WO2022230807A1 - 粉末積層造形法用粉末 - Google Patents

粉末積層造形法用粉末 Download PDF

Info

Publication number
WO2022230807A1
WO2022230807A1 PCT/JP2022/018723 JP2022018723W WO2022230807A1 WO 2022230807 A1 WO2022230807 A1 WO 2022230807A1 JP 2022018723 W JP2022018723 W JP 2022018723W WO 2022230807 A1 WO2022230807 A1 WO 2022230807A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
resin composition
additive manufacturing
resin
temperature
Prior art date
Application number
PCT/JP2022/018723
Other languages
English (en)
French (fr)
Inventor
奈央 山末
稔 岸下
Original Assignee
三菱ケミカル株式会社
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP22795720.6A priority Critical patent/EP4331820A1/en
Priority to JP2023517508A priority patent/JPWO2022230807A1/ja
Publication of WO2022230807A1 publication Critical patent/WO2022230807A1/ja
Priority to US18/378,225 priority patent/US20240034834A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a powder for powder additive manufacturing that contains an aromatic polyester.
  • the present invention relates to a powder for powder additive manufacturing, which is excellent in powder layer formability when a three-dimensional model is formed by a powder additive manufacturing apparatus.
  • the present invention also relates to a resin composition suitable for this powder for additive manufacturing, and a three-dimensional model using this powder for additive manufacturing.
  • 3D printers Today, three-dimensional printers (hereinafter sometimes referred to as “3D printers”) with various additive manufacturing methods (eg, binder injection method, material extrusion method, liquid bath photopolymerization method, etc.) are on the market.
  • additive manufacturing methods eg, binder injection method, material extrusion method, liquid bath photopolymerization method, etc.
  • a 3D printer system based on the Powder Bed Fusion method such as a system manufactured by 3D Systems in the United States, creates a thin layer (powder bed) of powder material such as resin using a high-power CO2 laser. It is used to heat and melt the resin powder to a temperature near the melting point using a heating means such as , and to construct a three-dimensional object in layers based on a computer aided design (CAD) model.
  • a laser used as a heating means, scans a cross-section in the XY direction over the surface of the powder bed to selectively melt the powder material. From 3D CAD data, a three-dimensional model can be obtained by stacking one layer at a time and repeating this to form a stack.
  • This system does not require the use of molds, and can use various resin powders as raw materials as long as they have a certain degree of heat resistance. technology.
  • Polyamide resins such as nylon 12 and nylon 11 are widely used as the material type of the thermoplastic resin powder used in the powder additive manufacturing method.
  • polybutylene terephthalate-based resins have also been used as aromatic polyester-based resins that are less likely to absorb moisture than nylon 12 and nylon 11 and can provide molded articles with high heat resistance.
  • thermoplastic resin powder examples include fusion granulation (Patent Document 1) in which a resin composition melted near its melting point is made into fibers and then cut, and impact or shear is applied to a resin material made of a resin composition. There is comminution that cuts or destroys.
  • pulverizing means include stamp mills, ring mills, stone mills, mortars, roller mills, jet mills, high-speed rotating mills, hammer mills, pin mills, container-driven mills, disk mills, medium agitating mills, and the like.
  • low-temperature liquefied gas such as liquid nitrogen is used to cool the inside of the powder system to reduce the resin temperature during pulverization, in order to prevent stretching of the resin material due to shear heat generation during pulverization. There is shattering.
  • low-temperature pulverization it becomes possible to pulverize elastic materials such as rubber, which are difficult to pulverize at room temperature.
  • the pulverizability differs depending on the composition and molecular weight of the thermoplastic resin to be pulverized, and a desired particle size cannot be obtained.
  • the powder to be used is required to be excellent in layer formability (spreadability) and shapeability (modeling accuracy and surface roughness) from the modeling principle. For this purpose, a certain average particle size and particle size distribution are required, so the thermoplastic resin to be pulverized must have excellent pulverizability.
  • the present invention provides a powder additive manufacturing method powder containing an aromatic polyester-based resin, which maintains the thermal properties of the aromatic polyester-based resin and is produced with excellent pulverizability in low-temperature pulverization using liquid nitrogen, etc.
  • An object of the present invention is to provide a powder for powder additive manufacturing, which has excellent moldability during powder additive manufacturing.
  • the gist of the present invention is as follows.
  • a powder for powder additive manufacturing containing a resin composition contains an aromatic polyester-based resin, The resin composition is measured by the embrittlement temperature test described in JIS K7216 at a holding time of 3 minutes, a temperature step interval of 5 ° C., and a 50% impact embrittlement of the resin composition measured in the range of -70 ° C. to 25 ° C.
  • a powder for additive manufacturing which contains an aromatic polyester resin, is excellent in pulverizability during powder production, has a specific particle size distribution, and has flowability and dispersion during powder additive manufacturing. It is possible to provide a powder for powder additive manufacturing that has excellent properties and moldability, and a three-dimensional molded object that is made from the powder and has excellent molding accuracy.
  • the powder for powder additive manufacturing method of the present invention is brittle at the time of powder production by adjusting the value of the 50% impact embrittlement temperature of the resin composition containing the aromatic polyester resin within a specific range.
  • the resulting powder can have a relatively sharp and specific particle size distribution. Therefore, it is possible to form a homogeneous powder layer having excellent flowability and dispersibility during modeling by the powder additive manufacturing method, and having a uniform thickness and no defects (defects). It can be inferred that by irradiating such a powder layer with a heating medium such as a laser, a uniform molten state can be obtained and a desired three-dimensional model can be manufactured with high accuracy.
  • the resin composition (hereinafter sometimes referred to as “the resin composition of the present invention") used for the powder for powder additive manufacturing of the present invention (hereinafter sometimes referred to as “powder of the present invention”) is It contains an aromatic polyester resin, and is measured by the embrittlement temperature test described in JIS K7216 at a holding time of 3 minutes, a temperature step interval of 5 ° C., and a range of -70 ° C. to 25 ° C.
  • the value of 50% impact embrittlement temperature (hereinafter sometimes simply referred to as "50% embrittlement temperature”) exists in the range of -45°C or higher and 10°C or lower.
  • the resin composition of the present invention can contain resins other than the aromatic polyester-based resin, additives, reinforcing materials, and the like to the extent that the effects of the present invention are not impaired.
  • the 50% embrittlement temperature of the resin composition of the present invention is preferably 10°C or less, more preferably 8°C or less, and 6°C or less. It is more preferably 4°C or lower, particularly preferably 2°C or lower, and most preferably 2°C or lower.
  • the 50% embrittlement temperature is preferably ⁇ 45° C. or higher, more preferably ⁇ 43° C. or higher, further preferably ⁇ 42° C. or higher, and ⁇ 41 ° C. or higher is particularly preferred, and ⁇ 40° C. or higher is most preferred.
  • the embrittlement temperature is the temperature at which plastics, etc. lose their plasticity and ductility when cooled, and their strength against mechanical impact decreases, making them more likely to break. It is called the % embrittlement temperature. It is known that the brittleness temperature is lowered by mixing a plasticizer or the like, and the 50% brittleness temperature changes depending on the crystallinity and molecular weight of the material.
  • the crystallinity of the material is said to have a large effect.
  • amorphous resins are superior in impact resistance of polymeric materials such as plastics.
  • the aromatic polyester resin used in the present invention is a crystalline resin, and its crystallinity changes depending on its composition and molecular weight.
  • the crystallinity of a material can be represented, for example, by the heat of crystal fusion ⁇ Hm in differential scanning calorimetry (hereinafter referred to as DSC) or the half-value width with respect to the crystal melting peak height.
  • the crystal dissolution temperature (Tm) of the resin composition of the present invention measured at a heating rate of 10° C./min in differential scanning calorimetry is preferably 170° C. or higher, more preferably 180° C. or higher, from the viewpoint of heat resistance. It is more preferably 185°C or higher, and most preferably 190°C or higher.
  • the upper limit of the crystal dissolution temperature (Tm) is not particularly limited, it is preferably 280°C or lower, more preferably 255°C or lower, more preferably 220°C, from the viewpoint of easy modeling with a general-purpose three-dimensional printer. It is more preferably 195° C. or less, and most preferably 195° C. or less.
  • the crystal dissolution temperature (Tm) of the resin composition is measured by the method described in the Examples section below.
  • the resin composition of the present invention is heated to a temperature 30° C. higher than the crystal melting temperature (Tm) with a differential scanning calorimeter at a heating rate of 10° C./min, and the crystallization peak when the temperature is lowered at 10° C./min.
  • the difference (Tm ⁇ Tc) between the crystal melting temperature (Tm) and the cooling crystallization temperature (Tc) when the temperature is the cooling crystallization temperature (Tc) is 30° C. or more from the viewpoint of formability in three-dimensional modeling.
  • the temperature is preferably 90° C. or lower, preferably 40° C. or higher or 80° C. or lower, and more preferably 45° C. or higher or 70° C.
  • the difference (Tm-Tc) between the crystal melting temperature (Tm) and the cooling crystallization temperature (Tc) is 30° C. or more, the crystallization of the resin composition is not too fast, and the warping of the modeled object in three-dimensional modeling is suppressed. can do. Therefore, since each layer of the modeled article is formed uniformly, the interlayer adhesive strength is less likely to decrease, and the appearance and strength of the modeled article are improved.
  • the difference (Tm ⁇ Tc) between the crystal melting temperature (Tm) and the cooling crystallization temperature (Tc) is 90° C. or less, the crystallization rate is not too slow. It is possible to complete the curing and obtain a shaped article having excellent heat resistance.
  • Tm-Tc crystalline melting temperature
  • Tc cooling crystallization temperature
  • the heat of crystallization ( ⁇ Hc) of the resin composition of the present invention measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is preferably 70 J/g or less, preferably 60 J, from the viewpoint of formability. /g or less, more preferably 55 J/g or less, particularly preferably 50 J/g or less, most preferably 45 J/g or less. From the viewpoint of heat resistance, the heat of crystallization ( ⁇ Hc) is preferably 10 J/g or more, more preferably 15 J/g or more, still more preferably 20 J/g or more, particularly preferably 25 J/g or more, and 30 J/g or more. is most preferred.
  • the heat of crystallization ( ⁇ Hc) of the resin composition is measured by the method described in Examples below.
  • the amount of terminal carboxyl groups in the resin composition of the present invention is preferably 40 equivalents/ton or less, and 38 equivalents/ton, from the viewpoint of suppressing gas generation during molding. The following is more preferred, and 36 equivalents/ton or less is even more preferred. From the viewpoint of shapeability, the amount of terminal carboxyl groups is preferably 10 equivalents/ton or more, more preferably 12 equivalents/ton or more, and even more preferably 15 equivalents/ton or more. When the resin composition of the present invention contains two or more resins, it is the amount of terminal carboxyl groups in the mixture.
  • the terminal carboxyl group content of the resin composition is measured by the method described in the Examples section below.
  • the melting peak half width in the DSC chart of the resin composition of the present invention is preferably 40° C. or less, more preferably 30° C. or less, and even more preferably 20° C. or less from the viewpoint of formability. . From the viewpoint of pulverization at the time of powder production, the half width of the melting peak preferably exceeds 10°C, more preferably 11°C or higher, and even more preferably 12°C or higher.
  • the half width of the melting peak of the resin composition is measured by the method described in the Examples section below.
  • the glass transition temperature (Tg) of the resin composition of the present invention is preferably 50° C. or less, more preferably 45° C. or less, and even more preferably less than 44° C., from the viewpoint of formability. 43° C. or lower is particularly preferred. From the viewpoint of heat resistance, the glass transition temperature is preferably 20°C or higher, more preferably 22°C or higher, and even more preferably 25°C or higher.
  • the glass transition temperature of the resin composition is measured by the method described in Examples below.
  • the intrinsic viscosity (Iv) of the resin composition of the present invention is preferably 2.0 dl/g or less, more preferably 1.8 dl/g or less, still more preferably 1.7 dl/g or less, from the viewpoint of formability. 0.5 dl/g or less is particularly preferred, and 1.3 dl/g or less is most preferred. Further, from the viewpoint of mechanical strength, the intrinsic viscosity (Iv) is preferably 0.5 dl/g or more, more preferably 0.6 dl/g or more, still more preferably 0.7 dl/g or more, and 0.8 dl/g or more. is particularly preferred, and 0.85 dl/g or more is most preferred.
  • the intrinsic viscosity (Iv) of the resin composition is a value measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the aromatic polyester-based resin contained in the resin composition of the present invention includes condensation polymerization of an aromatic dicarboxylic acid component and a diol component.
  • the aromatic dicarboxylic acid component and the diol component preferably consist of a single compound.
  • aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc. (or derivatives thereof may also be used.).
  • a part of terephthalic acid may be substituted with "another dicarboxylic acid component".
  • other dicarboxylic acid components include oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, and p-oxybenzoic acid. etc. (or derivatives thereof may be used). These may be one kind or a mixture of two or more kinds, and the amount of the other dicarboxylic acid to be substituted can also be appropriately selected.
  • Typical examples of the above “diol component” include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, 3-methylpentadiol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol. be done.
  • 1,4-butanediol is preferable from the viewpoint of moldability of the obtained aromatic polyester resin.
  • the aromatic polyester-based resin of the present invention preferably has structural units derived from 1,4-butanediol, particularly structural units derived from a terephthalic acid component and structural units derived from 1,4-butanediol. and is preferred.
  • aromatic polyester resins in order to improve physical properties such as adjustment of crystallinity, tri- or higher functional carboxylic acid components such as trimellitic acid and pyromellitic acid and/or tri- or higher functional groups such as trimethylolpropane and pentaerythritol may be used in which a small amount of a polyol component or the like is copolymerized.
  • the aromatic polyester-based resin two or more aromatic polyesters may be mixed and used so that the pulverizability of the resin composition of the present invention is within the above range, and the same resin with a different degree of polymerization may be used. may be used.
  • aromatic polyester resin of the present invention examples include polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin. mentioned. These aromatic polyester-based resins may be used alone or in combination of two or more.
  • the aromatic polyester resin of the present invention includes polyethylene terephthalate resin, polypropylene terephthalate resin, poly Butylene terephthalate resin is preferred, polyethylene terephthalate resin and polybutylene terephthalate resin are more preferred, and polybutylene terephthalate resin (hereinafter sometimes referred to as "polybutylene terephthalate”) is particularly preferred.
  • polybutylene terephthalate include commercially available products such as the "Novaduran (registered trademark)" series manufactured by Mitsubishi Engineering-Plastics.
  • Polybutylene terephthalate has structural units derived from a terephthalic acid component and structural units derived from 1,4-butanediol.
  • the polybutylene terephthalate used in the present invention may be a homopolymer polybutylene terephthalate composed only of structural units derived from a terephthalic acid component and structural units derived from 1,4-butanediol. It may be a copolymerized polybutylene terephthalate containing a structural unit derived from an acid component, a structural unit derived from 1,4-butanediol, and a structural unit other than the above.
  • the polybutylene terephthalate used in the present invention is preferably copolymerized polybutylene terephthalate from the viewpoint of pulverizability and moldability.
  • the homopolymer polybutylene terephthalate in the present specification is one containing structural units other than the structural units derived from the terephthalic acid component and the structural units derived from 1,4-butanediol in an amount corresponding to impurities.
  • the copolymerized polybutylene terephthalate includes a structural unit derived from a terephthalic acid component and a structural unit derived from 1,4-butanediol, and a structural unit derived from another dicarboxylic acid component and/or a diol component,
  • the structural units derived from the terephthalic acid component and the structural units derived from 1,4-butanediol form the main structural components in the polybutylene terephthalate.
  • more than 50 mol% of all structural units constituting polybutylene terephthalate are composed of the above two structural units, and this ratio is more preferably 75 mol% or more. It is more preferably 85 mol % or more, and may be 88 mol % or more.
  • the upper limit of this ratio is not particularly limited, and it may be 100 mol %, that is, polybutylene terephthalate, which is a homopolymer composed only of the above two structural units.
  • Copolymerization components other than the terephthalic acid component in the polybutylene terephthalate used in the present invention include dicarboxylic acid components such as isophthalic acid, naphthalene dicarboxylic acid, and succinic acid (or derivatives thereof). are mentioned.
  • Copolymerization components of diol components other than 1,4-butanediol include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-cyclohexanedimethanol, 2,4-diethyl-1,5-pentanediol, Butylethylpropanediol, spiroglycol, tricyclodecanedimethanol, 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene and the like.
  • other copolymer components are not limited to these.
  • isophthalic acid is particularly preferably used because it is industrially readily available and polymer production is easy. A plurality of these copolymer components can be used at the same time.
  • the content of the terephthalic acid component in 100 mol% of the total dicarboxylic acid component is preferably 65 mol% or more, more preferably. is 70 mol % or more, more preferably 75 mol % or more.
  • the upper limit of the terephthalic acid component is preferably 95 mol% or less, more preferably 93 mol% or less, still more preferably 91 mol% or less.
  • the content ratio of the dicarboxylic acid component other than terephthalic acid (for example, isophthalic acid) in 100 mol % of the total dicarboxylic acid component is , preferably 5 mol % or more, more preferably 7 mol % or more, still more preferably 9 mol %.
  • the upper limit of the dicarboxylic acid (eg, isophthalic acid) component is preferably 35 mol% or less, more preferably 30 mol% or less, and still more preferably 25 mol% or less.
  • the copolymerized polybutylene terephthalate As for the copolymerized polybutylene terephthalate, 98 mol% or more, more preferably 99 mol% or more, and still more preferably 100 mol% of the total dicarboxylic acid component is preferably composed of the terephthalic acid component and the isophthalic acid component.
  • the resin composition of the present invention may contain other resins other than the aromatic polyester-based resin of the present invention as long as the effects of the present invention are not impaired.
  • resins include polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride resins, chlorinated polyethylene resins, polyester resins other than aromatic polyester resins such as polybutylene succinate resins, and polycarbonate resins.
  • Polyolefin resins such as polyamide resins, polyacetal resins, acrylic resins, ethylene vinyl acetate copolymers, polymethylpentene resins, polyvinyl alcohol resins, polybutene resins, cyclic olefin resins, polylactic acid resins, Polyacrylonitrile resin, polyethylene oxide resin, cellulose resin, polyimide resin, polyurethane resin, polyphenylene sulfide resin, polyphenylene ether resin, polyvinyl acetal resin, polybutadiene resin, polyamideimide resin, polyamide bismaleimide resin Resins, polyetherimide-based resins, polyetheretherketone-based resins, polyetherketone-based resins, polyethersulfone-based resins, polyketone-based resins, polysulfone-based resins, aramid-based resins, fluorine-based resins, and the like. These may be used alone or in combination of two or more. The blending amount of other resins is
  • the resin composition of the present invention can also contain additives that are generally blended within a range that does not significantly impair the effects of the present invention.
  • the additives include inorganic particles such as silica, alumina, and kaolin, and acrylic resins, which are added for the purpose of improving and adjusting the formability, the stability of the powder and the three-dimensional model, and various physical properties of the three-dimensional model.
  • Particles organic particles such as melamine resin particles, pigments such as titanium oxide and carbon black, flame retardants, weather stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, cross-linking agents, lubricants, nucleating agents, plasticizers agents, anti-aging agents, antioxidants, light stabilizers, UV absorbers, neutralizers, anti-fogging agents, anti-blocking agents, slip agents, and colorants.
  • organic particles such as melamine resin particles, pigments such as titanium oxide and carbon black, flame retardants, weather stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, cross-linking agents, lubricants, nucleating agents, plasticizers agents, anti-aging agents, antioxidants, light stabilizers, UV absorbers, neutralizers, anti-fogging agents, anti-blocking agents, slip agents, and colorants.
  • Flame retardants include nitrogen-based flame retardants such as melamine cyanurate, metal hydroxide flame retardants such as magnesium hydroxide and aluminum hydroxide, phosphorus-based flame retardants such as ammonium polyphosphate, melamine polyphosphate, metal phosphinate, and red phosphorus. Flame retardants, halogen-based flame retardants such as brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate, and brominated epoxy resins.
  • nitrogen-based flame retardants such as melamine cyanurate
  • metal hydroxide flame retardants such as magnesium hydroxide and aluminum hydroxide
  • phosphorus-based flame retardants such as ammonium polyphosphate, melamine polyphosphate, metal phosphinate, and red phosphorus.
  • Flame retardants halogen-based flame retardants such as brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate, and brominated epoxy resins.
  • Halogen-containing compounds pose environmental concerns, so nitrogen-based flame retardants such as melamine cyanurate, metal hydroxide flame retardants such as magnesium hydroxide and aluminum hydroxide, ammonium polyphosphate, melamine polyphosphate, Phosphorus-based flame retardants such as metal phosphinate and red phosphorus are more preferable, and from the viewpoint of the modeling principle of the powder additive manufacturing method, it is more preferable to use nitrogen-based flame retardants and phosphorus-based flame retardants. These may be used alone or in combination of two or more.
  • the content of these additives is not particularly specified, but from the viewpoint of the stability of the obtained powder for additive manufacturing and the three-dimensional structure thereof, It is preferably at least 0.01 parts by mass, more preferably at least 0.05 parts by mass, even more preferably at least 0.08 parts by mass, and particularly preferably at least 0.1 parts by mass. .
  • the upper limit of the content of the additive is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, It is more preferably 25 parts by mass or less.
  • the resin composition of the present invention or the powder of the present invention can appropriately contain reinforcing materials that are generally blended within a range that does not significantly impair the effects of the present invention.
  • specific examples of reinforcing materials include inorganic fillers and inorganic fibers. By adding reinforcing materials, they can essentially maintain the shape of the three-dimensional model throughout the processing during modeling, thus reducing the shrinkage of the model.
  • the use of stiffeners can also modify, for example, the plasticity and physical properties of the model.
  • the magnetic or electrical properties as well as the transparency and color of the build can be adjusted.
  • inorganic fillers include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloons, glass flakes, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. be done.
  • inorganic fibers include glass cut fibers, milled glass fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, and cellulose nanofibers. These may be used alone or in combination of two or more.
  • the content when the reinforcing material is contained is not particularly specified, but from the viewpoint of the strength of the three-dimensional model obtained, it is 1% by mass or more with respect to the total amount of 100% by mass of the powder for additive manufacturing. is preferred, 5% by mass or more is more preferred, and 10% by mass or more is even more preferred.
  • the content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the method for producing the resin composition of the present invention containing the aromatic polyester-based resin and the other components as required is not particularly limited as long as it contains each component.
  • the aromatic polyester resin and other components such as additives to be blended as necessary are premixed using various mixers such as a tumbler and a Henschel mixer, followed by a Banbury mixer, a roll, a Brabender,
  • the resin composition of the present invention can be produced by melt-kneading using a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or the like.
  • the inorganic particles, organic particles, and reinforcing material may be blended into a powder mixture by mixing with the powder produced by the method described below, without kneading with the aromatic polyester resin, additives, and the like.
  • Powderization means for producing the powder of the present invention include a melt granulation method in which the resin composition of the present invention melted near the melting point is made into fibers and then cut, and the resin composition of the present invention is subjected to impact and heat. There is a comminution method that cuts or breaks by applying a shearing force. In order to improve the coatability of powder in powder additive manufacturing, it is preferable not to contain fine powder of about 10 ⁇ m and to have a constant particle size and particle size distribution. A suitable powder formulation is preferably selected.
  • pulverizing means examples include stamp mills, ring mills, stone mills, mortars, roller mills, jet mills, high-speed rotating mills, hammer mills, pin mills, container-driven mills, disc mills, and medium stirring mills. .
  • the temperature of the resin during pulverization is lowered by cooling the system using liquid nitrogen, etc., and the powder is broken by brittle fracture instead of ductile fracture.
  • cryogenic grinding or freeze grinding is a method to manufacture.
  • pulverization means adopting a high-speed rotating mill that can obtain powder having a particle size distribution and shape suitable for powder additive manufacturing is effective in improving the flowability of the obtained powder and the powder applicability (dispersibility) during molding. ) is better, so it is preferred.
  • the classification method includes wind classification, sieve classification, and the like.
  • the obtained powder may be added and mixed with the above-mentioned inorganic particles or reinforcing material, if necessary.
  • a powder mixture obtained by mixing one or more kinds of inorganic particles such as fumed silica, alumina, and magnesium oxide as a flow aid to the powder obtained by pulverizing the resin composition of the present invention is powder-layered. It may also be used as a powder for modeling methods.
  • the inorganic particles as a flow aid can be used in an amount of 0.05 to 5.0 parts by mass, particularly 0.1 to 1.0 parts by mass, per 100 parts by mass of the pulverized powder of the resin composition. , is preferable from the viewpoint of compatibility between formability and fluidity improvement effect.
  • the inorganic particles to be used are preferably hard and have an average particle size of about 10 to 200 nm as measured by a laser diffraction method from the viewpoint of contributing to improvement in strength and imparting fluidity.
  • the powder obtained by pulverizing the resin composition of the present invention may optionally be irradiated with a laser, an infrared lamp, or the like in the step of forming a modeled object layer in which the powder material described later is melted and bonded.
  • carbon powder In order to absorb the energy of the powder and increase the temperature of the powder efficiently, carbon powder, ITO (indium tin oxide), ATO (antimony tin oxide) as an electromagnetic wave absorber, infrared absorbers such as cyanine dyes, aluminum and zinc Phthalocyanine dyes at the center; various naphthalocyanine compounds; nickel dithiolene complexes having a planar tetracoordination structure; squalium dyes; quinone compounds; diimmonium compounds; It may be used as a powder mixture in which natural powders are mixed.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • infrared absorbers such as cyanine dyes, aluminum and zinc Phthalocyanine dyes at the center
  • various naphthalocyanine compounds nickel dithiolene complexes having a planar tetracoordination structure
  • squalium dyes quinone compounds
  • diimmonium compounds It may be used as a powder mixture in which
  • the conductive powder as the electromagnetic wave absorber should be used in an amount of 0.1 to 10 parts by mass, particularly 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the pulverized powder of the resin composition. It is preferable in terms of formability.
  • the conductive powder to be used has an average particle size of 0.1 as measured by a dynamic light scattering method from the viewpoint of miscibility with the ground powder of the resin composition and heat transfer to the ground powder of the resin composition. It is preferably about 15 ⁇ m.
  • D50 ⁇ Physical properties of powder for additive manufacturing>
  • D50 which accounts for 50% by volume, is preferably 20 ⁇ m or more, more preferably 35 ⁇ m or more, and still more preferably 35 ⁇ m or more, from the viewpoint of coating the powder with a thickness within a predetermined range during modeling. is 30 ⁇ m or more, more preferably 40 ⁇ m or more, particularly preferably 50 ⁇ m or more, most preferably 55 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 75 ⁇ m or less, particularly preferably 70 ⁇ m or less.
  • the particle size distribution of the powder of the present invention is measured by the method described in the Examples section below.
  • the degree of compaction which is the ratio (percentage) of the difference between the loose bulk density and the hardened bulk density to the hardened bulk density, is the lower limit from the viewpoint of uniform powder filling during molding.
  • the upper limit is preferably 33% or less, more preferably 31% or less, still more preferably 29% or less, particularly preferably 27% or less, and most preferably 25% or less.
  • the compactness of the powders of the present invention is measured by the method described in the Examples section below.
  • the spread rate of the powder of the present invention is 0.6 or more, more preferably 0.65 or more, and still more preferably 0.7 or more from the viewpoint of uniform powder filling at the time of molding.
  • the upper limit of the application rate is usually 1.0.
  • the application rate of the powder of the present invention is measured by the method described in the Examples section below.
  • the three-dimensional structure of the present invention is manufactured using the powder of the present invention.
  • a method for manufacturing a three-dimensional structure according to the present invention will be described below.
  • the powder of the present invention is used and a resin molded body is obtained by molding with a three-dimensional printer.
  • molding methods using a three-dimensional printer include a material extrusion method (ME method), a powder sintering method (PBF method, SLS method), an inkjet method, and a stereolithography method (SLA method).
  • ME method material extrusion method
  • PPF method powder sintering method
  • SLS method powder sintering method
  • SLS method stereolithography method
  • SLA method stereolithography method
  • the method for producing a three-dimensional structure according to the present invention can be carried out according to a conventional method using a normal powder sintering apparatus.
  • the apparatus includes, for example, a modeling stage (modeling table), a thin layer forming means for forming a thin layer of powder material on the modeling stage, and a device that heats the formed thin layer by irradiating it with a laser.
  • a heating means that melts and bonds powder material particles to form a modeled object layer
  • a moving means that moves the modeling stage in the stacking direction (vertical direction), and these are controlled to form a thin layer, heat, and move the stage. It is possible to use a powder layered modeling apparatus having control means for stacking layers of a modeled object by repeating the movement.
  • modeling can be performed through the following steps (1) to (4) using this powder layered modeling apparatus.
  • Step of forming a thin layer of the powder material that is, the powder of the present invention.
  • Step of forming a thin layer of the powder material that is, the powder of the present invention.
  • the preheated thin layer is selectively sprayed with a melting accelerator (a component that promotes melting of the resin) and a surface decorating agent (a component that forms the outline of the layer), followed by an infrared lamp,
  • a melting accelerator a component that promotes melting of the resin
  • a surface decorating agent a component that forms the outline of the layer
  • There is also a step of irradiating the entire surface with a xenon lamp or a halogen lamp to form a modeled object layer in which the powder material is melted and bonded.
  • the step of lowering the modeling stage by the thickness of the formed object layer (4)
  • a thin layer of the powder material is formed.
  • the powder material supplied from the powder supply unit is evenly spread on the modeling stage by a recoater (blade or roll).
  • the thin layer may be formed directly on the build stage, or may be formed in contact with an already laid down powder material or an already formed build layer.
  • the thickness of the thin layer can be set according to the thickness of the object layer.
  • the thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional structure to be manufactured.
  • the thickness of the thin layer (lamination pitch) is usually about 0.01 to 0.3 mm.
  • step (2) the laser is selectively irradiated to the positions where the model layer should be formed in the formed thin layer, and the powder material in the irradiated positions is melted and bonded.
  • adjacent powder materials are fused together to form a fused body, which becomes a model layer.
  • the powder material that receives the energy of the laser melts and bonds with the layers that have already been formed, so adhesion between adjacent layers also occurs.
  • the powder material that has not been irradiated with the laser is recovered as surplus powder and reused as recovered powder.
  • a melting accelerator (a component that promotes melting of the resin) and a surface decorating agent (a component that forms the outline of the layer) are selectively sprayed, followed by an infrared lamp and xenon.
  • a lamp and a halogen lamp irradiate the whole to melt and bond the powder material.
  • the powder material that has not been fused and bonded is collected as surplus powder and reused as recovered powder.
  • step (3) the modeling stage is lowered by the thickness of the object layer formed in step (2) to prepare for the next step (1).
  • the temperature of the modeling area during powder additive manufacturing is preferably about 5 to 20° C. lower than the melting point of the resin composition used.
  • the modeling time varies depending on the size of the modeled object.
  • Terminal carboxyl amount (equivalent/ton) (ab) x 0.1 x f/w ... (I) where a is the amount ( ⁇ L) of 0.1N sodium hydroxide benzyl alcohol solution required for titration, and b is the amount ( ⁇ L) of 0.1N sodium hydroxide benzyl alcohol solution required for blank titration. ), w is the amount of polyester sample (g), and f is the titer of 0.1N sodium hydroxide in benzyl alcohol.
  • the titer (f) of a 0.1N sodium hydroxide solution in benzyl alcohol is determined by the following method. Collect 5 mL of methanol in a test tube, add 1 to 2 drops of ethanol solution of phenol red as an indicator, titrate with 0.4 mL of benzyl alcohol solution of 0.1N sodium hydroxide to the color change point, and then titrate to 0 0.2 mL of a 0.1 N hydrochloric acid aqueous solution is sampled as a standard solution and added, and titrated again with a 0.1 N sodium hydroxide benzyl alcohol solution to the discoloration point (the above operation is performed while blowing dry nitrogen gas. ).
  • Glass transition temperature (Tg) Glass transition temperature (Tg)
  • a sheet having a thickness of 1 mm was produced by heat transfer pressing at a resin temperature of 220°C.
  • the obtained sheet is measured using a viscoelastic spectrometer "DVA-200" (manufactured by IT Keisoku Co., Ltd.), measurement mode: Dynamic Temp Sweep, frequency: 1 Hz, temperature: 0 to 250 ° C. (3 ° C./min. ), the strain was measured at 0.1%, and the obtained tan ⁇ peak was taken as the glass transition temperature.
  • DVA-200 Dynamic Temp Sweep
  • Crystal melting temperature (Tm)) Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", according to JIS K7121, about 10 mg of a powder sample obtained by freeze-crushing each resin composition was heated from room temperature at a heating rate of 10 ° C./min. The temperature was raised to crystalline melting temperature (melting point Tm) + 20°C, held at this temperature for 1 minute, cooled to 30°C at a cooling rate of 10°C/min, and again heated to 280°C at a heating rate of 10°C/min. Crystal melting temperature (melting point Tm) (°C) (reheating process) was obtained from the thermogram measured at the time of heating. Each value is rounded off to the first decimal place.
  • Crystallization temperature (Tc) (°C) (cooling process) and crystal melting temperature (melting point Tm) (°C) (reheating process) were obtained from each thermogram measured at the time of measurement, and the difference was calculated. . Each value is rounded off to the first decimal place.
  • ⁇ Powder evaluation method> 5 g of powder obtained by freezing and pulverizing each resin composition was weighed, and the particle size distribution (volume basis) of the powder was measured with a particle size distribution analyzer (Horiba, Ltd., LA-960). The particle size D50 located at 50% of the powder frequency distribution was determined from the detected particle size distribution, and the particle size was evaluated according to the following criteria. AA: 50 ⁇ m or less A: More than 50 ⁇ m and 100 ⁇ m or less B: More than 100 ⁇ m
  • ⁇ Modeling evaluation method> (formability) Using a powder bed fusion printer Lisa Pro (Sinterit), the printing area (Print bed) was set to 175 ° C., the material supply part (Feed bed) was set to 135 ° C., the temperature of the cylinder and piston was set to 150 ° C., A 1BA tensile test piece conforming to JIS K7161 was produced under the condition of a lamination pitch of 0.125 mm, and the presence or absence of molding defects was observed by observing the appearance. Formability was evaluated according to the following criteria. AA: Moldable, mechanical properties can be evaluated with the obtained sample A: Moldable but very fragile, or molding accuracy is low, such as the shape of the molded object is rounder than the shape of the molding data B: Cannot be molded
  • Example 1 Polybutylene terephthalate (A-1) (Tm: 195 ° C., ⁇ Hc: 34.6 J / g, 50% embrittlement temperature: -39 ° C., other physical properties are shown in Table 1), using liquid nitrogen It was pulverized by freeze-grinding and high-speed rotary grinding. Using the obtained polybutylene terephthalate powder, D50 measurement and evaluation of grindability and fluidity were performed.
  • Table 1 shows the evaluation results of physical properties, pulverizability, spreadability, moldability, etc. of polybutylene terephthalate (A-1).
  • Polybutylene terephthalate (A-1) is a copolymerized polybutylene terephthalate composed of structural units derived from terephthalic acid, structural units derived from 1,4-butanediol, and structural units derived from isophthalic acid. The content of isophthalic acid in 100 mol % of the acid component is 20 mol %.
  • Example 2 instead of polybutylene terephthalate (A-1), polybutylene terephthalate (A-2) (Tm: 193 ° C., ⁇ Hc: 34.4 J / g, 50% embrittlement temperature: 0 ° C., other physical properties are shown in Table 1 As shown in ), powder preparation and various evaluations were performed in the same manner as in Example 1, except that the powder was used. The results are shown in Table-1.
  • Polybutylene terephthalate (A-2) is a copolymerized polybutylene terephthalate composed of a structural unit derived from terephthalic acid, a structural unit derived from 1,4-butanediol, and a structural unit derived from isophthalic acid.
  • the content of isophthalic acid in 100 mol % of the acid component is 20 mol %.
  • Example 3 instead of polybutylene terephthalate (A-1), 0.5% by mass of Adekastab AO-80 (manufactured by ADEKA) and 1.0% by weight of Adekastab PEP-36 (manufactured by ADEKA) are added to polybutylene terephthalate (A-1). % and compounded polybutylene terephthalate (A-3) (Tm: 188 ° C., ⁇ Hc: 35.0 J / g, 50% embrittlement temperature: -11 ° C., other physical properties are shown in Table 1 The powder was prepared and various evaluations were performed in the same manner as in Example 1, except that the powder was used. The results are shown in Table-1.
  • Polybutylene terephthalate (A-4) (Tm: 224 ° C., ⁇ Hc: 45.6 J / g, 50% embrittlement temperature: -50 ° C., other physical properties are shown in Table 1) instead of polybutylene terephthalate (A-1). 1.) was used, powder preparation and various evaluations were performed in the same manner as in Example 1. The results are shown in Table-1.
  • Polybutylene terephthalate (A-4) is polybutylene terephthalate composed of structural units derived from terephthalic acid and structural units derived from 1,4-butanediol.
  • polybutylene terephthalate (A-5) (Tm: 185 ° C., ⁇ Hc: 27.8 J / g, 50% embrittlement temperature: 13 ° C., other physical properties are shown in Table 1 As shown in ), powder preparation and various evaluations were performed in the same manner as in Example 1, except that the powder was used. The results are shown in Table-1.
  • Polybutylene terephthalate (A-5) is a copolymerized polybutylene terephthalate composed of structural units derived from terephthalic acid, structural units derived from 1,4-butanediol, and structural units derived from isophthalic acid. The content of isophthalic acid in 100 mol % of the acid component is 24 mol %.
  • the powder for powder additive manufacturing of the present invention contains an aromatic polyester-based resin and uses a resin composition having a specific value of 50% impact embrittlement temperature. It can be made with excellent grindability in cryogenic grinding with nitrogen.
  • the powder for additive manufacturing method of the present invention has a particle size distribution within a predetermined range, the accuracy of the thickness of the powder layer when the powder is applied in the modeling area and the filling rate of the powder into the recesses of the modeling table are improved. high. Therefore, it is excellent in uniformity when melted by a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like. As a result, it is possible to manufacture a desired three-dimensional model with good formability and high accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物を含有する粉末積層造形法用粉末であって、前記樹脂組成物は、芳香族ポリエステル系樹脂を含み、前記樹脂組成物は、JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値が、-45℃以上10℃以下の範囲に存在する、粉末積層造形法用粉末。

Description

粉末積層造形法用粉末
 本発明は芳香族ポリエステルを含む粉末積層造形法用粉末に関する。特に、本発明は粉末積層造形装置による3次元造形物の造形時の粉末層形成性に優れた粉末積層造形法用粉末に関する。本発明はまた、この粉末積層造形法用粉末に好適な樹脂組成物と、この粉末積層造形法用粉末を用いた3次元造形物に関する。
 今日、種々の付加製造方式(例えば結合剤噴射式、材料押出式、液槽光重合式等)の3次元プリンタ(以下「3Dプリンタ」と称することがある)が販売されている。
 これらの中で、粉末積層造形法(Powder Bed Fusion)式による3Dプリンタシステム、例えば米国の3D Systems社製のシステムは、樹脂などの粉末材料の薄層(粉末床)を、高出力COレーザー等の加熱手段を使用して該樹脂粉末の融点近傍の温度に加熱、溶融させ、コンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。
 加熱手段として使用されるレーザーは、粉末床の表面で断面をX-Y方向にスキャンして、粉末材料を選択的に溶融させる。3D CADデータから、一度に1レイヤーを積層し、それを繰り返して積層体を形成することにより3次元造形物を得ることができる。このシステムは、金型を使用する必要がなく、ある程度耐熱性を有するものであれば多様な樹脂粉末を原料として使用することができ、得られる造形物の信頼性も高いことから、近年注目されている技術である。
 粉末積層造形法に用いられる熱可塑性樹脂粉末の材料種としては、ナイロン12やナイロン11などのポリアミド系樹脂が広く用いられている。近年では、ナイロン12やナイロン11よりも水分を吸収しにくく、耐熱性の高い造形品を得ることができる芳香族ポリエステル系樹脂としてポリブチレンテレフタレート系樹脂も用いられている。
 熱可塑性樹脂粉末の作製手法としては、融点付近で溶融させた樹脂組成物を繊維状にした後切断する溶融造粒(特許文献1)や、樹脂組成物よりなる樹脂材料に衝撃やせん断を加えることにより切断または破壊する粉砕がある。粉砕手段としては、例えばスタンプミル、リングミル、石臼、乳鉢、ローラーミル、ジェットミル、高速回転ミル、ハンマーミル、ピンミル、容器駆動型ミル、ディスクミル、媒体撹拌ミル等が用いられている。
特許第6399165号
 粉砕手法としては、粉砕時のせん断発熱による樹脂材料の延伸を防ぐことを目的に、液体窒素などの低温液化ガスなどを使用して粉末系内を冷却することにより粉砕時の樹脂温度を下げる低温粉砕がある。低温粉砕を用いることで、常温では粉砕しにくいゴムのような弾性体の粉砕も可能となる。
 しかしながら、低温粉砕を用いた場合でも、粉砕する熱可塑性樹脂の組成や分子量によって粉砕性が異なり、希望通りの粒径の粉末を得ることができない。
 一方で、粉末積層造形法においては、その造形原理より、使用する粉末には、積層形成性(散布性)や造形性(造形精度や表面粗度)に優れることが求められる。このためには、一定の平均粒子径や粒径分布が求められるため、粉砕に供する熱可塑性樹脂には優れた粉砕性を有することが必要となる。
 本発明は、芳香族ポリエステル系樹脂を含む粉末積層造形法用粉末であって、芳香族ポリエステル系樹脂の熱特性を保持しつつ、液体窒素を用いる低温粉砕等において優れた粉砕性によって作製され、粉末積層造形時における優れた造形性を有する粉末積層造形法用粉末を提供することを課題とする。
 本発明者は、特定の要件を備えた芳香族ポリエステル系樹脂を用いることにより、これらの課題を解決できることを見出した。
 本発明の要旨は以下のとおりである。
[1] 樹脂組成物を含有する粉末積層造形法用粉末であって、
 前記樹脂組成物は、芳香族ポリエステル系樹脂を含み、
 前記樹脂組成物は、JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値が、-45℃以上10℃以下の範囲に存在する、粉末積層造形法用粉末。
[2] 前記樹脂組成物のDSCチャートにおける融解ピーク半値幅が10℃を超過する、[1]に記載の粉末積層造形法用粉末。
[3] 前記樹脂組成物の末端カルボキシル基量が10~40当量/トンである、[1]または[2]に記載の粉末積層造形法用粉末。
[4] 前記樹脂組成物のガラス転移温度(Tg)が20℃以上44℃未満である、[1]から[3]のいずれかに記載の粉末積層造形法用粉末。
[5] 無機粒子を含む、[1]から[4]のいずれかに記載の粉末積層造形法用粉末。
[6] 粒度分布としてD50が20μm以上100μm以下である、[1]から[5]のいずれかに記載の粉末積層造形法用粉末。
[7] 前記粉末積層造形法用粉末の、圧縮前のゆるめかさ密度と、ストローク高さ18mm、タッピング回数180回にて圧縮した後の固めかさ密度の測定値から、下記式(III)で算出される圧縮度の値が、25%以下である、[1]から[6]のいずれかに記載の粉末積層造形法用粉末。
 圧縮度(%)=(固めかさ密度-ゆるめかさ密度)/固めかさ密度×100
                              …(III)
[8] 前記樹脂組成物の結晶融解温度(Tm)が200℃以下である、[1]から[7]のいずれかに記載の粉末積層造形法用粉末。
[9] 前記芳香族ポリエステル系樹脂が、1,4-ブタンジオールに由来する構造を有する、[1]から[8]のいずれかに記載の粉末積層造形法用粉末。
[10] 前記芳香族ポリエステル系樹脂が、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、その他の構成単位とを含む[9]に記載の粉末積層造形法用粉末。
[11] [1]から[10]のいずれかに記載の粉末積層造形法用粉末を使用した3次元造形物。
[12] 芳香族ポリエステル系樹脂を含み、
 JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値が、-45℃以上10℃以下の範囲に存在する、樹脂組成物。
[13] DSCチャートにおける融解ピーク半値幅が10℃を超過する、[12]に記載の樹脂組成物。
[14] 末端カルボキシル基量が10~40当量/トンである、[12]または[13]に記載の樹脂組成物。
[15] ガラス転移温度(Tg)が20℃以上44℃未満である、[12]から[14]のいずれかに記載の樹脂組成物。
[16] 結晶融解温度(Tm)が200℃以下である、[12]から[15]のいずれかに記載の樹脂組成物。
[17] 前記芳香族ポリエステル系樹脂が、1,4-ブタンジオールに由来する構成単位を有する[12]から[16]のいずれかに記載の樹脂組成物。
[18] 前記芳香族ポリエステル系樹脂が、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、その他の構成単位とを含む[17]に記載の樹脂組成物。
 本発明によれば、芳香族ポリエステル系樹脂を含む粉末積層造形法用粉末であって、粉末作製時の粉砕性に優れ、特定の粒径分布を有し、粉末積層造形時の流動性、散布性、造形性に優れた粉末積層造形用粉末、および、それからなる造形精度に優れた3次元造形物を提供することができる。
<本発明が効果を奏する理由>
 本発明が上記効果を奏する理由は、未だ明らかでないが、以下のような理由と推察できる。
 すなわち、本発明の粉末積層造形法用粉末は、芳香族ポリエステル系樹脂を含む樹脂組成物の、50%衝撃ぜい化温度の値を特定の範囲内に調整することにより、粉末作製時の脆性破壊による粉砕性を向上させると共に、得られる粉末は、粒度分布が比較的シャープで特定の粒度分布を有することができる。このため、粉末積層造形法による造形時の流動性、散布性に優れ、厚みが均一で欠損(欠陥)のない均質な粉末層を形成することができる。このような粉末層にレーザー等の加熱媒体を照射することで均一な溶融状態を得、目的の3次元造形物を精度よく製造することができるものと推察できる。
 以下、本発明を実施するための形態について詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。
<樹脂組成物>
 本発明の粉末積層造形法用粉末(以下、「本発明の粉末」と称す場合がある。)に用いる樹脂組成物(以下、「本発明の樹脂組成物」と称す場合がある。)は、芳香族ポリエステル系樹脂を含むものであり、JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値(以下、単に「50%ぜい化温度」と称す場合がある。)が、-45℃以上10℃以下の範囲に存在するものである。
 本発明の樹脂組成物は、本発明の効果を損なわない程度で、芳香族ポリエステル系樹脂以外の他の樹脂や添加剤、補強材などを含むことができる。
<樹脂組成物の粉砕性>
(50%ぜい化温度)
 本発明の樹脂組成物の50%ぜい化温度は、粉砕時の生産性の観点から、10℃以下であることが好ましく、8℃以下であることがより好ましく、6℃以下であることがさらに好ましく、4℃以下であることが特に好ましく、2℃以下であることが最も好ましい。また、粉砕品の粒径および粒度分布の観点から、50%ぜい化温度は、-45℃以上であることが好ましく、-43℃以上がより好ましく、-42℃以上がさらに好ましく、-41℃以上が特に好ましく、-40℃以上が最も好ましい。
 ぜい化温度とは、プラスチックなどを冷却した時、可塑性や延性を失い、機械的衝撃に対する強度が低下して破壊されやすくなる温度のことであり、試験片の50%が破壊する温度を50%ぜい化温度という。可塑剤などの混合によりぜい化温度は低下することが知られており、50%ぜい化温度は材料の結晶性や分子量によっても変化する。
 特に、材料の結晶性の影響は大きいとされる。一般的に、プラスチックなどの高分子材料において、非結晶性樹脂の方が材料の耐衝撃性に優れることが知られている。本発明で使用される芳香族ポリエステル系樹脂は結晶性樹脂であり、その組成や分子量によって結晶性が変化する。材料の結晶性は、例えば、示差走査熱量測定(以下DSC)における結晶融解熱ΔHmや結晶融解ピーク高さに対する半値幅にて表すことができる。
<樹脂組成物の熱特性>
(結晶融解温度)
 本発明の樹脂組成物の示差走査熱量測定にて10℃/分の昇温速度で測定した際の結晶溶解温度(Tm)は、耐熱性の観点から、170℃以上が好ましく、180℃以上がより好ましく、185℃以上がさらに好ましく、190℃以上が最も好ましい。結晶溶解温度(Tm)の上限は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、280℃以下であること好ましく、255℃以下であることがより好ましく、220℃以下であることがさらに好ましく、195℃以下であることが最も好ましい。
 樹脂組成物の結晶溶解温度(Tm)は、後掲の実施例の項に記載の方法で測定される。
(結晶融解温度と降温結晶化温度の差)
 本発明の樹脂組成物を加熱速度10℃/分で示差走査熱量計にて、結晶融解温度(Tm)より30℃高い温度まで昇温し、10℃/分で降温した際の結晶化ピークの温度を降温結晶化温度(Tc)としたときの、結晶融解温度(Tm)と降温結晶化温度(Tc)の差(Tm-Tc)は、3次元造形における造形性の観点から、30℃以上或いは90℃以下であることが好ましく、40℃以上或いは80℃以下であることが好ましく、45℃以上或いは70℃以下であることが更に好ましい。
 結晶融解温度(Tm)と降温結晶化温度(Tc)の差(Tm-Tc)が30℃以上であれば、樹脂組成物の結晶化が速すぎず、3次元造形における造形物の反りを抑制することができる。このため、造形物の各層が均一に形成されるため、層間接着強度の低下が生じにくく、造形物の外観および強度が向上する。
 一方、結晶融解温度(Tm)と降温結晶化温度(Tc)の差(Tm-Tc)が90℃以下であれば、結晶化速度は遅すぎないため、3次元造形後の冷却工程において、結晶化を完了させ、耐熱性に優れる造形物を得ることができる。また、降温結晶化温度以上かつ結晶融解温度以下に設定する3次元造形において、造形条件を最適化しやすく、造形性を保つことができる。
 樹脂組成物の結晶融解温度(Tm)と降温結晶化温度(Tc)の差(Tm-Tc)は、後掲の実施例の項に記載の方法で測定される。
(結晶化熱量)
 本発明の樹脂組成物の示差走査熱量測定にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)は、造形性の観点から、70J/g以下であることが好ましく、60J/g以下であることがより好ましく、55J/g以下であることがさらに好ましく、50J/g以下であることが特に好ましく、45J/g以下であることが最も好ましい。また、耐熱性の観点から、結晶化熱量(ΔHc)は10J/g以上が好ましく、15J/g以上がより好ましく、20J/g以上がさらに好ましく、25J/g以上が特に好ましく、30J/g以上が最も好ましい。
 樹脂組成物の結晶化熱量(ΔHc)は、後掲の実施例の項に記載の方法で測定される。
(末端カルボキシル基量)
 本発明の樹脂組成物が末端カルボキシル基を含む場合、本発明の樹脂組成物の末端カルボキシル基量は、造形時のガス発生を抑制する観点から、40当量/トン以下が好ましく、38当量/トン以下がより好ましく、36当量/トン以下がさらに好ましい。また、造形性の観点から、末端カルボキシル基量は、10当量/トン以上が好ましく、12当量/トン以上がより好ましく、15当量/トン以上がさらに好ましい。
 本発明の樹脂組成物が2種以上の樹脂を含む場合、混合物の末端カルボキシル基量とする。
 樹脂組成物の末端カルボキシル基量は、後掲の実施例の項に記載の方法で測定される。
(DSCチャートにおける融解ピーク半値幅)
 本発明の樹脂組成物のDSCチャートにおける融解ピーク半値幅は、造形性の観点から、40℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましい。この融解ピーク半値幅は、粉末作製時の粉砕性の観点から、10℃を超過することが好ましく、11℃以上であることがより好ましく、12℃以上であることがさらに好ましい。
 樹脂組成物の融解ピーク半値幅は、後掲の実施例の項に記載の方法で測定される。
(ガラス転移温度(Tg))
 本発明の樹脂組成物のガラス転移温度(Tg)は、造形性の観点から、50℃以下であることが好ましく、45℃以下であることがより好ましく、44℃未満であることがさらに好ましく、43℃以下であることが特に好ましい。また、耐熱性の観点から、ガラス転移温度は、20℃以上であることが好ましく、22℃以上がより好ましく、25℃以上であることがさらに好ましい。
 樹脂組成物のガラス転移温度は、後掲の実施例の項に記載の方法で測定される。
(固有粘度)
 本発明の樹脂組成物の固有粘度(Iv)は、造形性の観点から、2.0dl/g以下が好ましく、1.8dl/g以下がより好ましく、1.7dl/g以下がさらに好ましく、1.5dl/g以下が特に好ましく、1.3dl/g以下が最も好ましい。また、機械強度の観点から、固有粘度(Iv)は、0.5dl/g以上が好ましく、0.6dl/g以上がより好ましく、0.7dl/g以上がさらに好ましく、0.8dl/g以上が特に好ましく、0.85dl/g以上が最も好ましい。
 樹脂組成物の固有粘度(Iv)は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定した値である。
<芳香族ポリエステル系樹脂>
 本発明の樹脂組成物に含まれる芳香族ポリエステル系樹脂(以下、「本発明の芳香族ポリエステル系樹脂」と称す場合がある。)としては、芳香族ジカルボン酸成分とジオール成分との縮合重合からなる樹脂であればよく、中でも、芳香族ジカルボン酸成分およびジオール成分のうち片方の成分もしくは両方の成分が単一の化合物からなるものが好ましい。
 ここで、上記の「芳香族ジカルボン酸成分」の代表的なものとしては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等(あるいはこれらの誘導体であってもよい。)が挙げられる。テレフタル酸の一部が「他のジカルボン酸成分」で置換されたものであってもよい。ここで、「他のジカルボン酸成分」としては、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ネオペンチル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、p-オキシ安息香酸など(あるいはこれらの誘導体であってもよい。)が挙げられる。これらは、1種でも2種以上の混合物であってもよく、また、置換される他のジカルボン酸の量も適宜選択することができる。
 上記の「ジオール成分」の代表的なものとしてはエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、3-メチルペンタジール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、水添ビスフェノールA、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールなどが挙げられる。これらのうち、1,4-ブタンジオールが、得られる芳香族ポリエステル系樹脂の成形加工性の観点から好ましい。
 即ち、本発明の芳香族ポリエステル系樹脂は、1,4-ブタンジオールに由来する構成単位を有するものが好ましく、特にテレフタル酸成分に由来する構成単位と1,4-ブタンジオールに由来する構成単位とを有するものが好ましい。
 芳香族ポリエステル系樹脂としては、結晶性の調整など物性を改良するために、トリメリット酸、ピロメリット酸などの三官能以上のカルボン酸成分及び/又はトリメチロールプロパン、ペンタエリスリトールなどの三官能以上のポリオール成分などが微量共重合されたものを用いてもよい。また、芳香族ポリエステル系樹脂としては、本発明の樹脂組成物の粉砕性が、上記範囲内となるように2種以上の芳香族ポリエステルを混合して用いてもよく、重合度の異なる同一樹脂の混合物を用いてもよい。
 本発明の芳香族ポリエステル系樹脂の具体例としては、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンイソフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂及びポリトリメチレンテレフタレート樹脂などが挙げられる。
 これらの芳香族ポリエステル系樹脂は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 本発明の芳香族ポリエステル樹脂としては、上述した芳香族ポリエステル系樹脂の中でも、ポリアミド系樹脂と同様の熱特性及び機械物性を得ることが可能となる観点から、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂が好ましく、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂がさらに好ましく、ポリブチレンテレフタレート樹脂(以下、「ポリブチレンテレフタレート」と称す場合がある。)が特に好ましい。
 ポリブチレンテレフタレートとしては、三菱エンジニアリングプラスチックス社製の商品名「ノバデュラン(登録商標)」シリーズ等が商業的に入手できるものとして挙げられる。
(ポリブチレンテレフタレート)
 ポリブチレンテレフタレートは、テレフタル酸成分に由来する構成単位と1,4-ブタンジオールに由来する構成単位とを有する。本発明で使用するポリブチレンテレフタレートは、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位のみから構成された単独重合体のポリブチレンテレフタレートであってもよいし、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、前記以外の他の構成単位とを含む共重合ポリブチレンテレフタレートであってもよい。本発明で用いるポリブチレンテレフタレートは、共重合ポリブチレンテレフタレートであることが、粉砕性および造形性の観点から好ましい。
 本明細書における単独重合体のポリブチレンテレフタレートは、不純物相当量のテレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位以外の他の構成単位が含まれているものを含む趣旨である。
 また、共重合ポリブチレンテレフタレートとしては、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、他のジカルボン酸成分及び/又はジオール成分に由来する構成単位を含み、テレフタル酸成分に由来する構成単位、1,4-ブタンジオールに由来する構成単位、および、他のジカルボン酸成分及び/又はジオール成分に由来する構成単位の合計が95モル%以上であるポリブチレンテレフタレート共重合体が好ましい。
 本発明で使用するポリブチレンテレフタレートは、テレフタル酸成分に由来する構成単位と1,4-ブタンジオールに由来する構成単位がポリブチレンテレフタレート中で主たる構成成分をなすことが好ましい。具体的には、ポリブチレンテレフタレートを構成する全構成単位の50モル%超が前記の2つの構成単位で構成されていることが好ましく、この割合は75モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、85モル%以上であることが一層好ましく、88モル%以上であってもよい。この割合の上限は特に制限されず、100モル%、即ち、前記2つの構成単位のみで構成された単独重合体のポリブチレンテレフタレートであってもよい。
 本発明で使用するポリブチレンテレフタレートにおける、テレフタル酸成分以外のその他の共重合成分としては、ジカルボン酸成分としてイソフタル酸、ナフタレンジカルボン酸、コハク酸など(あるいは、これらの誘導体であってもよい。)が挙げられる。1,4-ブタンジオール以外のジオール成分の共重合成分としては、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、2,4-ジエチル-1,5-ペンタンジオール、ブチルエチルプロパンジオール、スピログリコール、トリシクロデカンジメタノール、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンなどが挙げられる。ただし、その他の共重合成分はこれらに限定されるものではない。
 これらのその他の共重合成分の中ではイソフタル酸が工業的に入手しやすくポリマー製造も容易に行えることなどから、特に好ましく使用される。これらの共重合成分は同時に複数用いることもできる。
 共重合成分として、テレフタル酸以外のジカルボン酸成分を含む共重合ポリブチレンテレフタレートの場合、全ジカルボン酸成分100モル%中のテレフタル酸成分の含有割合は、好ましくは65モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは75モル%以上である。テレフタル酸成分の上限値は、好ましくは95モル%以下であり、より好ましくは93モル%以下であり、さらに好ましくは91モル%以下である。また、共重合成分として、テレフタル酸以外のジカルボン酸成分を含む共重合ポリブチレンテレフタレートの場合、全ジカルボン酸成分100モル%中のテレフタル酸以外のジカルボン酸(例えば、イソフタル酸)成分の含有割合は、好ましくは5モル%以上であり、より好ましくは7モル%以上であり、さらに好ましくは9モル%である。ジカルボン酸(例えば、イソフタル酸)成分の上限値は、好ましくは35モル%以下であり、より好ましくは30モル%以下であり、さらに好ましくは25モル%以下である。このような割合とすることにより、耐熱性が向上し、さらに、造形時の適度な結晶性を発現しやすくなる傾向にある。
 共重合ポリブチレンテレフタレートとしては、全ジカルボン酸成分のうち98モル%以上、より好ましくは99モル%以上、さらに好ましくは100モル%がテレフタル酸成分とイソフタル酸成分から構成されることが好ましい。
<その他の成分>
 本発明の樹脂組成物は、本発明の効果を損なわない範囲において、本発明の芳香族ポリエステル系樹脂以外の他の樹脂を含むことを許容することができる。
 他の樹脂としては、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩素化ポリエチレン系樹脂、ポリブチレンサクシネート系樹脂等の芳香族ポリエステル系樹脂以外のポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、アクリル系樹脂、エチレン酢酸ビニル共重合体、ポリメチルペンテン系樹脂、ポリビニルアルコール系樹脂、ポリブテン系樹脂等のポリオレフィン系樹脂、環状オレフィン系樹脂、ポリ乳酸系樹脂、ポリアクリロニトリル系樹脂、ポリエチレンオキサイド系樹脂、セルロース系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルアセタール系樹脂、ポリブタジエン系樹脂、ポリアミドイミド系樹脂、ポリアミドビスマレイミド系樹脂、ポリエーテルイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルスルホン系樹脂、ポリケトン系樹脂、ポリサルフォン系樹脂、アラミド系樹脂、及び、フッ素系樹脂等が挙げられる。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。その他の樹脂の配合量は通常、全成分の50質量%以下であり、好ましくは30質量%以下である。
 また、本発明の樹脂組成物は、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般的に配合される添加剤を適宜含むことができる。前記添加剤としては、造形性、粉末や3次元造形物の安定性および3次元造形物の諸物性を改良・調整する目的で添加される、シリカやアルミナ、カオリン等の無機粒子、アクリル系樹脂粒子やメラミン系樹脂粒子等の有機粒子、酸化チタンやカーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤、及び、着色剤などの添加剤が挙げられる。
 難燃剤としては、メラミンシアヌレートなどの窒素系難燃剤、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物難燃剤、ポリリン酸アンモニウム、ポリリン酸メラミン、ホスフィン酸金属塩、赤リンなどのリン系難燃剤、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂などのハロゲン系難燃剤が挙げられる。ハロゲンを含有する化合物は環境負荷の懸念があるという点で、メラミンシアヌレートなどの窒素系難燃剤、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物難燃剤、ポリリン酸アンモニウム、ポリリン酸メラミン、ホスフィン酸金属塩、赤リンなどのリン系難燃剤がより好ましく、粉末積層造形法の造形原理の観点から、窒素系難燃剤やリン系難燃剤を使用することがさらに好ましい。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。
 これらの添加剤の含有量は、特に規定されないが、得られる粉末積層造形法用粉末やその3次元造形物の安定性の観点から、粉末積層造形法用粉末の総量100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.08質量部以上であることがさらに好ましく、0.1質量部以上であることが特に好ましい。また、得られる3次元造形物の層間接着性低下を抑制する観点から、添加剤の含有量の上限値は、30質量部以下であることが好ましく、28質量部以下であることがより好ましく、25質量部以下であることがさらに好ましい。
 本発明の樹脂組成物又は本発明の粉末は、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般的に配合される補強材を適宜含むことができる。補強材の具体例としては、無機充填材や無機繊維が挙げられる。補強材を添加することにより、これらが造形時の処理を通じて3次元造形物の形状を本質的に維持し、ひいては該造形物の収縮を低下させることができる。また、補強材の該使用により、例えば、該造形物の可塑性および物理的性質を変更することが可能である。さらに、該造形物の透明度および色だけでなく、磁気的性質または電気性質も調整することができる。
 無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。
 無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。
 これらは1種のみで用いても2種以上を組み合わせて用いてもよい。
 ここで、補強材を含有する際の含有量は、特に規定されないが、得られる3次元造形物の強度の観点から、粉末積層造形法用粉末の総量100質量%に対して、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、得られる3次元造形物の層間接着性低下を抑制する観点から、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。
<樹脂組成物の製造方法>
 芳香族ポリエステル系樹脂と必要に応じて用いられる上記その他の成分を含む本発明の樹脂組成物の製造方法は、各成分を含有するものとなれば特に限定されない。例えば、芳香族ポリエステル系樹脂と、必要に応じて配合される添加剤等の他の成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって、本発明の樹脂組成物を製造することができる。
 無機粒子や有機粒子、補強材については、芳香族ポリエステル系樹脂及び添加剤等と混練せずに、後述の方法で製造された粉末に混合して粉末混合物として配合してもよい。
<粉末積層造形法用粉末の製造方法>
 本発明の粉末を製造するための粉末化手段としては、融点付近で溶融させた本発明の樹脂組成物を繊維状にした後切断する溶融造粒法や、本発明の樹脂組成物に衝撃やせん断力を加えることにより切断または破壊する粉砕法がある。粉末積層造形における粉末の塗布性向上のため、10μm前後の微粉末を含まないことや一定の粒子径および粒度分布を有することが好ましいことから、このような好適形状の粉末が得られるように、好適な粉末方式を選択することが好ましい。
 粉砕手段としては、例えばスタンプミル、リングミル、石臼、乳鉢、ローラーミル、ジェットミル、高速回転ミル、ハンマーミル、ピンミル、容器駆動型ミル、ディスクミル、媒体撹拌ミル等の手段を採用することができる。
 また、粉砕時のせん断発熱による樹脂材料の延伸を防ぐことを目的に、液体窒素などを使用して系内を冷却することにより粉砕時の樹脂温度を下げ、延性破壊でなく脆性破壊により粉末を作製する手法がある。これは低温粉砕または凍結粉砕などと呼ばれる。
 上記粉砕手段の中でも、粉末積層造形に適した粒度分布および形状を有する粉末を得ることが可能な高速回転ミルを採用することが、得られる粉末の流動性や造形時の粉末塗布性(散布性)がより良好となるため、好ましい。また、粉砕による樹脂材料の物性や色味の変化を抑制することからも、液体窒素を使用した凍結粉砕により、樹脂材料の脆性破壊によって粉末を作製することが好ましい。
 粉砕された粉末の中から延伸された粉末を除去して円形度を拡大する観点および微粉末を除去して取扱い時の粉末の舞い上りを防ぐ観点から、粉砕後に分級工程を行うことが好ましい。この場合、分級方法としては、風力分級、篩分級等が挙げられる。
 得られた粉末には、必要に応じて前述の無機粒子や補強材を添加混合してもよい。
 例えば、本発明の樹脂組成物を粉砕して得られた粉末に、流動助剤として、フュームドシリカ、アルミナ、酸化マグネシウム等の無機粒子の1種又は2種以上を混合した粉末混合物を粉末積層造形法用粉末として用いてもよい。この場合、流動助剤としての無機粒子は、樹脂組成物の粉砕粉末100質量部に対して0.05~5.0質量部、特に0.1~1.0質量部の範囲で用いることが、造形性と流動性向上効果との両立の面で好ましい。また、用いる無機粒子は、硬質で強度向上や流動性付与への寄与の観点からレーザー回折法により測定される平均粒径が10~200nm程度であることが好ましい。
 更に、本発明の樹脂組成物を粉砕して得られた粉末には、必要に応じて、後述する粉末材料が溶融結合してなる造形物層を形成する工程において照射されるレーザーや赤外線ランプ等のエネルギーを吸収し、粉末の温度を効率的に高めるために、電磁波吸収剤としてカーボン粉末、ITO(スズ酸化インジウム)、ATO(アンチモン酸化スズ)等の赤外線吸収剤;シアニン色素;アルミニウムや亜鉛を中心に持つフタロシアニン色素;各種ナフタロシアニン化合物;平面四配位構造を有するニッケルジチオレン錯体;スクアリウム色素;キノン系化合物;ジインモニウム化合物;アゾ化合物等の赤外線吸収色素等の1種又は2種以上の導電性粉末を混合した粉末混合物として用いてもよい。この場合、電磁波吸収剤としての導電性粉末は、樹脂組成物の粉砕粉末100質量部に対して0.1~10質量部、特に0.3~5.0質量部の範囲で用いることが、造形性の面で好ましい。また、用いる導電性粉末は、樹脂組成物の粉砕粉末との混合性や、樹脂組成物の粉砕粉末への伝熱性の観点から動的光散乱方式にて測定される平均粒径が0.1~15μm程度であることが好ましい。
<粉末積層造形法用粉末の物性>
(D50)
 本発明の粉末の粒度分布のうち、体積比率が50%を占めるD50は、造形時において粉末を所定範囲内の厚さで塗布する観点から、好ましくは20μm以上、より好ましくは35μm以上、さらに好ましくは30μm以上、よりさらに好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは75μm以下、特に好ましくは70μm以下である。
 本発明の粉末の粒度分布は、後掲の実施例の項に記載の方法で測定される。
(流動性)
 本発明の粉末の流動性として、固めかさ密度に対する、ゆるみかさ密度と固めかさ密度の差の比(百分率)である圧縮度は、造形時における均一な粉末の充填性の観点から、下限値は特に限定されないが、上限値としては、好ましくは33%以下、より好ましくは31%以下、さらに好ましくは29%以下、特に好ましくは27%以下、最も好ましくは25%以下である。
 本発明の粉末の圧縮度は、後掲の実施例の項に記載の方法で測定される。
(散布率)
 本発明の粉末の散布率は、造形時における均一な粉末の充填性の観点から0.6以上、より好ましくは、0.65以上、さらに好ましくは0.7以上である。散布率の上限は通常1.0である。
 なお、本発明の粉末の散布率は、後掲の実施例の項に記載の方法で測定される。
<3次元造形物>
 本発明の3次元造形物は、本発明の粉末を使用して製造されるものである。
 以下、本発明の3次元造形物の製造方法について説明する。
 本発明の3次元造形物の製造方法においては、本発明の粉末を用い、3次元プリンタにより成形することにより樹脂成形体を得る。3次元プリンタによる成形方法としては材料押出法(ME法)、粉末焼結方式(PBF法、SLS法)、インクジェット方式、光造形方式(SLA法)などが挙げられる。本発明においては、粉末焼結方式を用いることが特に好ましい。
 本発明の3次元造形物の製造方法は、通常の粉末焼結方式用の装置を用いて常法に従って行うことができる。
 上記装置としては、例えば、造形ステージ(造形テーブル)と、粉末材料の薄層をこの造形ステージ上に形成する薄層形成手段と、形成された薄層にレーザーを照射するなどして加熱することで、粉末材料の粒子を溶融結合させて造形物層を形成する加熱手段と、造形ステージを積層方向(上下方向)に移動させる移動手段と、これらを制御して薄層形成、加熱、ステージの移動を繰り返し行うことで、造形物層を積層させる制御手段とを有する粉末積層造形装置を用いることができる。
 例えば、レーザー加熱の場合、この粉末積層造形装置を用いて、以下の工程(1)~(4)を経て造形を行うことができる。
(1) 粉末材料、即ち、本発明の粉末の薄層を形成する工程
(2) 予備加熱された薄層にレーザー光を選択的に照射して、粉末材料が溶融結合してなる造形物層を形成する工程
 あるいは、予備加熱された薄層に選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料が溶融結合してなる造形物層を形成する工程の場合もある。
(3) 造形ステージを形成された造形物層の厚み分だけ下降させる工程
(4) 工程(1)~工程(3)をこの順に複数回繰り返し、造形物層を積層する工程
 工程(1)では、前記粉末材料の薄層を形成する。例えば、粉末供給部から供給された前記粉末材料を、リコータ(ブレード又はロール)によって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成されるか、既に敷き詰められている粉末材料又は既に形成されている造形物層の上に接するように形成される。
 薄層の厚さは、造形物層の厚さに準じて設定できる。薄層の厚さは、製造しようとする3次元造形物の精度に応じて任意に設定することができる。薄層の厚さ(積層ピッチ)は、通常0.01~0.3mm程度である。
 工程(2)では、形成された薄層のうち、造形物層を形成すべき位置にレーザーを選択的に照射し、照射された位置の粉末材料を溶融結合させる。これにより、隣接する粉末材料が溶融し合って溶融結合体を形成し、造形物層となる。このとき、レーザーのエネルギーを受け取った粉末材料は、すでに形成された層とも溶融結合するため、隣接する層間の接着も生じる。レーザーが照射されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。
 あるいは、レーザーを選択的に照射する代わりに、選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料を溶融結合させる。レーザーの場合と同様に溶融結合されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。
 工程(3)では、工程(2)で形成された造形物層の厚さ分だけ造形ステージを下降させて次の工程(1)にそなえる。
 粉末積層造形時の造形エリアの温度は、用いる樹脂組成物の融点より5~20℃程度低い温度であることが好ましい。造形時間は、造形物の大きさによって様々である。
 以下、実施例により本発明を更に詳細に説明する。本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
<樹脂組成物の物性測定方法>
(50%ぜい化温度)
 各樹脂組成物のペレットを射出成形し、熱処理によるアニール処理を行った上で、測定用試験片を作製した。JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した50%衝撃ぜい化温度の値を求めた。ぜい化温度試験のサンプルは、射出成形により作製し、熱アニールによって結晶化させたものを使用した。
(末端カルボキシル基量)
 各樹脂組成物のペレットを、本測定用に粉砕した後、熱風乾燥機を用いて120℃で15分間乾燥し、デシケーター内で室温まで冷却した試料から0.1gを精秤して試験管に採取した。ベンジルアルコール3mLを加えて、乾燥窒素ガスを吹き込みながら195℃、3分間で溶解させ、次いで、クロロホルム5mLを徐々に加えて室温まで冷却した。この溶液にフェノールレッド指示薬を1~2滴加え、乾燥窒素ガスを吹き込みながら撹拌下に、0.1Nの水酸化ナトリウムのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、樹脂組成物を溶解させずに同様の操作を実施し、以下の式(I)によって末端カルボキシル基量を算出した。
 末端カルボキシル量(当量/トン)=(a-b)×0.1×f/w
                            …(I)
 ここで、aは滴定に要した0.1Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、bはブランクでの滴定に要した0.1Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、wはポリエステル試料の量(g)、fは0.1Nの水酸化ナトリウムのベンジルアルコール溶液の力価である。
 0.1Nの水酸化ナトリウムのベンジルアルコール溶液の力価(f)は以下の方法で求められる。
 試験管にメタノール5mLを採取し、フェノールレッドのエタノール溶液を指示薬として1~2滴加え、0.1Nの水酸化ナトリウムのベンジルアルコール溶液0.4mLで変色点まで滴定し、次いで力価既知の0.1Nの塩酸水溶液を標準液として0.2mL採取して加え、再度、0.1Nの水酸化ナトリウムのベンジルアルコール溶液で変色点まで滴定する(以上の操作は、乾燥窒素ガス吹き込み下で行う。)。以下の式(II)によって力価(f)を算出できる。
 力価(f)
=0.1N塩酸水溶液の力価×0.1N塩酸水溶液の採取量(μL)/
 0.1N水酸化ナトリウムのベンジルアルコール溶液の滴定量(μL)
                             …(II)
(DSCチャートにおける融解ピーク半値幅)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、各樹脂組成物のペレット試料約10mgを窒素雰囲気下、昇温速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、1回目の昇温測定で得られたDSC曲線の解析を行い、吸熱ピークの頂点の温度を融点、吸熱ピーク立ち上がりの開始点および立ち下りの終了点を結ぶ直線をベースラインとした。また、吸熱ピークからベースラインに引いた縦軸方向の線分の中点における吸熱ピークの幅を半値幅とした。各値は、少数第一位を四捨五入して記載した。
(ガラス転移温度(Tg))
 各樹脂組成物のペレットを用いて、樹脂温度220℃で伝熱プレスにより、厚さ1mmのシートを作製した。得られたシートを、粘弾性スペクトロメーター「DVA-200」(アイティー計測制御株式会社製)を用いて、測定モード:Dynamic Temp Sweep、周波数:1Hz、温度:0~250℃(3℃/分)、ひずみ:0.1%で測定し、得られたtanδのピークをガラス転移温度とした。
(結晶融解温度(Tm))
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、各樹脂組成物を凍結粉砕した粉末試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で280℃まで昇温した時に測定されたサーモグラムからピークトップを結晶融解温度(融点Tm)(℃)(再昇温過程)を求めた。各値は、少数第一位を四捨五入して記載した。
(結晶融解温度と降温結晶化温度の差(Tm-Tc))
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、各樹脂組成物を凍結粉砕した粉末試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で280℃まで昇温した時に測定された各サーモグラムからピークトップを結晶化温度(Tc)(℃)(降温過程)と結晶融解温度(融点Tm)(℃)(再昇温過程)を求め、その差を算出した。各値は、少数第一位を四捨五入して記載した。
(結晶化熱量(ΔHc))
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、各樹脂組成物を凍結粉末した試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)(降温過程)を求めた。各値は、少数第二位を四捨五入して記載した。
<粉末の評価方法>
(D50)
 各樹脂組成物を凍結粉砕した粉末5gを計量し、粒度分布測定装置(堀場製作所社、LA-960)にて粉末の粒度分布(体積基準)を測定した。検出された粒度分布のうち粉末の度数分布50%に位置する粒径D50を求め、以下の基準にて粒径を評価した。
AA:50μm以下
A:50μm超100μm以下
B:100μm超
(粉砕性)
 各樹脂組成物を、液体窒素を使用して-100℃~-80℃に冷却し、ハンマーミルによる衝撃式粉砕によってD50が50μmになるように約120kg/hの粉砕能力で粉砕し、粉末を作製した。その際、得られた粉末および未粉砕品に対する、得られた粉末量を百分率(%)にて算出し、以下の基準にて粉砕性を評価した。
AA:得られた粉末量50%以上、かつ、粉砕中における粉砕機への負荷が低い
A:得られた粉末量50%以上
B:得られた粉末量は50%未満、あるいはD50が100μm以上で得られた
(流動性)
 各樹脂組成物を凍結粉砕した粉末を、ホソカワミクロン株式会社製のパウダテスタPT-Xを用いて、かさ密度を測定し、得られたゆるめかさ密度と固めかさ密度の値より圧縮度(%)を下記式(III)にて算出し、以下の基準にて流動性を評価した。また、固めかさ密度の測定は、ストローク高さ18mm、タッピング回数180回の条件にて行った。
 圧縮度(%)=(固めかさ密度-ゆるめかさ密度)/固めかさ密度×100
                              …(III)
A:圧縮度が25%以下
B:圧縮度が25%を超える
(散布率)
 大きさ25mm×30mm、深さ0.2mmの凹部を有するテーブルの該凹部内に各樹脂組成物を凍結粉砕した粉末と流動助剤の混合物0.3gを置いた後、該テーブル上でローラーを約64mm/秒の速度で転がすことにより該凹部内の混合物をならしたときに、該凹部測定部位に充填された混合物の面積から、該凹部面積に対する混合物の面積の値を散布率として算出した。散布率は以下の基準で評価した。
AA:70%以上
A:50%以上70%未満
B:50%未満
<造形評価方法>
(造形性)
 粉末床溶融結合方式のプリンタLisa Pro(Sinterit社)を用いて、造形エリア(Print bed)を175℃、材料供給部(Feed bed)を135℃、シリンダーおよびピストンの温度を150℃に設定し、積層ピッチ0.125mmの条件でJIS K7161に準拠した1BA形引張試験片を作製し、造形不良の有無を外観観察にて行った。造形性は以下の基準で評価した。
AA:造形可能、得られたサンプルにて機械物性評価が可能
A:造形可能であるが非常に脆い、もしくは、造形物が造形データの形状より丸みがあるなど造形精度が低い
B:造形不可
(造形物の機械物性)
 上記により作製され1BA引張試験片を用いて、初期のチャック間距離45mm、速度50mm/min、23℃で引張試験を行い、以下の基準で造形物の機械物性を評価した。
AA:30MPa以上
A:30MPa未満
B:測定不可
(総合評価)
 上記の粉砕性評価、流動性評価、散布性評価、造形性評価および機械物性評価の結果から、以下の基準により評価した。
AA:いずれか四つ以上が「AA」。ただし、いずれも「B」ではない。
A:いずれか一つ以上が「AA」。ただし、いずれも「B」ではない。
B:いずれか一つが「B」。
[実施例1]
 ポリブチレンテレフタレート(A-1)(Tm:195℃、ΔHc:34.6J/g、50%ぜい化温度:-39℃、その他の物性は表1に示す通り。)を、液体窒素を使用した凍結粉砕および高速回転粉砕により粉末化した。
 得られたポリブチレンテレフタレート粉末を用いて、D50測定と粉砕性及び流動性の評価を行った。
 また、ポリブチレンテレフタレートの粉砕粉末100質量部に、流動助剤としてアルミナ粒子(Alu CRK、AEROSIL社製、平均粒径20nm)を0.3質量部加えた混合物を用いて、散布性の評価を行った。
 さらに、流動助剤に加え、電磁波吸収剤としてカーボン粉末(ファインパウダー SGP-10、SECカーボン社製、平均粒径10μm)を、ポリブチレンテレフタレートの粉砕粉末100質量部に対し0.3質量部を加えたものを用いて、造形性及び造形物の機械物性の評価を行った。
 ポリブチレンテレフタレート(A-1)の物性、粉砕性、散布性、造形性などの評価結果を表-1に示す。
 ポリブチレンテレフタレート(A-1)は、テレフタル酸に由来する構成単位と1,4-ブタンジオールに由来する構成単位とイソフタル酸に由来する構成単位とからなる共重合ポリブチレンテレフタレートであり、全ジカルボン酸成分100モル%中のイソフタル酸の含有割合は20モル%である。
[実施例2]
 ポリブチレンテレフタレート(A-1)の代わりに、ポリブチレンテレフタレート(A-2)(Tm:193℃、ΔHc:34.4J/g、50%ぜい化温度:0℃、その他の物性は表1に示す通り。)を使用した以外は、実施例1と同様の方法で粉末の作製及び各種評価を行った。結果を表-1に示す。
 ポリブチレンテレフタレート(A-2)は、テレフタル酸に由来する構成単位と1,4-ブタンジオールに由来する構成単位とイソフタル酸に由来する構成単位とからなる共重合ポリブチレンテレフタレートであり、全ジカルボン酸成分100モル%中のイソフタル酸の含有割合は20モル%である。
[実施例3]
 ポリブチレンテレフタレート(A-1)の代わりに、ポリブチレンテレフタレート(A-1)にアデカスタブAO-80(ADEKA社製)0.5質量%と、アデカスタブPEP-36(ADEKA社製)1.0質量%とを添加してコンパウンド化したポリブチレンテレフタレート(A-3)(Tm:188℃、ΔHc:35.0J/g、50%ぜい化温度:-11℃、その他の物性は表1に示す通り。)を使用した以外は、実施例1と同様の方法で粉末の作製及び各種評価を行った。結果を表-1に示す。
[比較例1]
 ポリブチレンテレフタレート(A-1)の代わりに、ポリブチレンテレフタレート(A-4)(Tm:224℃、ΔHc:45.6J/g、50%ぜい化温度:-50℃、その他の物性は表1に示す通り。)を使用した以外は、実施例1と同様の方法で粉末の作製及び各種評価を行った。結果を表-1に示す。
 ポリブチレンテレフタレート(A-4)は、テレフタル酸に由来する構成単位と1,4-ブタンジオールに由来する構成単位からなるポリブチレンテレフタレートである。
[比較例2]
 ポリブチレンテレフタレート(A-1)の代わりに、ポリブチレンテレフタレート(A-5)(Tm:185℃、ΔHc:27.8J/g、50%ぜい化温度:13℃、その他の物性は表1に示す通り。)を使用した以外は、実施例1と同様の方法で粉末の作製及び各種評価を行った。結果を表-1に示す。
 ポリブチレンテレフタレート(A-5)は、テレフタル酸に由来する構成単位と1,4-ブタンジオールに由来する構成単位とイソフタル酸に由来する構成単位とからなる共重合ポリブチレンテレフタレートであり、全ジカルボン酸成分100モル%中のイソフタル酸の含有割合は24モル%である。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から明らかなように、本発明の粉末積層造形法用粉末は、芳香族ポリエステル系樹脂を含み、特定の50%衝撃ぜい化温度の値を有する樹脂組成物を使用するため、液体窒素を用いる低温粉砕において優れた粉砕性によって作製することができる。また、本発明の粉末積層造形法用粉末は粒度分布が所定範囲内にあるため、造形エリア内での粉末塗布時における粉末層の厚みの精度、および造形テーブルの凹部への粉末の充填率が高い。このため、レーザーあるいは赤外線ランプ、キセノンランプ、ハロゲンランプなどで溶融する際の均一性に優れる。この結果、目的の3次元造形物を、良好な造形性で精度よく製造することができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年4月28日付で出願された日本特許出願2021-076323に基づいており、その全体が引用により援用される。

 

Claims (18)

  1.  樹脂組成物を含有する粉末積層造形法用粉末であって、
     前記樹脂組成物は、芳香族ポリエステル系樹脂を含み、
     前記樹脂組成物は、JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値が、-45℃以上10℃以下の範囲に存在する、粉末積層造形法用粉末。
  2.  前記樹脂組成物のDSCチャートにおける融解ピーク半値幅が10℃を超過する、請求項1に記載の粉末積層造形法用粉末。
  3.  前記樹脂組成物の末端カルボキシル基量が10~40当量/トンである、請求項1に記載の粉末積層造形法用粉末。   
  4.  前記樹脂組成物のガラス転移温度(Tg)が20℃以上44℃未満である、請求項1に記載の粉末積層造形法用粉末。
  5.  無機粒子を含む、請求項1に記載の粉末積層造形法用粉末。
  6.  粒度分布としてD50が20μm以上100μm以下である、請求項1に記載の粉末積層造形法用粉末。
  7.  前記粉末積層造形法用粉末の、圧縮前のゆるめかさ密度と、ストローク高さ18mm、タッピング回数180回にて圧縮した後の固めかさ密度の測定値から、下記式(III)で算出される圧縮度の値が、25%以下である、請求項1に記載の粉末積層造形法用粉末。
     圧縮度(%)=(固めかさ密度-ゆるめかさ密度)/固めかさ密度
            ×100              …(III)
  8.  前記樹脂組成物の結晶融解温度(Tm)が200℃以下である、請求項1に記載の粉末積層造形法用粉末。
  9.  前記芳香族ポリエステル系樹脂が、1,4-ブタンジオールに由来する構造を有する、請求項1に記載の粉末積層造形法用粉末。
  10.  前記芳香族ポリエステル系樹脂が、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、その他の構成単位とを含む請求項9に記載の粉末積層造形法用粉末。
  11.  請求項1から10のいずれか1項に記載の粉末積層造形法用粉末を使用した3次元造形物。
  12.  芳香族ポリエステル系樹脂を含み、
     JIS K7216に記載のぜい化温度試験により、保持時間3分、温度刻み間隔5℃、-70℃~25℃の範囲にて測定した樹脂組成物の50%衝撃ぜい化温度の値が、-45℃以上10℃以下の範囲に存在する、樹脂組成物。
  13.  DSCチャートにおける融解ピーク半値幅が10℃を超過する、請求項12に記載の樹脂組成物。
  14.  末端カルボキシル基量が10~40当量/トンである、請求項12に記載の樹脂組成物。
  15.  ガラス転移温度(Tg)が20℃以上44℃未満である、請求項12に記載の樹脂組成物。
  16.  結晶融解温度(Tm)が200℃以下である、請求項12に記載の樹脂組成物。
  17.  前記芳香族ポリエステル系樹脂が、1,4-ブタンジオールに由来する構成単位を有する、請求項12に記載の樹脂組成物。
  18.  前記芳香族ポリエステル系樹脂が、テレフタル酸成分に由来する構成単位および1,4-ブタンジオールに由来する構成単位と、その他の構成単位とを含む、請求項17に記載の樹脂組成物。

     
PCT/JP2022/018723 2021-04-28 2022-04-25 粉末積層造形法用粉末 WO2022230807A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22795720.6A EP4331820A1 (en) 2021-04-28 2022-04-25 Powder for powder lamination molding
JP2023517508A JPWO2022230807A1 (ja) 2021-04-28 2022-04-25
US18/378,225 US20240034834A1 (en) 2021-04-28 2023-10-10 Powder for powder additive manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076323 2021-04-28
JP2021076323 2021-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/378,225 Continuation US20240034834A1 (en) 2021-04-28 2023-10-10 Powder for powder additive manufacturing

Publications (1)

Publication Number Publication Date
WO2022230807A1 true WO2022230807A1 (ja) 2022-11-03

Family

ID=83847176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018723 WO2022230807A1 (ja) 2021-04-28 2022-04-25 粉末積層造形法用粉末

Country Status (4)

Country Link
US (1) US20240034834A1 (ja)
EP (1) EP4331820A1 (ja)
JP (1) JPWO2022230807A1 (ja)
WO (1) WO2022230807A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940765A (ja) * 1995-07-27 1997-02-10 Teijin Ltd 光ファイバールースチューブ用樹脂組成物及び製造方法
JP2008050583A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物
JP6399165B1 (ja) 2016-07-22 2018-10-03 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
JP2021076323A (ja) 2019-11-12 2021-05-20 日立グローバルライフソリューションズ株式会社 冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940765A (ja) * 1995-07-27 1997-02-10 Teijin Ltd 光ファイバールースチューブ用樹脂組成物及び製造方法
JP2008050583A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物
JP6399165B1 (ja) 2016-07-22 2018-10-03 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
JP2021076323A (ja) 2019-11-12 2021-05-20 日立グローバルライフソリューションズ株式会社 冷蔵庫

Also Published As

Publication number Publication date
US20240034834A1 (en) 2024-02-01
EP4331820A1 (en) 2024-03-06
JPWO2022230807A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
Sang et al. Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties
He et al. Super-toughened poly (lactic acid)/thermoplastic poly (ether) urethane nanofiber composites with in-situ formation of aligned nanofibers prepared by an innovative eccentric rotor extruder
Chen et al. Poly (lactic acid)/poly (butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: Analysis of mechanical properties, morphology, and crystallization behavior
US20070182070A1 (en) Use of polymer powder produced from a dispersion in a shaping process, and moldings produced from this polymer powder
JP6693755B2 (ja) 溶融積層型3dプリンタ用光沢性フィラメント
Mohapatra et al. Poly (lactic acid) and layered silicate nanocomposites prepared by melt mixing: Thermomechanical and morphological properties
KR20090024713A (ko) 폴리락트산계 조성물로 이루어지는 성형품
Pivsa-Art et al. Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application
CN103732685A (zh) 生物可降解聚合物共混物
Berthet et al. Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites
Mu et al. Mechanical and thermal properties of toughened poly (L-lactic) acid and lignin blends
Luo et al. Mechanical and thermal performance of distillers grains filled poly (butylene succinate) composites
Yang et al. Morphologies, mechanical properties and thermal stability of poly (lactic acid) toughened by precipitated barium sulfate
Yang et al. Novel AIE luminescent tetraphenylethene-doped poly (lactic acid) composites for fused deposition modeling and their application in fluorescent analysis of 3D printed products
JP2007217513A (ja) ポリ乳酸系樹脂組成物および成形品
KR20050057644A (ko) 수지 조성물의 제조방법
Kuang et al. A simple, low-cost, and green method for preparing strong, tough, and ductile poly (lactic acid) materials with good transparency and heat resistance
Spörk et al. Properties of glass filled polypropylene for fused filament fabrication
KR20230156934A (ko) 재활용 중합체 조성물 및 이의 방법
CN111566161A (zh) 用于3d打印的改进的长丝
WO2022230807A1 (ja) 粉末積層造形法用粉末
JP2023501423A (ja) 付加製造用の改良された粉末
JP7337219B1 (ja) 粉体造粒物
US11426903B2 (en) Powdery liquid-crystal resin for press-molded article, press-molded article, and production method therefor
KR101685760B1 (ko) 도색성 및 충격강도가 향상된 3차원 프린터 필라멘트용 생분해성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517508

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022795720

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795720

Country of ref document: EP

Effective date: 20231128