be a separate structure separated from the sealing frame of the thin film battery case, or may be a structure integrated with the sealing frame of the case.
  • the packaging structure 70 can be plastic-sealed at the packaging position between the electrolyte 60 and the positive electrode tab 41 and the negative electrode tab 51 by printing sealant or using a thermoplastic sealing membrane, so that the packaging structure 70 seals the electrolyte 60 with the negative electrode tab 51 .
  • the positive tab 41 and the negative tab 51 are completely isolated.
  • two sets of the positive electrodes 20 and the positive collectors 40 are simultaneously arranged on the two sides of the diaphragm 10 in the thin film battery cells, or the thin film battery cells are located at the same time.
  • Two sets of the negative electrodes 30 and the negative collector electrodes 50 are simultaneously disposed on opposite sides of the diaphragm 10 .
  • the two sets of the positive electrodes 20 and the positive collectors 40 disposed opposite to each other have a gap in the separator, and the two sets of the positive collectors 40 on both sides of the separator are on the side or the positive tab.
  • the two opposite sets of the negative electrodes 30 and the negative collectors 50 have a gap in the separator 10, and the two sets of the negative collectors 50 on both sides of the separator 10 are on the side The side or the position of the negative electrode 51 is connected.
  • the thin film battery cell may include two positive electrodes 20 or two negative electrodes 30, wherein the number of positive collector electrodes 40 is the same as the number of positive electrodes 20, and the number of negative collector electrodes 50 is the same as the number of negative electrodes 30 .
  • two positive electrodes 20 can be arranged on the upper surface and the lower surface of the diaphragm 10 respectively, and two positive collector electrodes 40 can be arranged on the positive electrode respectively. At this time, both the upper and lower surfaces of the cell can pass through. The voltage of the positive electrode 20 is drawn. Referring to FIG.
  • a negative electrode 30 can be arranged on the upper surface of the diaphragm 1, and a positive electrode 20 and a negative electrode 30 are respectively arranged on the lower surface of the diaphragm 10, so that the corresponding voltage of the negative electrode 30 in the cell can be adjusted Lead out from the two negative electrodes 30 .
  • the positive electrode 20 and the negative electrode 30 of the thin film battery cell are disposed opposite to the separator 10 , and the positive collector electrode 40 is connected to the positive electrode 20 , the projections of the positive collector 40 and the positive electrode 20 in the direction of the diaphragm 10 are staggered from each other, the negative collector 50 is connected to the negative electrode 30 , and the negative collector 50 is connected to the negative electrode 30 The projections in the direction of the separator 10 are staggered from each other, and the positive collector electrode 40 and the positive electrode 20 , the negative collector electrode 50 and the negative electrode 30 are arranged on one side or both sides of the separator 10 .
  • the thin-film battery cells may have a three-dimensional structure.
  • a positive electrode 20 and a negative electrode 30 may be disposed on the upper surface of the separator 10 opposite to each other, and the positive electrode 20 and the negative electrode 30 are parallel to each other.
  • the positive collector 40 is arranged on the positive electrode 20, and the positive collector 40 and the positive electrode 20 are staggered from each other, and the negative collector 50 and the negative electrode 30 are also arranged similarly.
  • the upper surface of the diaphragm 10 can be provided with a positive electrode 20 or a negative electrode 30, and another electrode can be provided on the lower surface of the diaphragm 10. There is no overlapping area between the projections of the two electrodes on the diaphragm to ensure that the two electrodes will not be uniform after infiltration.
  • the positive collector 40 is on the positive electrode 20 , and the positive collector 40 and the positive electrode 20 are staggered from each other, as is the negative collector 50 .
  • the positive collector 40 can be printed on the positive electrode 20 at a position farther from the negative electrode 30
  • the negative collector 50 can be disposed on the negative electrode at a position farther from the positive electrode 20 .
  • the positive electrode 20 and the negative electrode 30 are staggered due to the increased thickness of the diaphragm 10 in the three-dimensional structure.
  • the facing area between the positive electrode 20 and the negative electrode 30 can be increased, thereby increasing the battery capacity and reducing the battery internal resistance.
  • a thicker separator 10 can be selected, the positive electrode 20 and the negative electrode 30 can be printed on one surface of the separator 10 opposite to each other, the positive electrode collector 40 can be printed on the surface of the positive electrode 20, and the positive collector 40 and the positive electrode 20 are printed staggered from each other.
  • the positive electrode 20 and the negative electrode 30 are printed on one surface or both surfaces of the separator 10 opposite to each other, and the negative electrode collector 50 is printed on the surface of the negative electrode 30, and the negative collector 50 and the negative electrode 30 are staggered and printed.
  • the positive electrode 20 can also be printed on the positive collector 40, the positive electrode 20 and the positive collector 40 can be printed staggered from each other, the negative electrode 30 can be printed on the negative collector 30, and the negative electrode 30 and the negative collector 50 are printed staggered from each other.
  • the positive collector 40 and the negative collector 50 of the thin-film battery cell are interdigitated collectors, and the positive electrode 20 is staggered on the positive collector 20 above, the negative electrode 30 is staggered and disposed on the negative collector electrode 50 .
  • the interdigitated collector is a collector with an interdigitated structure formed between the positive collector 40 and the negative collector 50 .
  • the positive electrode 20 can be arranged on one side of the positive collector 40, of course, the positive electrode 20 can also be arranged on both sides of the positive collector 40, the positive electrode 20 and the positive collector 40 are staggered from each other, that is, the positive electrode 20 and There is a non-overlapping region between the positive collector electrodes 40 , and the negative electrode 30 may be disposed on the negative collector electrode 50 in the same manner.
  • the interdigitated structure of the positive collector 40 and the negative collector 50 can be printed on the separator 10 first, and then the positive electrode 20 can be printed on the surface of the positive collector 40 by staggered printing, and the negative The electrode 30 may be provided on one or both sides of the negative collector electrode 50 in the same manner.
  • the positive collector 40 and the negative collector 50 of the thin film battery cell are interdigitated collectors, and the positive collector 40 and the positive electrode 20 are arranged at One or both sides of the separator 10 and the positive electrode 20 permeates the separator 10 and is distributed on one or both sides of the positive collector 40 , and the negative collector 50 and the negative electrode 30 are disposed on the same side.
  • One or both sides of the separator 10 and the negative electrode 30 permeates the separator 10 and is distributed on one or both sides of the negative collector 50 .
  • the electrode and the collector can be arranged on one side or both sides of the separator 10.
  • the electrode and the collector can be connected by permeating the separator 10.
  • the positive The electrode 20 is arranged on the upper surface of the separator 10
  • the positive electrode collector 40 is arranged on the lower surface of the separator 10
  • the projections of the positive electrode 20 and the positive collector electrode 40 on the separator 10 coincide.
  • Part of the positive collector 40 is penetrated into the separator 10 by the osmotic effect when the positive collector 40 is printed
  • part of the positive electrode 20 is penetrated into the separator 10 and the positive collector 40 by the osmosis produced when the positive electrode 20 is printed. connected on one or both sides.
  • the positive electrode 2 can be disposed on one side or both sides of the positive collector 4 through penetration, and of course the negative electrode 30 is also the same.
  • one surface of the separator 10 can be selected to print or coat the positive collector 40 first, and after the positive collector 40 penetrates for a period of time, the positive electrode 20 can be printed or coated on the same position on the other surface of the separator 10 , the positive electrode 20 will be divided by the penetration part of the positive collector electrode 40 during the penetration process, and then the positive electrode 20 may be distributed on both sides of the positive collector electrode 40 .
  • a thin film battery is provided, and the thin film battery cell of the thin film battery includes: a separator 10 , a positive electrode 20 , a negative electrode 30 , a positive collector 40 and a negative collector 50 ; the positive electrode 20 and the negative electrode 30 are provided on the diaphragm 10 separately, the positive collector 40 is provided on the positive electrode 20, and the negative collector 50 is provided on the negative electrode 30; or the positive collector
  • the electrode 40 is integrated with the positive electrode 20
  • the negative collector 50 is integrated with the negative electrode 30 .
  • the positive electrode 20 and the negative electrode 30 of the thin film battery cell are provided at different positions on the diaphragm 10 separately, and the positive collector 40 is arranged on the positive electrode 20 and the negative collector 30 is arranged On the negative electrode 20, the flexible arrangement of the tabs can be realized by arranging the tabs on one side or both sides of the collector.
  • the dislocation between the positive electrode 20 and the negative electrode 20 increases the battery capacity. Capacity and reduce the internal resistance of the battery, the arrangement of the packaging structure 70 can effectively prevent the electrolyte from leaking to the tabs.
  • the present application also proposes a third embodiment of a thin film battery.
  • the thin film battery cell includes: a plurality of positive electrodes 20, a plurality of negative electrodes 30, a plurality of positive collector electrodes 40, and a plurality of negative collector electrodes 50; the plurality of positive electrodes 20 and the The plurality of negative electrodes 30 are all disposed on the diaphragm 10 , the plurality of positive collector electrodes 40 are correspondingly disposed on the plurality of positive electrodes 20 , and the plurality of negative collector electrodes 50 are correspondingly disposed on the plurality of negative electrodes 20 .
  • the tab 41 of the positive collector electrode 40 is connected to the tab 51 of the negative collector electrode 50 in sequence.
  • multiple electrodes and collectors can be printed at the same time, and the positive electrodes 20 and the negative electrodes 30 are connected to each other through their respective collectors to form a plurality of thin films Thin film batteries for battery cells.
  • a plurality of positive electrodes 20 and a plurality of negative electrodes 30 can be printed on one diaphragm 10 at the same time. the same number.
  • the positive collector electrodes 40 are respectively arranged on the corresponding positive electrodes 20
  • the negative collector electrodes 50 are respectively arranged on the corresponding negative electrodes 30 .
  • the negative electrode 30 of the previous cell is connected to the positive tab 41 of the positive collector 40 of the positive electrode 20 of the latter cell through the negative ear 51 of the negative collector 50, and each thin-film battery cell is connected in series to form a larger battery capacity. 's battery.
  • a plurality of positive electrodes 20 and a plurality of negative electrodes 30 may be printed on the separator 10 in sequence, and then a plurality of positive collector electrodes 40 may be printed on the plurality of positive electrodes 20 in sequence, and the plurality of The negative collectors 50 are printed on the negative electrodes 30 in sequence, and the positive tabs 41 of the positive collector 40 and the negative tabs 51 of the negative collector 50 are printed and connected in sequence to form a series connection between the cells.
  • the structure of the collector electrode can also be designed, and the multiple positive electrodes 41 of the multiple positive collector electrodes 40 corresponding to the multiple thin-film battery cells are printed and connected to each other, so as to connect the multiple thin-film battery cells together.
  • the plurality of negative tabs 51 of the corresponding plurality of negative collectors 50 are printed and connected to each other to realize the parallel connection between the cells.
  • a thin film battery in this embodiment, includes: a plurality of positive electrodes 20, a plurality of negative electrodes 30, a plurality of positive collector electrodes 40, and a plurality of negative collector electrodes 50; the plurality of positive electrodes 20 and the plurality of negative electrodes 30 are disposed on the diaphragm 10, the plurality of positive collector electrodes 40 are correspondingly disposed on the plurality of positive electrodes 20, and the plurality of negative collector electrodes 50 are correspondingly disposed on the On the plurality of negative electrodes 30 , the positive tabs 41 of the positive collector 40 are connected to the negative tabs 51 of the negative collector 50 in sequence.
  • multiple battery cells can be connected in series or in parallel to effectively print the battery pack.
  • the present application also provides a battery cell printing method, which can print the electrodes and collector electrodes of a battery on a separator.
  • the battery cell printing method can also be used to print the electrodes and the collector electrodes by penetrating the separator.
  • Printing the cell printing method can also print a plurality of thin film battery cells at one time, including printing a plurality of electrodes and collectors on the separator at one time and printing a plurality of electrodes and collectors permeating the separator at one time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电池技术领域,并具体公开了一种薄膜电池及电芯印刷方法,该薄膜电池的薄膜电池电芯包括:隔膜、正电极、负电极、正集电极和负集电极;正电极和负电极分开设置于隔膜上,正集电极设置于正电极上,负集电极设置于负电极上;或正集电极与正电极集成,负集电极与负电极集成。

Description

一种薄膜电池及电芯印刷方法
本申请要求于2021年5月6日申请的、申请号为202110491957.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种薄膜电池及电芯印刷方法。
背景技术
随着电子产品的重量、厚度和尺寸的日益减少,对便携式能源的需求不断增加,而固态薄膜电池吸引了越来越多的关注。薄膜电池具有爆炸风险低、热稳定性优异、放电率低等优点。
由于现有的隔膜印刷电池为三明治结构,该结构下容易造成电池短路,从而发生危险。而传统共面电池,不仅电容量低,而且电池结构较为单一。如何在保证电池容量的前提下,防止印刷隔膜方法制备的薄膜电池的短路从而安全使用,是急需解决的技术问题。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种薄膜电池及电芯印刷方法,旨在解决现有技术中难以提供防止电池短路的薄膜电池的技术问题。
技术解决方案
为实现上述目的,本申请提出一种薄膜电池,所述薄膜电池包括:薄膜电池电芯和壳体,所述薄膜电池电芯包括:隔膜、正电极、负电极、正集电极和负集电极;所述正电极和所述负电极分开设置于所述隔膜上,所述正集电极设置于所述正电极上,所述负集电极设置于所述负电极上;或所述正集电极与所述正电极集成,所述负集电极与所述负电极集成。
在一实施例中,所述正电极与所述正集电极所形成的正极部分和/或所述负电极与所述负集电极所形成的负极部分贯穿设置于所述隔膜上,贯穿的所述正电极和所述正集电极渗透连接,贯穿的所述负电极和所述负集电极渗透连接。
在一实施例中,所述薄膜电池电芯的所述正集电极末端设置有正极耳;所述负集电极末端设置有负极耳,所述正极耳和所述正集电极为一个整体,所述负极耳和所述负集电极为一个整体,所述正极耳和所述负极耳通过所述隔膜设置于所述隔膜的一侧或两侧。
在一实施例中,所述薄膜电池电芯还包括:电解液;所述隔膜的厚度大于渗入所述隔膜的所述正电极的厚度和所述负电极的厚度并且所述电解液设置于所述隔膜内。
在一实施例中,所述薄膜电池电芯还包括:封装结构;所述封装结构设置于包含所述电解液的所述隔膜和所述正极耳之间,以及包含所述电解液的所述隔膜和所述负极耳之间。
在一实施例中,所述薄膜电池电芯在所述隔膜两侧相对位置同时设置两组所述正电极与所述正集电极,或者所述薄膜电池电芯在所述隔膜两侧相对位置同时设置两组所述负电极与所述负集电极。所述相对设置的两组所述正电极与所述正集电极在所述隔膜中存在空隙,且所述隔膜两侧的两组所述正集电极在侧边或者所述正极耳位置连接,所述相对设置的两组所述负电极与所述负集电极在所述隔膜中存在空隙,且所述隔膜两侧的两组所述负集电极在侧边或者所述负极耳位置连接。
在一实施例中,所述薄膜电池电芯的所述正电极与所述负电极在所述隔膜上相对设置,所述正集电极与所述正电极连接,所述正集电极与所述正电极在所述隔膜方向的投影相互错开,所述负集电极与所述负电极连接,所述负集电极与所述负电极在所述隔膜方向的投影相互错开,所述正集电极与所述正电极、所述负集电极与所述负电极设置在所述隔膜的一侧或者两侧。
在一实施例中,所述薄膜电池电芯的所述正集电极和所述负集电极为叉指集电极,所述正集电极与所述正电极设置于所述隔膜一侧或两侧并且所述正电极渗透所述隔膜分布于所述正集电极的一侧或两侧,所述负集电极与所述负电极设置于所述隔膜一侧或两侧并且所述负电极渗透所述隔膜分布于所述负集电极一侧或两侧。
在一实施例中,所述薄膜电池电芯包括:多个正电极、多个负电极、多个正集电极以及多个负集电极;
所述多个正电极与所述多个负电极均设置于所述隔膜上,所述多个正集电极对应设置于所述多个正电极上,所述多个负集电极对应设置于所述多个负电极上,所述正集电极的正极耳与所述负集电极的负极耳依次连接。
为实现上述目的,本申请还提出一种电芯印刷方法,所述电芯印刷方法通过渗透所述隔膜,一次性印刷多个上述的薄膜电池电芯。
有益效果
本申请提供一种薄膜电池及电芯印刷方法,该薄膜电池的所述薄膜电池电芯包括:隔膜、正电极、负电极、正集电极和负集电极;所述正电极和所述负电极分开设置于所述隔膜上,所述正集电极设置于所述正电极上,所述负集电极设置于所述负电极上;或所述正集电极与所述正电极集成,所述负集电极与所述负电极集成。在本申请中,通过提供一种将薄膜电池电芯的正电极、负电极分开设置于隔膜上的不同位置,将正集电极设置在正电极上、负集电极设置在负电极上,或者将正集电极与正电极集成、将负集电极与负电极集成的薄膜电池,实现了薄膜电池的安全使用。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请薄膜电池第一实施例提出薄膜电池的结构示意图;
图2为本申请薄膜电池第二实施例的薄膜电池电芯的结构示意图;
图3为本申请薄膜电池第二实施例的薄膜电池电芯的右视图;
图4为本申请薄膜电池第二实施例的薄膜电池电芯的左视图;
图5为本申请薄膜电池第二实施例的薄膜电池电芯的正视图;
图6为本申请薄膜电池第二实施例的薄膜电池电芯包括两组电极的正视图;
图7为本申请薄膜电池第二实施例的薄膜电池电芯立体结构的俯视图和正视图;
图8为本申请薄膜电池第二实施例的薄膜电池电芯的集电极为叉指集电极的俯视图;
图9为本申请薄膜电池第二实施例的薄膜电池电芯的集电极为叉指集电极的右视图;
图10为本申请薄膜电池第三实施例的薄膜电池电芯俯视图。
附图标号说明:
标号 名称 标号 名称
10 隔膜 20 正电极
30 负电极 40 正集电极
50 负集电极 41 正极耳
51 负极耳 60 电解液
70 封装结构    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
参照图1,图1为本申请第一实施例提出薄膜电池的结构示意图,如图1所示,在本实施例中,所述薄膜电池包括:薄膜电池电芯和壳体,所述薄膜电池电芯包括:隔膜10、正电极20、负电极30、正集电极40和负集电极50;所述正电极20和所述负电极30分开设置于所述隔膜10上,所述正集电极40设置于所述正电极20上,所述负集电极50设置于所述负电极30上;或所述正集电极40与所述正电极20集成,所述负集电极50与所述负电极30集成。
需要说明的是,在隔膜电池结构中,薄膜电池包括薄膜电池电芯和外部用于封装电池的壳体。薄膜电池电芯是用于进行化学反应产生电压或电流的部分。薄膜电池电芯包括能够完成氧化还原反应的正电极20、负电极30和电解液,当然还包括将产生的电压或电流引出的正集电极40和负集电极50。隔膜10隔离发生电极反应的正电极20和负电极30,以防止正电极20和负电极30直接接触而直接反应,进而发生短路。隔膜10的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜10对提高电池的综合性能具有重要的作用。壳体可以由两个密封基底以及一个密封框组成。在电池结构中电池的正电极20是用于与电解质发生化学反应输出电流或电压的电极。负电极30是与正电极20相反。在电池结构外部,正电极20的电势一般高于负电极30的电势。集电极是用于从电极上引出电流或电压的电极。正极电集40与正电极20之间相互连接,从正电极20上引出电流或电压。负集电极50与负电极30之间相互连接。
在具体实施中,薄膜电池电芯内的正电极20与负电极30分别设置在隔膜10上,并且正电极20和负电极30在隔膜10的投影上看,正电极20和负电极30相互分开位于所述隔膜10上。正集电极40可以设置在正电极20上的任意一个面上,或者正集电极40可以与正电极20进行集成之后设置在隔膜10上,当然负集电极50也是如此,既可以设置在负电极30的任意一个面上,也可以与负电极30进行集成后设置在隔膜10上。在本实施例中,可以将薄膜电池电芯加入电解液之后封装于壳体中,形成完整的薄膜电池。
在本实施例中提供了一种薄膜电池,该薄膜电池的所述薄膜电池电芯包括:隔膜10、正电极20、负电极30、正集电极40和负集电极50;所述正电极20和所述负电极30分开设置于所述隔膜10上,所述正集电极40设置于所述正电极20上,所述负集电极50设置于所述负电极30上;或所述正集电极40与所述正电极20集成,所述负集电极50与所述负电极30集成。在本实施例中,通过提供一种将薄膜电池电芯的正电极20、负电极30分开设置于隔膜10上的不同位置,实现了薄膜电池的安全使用。
基于上述薄膜电池的第一实施例,提出本申请薄膜电池的第二实施例。
参照图2,在本实施例中,所述正电极20与所述正集电极40所形成的正极部分和/或所述负电极30与所述负集电极50所形成的负极部分贯穿设置于所述隔膜10上,贯穿的所述正电极和所述正集电极渗透连接,贯穿的所述负电极和所述负集电极渗透连接。
需要说明的是,在正电极20与正集电极40印刷过程中,由于隔膜10的多孔性,正电极20和正集电极40会渗入隔膜10,在隔膜10内部连接,当然也可以正电极20渗入并穿透隔膜10与正集电极40连接,还可以正集电极40渗入并穿透隔膜10与正电极20连接。同样的,负电极30与负集电极50之间也可以通过渗透隔膜10相互连接。还可以将正电极20与正集电极40之间所形成的正极部分贯穿隔膜10,负电极30与负集电极50设置在隔膜上。正极部分贯穿隔膜10可以是正电极20贯穿隔膜10,正集电极40设置在正电极20的一侧或两侧,当然也可以是正电极20与正集电极40组成的正极部分穿过隔膜10,其中正电极20与正集电极40的结合面处于隔膜10内部。参照图3在印刷时可以将正电极20印刷在隔膜10上表面,将正极电集40印刷在隔膜10对应位置的下表面,由于隔膜10的多孔性正电极20可以渗透隔膜10与隔膜10下表面印刷的正极电集40连接,从而可以通过集电极将电极上产生的电压或电流引出。参照图2(右)当然在本实施例中,所述正电极20与所述负电极30可以分别设置于所述隔膜10的两侧,并且正电极20与负电极30在隔膜10上的投影相互分开。正集电极40可以设置在正电极20的任意一个面上,当然也可以与正电极20集成,负集电极50与正集电极40相类似,在此不做赘述。
参照图3和图4,在本实施例中,所述薄膜电池电芯的所述正集电极40末端设置有正极耳41;所述负集电极50末端设置有负极耳51,所述正极耳41和所述正集电极40为一个整体,所述负极耳51和所述负集电极50为一个整体,所述正极耳41和所述负极耳51通过所述隔膜10设置于所述隔膜10的一侧或两侧。
需要说明的是,极耳通常是从电芯中将正负极引出来的金属导电体,通俗的说电池正负两极的极耳是在进行充放电时的接触点,在本实施例中,将正集电极40相对于正电极20印刷或涂覆的较长,预留突出的部分作为正极耳41,正极耳41既可以设置在正电极40的一侧,也可以设置正电极40的两侧,可以实现正极耳41方向的任意设置。同理负集电极50的末端可以作为负极耳51,当然负集电极50的两端也均可作为负极耳51,可以实现负极耳51方向的任意设置。
在具体实施中,可以将正集电极40相对于正电极20印刷或涂覆的较长,预留突出的部分作为正极耳41,正极耳41既可以设置在正电极40的一侧,也可以设置正电极40的两侧,负集电极50的负极耳51可以同样设置。
参照图5(上),在本实施例中,所述薄膜电池电芯还包括:电解液60;所述隔膜10的厚度大于渗入所述隔膜10的所述正电极20的厚度和所述负电极30的厚度并且所述电解液60设置于所述隔膜10内。
需要说明的是,由于隔膜10的多孔性,在隔膜10的厚度比较可观的情况下,可以将电解液60设置隔膜10内,将隔膜10与电解液60设置为一个整体。电极的厚度是指电极在渗透作用下电极渗入隔膜部分的厚度。隔膜10的厚度大于电极的厚度,电极在印刷或涂覆之后,电极由于渗透作用,会将部分电极渗入隔膜10。电极可以直接与隔膜10内的电解液60进行化学反应,由于隔膜10作用,正电极20与负电极30之间也不会存在短接的可能。参照图5(下),在本实施例中,隔膜10的厚度小于渗入隔膜10的正电极20和负电极30的厚度,电解液60也可以设置在隔膜10内,正电极20与负电极30可以与隔膜10内的电解液60进行化学反应。此时部分电极处于隔膜10之外,在对电池进行封装时需要添加一定的电解液60与壳体内,与处于隔膜10之外的电极进行化学反应。
在具体实施中,可以选取隔膜10的厚度大于电极渗入隔膜10的厚度。当然在印刷或涂覆过程中,也可以控制电极的扩散对电极的渗入隔膜10的厚度进行控制。在制作过程中,可以将涂覆电极和集电极之后的隔膜10放入电解液60中浸泡一段时间后取出实现将电解液60设置在隔膜10内。当然在此过程中,通过控制隔膜厚度和多孔度实现隔膜10内的电解液60含量的精确控制。
参照图3或图4,在本实施例中,所述薄膜电池电芯还包括:封装结构70;所述封装结构70设置于包含所述电解液60的所述隔膜10和所述正极耳41之间,以及包含所述电解液60的所述隔膜10和所述负极耳51之间。
需要说明的是,封装结构70是用于将极耳与电解液60之间相互隔开的结构装置。封装结构由电解液60的阻隔材料构成,可以防止电解液60向极耳方向渗透。封装结构70可以是与薄膜电池壳体的密封框相互分离的单独结构,也可以是与壳体的密封框为一体的结构。
在具体实施过程中,可以通过印刷密封胶或者使用热塑封隔膜在封装结构70的在电解液60与正极耳41和负极耳51之间的封装位置进行塑封,使封装结构70将电解液60与正极耳41以及负极耳51之间完全隔离。
参照图6,在本实施例中,所述薄膜电池电芯在所述隔膜10两侧相对位置同时设置两组所述正电极20与所述正集电极40,或者所述薄膜电池电芯在所述隔膜10两侧相对位置同时设置两组所述负电极30与所述负集电极50。所述相对设置的两组所述正电极20与所述正集电极40在所述隔膜中存在空隙,且所述隔膜两侧的两组所述正集电极40在侧边或者所述正极耳41位置连接,所述相对设置的两组所述负电极30与所述负集电极50在所述隔膜10中存在空隙,且所述隔膜10两侧的两组所述负集电极50在侧边或者所述负极耳51位置连接。
需要说明的是,薄膜电池电芯可以包括两个正电极20或者两个负电极30,其中正集电极40的数目与正电极20的数目相同,负集电极50的数目与负电极30数目相同。参照图6(上)可以将两个正电极20分别设置在隔膜10的上表面和下表面,两个正集电极40分别设置正电极上,此时通过电芯的上表面和下表面均可引出正电极20的电压。参照图6(下)在隔膜1的上表面可以设置一个负电极30,在隔膜10的下表面分别设置一个正电极20和一个负电极30,可以将电芯内的负电极30的对应的电压从两个负电极30引出。
参照图7,在本实施例中,所述薄膜电池电芯的所述正电极20与所述负电极30在所述隔膜10上相对设置,所述正集电极40与所述正电极20连接,所述正集电极40与所述正电极20在所述隔膜10方向的投影相互错开,所述负集电极50与所述负电极30连接,所述负集电极50与所述负电极30在所述隔膜10方向的投影相互错开,所述正集电极40与所述正电极20、所述负集电极50与所述负电极30设置在所述隔膜10的一侧或者两侧。
需要说明的是,薄膜电池电芯可以是立体结构。隔膜10的上表面可以相对设置正电极20和负电极30,正电极20与负电极30之间相互平行。正集电极40设置在正电极20上,并且正集电极40与正电极20之间相互错开,负集电极50与负电极30之间也同样设置。隔膜10的上表面可以设置正电极20或负电极30,将另外一个电极设置在隔膜10的下表面,两个电极在隔膜上的投影不存在重合区域,确保两个电极在渗透之后不会均存在接触。正集电极40在正电极20上,并且正集电极40与正电极20之间相互错开,负集电极50也是如此。当然正集电极40可以印刷在正电极20上距离负电极30较远的位置,负集电极50可以设置在负电极上距离正电极20较远的位置。正电极20与负电极30之间存在间隔,正电极20和负电极30可以在各自位置进行化学反应,此时正电极20与负电极30之间错开设置由于立体结构中增加隔膜10的厚度,可以增加正电极20与负电极30之间的正对面积,从而增加电池容量和降低电池内阻。
在具体实施中,可以选取较厚的隔膜10,将正电极20与负电极30相对印刷在隔膜10的一个表面,将正极电集40印刷在正电极20的表面,正集电极40与正电极20之间相互错开印刷。将正电极20与负电极30相对印刷在隔膜10的一个表面或两个表面,将负极电集50印刷在负电极30的表面,负集电极50与负电极30之间相互错开印刷。相反的,也可以将正电极20印刷在正集电极40上,正电极20与正集电极40之间相互错开印刷,将负电极30印刷在负集电极30上,负电极30与负集电极50之间相互错开印刷。
参照图8,在本实施例中,所述薄膜电池电芯的所述正集电极40和所述负集电极50为叉指集电极,所述正电极20错开设置于所述正集电极20上,所述负电极30错开设置于所述负集电极50上。
需要说明的是,叉指集电极是正极电集40与负集电极50之间形成叉指结构的集电极。正电极20可以设置在正集电极40上的一侧,当然正电极20也可以设置在正集电极40上的两侧,正电极20与正集电极40之间相互错开,即正电极20与正集电极40之间存在不重合区域,负电极30可以以同样的方式设置在负集电极50上。在具体实施中,可以将正集电极40和负集电极50的叉指结构先印刷在所述隔膜10上,然后可以将正电极20通过错开印刷的方式印刷在正集电极40的表面,负电极30可以通过同样的方式设置在负集电极50的一侧或两侧。
参照图9,在本实施例中,所述薄膜电池电芯的所述正集电极40和所述负集电极50为叉指集电极,所述正集电极40与所述正电极20设置于所述隔膜10一侧或两侧并且所述正电极20渗透所述隔膜10分布于所述正集电极40的一侧或两侧,所述负集电极50与所述负电极30设置于所述隔膜10一侧或两侧并且所述负电极30渗透所述隔膜10分布于所述负集电极50的一侧或两侧。
需要说明的是,电极与集电极之间可以设置在隔膜10的一侧或两侧,利用隔膜10的多孔性,电极与集电极之间可以通过渗透隔膜10的方式进行连接,例如可以将正电极20设置在隔膜10的上表面,将正极电集40设置在隔膜10的下表面,正电极20与正集电极40在隔膜10上的投影重合。在通过印刷正集电极40时的渗透作用将部分正集电极40渗透至隔膜10内,在通过印刷正电极20时产生的渗透作用,将部分正电极20渗透至隔膜10内与正集电极40的一侧或两侧连接。根据图9可知,根据正电极20和正集电极40之间的位置关系以及大小关系,正电极2可以通过渗透设置在正集电极4的一侧或者两侧,当然负电极30也是如此。
在具体实施中,可以选取隔膜10的一个表面先印刷或涂覆正集电极40,待正集电极40渗透一段时间后,可以在隔膜10的另一个表面的相同位置印刷或涂覆正电极20,正电极20在渗透过程中会被正集电极40的渗透部分分割,进而正电极20可以分布在正集电极40的两侧。
在本实施例中提供了一种薄膜电池,该薄膜电池的所述薄膜电池电芯包括:隔膜10、正电极20、负电极30、正集电极40和负集电极50;所述正电极20和所述负电极30分开设置于所述隔膜10上,所述正集电极40设置于所述正电极20上,所述负集电极50设置于所述负电极30上;或所述正集电极40与所述正电极20集成,所述负集电极50与所述负电极30集成。在本实施例中,通过提供一种将薄膜电池电芯的正电极20、负电极30分开设置于隔膜10上的不同位置,将正集电极40设置在正电极20上、负集电极30设置在负电极20上,通过在集电极的一侧或者两侧设置极耳可以实现极耳的灵活设置,此外通过立体薄膜电池结构中,正电极20与负电极20之间的错位设置,增加电池容量和降低电池内阻,封装结构70的设置可以有效避免电解液渗漏至极耳。
参照图10,基于上述第一实施例,提出本申请还提出一种薄膜电池的第三实施例。
在本实施例中,所述薄膜电池电芯包括:多个正电极20、多个负电极30、多个正集电极40以及多个负集电极50;所述多个正电极20与所述多个负电极30均设置于所述隔膜10上,所述多个正集电极40对应设置于所述多个正电极20上,所述多个负集电极50对应设置于所述多个负电极30上,所述正集电极40的极耳41与所述负集电极50的极耳51依次连接。
需要说明的是,在对薄膜电池电芯进行印刷过程中,可以同时对多个电极以及集电极进行印刷,将各个正电极20与负电极30通过各自的集电极相互连接,形成包括多个薄膜电池电芯的薄膜电池。一个隔膜10上可以同时印刷多个正电极20、多个负电极30,正电极20的数目与负电极30的数目相对应即同一个隔膜10上印刷的正电极20与负电极30之间的数目相同。正集电极40分别设置于对应的正电极20上,负集电极50分别设置于对应的负电极30上。前一个电芯的负电极30通过负集电极50的负极耳51与后一个电芯的正电极20的正集电极40的正极耳41连接,将各个薄膜电池电芯串联,形成电池容量更大的电池。
在具体实施中,可以先将多个正电极20与多个负电极30依次穿插印刷在所述隔膜10上,然后在将多个正集电极40依次印刷在多个正电极20上,将多个负集电极50依次印刷在多个负电极30上,并将正集电极40的正极耳41与负集电极50的负极耳51依次印刷连接在一起,形成电芯之间的串联。
在本实施例中,还可以对集电极的结构进行设计,将多个薄膜电池电芯对应的多个正集电极40的多个正极耳41相互印刷连接在一起,将多个薄膜电池电芯的对应的多个负集电极50的多个负极耳51相互印刷连接在一起,实现电芯之间的并联。
在本实施例提供一种薄膜电池,所述薄膜电池电芯包括:多个正电极20、多个负电极30、多个正集电极40以及多个负集电极50;所述多个正电极20与所述多个负电极30均设置于所述隔膜10上,所述多个正集电极40对应设置于所述多个正电极20上,所述多个负集电极50对应设置于所述多个负电极30上,所述正集电极40的正极耳41与所述负集电极50的负极耳51依次连接。本实施例通过将多个电极以及集电极在隔膜上的同时印刷,可以将多个电池电芯进行串联或并联,有效的对电池组进行印刷。
本申请还提供一种电芯印刷方法,所述电芯印刷方法可以将电池的电极以及集电极印刷在隔膜上,当然所述电芯印刷方法也可以通过渗透所述隔膜对电极以及集电极进行印刷,所述电芯印刷方法还可以一次性印刷多个薄膜电池电芯,其中包括一次性印刷多个隔膜上的电极和集电极与一次性印刷多个渗透所述隔膜的电极和集电极。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当人认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。

Claims (10)

  1. 一种薄膜电池,所述薄膜电池包括:薄膜电池电芯和壳体,其中,所述薄膜电池电芯包括:隔膜、正电极、负电极、正集电极和负集电极;所述正电极和所述负电极分开设置于所述隔膜上,所述正集电极设置于所述正电极上,所述负集电极设置于所述负电极上;或所述正集电极与所述正电极集成,所述负集电极与所述负电极集成。
  2. 如权利要求1所述薄膜电池,其中,所述正电极与所述正集电极所形成的正极部分和/或所述负电极与所述负集电极所形成的负极部分贯穿设置于所述隔膜上,贯穿的所述正电极和所述正集电极渗透连接,贯穿的所述负电极和所述负集电极渗透连接。
  3. 如权利要求1所述薄膜电池,其中,所述薄膜电池电芯的所述正集电极末端设置有正极耳;所述负集电极末端设置有负极耳,所述正极耳和所述正集电极为一个整体,所述负极耳和所述负集电极为一个整体,所述正极耳和所述负极耳通过所述隔膜设置于所述隔膜的一侧或两侧。
  4. 如权利要求3所述薄膜电池,其中,所述薄膜电池电芯还包括:电解液;所述隔膜的厚度大于渗入所述隔膜的所述正电极的厚度和所述负电极的厚度并且所述电解液设置于所述隔膜内。
  5. 如权利要求4所述薄膜电池,其中,所述薄膜电池电芯还包括:封装结构;所述封装结构设置于包含所述电解液的所述隔膜和所述正极耳之间,以及包含所述电解液的所述隔膜和所述负极耳之间。
  6. 如权利要求5所述薄膜电池,其中,所述薄膜电池电芯在所述隔膜两侧相对位置同时设置两组所述正电极与所述正集电极,或者所述薄膜电池电芯在所述隔膜两侧相对位置同时设置两组所述负电极与所述负集电极。所述相对设置的两组所述正电极与所述正集电极在所述隔膜中存在空隙,且所述隔膜两侧的两组所述正集电极在侧边或者所述正极耳位置连接,所述相对设置的两组所述负电极与所述负集电极在所述隔膜中存在空隙,且所述隔膜两侧的两组所述负集电极在侧边或者所述负极耳位置连接。
  7. 如权利要求1所述薄膜电池,其中,所述薄膜电池电芯的所述正电极与所述负电极在所述隔膜上相对设置,所述正集电极与所述正电极连接,所述正集电极与所述正电极在所述隔膜方向的投影相互错开,所述负集电极与所述负电极连接,所述负集电极与所述负电极在所述隔膜方向的投影相互错开,所述正集电极与所述正电极、所述负集电极与所述负电极设置在所述隔膜的一侧或者两侧。
  8. 如权利要求1所述薄膜电池,其中,所述薄膜电池电芯的所述正集电极和所述负集电极为叉指集电极,所述正集电极与所述正电极设置于所述隔膜一侧或两侧并且所述正电极渗透所述隔膜分布于所述正集电极的一侧或两侧,所述负集电极与所述负电极设置于所述隔膜一侧或两侧并且所述负电极渗透所述隔膜分布于所述负集电极的一侧或两侧。
  9. 一种薄膜电池,其中,所述薄膜电池包括薄膜电池电芯,所述薄膜电池电芯包括:多个正电极、多个负电极、多个正集电极以及多个负集电极;
    所述多个正电极与所述多个负电极均设置于所述隔膜上,所述多个正集电极对应设置于所述多个正电极上,所述多个负集电极对应设置于所述多个负电极上,所述正集电极的正极耳与所述负集电极的负极耳依次连接。
  10. 一种电芯印刷方法,其中,所述电芯印刷方法通过渗透所述隔膜,一次性印刷多个权利要求1-9任一项所述的薄膜电池电芯。
PCT/CN2021/136138 2021-05-06 2021-12-07 一种薄膜电池及电芯印刷方法 WO2022233133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110491957.0 2021-05-06
CN202110491957.0A CN113140843B (zh) 2021-05-06 2021-05-06 一种薄膜电池及电芯印刷方法

Publications (1)

Publication Number Publication Date
WO2022233133A1 true WO2022233133A1 (zh) 2022-11-10

Family

ID=76816644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136138 WO2022233133A1 (zh) 2021-05-06 2021-12-07 一种薄膜电池及电芯印刷方法

Country Status (2)

Country Link
CN (1) CN113140843B (zh)
WO (1) WO2022233133A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140843B (zh) * 2021-05-06 2023-08-29 深圳新源柔性科技有限公司 一种薄膜电池及电芯印刷方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194385A (zh) * 2005-04-08 2008-06-04 瓦尔达微电池有限责任公司 原电池
CN102668202A (zh) * 2009-10-08 2012-09-12 瓦尔达微电池有限责任公司 具有改进的内电阻的薄电池
CN107946519A (zh) * 2017-11-23 2018-04-20 清华大学深圳研究生院 一种隔膜、电极和集流体一体化结构以及电池的制备方法
US20180269442A1 (en) * 2017-03-20 2018-09-20 Bing R. Hsieh Printed planar lithium-ion batteries
CN109346737A (zh) * 2018-10-08 2019-02-15 深圳新源柔性科技有限公司 一种柔性薄膜电池
CN110165238A (zh) * 2019-06-26 2019-08-23 江苏恩福赛柔性电子有限公司 正负极同平面柔性电池、制备及使用方法、复合柔性电池
CN113140843A (zh) * 2021-05-06 2021-07-20 深圳新源柔性科技有限公司 一种薄膜电池及电芯印刷方法
CN215008380U (zh) * 2021-05-06 2021-12-03 深圳新源柔性科技有限公司 一种薄膜电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850890A (ja) * 1994-08-09 1996-02-20 Asahi Chem Ind Co Ltd アルカリ電池セパレータ用複合膜
JP5050301B2 (ja) * 2001-06-12 2012-10-17 アイシン精機株式会社 色素増感型太陽電池及びその製造方法
CN205752338U (zh) * 2016-01-21 2016-11-30 张霞昌 一种薄型多电芯软电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194385A (zh) * 2005-04-08 2008-06-04 瓦尔达微电池有限责任公司 原电池
CN102668202A (zh) * 2009-10-08 2012-09-12 瓦尔达微电池有限责任公司 具有改进的内电阻的薄电池
US20180269442A1 (en) * 2017-03-20 2018-09-20 Bing R. Hsieh Printed planar lithium-ion batteries
CN107946519A (zh) * 2017-11-23 2018-04-20 清华大学深圳研究生院 一种隔膜、电极和集流体一体化结构以及电池的制备方法
CN109346737A (zh) * 2018-10-08 2019-02-15 深圳新源柔性科技有限公司 一种柔性薄膜电池
CN110165238A (zh) * 2019-06-26 2019-08-23 江苏恩福赛柔性电子有限公司 正负极同平面柔性电池、制备及使用方法、复合柔性电池
CN113140843A (zh) * 2021-05-06 2021-07-20 深圳新源柔性科技有限公司 一种薄膜电池及电芯印刷方法
CN215008380U (zh) * 2021-05-06 2021-12-03 深圳新源柔性科技有限公司 一种薄膜电池

Also Published As

Publication number Publication date
CN113140843A (zh) 2021-07-20
CN113140843B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP2020191293A (ja) 薄型電気化学セル
JP4293501B2 (ja) 電気化学デバイス
JP2004014516A (ja) ケースを備えた電池
KR20200068019A (ko) 복합 배터리 셀
WO2014134783A1 (zh) 双极性电池及其制作方法和车辆
US4389470A (en) Laminar cells and batteries
WO2022001235A1 (zh) 一种电化学装置用隔板、电化学装置及电子装置
WO2022233133A1 (zh) 一种薄膜电池及电芯印刷方法
JP4704669B2 (ja) 平板型電気化学セル及びその製造法
CN213150853U (zh) 电芯结构及软包电池
JP2017059538A (ja) 積層型電池
JPH0521086A (ja) 電極及びこれを用いた電池
CN215008380U (zh) 一种薄膜电池
WO2021103518A1 (zh) 一种分隔膜、电池组合及用电设备
JP4010521B2 (ja) 積層形電池
JP3869668B2 (ja) 電気化学デバイスおよびその製造方法
JP5252466B2 (ja) シート状二次電池の製造方法
CN115360434A (zh) 一种具有预嵌锂功能的锂离子储能器件
US10622164B2 (en) Electrochemical device
JP7469086B2 (ja) 蓄電装置及びその製造方法
JP3775633B2 (ja) 積層形ポリマー電解質電池
JP2000299130A (ja) 薄形電池
CN218769681U (zh) 一种高电压内串的软包固态电池
JP2020013731A (ja) リチウム硫黄電池、及びリチウム硫黄電池の製造方法
CN220066022U (zh) 一种含边缘集电极的印刷电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.04.2024)