WO2022230356A1 - 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム - Google Patents

予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム Download PDF

Info

Publication number
WO2022230356A1
WO2022230356A1 PCT/JP2022/009042 JP2022009042W WO2022230356A1 WO 2022230356 A1 WO2022230356 A1 WO 2022230356A1 JP 2022009042 W JP2022009042 W JP 2022009042W WO 2022230356 A1 WO2022230356 A1 WO 2022230356A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
movement
control
movement data
incineration
Prior art date
Application number
PCT/JP2022/009042
Other languages
English (en)
French (fr)
Inventor
圭太 山本
裕司 白石
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to CN202280030887.1A priority Critical patent/CN117203469A/zh
Publication of WO2022230356A1 publication Critical patent/WO2022230356A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Definitions

  • the present invention relates to a prediction device and the like for predicting properties of incineration objects to be incinerated in an incinerator.
  • Patent Document 1 describes detecting a bridge based on a hopper level that is periodically measured.
  • the garbage put into the hopper is sequentially sent to the incinerator by the dust feeder and incinerated, but the method of combustion differs depending on the properties of the sent garbage.
  • the temperature in the incinerator may drop if wet refuse containing a lot of moisture is fed into the incinerator.
  • the temperature inside the incinerator may rise when dry, combustible waste is fed into the incinerator. This is a common phenomenon when incinerating any object to be incinerated, not just garbage.
  • One aspect of the present invention has been made in view of the above problems, and its purpose is to provide a prediction device that contributes to improving the operation of incineration facilities.
  • a prediction device provides an incineration facility in which objects to be incinerated put into a hopper are fed into an incinerator at a specified speed.
  • a movement data generation unit for generating movement data indicating the movement state of the object to be incinerated from a plurality of images in series; a prediction unit that predicts properties of the incineration target.
  • a facility control device provides an incineration facility in which objects to be incinerated put into a hopper are fed into an incinerator at a specified speed, and the hopper is moved from above.
  • a movement data generation unit that generates movement data indicating the movement state of the object to be incinerated from a plurality of captured time-series images, and the movement data and the speed generated by the movement data generation unit, ( 1) control of input of the object to be incinerated into the hopper, (2) control of the speed, (3) control of the transportation speed of the object to be incinerated in the incinerator, and (4) control of the object to be incinerated in the incinerator.
  • a device control unit that performs at least one of control of combustion of the object and (5) control of agitation of the object to be incinerated.
  • a prediction method is a method of predicting properties of an incineration object that is executed by one or a plurality of information processing devices, and comprises: generating movement data indicating the movement state of the object to be incinerated from a plurality of time-series images of the hopper taken from above in an incineration facility that feeds the object into the incinerator at a specified speed; predicting properties of the object to be incinerated based on the movement data and the velocity obtained.
  • a facility control method is a facility control method executed by one or more information processing devices, wherein an incineration object thrown into a hopper is specified. a step of generating movement data indicating a movement state of the object to be incinerated from a plurality of time-series images of the hopper photographed from above in an incineration facility in which the object is fed into the incinerator at a high speed; and the movement data generated in the step.
  • FIG. 1 is a block diagram showing an example of a configuration of a main part of a prediction device according to Embodiment 1 of the present invention
  • FIG. It is a figure which shows the structural example of the facility control system containing the said prediction apparatus. It is a figure which shows the example of the determination method of the presence or absence of dust. It is a figure which shows the example of the production
  • FIG. 2 is a diagram showing a configuration example of the facility control system 100. As shown in FIG. FIG. 2 shows an example in which the facility control system 100 is applied to a waste incineration facility. Note that the facility control system 100 can be applied to any incineration facility that incinerates any incineration target, not limited to garbage.
  • the garbage incineration facility shown in FIG. 2 is provided with a garbage pit B for storing garbage G and an incinerator C for incinerating the garbage G.
  • Garbage G in the garbage pit B is thrown into the hopper A by a crane.
  • An inclined surface A1 is formed on the upper part of the hopper A so as to spread outward, and the garbage G slides down on this inclined surface A1 and enters the hopper A, where it is temporarily accommodated. Then, the garbage G in the hopper A is sequentially fed into the incinerator C from the opening A2 at the bottom thereof and incinerated.
  • the facility control system 100 is a system that predicts the properties of garbage to be incinerated in the incinerator C, and includes a prediction device 1 and an imaging device 2.
  • the photographing device 2 is arranged above the hopper A, and photographs the hopper A from above at predetermined time intervals. Then, the prediction device 1 acquires each image captured by the imaging device 2, and uses these images to predict the properties of garbage to be incinerated.
  • the imaging device 2 captures a plurality of time-series images of the hopper A. Then, the prediction device 1 determines the property of the dust based on movement data indicating the movement state of the dust G during the period in which the plurality of images were captured, which is generated from the plurality of time-series images captured by the imaging device 2. to predict.
  • the inventors of the present invention found that differences in the properties of the objects to be incinerated appear as differences in the state of movement of the objects to be incinerated. For example, even if the speed at which incinerators are fed into the incinerator is the same, incinerators with a high water content that are difficult to burn have a higher movement rate per unit time in the hopper than those that have a low moisture content and are more flammable. It was found that the amount tends to increase.
  • the prediction device 1 predicts the properties of garbage based on this knowledge. That is, since the difference in the properties of the dust appears as the difference in the moving state of the dust reflected in the image, the above configuration makes it possible to predict the properties of the dust. And since grasping
  • the prediction device 1 controls the equipment in the waste incineration facility based on the prediction result of the properties of the waste. This makes it possible to perform proper control according to the properties of the waste and contribute to the improvement of the operation of the incineration facility.
  • the equipment in the waste incineration facility may be controlled by an operator or the like of the waste incineration facility. In this case, the prediction device 1 may output the prediction result of the property of the waste to the operator or the like. In this case, the prediction device 1 does not need to control the device.
  • the installation location of the prediction device 1 is not particularly limited. For example, it may be installed in a garbage incineration facility, or may be installed in a monitoring center that monitors multiple garbage incineration facilities.
  • FIG. 2 shows an example in which one prediction device 1 predicts the properties of waste at one waste incineration facility. It is also possible to In this case, for example, the prediction device 1 may be used as a cloud server.
  • FIG. 1 is a block diagram showing an example of the main configuration of the prediction device 1.
  • the prediction device 1 includes a control unit 10 that controls each unit of the prediction device 1 and a storage unit 11 that stores various data used by the prediction device 1 .
  • the prediction device 1 also includes a communication unit 12 for communication between the prediction device 1 and other devices, an input unit 13 for receiving input of various data to the prediction device 1, and an output unit for the prediction device 1 to output various data. 14.
  • the control unit 10 includes a data acquisition unit 101, a determination unit 102, a movement data generation unit 103, a standard movement amount calculation unit 104, a property prediction unit (prediction unit) 105, an effect prediction unit 106, and a device control unit 107.
  • a data acquisition unit 101 includes a data acquisition unit 101, a determination unit 102, a movement data generation unit 103, a standard movement amount calculation unit 104, a property prediction unit (prediction unit) 105, an effect prediction unit 106, and a device control unit 107.
  • An image DB 111 and a standard movement amount calculation formula 112 are stored in the storage unit 11 .
  • the data acquisition unit 101 acquires a plurality of time-series images of the hopper A photographed from above. As described above, in the facility control system 100, the photographing device 2 photographs a plurality of time-series images of the hopper A photographed from above. good.
  • the data acquisition unit 101 may acquire an image from the imaging device 2 through communication via the communication unit 12 or may acquire an image input through the input unit 13 .
  • the data acquisition unit 101 records the acquired image in the image DB 111 .
  • the imaging device 2 may be one that captures moving images. In this case, the data acquisition unit 101 may acquire a plurality of time-series images (for example, frame images at predetermined time intervals) from the moving images captured by the imaging device 2 .
  • the determination unit 102 determines whether dust appears in the target area of the image acquired by the data acquisition unit 101, which is the target of analysis for predicting the properties of dust. The details of the dust determination method in the target area will be described later with reference to FIG.
  • the movement data generation unit 103 generates movement data indicating the movement state of the garbage during the period in which the images were captured from the plurality of time-series images acquired by the data acquisition unit 101 and recorded in the image DB 111 . Details of the movement data generation method will be described later with reference to FIG.
  • the standard movement amount calculation unit 104 specifies the speed at which waste is sent into the incinerator, that is, the dust feeding speed. Then, the standard movement amount calculation unit 104 uses the standard movement amount calculation formula 112 from the specified dust feeding speed to calculate the standard movement amount of the waste when the waste is sent into the incinerator at the specified dust feeding speed. (hereinafter referred to as a standard movement amount) is calculated.
  • the standard movement amount calculation formula 112 is a formula that indicates the relationship between the dust feeding speed and the standard movement amount of the waste when the waste is fed into the incinerator at the dust feeding speed. Details of the standard movement amount calculation formula 112 and the standard movement amount calculation method using this will be described later with reference to FIG.
  • the property prediction unit 105 predicts the properties of the garbage to be incinerated based on the movement data generated by the movement data generation unit 103 and the dust feeding speed. Specifically, the property prediction unit 105 calculates the difference between the movement amount indicated by the movement data generated by the movement data generation unit 103 and the standard movement amount calculated by the standard movement amount calculation unit 104 to predict the property of the dust. Calculate as a result.
  • the effect prediction unit 106 predicts the effect of incinerating the waste on the combustion state of the incinerator based on the properties of the waste predicted by the property prediction unit 105 .
  • the prediction result output by the influence prediction unit 106 may indicate the magnitude of the influence on the combustion state. For example, if the magnitude of the influence on the combustion state is expressed in four stages of large, medium, small, and no influence, the influence prediction unit 106 may output information indicating which stage as the prediction result. In addition, the influence prediction unit 106 may output the predicted value of the combustion state (for example, the predicted value of the lower heating value) as the prediction result. Prediction of the influence on the combustion state will be described later with reference to FIG.
  • the equipment control unit 107 controls the equipment of the waste incineration facility based on the prediction results of the impact prediction unit 106. For example, the device control unit 107 controls (1) control of the introduction of waste into the hopper, (2) control of the speed of feeding dust, (3) control of the speed of conveying waste in the incinerator (grate speed), and (4) ) controlling the combustion of waste in the incinerator.
  • the dust feeding speed may be increased when it is desired to promote combustion, and the dust feeding speed may be decreased when it is desired to suppress combustion.
  • the grate velocity in (3) above it may be effective to apply at least one of lowering the dust supply speed and lowering the grate speed as control for promoting combustion.
  • garbage combustion control can be realized by, for example, controlling the amount of heating by a burner and the amount of combustion air supplied.
  • the amount of combustion air supplied should be reduced.
  • the garbage that appears when the hopper is photographed from above was in the garbage pit until immediately before, and it is possible to identify where in the garbage pit the garbage was picked up. Therefore, it is possible to predict the property distribution of the dust in the dust pit from the prediction result of the property prediction unit 105 or the prediction result of the influence prediction unit 106 .
  • the device control unit 107 may control the agitation of the dust in the dust pit based on this property distribution. For example, the device control unit 107 may perform control so that the agitation is preferentially performed in the area where the hard-to-burn dust is distributed, or the dust in the area where the hard-to-burn dust is distributed and the easy-to-burn dust are separated. It may be homogenized by mixing and agitating the dust in the distributed area. Garbage agitation is a process to improve the properties of garbage (especially its flammability). .
  • the prediction device 1 includes the movement data generation unit 103 and the property prediction unit 105.
  • the movement data generating unit 103 generates movement data indicating the movement state of the waste from a plurality of time-series images of the hopper taken from above in an incineration facility that feeds the waste thrown into the hopper into the incinerator at a designated dust feeding speed. Generate data.
  • the property prediction unit 105 predicts the property of dust based on the generated movement data and dust feeding speed.
  • the difference in the properties of dust appears as the difference in the moving state of the dust in the image, so according to the above configuration, the properties of the dust can be predicted. And since grasping the property of refuse is useful for the proper operation of an incineration facility, according to said structure, it can contribute to the improvement of the operation of an incineration facility.
  • movement data can be generated if there are two images taken at different timings. Therefore, there is no need to perform machine learning or the like, and operation of the prediction device 1 can be started immediately at the waste incineration facility.
  • the properties of the dust can be predicted without any particular influence.
  • dirt will adhere to the lens of the imaging device 2 installed in the waste incineration facility. Limited. That is, the facility control system 100 including the prediction device 1 has the advantage of being easy to introduce and capable of stable operation.
  • FIG. 3 is a diagram showing an example of a method for determining the presence or absence of dust.
  • An image D shown in FIG. 3 is an image of the hopper taken from above. Image D shows dust sliding down the sloping surface of the hopper, but the entire sloping surface is not covered with dust. Specifically, dust is shown in the region d2 on the downstream side of the inclined surface of the hopper, but no dust is shown in the region d1 on the upstream side.
  • the movement data generation unit 103 generates movement data for an area such as area d1 where no dust is shown, the amount of movement indicated by the movement data may be zero or a value close to zero. Then, when the movement amount becomes zero or a value close to zero, there is a possibility of outputting an erroneous prediction result for dust that does not actually exist.
  • the prediction device 1 is equipped with a determination unit 102 .
  • the determination unit 102 determines whether or not dust appears in the target area in the image.
  • the movement data generation unit 103 generates movement data indicating the amount of movement between images in which the determination unit 102 determines that dust appears in the target area.
  • an image in which an object is not shown in the target area is not used for predicting the properties of dust, so that the above-described erroneous prediction can be prevented.
  • Whether or not dust is present may be determined using the photographed image, or may be determined after performing predetermined image processing on the photographed image to make it easier to determine the presence or absence of dust.
  • Examples of the image processing include the Canny method.
  • the Canny method is an algorithm for edge detection in images.
  • An image D1 shown in FIG. 3 is an image generated by edge detection from the image D by the Canny method.
  • the appearance of refuse is generally much more complex than the hopper surface geometry. For this reason, in the example of FIG. 3, a larger number of edges are detected in the area d2 where the dust appears compared to the area d1 where the dust does not appear.
  • the determination unit 102 detects edges by applying the Canny method to an image of the hopper, and determines that an image in which the number of edges detected in the target region is equal to or greater than a threshold is an image containing dust. An image in which the number of edges detected in a is less than a threshold value may be determined as an image in which dust is not captured.
  • the determination unit 102 may determine the presence or absence of dust by analyzing at least one of the luminance value and RGB value of each pixel forming the image. Further, for example, the determination unit 102 may determine the presence or absence of dust using a trained model (for example, a neural network model) that is trained to determine the presence or absence of dust.
  • a trained model for example, a neural network model
  • FIG. 4 is a diagram illustrating an example of a method of generating movement data. More specifically, FIG. 4 shows movement data indicating the state of movement of waste between an image E1 taken on the hopper slope at time t and an image E2 taken on the hopper slope at time t+ ⁇ t.
  • An example of generating F by the image correlation method is shown.
  • the y direction is the direction in which the waste descends, that is, the direction from the upstream side to the downstream side of the inclined surface of the hopper (see inclined surface A1 in FIG. 2)
  • the x direction is the y direction on the inclined surface. It is the direction perpendicular to the direction.
  • the image correlation method is a method of calculating the amount of movement of each particle in each image by image processing for two images in time series, and representing the calculated amount of movement as a vector. For example, in the image E1, the dust surrounded by the dashed line appears at the position e1, but in the image E2, it appears at the position e2 below the position e1. The moving state of this dust is expressed in the moving data F as a vector f1 indicating the displacement from the position e1 to the position e2. Also, vectors are similarly calculated for other positions.
  • the movement data F represents the movement state of the dust at each position in the images E1 and E2. Specifically, from the movement data F, it can be seen that the dust at each position in the images E1 and E2 is moving in the y direction (downstream of the inclined surface of the hopper, that is, in the downward direction).
  • vectors whose y-direction component values are equal to or greater than the threshold are indicated by solid-line arrows, and vectors whose values are less than the threshold are indicated by dashed-line arrows. This also shows that there are positions where the dust moves fast and positions where the dust moves slowly.
  • the movement data generation unit 103 determines that the image elements appearing at each of a plurality of predetermined positions set on the inclined surface appearing in the images E1 and E2 are moved downward between the images E1 and E2. Movement data indicating the amount of movement may be generated.
  • the sloping surface of the hopper On the sloping surface of the hopper, the refuse slides down in roughly the same descending direction, so the sloping surface of the hopper is a suitable position for judging whether the refuse is descending smoothly or stagnating. . Therefore, according to the above configuration, it is possible to generate movement data that accurately indicates whether the dust is descending smoothly or is stagnating. By predicting the properties of the dust using this movement data, highly reliable prediction can be performed. This is because, as described above, the difference in the properties of dust appears as the difference in the moving state of the dust reflected in the image.
  • the movement data may also be collectively generated for image portions other than inclined surfaces.
  • the property prediction unit 105 may predict the property of the dust using the movement data within the target area set to the portion where the inclined surface is shown, among the movement data generated by the movement data generation unit 103 .
  • the target area may be the area in which the direction of movement of the dust is generally the same, and an area other than the inclined surface may be the target area.
  • the area on the inner surface that connects with the inclined surface on the downstream side of the inclined surface (usually extending in the vertical direction) may be the target area.
  • a region including both parts may be the target region.
  • the movement data is not limited to the above examples as long as it indicates the movement state of the garbage.
  • the speed of movement of dust may be used as movement data.
  • a difference image showing the difference between two images taken at different times may be used as the movement data.
  • FIG. 5 is a diagram showing the relationship between the dust feeding speed and the amount of movement.
  • Graph H shown in Fig. 5 plots the amount of movement of various types of waste measured at various dust feeding speeds at a certain waste incineration facility.
  • the upper side of the graph H shows a histogram h1 showing the distribution of the dust feeding speed
  • the right side of the graph H shows a histogram h2 showing the distribution of the movement amount.
  • the amount of movement is the amount of movement in the downward direction of the dust that appears between two time-series images of the dust.
  • the prediction device 1 stores such a regression formula in the storage unit 11 as the standard movement amount calculation formula 112 .
  • the property prediction unit 105 may calculate the difference between the movement amount indicated by the movement data generated by the movement data generation unit 103 and the standard movement amount of the dust as the prediction result.
  • the difference between the amount of movement indicated by the movement data and the standard amount of movement indicates the flammability of the waste. Therefore, according to the above configuration, it is possible to calculate a value indicating the flammability of garbage as a prediction result.
  • the movement amount indicated by the movement data generated by the movement data generation unit 103 is y1 when the current dust feeding speed is x1.
  • a combination of the dust feeding speed and the movement amount is represented by a point h4 on the graph plane of the graph H in FIG.
  • the impact prediction unit 106 may classify the dust according to the value of y' and output the classification result as the prediction result. For example, the effect prediction unit 106 may predict that there is an effect on the combustion state when the value of y' calculated by the property prediction unit 105 is plotted within the region h5 or h6. The influence prediction unit 106 may determine the magnitude of the influence according to the magnitude of the value of y'. Further, the influence prediction unit 106 may predict that there is no influence on the combustion state when plotted in the area between the areas h5 and h6.
  • the combustion state prediction method is not limited to the above example, as long as a method suitable for the combustion state to be predicted is used as appropriate.
  • the influence prediction unit 106 may predict the lower heating value. In this case, the correlation between the value of y' and the lower heating value should be formulated. Then, the effect prediction unit 106 may predict the lower heating value using the formula.
  • the method of obtaining the standard movement amount is not limited to the above example.
  • the dust feeding speed is divided into multiple numerical ranges, and the standard may be calculated in advance.
  • the standard amount of movement may be, for example, the average value or median value of the amount of movement in each segment.
  • the standard movement amount calculator 104 may specify the standard movement amount according to which category the current dust feeding speed belongs to.
  • the standard amount of movement may be obtained using a non-linear model such as a neural network.
  • a standard moving amount prediction model is prepared in advance by machine-learning the relationship between the dust feeding speed and the standard moving amount. Then, the standard movement amount calculation unit 104 may calculate the standard movement amount by inputting the dust feeding speed into this standard movement amount prediction model.
  • FIG. 6 is a flowchart showing an example of processing executed by the prediction device 1. As shown in FIG. Note that the processing in FIG. 6 is performed, for example, each time the imaging device 2 captures a new image.
  • the data acquisition unit 101 acquires time-series images of the hopper taken from above, and records them in the image DB 111 . As described above, these images are captured by the imaging device 2 (see FIG. 2), so the data acquisition unit 101 may acquire the images captured by the imaging device 2 .
  • the determination unit 102 determines whether or not dust appears in the target area in the image acquired in S1.
  • the method for determining whether or not dust appears in the target area is the same as described with reference to FIG. 3, so the description will not be repeated here. If the determination in S2 is YES, the process proceeds to S3, and if the determination in S2 is NO, the process of FIG. 6 ends.
  • the movement data generation unit 103 In S3 (a step of generating movement data), the movement data generation unit 103 generates movement data indicating the movement state of the garbage to be incinerated from the image acquired in S1 and the image captured before the image. to generate For example, when an image shot at time t+ ⁇ t is acquired in S1, the movement data generation unit 103 reads the image shot at time t from the image DB 111 . Then, the movement data generation unit 103 generates movement data indicating the movement state of the dust during the period from time t to time t+ ⁇ t. Since the method of generating movement data is as described with reference to FIG. 4, the description will not be repeated here.
  • the standard movement amount calculation unit 104 identifies the dust feeding speed and calculates the standard movement amount using the standard movement amount calculation formula 112 from the identified dust feeding speed. It should be noted that the user of the prediction device 1 may input the value at which the dust supply speed is set via the input unit 13, or the controller of the waste disposal facility via the communication unit 12. may be identified by communicating with
  • the property prediction unit 105 predicts the property of the garbage to be incinerated. More specifically, the property prediction unit 105 calculates the movement amount indicated by the movement data generated by the movement data generation unit 103 in S3 and the standard movement amount calculated by the standard movement amount calculation unit 104 using the dust feeding speed in S4. is calculated as the prediction result. As described above, since the standard movement amount is calculated using the dust feeding speed, it can be said that in S5, the property prediction unit 105 predicts the property of the dust based on the movement data and the dust feeding speed. .
  • the impact prediction unit 106 predicts the impact of incinerating the waste on the combustion state of the incinerator based on the properties of the waste predicted by the property prediction unit 105 in S5. It should be noted that the prediction of the combustion state is not essential, and it is also possible to perform the processing after S7 based on the prediction result of S5.
  • the device control unit 107 determines whether or not to perform control to maintain a good combustion state in the incinerator, based on the prediction result of S6. If the determination in S7 is YES, the process proceeds to S8, and in S8, the equipment control section 107 performs control to maintain a good combustion state in the incinerator. On the other hand, if the determination in S7 is NO, the process in FIG. 6 ends without performing the process in S8.
  • the criteria for determination in S7 may be determined in advance, and the method for determining the details of control in S8 may also be determined in advance. For example, when predicting the magnitude of the effect on the combustion state in four stages of large, medium, small, and no effect, if the prediction result is other than no effect, control is performed (determined as YES in S7). may Then, the device control section 107 may increase the amount of control for promoting or suppressing combustion as the effect on the combustion state is predicted to be greater.
  • the device control unit 107 may determine whether to perform control to promote or suppress combustion, for example, as follows. First, the device control unit 107 determines that the movement amount indicated by the movement data generated by the movement data generation unit 103 in S3 is greater than the standard movement amount calculated by the standard movement amount calculation unit 104 using the dust feeding speed in S4. is also greater. In this determination, if it is determined that the amount of movement indicated by the movement data generated by the movement data generating unit 103 is larger, the dust is considered to be dust that has a higher moisture content than standard dust and is difficult to burn. Therefore, the device control section 107 may decide to perform control to promote combustion (for example, control to increase heating by the burner or increase the amount of combustion air).
  • control to promote combustion for example, control to increase heating by the burner or increase the amount of combustion air.
  • the dust is considered to be combustible because it has less moisture content than the standard dust. , control to reduce the amount of combustion air). Thereby, the combustion state in the incinerator can be maintained in a good state.
  • control may be performed in consideration of the time lag until the waste put into the hopper is sent to the incinerator.
  • the device control unit 107 calculates the time required for the waste thrown into the hopper to be sent to the incinerator using the dust feeding speed and the like, and when the time elapses, the waste reaches the predicted combustion state. You may perform control according to the influence of .
  • the device control unit 107 may perform control so that the timing at which the control result is reflected in the combustion state is the same as or earlier than the timing at which the waste is sent into the incinerator.
  • the device control unit 107 may be configured to determine the control content from the prediction result of the property prediction unit 105. In this case, the processing of S6 is omitted, and the influence prediction unit 106 becomes unnecessary.
  • the prediction method includes step (S3) and step (S5).
  • step (S3) in an incineration facility that feeds the waste thrown into the hopper into the incinerator at a specified dust feeding speed, the state of movement of the waste is shown from a plurality of time-series images of the hopper taken from above. Generate movement data.
  • step (S5) properties of the garbage to be incinerated are predicted based on the movement data generated in step (S3) and the dust feeding speed. This prediction method can contribute to improving the operation of incineration facilities.
  • the facility control system 100 is not limited to a waste incineration facility, but can be applied to an incineration facility that incinerates any incineration target. is not limited to garbage. That is, the "garbage” described in the above embodiment can be read as any "object to be incinerated”. This also applies to the second and subsequent embodiments, which will be described later.
  • FIG. 7 is a block diagram showing an example of the main configuration of the prediction device 1A according to this embodiment.
  • Prediction device 1A does not include standard movement amount calculation unit 104, and includes bulk density prediction unit (prediction unit) 105A and calorific value prediction unit 106A instead of property prediction unit 105 and effect prediction unit 106. is different from the prediction device 1 shown in FIG.
  • the storage unit 11 of the prediction device 1A also differs from the prediction device 1 in that the standard movement amount calculation formula 112 is not stored, but instead the bulk density prediction formula 112A and the heat generation amount prediction formula 113A are stored. is doing.
  • the bulk density prediction unit 105A calculates the bulk density using the movement amount indicated by the movement data generated by the movement data generation unit 103, the dust feeding speed, and the bulk density prediction formula 112A.
  • the bulk density prediction formula 112A is a mathematical formula showing the relationship between the moving amount of dust, the dust feeding speed, and the bulk density of the dust. The details of the bulk density prediction method will be described later with reference to FIG.
  • the calorific value prediction unit 106A uses a calorific value prediction formula 113A that indicates the relationship between the bulk density of the waste and the low-level calorific value (calorific value) when the waste is incinerated, and calculates the low-level calorific value when the waste is incinerated. Calculate the predicted value of the amount (calorific value). The details of the method of predicting the lower heating value (calorific value) will be described later with reference to FIG.
  • FIG. 8 is a diagram showing the relationship between the predicted value and the actual value, with the predicted value of the bulk density calculated by the above formula (1) on the vertical axis and the actual bulk density on the horizontal axis. From the graph J shown in FIG. 8, it can be seen that the bulk density can be accurately predicted by the above formula (1). In the example shown in Graph J, the coefficient of determination was 0.8565.
  • the dust supply speed is a value that changes every second and is highly real-time.
  • the movement amount of dust is highly real-time information that can be obtained, for example, on a minute-by-minute basis.
  • the movement amount of dust is also a value that depends on the bulk density.
  • the predicted value of the bulk density can be calculated simply by photographing the hopper from above a plurality of times and specifying the dust feeding speed at the time of photographing.
  • the prediction result for the control of the incinerator.
  • the bulk density can also be calculated by Equation (3), which will be described later.
  • FIG. 9 is a diagram for explaining a method of predicting the lower heating value. 9 also shows a schematic cross-sectional view of the vicinity of the opening A2 in the lower portion of the hopper A shown in FIG.
  • the inventors of the present invention first identified the relationship between the bulk density and the lower calorific value based on the daily average calorific value and the average bulk density for that day in the incinerator.
  • the calorific value prediction unit 106A obtains the lower calorific value from the bulk density using the relationship specified in this way.
  • the garbage stored inside the hopper A is fed into the incinerator C through the opening A2. Therefore, when the cross-sectional area of the opening A2 is So, the average dust feeding speed is V, and the incinerator C is operated for one day (24 hours), the throughput of the incinerator C is expressed as follows. be done.
  • K in FIG. 9 is a graph showing the relationship between the bulk density obtained as described above and the lower heating value Hu in the incinerator C on that day. As shown in the figure, although there are variations, it can be seen that there is a correlation between the bulk density and the lower heating value as a whole. More specifically, the bulk density and the lower heating value are in a proportional relationship, so the relationship between the bulk density and the lower heating value can be represented by a straight line k1.
  • the calorific value prediction unit 106A uses the formula to calculate the lower heat generation from the bulk density predicted by the bulk density prediction unit 105A. You can ask for the quantity.
  • the prediction device 1A equipped with the calorific value prediction unit 106A that predicts the lower calorific value using the calorific value prediction formula 113A that indicates the relationship between the bulk density and the lower calorific value an appropriate value of the lower calorific value can be calculated. It can be calculated as a prediction result.
  • the bulk density can be calculated from the amount of movement of the dust and the dust feeding speed
  • the lower calorific value can be calculated from the bulk density. It is also possible to calculate the lower heating value from the amount of movement and the dust feeding speed. That is, the calorific value prediction unit 106A calculates the amount of movement indicated by the movement data generated by the movement data generation unit 103, the dust supply speed, and the lower calorific value when the garbage sent into the incinerator at that dust supply speed is incinerated.
  • the lower calorific value of the garbage may be calculated using a mathematical expression showing the relationship of . Even with such a configuration, it is possible to calculate an appropriate value of the lower heating value as a prediction result indicating the properties of the dust.
  • the calorific value prediction unit 106A can calculate the predicted value of the lower calorific value using an arbitrary prediction model that models the relationship between the dust feeding speed, the amount of dust movement, and the lower calorific value.
  • FIG. 10 is a flowchart showing an example of processing executed by the prediction device 1A. 10 are the same as those of S1 to 3 in FIG. 6, so they are omitted.
  • the bulk density prediction unit 105A converts the movement amount indicated by the movement data generated in S13 and the dust feeding speed when the dust moves by the movement amount into the bulk density prediction formula 112A. to calculate the predicted bulk density.
  • the calorific value prediction unit 106A substitutes the predicted value of the bulk density calculated in S14 into the calorific value prediction formula 113A to calculate the predicted value of the lower calorific value.
  • the lower calorific value is also possible to calculate the lower calorific value from the moving amount of dust and the dust feeding speed without calculating the bulk density.
  • S14 is omitted, and S15 becomes a step of predicting the properties of the dust (specifically, the lower heating value).
  • the device control unit 107 determines whether or not to perform control for maintaining a good combustion state in the incinerator based on the prediction result at S15. If the determination in S16 is YES, the process proceeds to S17, and in S17, the equipment control section 107 performs control to maintain a good combustion state in the incinerator. On the other hand, when it is determined as NO in S16, the process of FIG. 10 ends without performing the process of S17.
  • control may be performed (YES in S16) when the predicted value of the lower heating value calculated in S15 is outside a predetermined normal range. Then, when the predicted value of the amount of heat generated is less than the lower limit value of the normal range, the device control unit 107 performs control for increasing the amount of heat generated (for example, control for heating by the burner or increasing the amount of combustion air). Do it. On the other hand, when the predicted value of the amount of heat generated exceeds the upper limit of the normal range, the device control unit 107 may perform control to reduce the amount of heat generated (for example, control to reduce the amount of combustion air). Thereby, the combustion state in the incinerator can be maintained in a good state.
  • FIG. 11 is a block diagram showing an example of the main configuration of the facility control device 1B according to this embodiment.
  • the facility control device 1B is a device that controls the equipment in the refuse incineration facility based on movement data generated from a plurality of time-series images of the hopper taken from above and the dust feeding speed.
  • the facility control device 1B unlike the prediction device 1 and the prediction device 1A described above, is common in that it generates movement data from a plurality of time-series images of the hopper taken from above, and predicts the properties of the garbage. It is different in that it controls the equipment without doing it. Therefore, in FIG. 2, it is possible to configure the facility control system 100 by replacing the prediction device 1 with the facility control device 1B.
  • the facility control device 1B does not include the standard movement amount calculation unit 104, the property prediction unit 105, and the effect prediction unit 106, but instead includes a control content determination unit 105B.
  • the storage unit 11 of the facility control device 1B does not store the standard movement amount calculation formula 112, but instead stores a control content determination model 112B.
  • the control content determination unit 105B determines the control content for the equipment in the waste incineration facility based on the movement data generated by the movement data generation unit 103 and the dust feeding speed. For example, the control content determination unit 105B performs (1) control of throwing garbage into the hopper, (2) control of dust supply speed, (3) control of garbage transportation speed (grate speed) in the incinerator, (4) ) control of combustion of waste in the incinerator, and (5) control of agitation of waste in the pit.
  • the control content may include, for example, a controlled object, a controlled amount, and the like.
  • control content determination unit 105B determines not to perform control when there is no control to be performed to maintain an appropriate combustion state.
  • control content determination unit 105B determines the control content using the control content determination model 112B.
  • the control content determination model 112B is a model constructed so that the control content can be determined from the movement data and the dust feeding speed. For example, when determining the control amount of the grate speed, the control content determination model 112B is used with the moving amount and the dust feeding speed as the explanatory variables and the optimum grate speed for maintaining the proper combustion state as the objective variable. may Such a control content determination model 112B can be constructed by multiple regression analysis, or by other algorithms such as a neural network.
  • the equipment control unit 107 performs the control determined by the control content determination unit 105B on the equipment of the refuse incineration facility.
  • the control content determining unit 105B determines the control content based on the movement data and the dust feeding speed. can be said to be in control.
  • the facility control device 1B includes the movement data generation unit 103 and the device control unit 107.
  • the movement data generating unit 103 generates movement data indicating the movement state of the waste from a plurality of time-series images of the hopper taken from above in an incineration facility that feeds the waste thrown into the hopper into the incinerator at a designated dust feeding speed. Generate data.
  • the device control section 107 (1) controls the introduction of garbage into the hopper, (2) controls the dust feeding speed, and (3) controls the incinerator. (4) control of combustion of waste in the incinerator; and (5) control of agitation of waste in the pit.
  • differences in the properties of incineration targets such as garbage appear as differences in the moving state of the incineration targets in the image.
  • the difference in the property of the incineration target affects the details of the control required to maintain the proper combustion state of the incineration target. Therefore, it is possible to identify the control required to maintain the proper combustion state of the dust from the moving state of the dust reflected in the image. Therefore, according to the above configuration, proper control can be performed according to the properties of the waste, and it is possible to contribute to the improvement of the operation of the incineration facility.
  • FIG. 12 is a flowchart showing an example of processing executed by the facility control device 1B. 12 are the same as those of S1 to 3 in FIG. 6, they are omitted.
  • the control content determination unit 105B determines the control content using the control content determination model 112B.
  • the movement data generated in S23 is data indicating the amount of movement
  • the control detail determination model 112B uses the amount of movement and the dust supply speed as explanatory variables to determine the optimum dust supply speed for maintaining an appropriate combustion state.
  • the model is a model whose objective variable is the amount of change in .
  • the control content determination unit 105B uses the value obtained by inputting the movement amount indicated by the movement data generated in S23 and the dust feeding speed into the control content determination model 112B to maintain an appropriate combustion state. Determine the optimum dust feed rate variation.
  • the device control unit 107 determines whether or not to perform control to maintain a good combustion state in the incinerator. If it is determined as YES in S25, the process proceeds to S26, and in S26, the device control unit 107 performs the control determined in S24. On the other hand, if the determination in S25 is NO, the process of FIG. 12 ends without performing the process of S26.
  • the criteria for determination in S25 may be determined in advance. For example, unless it is determined in S24 that control should not be performed or that the control amount is zero, it may be determined that control should be performed (YES in S25). Further, for example, when using the control content determination model 112B that outputs a numerical value indicating the degree of certainty of prediction along with the content of control that is predicted to be optimal, it is determined that control is to be performed when the degree of certainty is equal to or greater than a threshold (YES in S25). You may make it Further, for example, the details of control determined in S24 may be presented to the operator, and the operator may be made to input whether or not to execute the control.
  • the facility control method includes step (S23) and step (S26).
  • step (S23) in an incineration facility that feeds the waste thrown into the hopper into the incinerator at a designated dust feeding speed, movement data indicating the movement state of the waste is obtained from a plurality of time-series images of the hopper taken from above. to generate
  • step (S26) based on the movement data and dust feeding speed generated in step (S23), (1) control of throwing garbage into hopper, (2) control of dust feeding speed, (3) inside of incinerator (4) control of combustion of waste in the incinerator; and (5) control of agitation of waste in the pit.
  • This facility control method can contribute to improving the operation of the incineration facility.
  • a bridge may occur in which debris in the hopper is clogged like a bridge.
  • the amount of movement of refuse in the upper part of the hopper (where the bridge occurs and above) is significantly reduced or becomes zero, regardless of the nature of the refuse. Therefore, it is difficult to predict the nature of the dust from the image taken when bridging occurs.
  • the prediction devices 1 and 1A described in each of the above embodiments include a bridge detection unit that detects the occurrence of bridging, and do not predict the properties of dust when the bridge detection unit detects the occurrence of bridging.
  • the prediction devices 1 and 1A may hold the prediction result of the properties of the dust while the bridging is occurring, and restart the prediction of the properties after the bridging is resolved.
  • the method of detecting the occurrence and elimination of bridges is not particularly limited. For example, it is possible to detect the occurrence and elimination of bridges based on the movement amount of dust indicated by the movement data generated by the movement data generation unit 103 . Similarly, the facility control device 1B may detect the occurrence of bridging, hold control while the bridging is occurring, and resume control after the bridging is resolved.
  • the prediction device 1A may determine that bridging has occurred when there is a discrepancy between the predicted bulk density and the actually measured bulk density. In addition, if the bridge continues for a long time, the lower heating value is also affected. Therefore, the prediction device 1A detects that the bridge is may be determined to have occurred.
  • the functions of the prediction devices 1 and 1A and the facility control device 1B are programs for causing a computer to function as the devices, and each control block of the devices (especially included in the control unit 10). It can be realized by a program (prediction program/control program) for functioning a computer as each part).
  • the device comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program.
  • control device eg processor
  • storage device eg memory
  • the above program may be recorded on one or more computer-readable recording media, not temporary.
  • the recording medium may or may not be included in the device.
  • the program may be supplied to the device via any transmission medium, wired or wireless.
  • each control block can be realized by a logic circuit.
  • the scope of the present invention also includes integrated circuits in which logic circuits functioning as the control blocks described above are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

焼却施設の運用の改善に寄与する。予測装置(1)は、ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、ホッパを上方から撮影した時系列の複数の画像から、焼却対象物の移動状態を示す移動データを生成する移動データ生成部(103)と、生成された前記移動データと前記速度とに基づいて焼却対象物の性状を予測する性状予測部(105)と、を備える

Description

予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム
 本発明は、焼却炉で焼却される焼却対象物の性状を予測する予測装置等に関する。
 一般的なごみの焼却施設には、ホッパと呼ばれる漏斗状の装置が設けられている。ごみピットと呼ばれる貯留設備に貯留されたごみは、クレーン等により掴み上げられてホッパに投入される。そして、ホッパ内のごみは、先に投入されたものから順に給じん装置により焼却炉に送り込まれて焼却される。ホッパに関する技術としては、例えば、下記の特許文献1が挙げられる。特許文献1には、周期的に計測したホッパレベルに基づいてブリッジを検出することが記載されている。
日本国特開平10-238735号
 上述のように、ホッパ内に投入されたごみは、順次給じん装置により焼却炉に送り込まれて焼却されるが、送り込まれたごみの性状に応じて燃焼の仕方は異なるものとなる。例えば、水分を多く含む湿ったごみが送り込まれた場合には焼却炉内の温度が下がることがある。一方、乾燥した燃えやすいごみが送り込まれた場合には焼却炉内の温度が上がることがある。これは、ごみに限らず、いかなる焼却対象物を焼却する際にも共通する事象である。
 このため、ホッパ内に投入された焼却対象物が焼却される前の段階でその性状を把握することができれば、焼却施設の運用の改善にも資すると考えられる。例えば、焼却対象物の性状から、焼却炉内の状態を予測することが可能になり、これにより状態の悪化を未然に防ぐこと等も可能になる。また、例えば、焼却炉の自動制御や、ホッパへの焼却対象物の投入の自動制御等も可能になる。しかしながら、従来はホッパ内に投入された焼却対象物の性状を予測することは行われていなかった。例えば、上記特許文献1においても、ホッパ内に投入されたごみの性状の予測については示唆すらされていない。
 本発明の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、焼却施設の運用の改善に寄与する予測装置等を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る予測装置は、ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成する移動データ生成部と、前記移動データ生成部が生成した前記移動データと前記速度とに基づいて、焼却される前記焼却対象物の性状を予測する予測部と、を備える。
 また、上記の課題を解決するために、本発明の一態様に係る施設制御装置は、ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成する移動データ生成部と、前記移動データ生成部が生成した前記移動データと前記速度とに基づいて、(1)前記ホッパへの焼却対象物の投入制御、(2)前記速度の制御、(3)前記焼却炉内における前記焼却対象物の搬送速度の制御、(4)前記焼却炉内における前記焼却対象物の燃焼制御、および(5)前記焼却対象物の撹拌制御、の少なくとも何れかを行う機器制御部と、を備える。
 上記の課題を解決するために、本発明の一態様に係る予測方法は、1または複数の情報処理装置が実行する焼却対象物の性状の予測方法であって、ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成するステップと、前記ステップで生成した前記移動データと前記速度とに基づいて、焼却される前記焼却対象物の性状を予測するステップと、を含む。
 上記の課題を解決するために、本発明の一態様に係る施設制御方法は、1または複数の情報処理装置が実行する施設制御方法であって、ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成するステップと、前記ステップで生成した前記移動データと前記速度とに基づいて、(1)前記ホッパへの焼却対象物の投入制御、(2)前記速度の制御、(3)前記焼却炉内における前記焼却対象物の搬送速度の制御、(4)前記焼却炉内における前記焼却対象物の燃焼制御、および(5)前記焼却対象物の撹拌制御、の少なくとも何れかを行うステップと、を含む。
 本発明の一態様によれば、焼却施設の運用の改善に寄与することができる。
本発明の実施形態1に係る予測装置の要部構成の一例を示すブロック図である。 上記予測装置を含む施設制御システムの構成例を示す図である。 ごみの有無の判定方法の例を示す図である。 移動データの生成方法の例を示す図である。 給じん速度と移動量の関係を示す図である。 上記予測装置が実行する処理の一例を示すフローチャートである。 本発明の実施形態2に係る予測装置の要部構成の一例を示すブロック図である。 かさ密度について予測値と実際の値との関係を示した図である。 低位発熱量の予測方法を説明する図である。 上記予測装置が実行する処理の一例を示すフローチャートである。 本発明の実施形態3に係る施設制御装置の要部構成の一例を示すブロック図である。 上記施設制御装置が実行する処理の一例を示すフローチャートである。
 〔実施形態1〕
 (システム構成)
 本実施形態に係る施設制御システム100の構成を図2に基づいて説明する。図2は、施設制御システム100の構成例を示す図である。図2には、施設制御システム100をごみ焼却施設に適用した例を示している。なお、施設制御システム100は、ごみに限られず任意の焼却対象物を焼却する任意の焼却施設に適用することができる。
 図2に示すごみ焼却施設には、ごみGを貯留するごみピットBと、ごみGを焼却する焼却炉Cが設けられている。ごみピットB内のごみGは、クレーンによりホッパAに投入される。ホッパAの上部には外側に拡がるように傾斜した傾斜面A1が形成されており、ごみGはこの傾斜面A1上を滑り落ちてホッパAの内部に入り、ここで一時的に収容される。そして、ホッパA内のごみGは、その下部の開口部A2から焼却炉Cに順次送り込まれて焼却される。
 施設制御システム100は、焼却炉Cで焼却されるごみの性状を予測するシステムであり、予測装置1と撮影装置2を含む。撮影装置2はホッパAの上方に配置されており、ホッパAを所定時間毎に上方から撮影する。そして予測装置1は、撮影装置2が撮影した各画像を取得し、それらの画像を用いて、焼却されるごみの性状を予測する。
 より詳細には、撮影装置2は、ホッパAについて時系列の複数の画像を撮影する。そして、予測装置1は、撮影装置2が撮影した時系列の複数の画像から生成された、複数の当該画像が撮影された期間におけるごみGの移動状態を示す移動データに基づいて、ごみの性状を予測する。
 本発明の発明者らは、ホッパを上方から撮影した画像を精査した結果、焼却対象物の性状の相違が、焼却対象物の移動状態の相違として表れることを見出した。例えば、焼却対象物を焼却炉に送り込む速度を同じにしていても、水分含量が多く燃えにくい焼却対象物は、水分含量が少なく燃えやすい焼却対象物と比べて、ホッパ内における単位時間あたりの移動量が大きくなる傾向があることが分かった。
 予測装置1は、この知見に基づいてごみの性状を予測する。すなわち、ごみの性状の相違は、画像に写るごみの移動状態の相違として表れるから、上記の構成によれば、ごみの性状を予測することができる。そして、ごみの性状を把握することは、焼却施設の適正な運用に役立つため、予測装置1によれば、焼却施設の運用の改善に寄与することができる。
 具体的には、予測装置1は、ごみの性状の予測結果に基づいて、ごみ焼却施設内の機器を制御する。これにより、ごみの性状に応じた妥当な制御を行い、焼却施設の運用の改善に寄与することが可能になる。なお、ごみ焼却施設内の機器の制御は、ごみ焼却施設の運転員等が行ってもよく、この場合、予測装置1はごみの性状の予測結果を運転員等に対して出力すればよい。この場合、予測装置1が機器の制御を行う必要はない。
 予測装置1の配置場所は特に限定されず、例えば、ごみ焼却施設に配置してもよいし、複数のごみ焼却施設の監視を行う監視センター等に配置してもよい。また、図2には、1つの予測装置1により、1つのごみ焼却施設におけるごみの性状を予測する例を示しているが、1つの予測装置1により複数のごみ焼却施設におけるごみの性状を予測することも可能である。この場合、例えば予測装置1をクラウドサーバとしてもよい。
 (予測装置の構成)
 図1に基づいて予測装置1の構成を説明する。図1は、予測装置1の要部構成の一例を示すブロック図である。図示のように、予測装置1は、予測装置1の各部を統括して制御する制御部10と、予測装置1が使用する各種データを記憶する記憶部11を備えている。また、予測装置1は、予測装置1が他の装置と通信するための通信部12、予測装置1に対する各種データの入力を受け付ける入力部13、予測装置1が各種データを出力するための出力部14を備えている。
 また、制御部10には、データ取得部101、判定部102、移動データ生成部103、標準移動量算出部104、性状予測部(予測部)105、影響予測部106、および機器制御部107が含まれている。そして、記憶部11には、画像DB111と標準移動量算出式112が記憶されている。
 データ取得部101は、ホッパAを上方から撮影した時系列の複数の画像を取得する。上述のように、施設制御システム100では、撮影装置2がホッパAを上方から撮影した時系列の複数の画像を撮影するから、データ取得部101は、撮影装置2が撮影した画像を取得すればよい。なお、データ取得部101は、通信部12を介した通信により撮影装置2から画像を取得してもよいし、入力部13を介して入力された画像を取得してもよい。データ取得部101は、取得した画像を画像DB111に記録する。なお、撮影装置2は、動画像を撮影するものであってもよい。この場合、データ取得部101は、撮影装置2が撮影した動画像から時系列の複数の画像(例えば、所定時間おきのフレーム画像)を取得すればよい。
 判定部102は、データ取得部101が取得した画像における、ごみの性状を予測するための解析の対象となる対象領域にごみが写っているか否かを判定する。対象領域におけるごみの判定方法の詳細は図3に基づいて後述する。
 移動データ生成部103は、データ取得部101が取得し、画像DB111に記録した時系列の複数の画像から、複数の当該画像が撮影された期間におけるごみの移動状態を示す移動データを生成する。移動データの生成方法の詳細は図4に基づいて後述する。
 標準移動量算出部104は、ごみを焼却炉に送り込む速度、すなわち給じん速度を特定する。そして、標準移動量算出部104は、特定した給じん速度から、標準移動量算出式112を用いて、ごみを上記特定した給じん速度で焼却炉に送り込んだときの、標準的なごみの移動量(以下、標準の移動量と呼ぶ)を算出する。
 標準移動量算出式112は、給じん速度と、当該給じん速度でごみを焼却炉に送り込んだときの当該ごみの標準の移動量との関係を示す数式である。標準移動量算出式112とこれを用いた標準の移動量の算出方法の詳細は図5に基づいて後述する。
 性状予測部105は、移動データ生成部103が生成した移動データと給じん速度とに基づいて、焼却されるごみの性状を予測する。具体的には、性状予測部105は、移動データ生成部103が生成した移動データが示す移動量と、標準移動量算出部104が算出する標準の移動量との差を、ごみの性状の予測結果として算出する。
 影響予測部106は、性状予測部105が予測したごみの性状に基づいて、当該ごみを焼却することによる、焼却炉の燃焼状態への影響を予測する。影響予測部106が出力する予測結果は、燃焼状態への影響の大きさを示すものであってもよい。例えば、燃焼状態への影響の大きさを大、中、小、および影響なしの4段階で表す場合、影響予測部106は、何れかの段階を示す情報を予測結果として出力すればよい。また、影響予測部106は、燃焼状態の予測値(例えば、低位発熱量の予測値)を予測結果として出力してもよい。燃焼状態に対する影響の予測については図5に基づいて後述する。
 機器制御部107は、影響予測部106の予測結果に基づいてごみ焼却施設の機器を制御する。例えば、機器制御部107は、(1)ホッパへのごみの投入制御、(2)給じん速度の制御、(3)焼却炉内におけるごみの搬送速度(火格子速度)の制御、および(4)焼却炉内におけるごみの燃焼制御、の少なくとも何れかを行ってもよい。
 なお、上記(1)について、燃焼を促進したい場合には、ごみピット内のごみのうち比較的燃えやすいごみをホッパに投入し、燃焼を抑制したい場合には比較的燃えにくいごみをホッパに投入するように制御してもよい。ごみピット内のごみの性状分布については別途管理しておいてもよいし、後述するように性状予測部105の予測結果に基づいて特定してもよい。
 また、上記(2)について、燃焼を促進したい場合には給じん速度を上げて、燃焼を抑制したい場合には給じん速度を下げてもよい。上記(3)の火格子速度についても同様である。なお、状況によっては、燃焼を促進するための制御として、給じん速度を下げること、および火格子速度を下げることの少なくとも何れかを適用することが有効な場合もある。
 また、上記(4)について、ごみの燃焼制御は、例えば、バーナでの加熱や燃焼空気の供給量の制御によって実現できる。つまり、燃焼を促進したい場合(発生熱量を高めたい場合)には、バーナで加熱するか、または、燃焼空気の供給量を増やせばよく、逆に燃焼を抑制したい(発生熱量を低下させたい場合)場合には燃焼空気の供給量を減らせばよい。なお、状況によっては、燃焼を抑制するための制御として、燃焼空気の供給量を減らすことが有効な場合もある。
 また、ホッパを上方から撮影したときに写るごみは、直前までごみピット内に存在していたものであり、そのごみをごみピット内の何れの位置で取得したかは特定可能である。このため、性状予測部105の予測結果から、あるいは影響予測部106の予測結果から、ごみピット内のごみの性状分布を予測することが可能である。
 機器制御部107は、この性状分布に基づいて、ごみピット内のごみの撹拌制御を行ってもよい。例えば、機器制御部107は、燃えにくいごみが分布しているエリアで優先的に撹拌を行うように制御してもよいし、燃えにくいごみが分布しているエリアのごみと、燃えやすいごみが分布しているエリアのごみとを混合・撹拌させて均質化してもよい。なお、ごみの撹拌とは、ごみの性状(特に燃えやすさ)を改善するための処理であり、例えばごみをクレーンで掴み上げて落下させたり、掴み上げたごみをばらまいたりすることにより行われる。
 以上のように、予測装置1は、移動データ生成部103と、性状予測部105と、を備える。移動データ生成部103は、ホッパに投入されたごみを指定された給じん速度で焼却炉に送り込む焼却施設において、ホッパを上方から撮影した時系列の複数の画像から、ごみの移動状態を示す移動データを生成する。性状予測部105は、生成された移動データと給じん速度とに基づいて、ごみの性状を予測する。
 上述のように、ごみの性状の相違は、画像に写るごみの移動状態の相違として表れるから、上記の構成によれば、ごみの性状を予測することができる。そして、ごみの性状を把握することは、焼却施設の適正な運用に役立つため、上記の構成によれば、焼却施設の運用の改善に寄与することができる。
 また、詳細は後述するが、移動データは、異なるタイミングで撮影された2枚の画像があれば生成することができる。このため、機械学習等を行う必要がなく、ごみ焼却施設において予測装置1の運用をすぐに開始することができる。また、撮影装置2の設置場所や撮影角度が多少変更されても特に影響なくごみの性状を予測することができる。さらに、ごみ焼却施設内に設置した撮影装置2のレンズには汚れが付着することも想定されるが、付着した汚れには動きがないため、そのような汚れが移動データの生成に与える影響も限定的である。つまり、予測装置1を含む施設制御システム100には、導入が容易であり、かつ安定した運用が可能であるという利点がある。
 (ごみの有無の判定について)
 判定部102によるごみの有無の判定について図3に基づいて説明する。図3は、ごみの有無の判定方法の例を示す図である。図3に示す画像Dは、ホッパを上方から撮影した画像である。画像Dには、ホッパの傾斜面を滑り落ちていくごみが写っているが、傾斜面の全体にごみが写っていはいない。具体的には、ホッパの傾斜面のうち下流側の領域d2にはごみが写っているが、上流側の領域d1にはごみは写っていない。
 ここで、移動データ生成部103が、領域d1のようにごみが写っていない領域について移動データを生成したとすると、移動データが示す移動量がゼロまたはゼロに近い値となる可能性がある。そして、移動量がゼロまたはゼロに近い値となったときには、実際には存在しないごみについての誤った予測結果を出力してしまう可能性がある。
 上記のような誤った予測を回避するため、予測装置1は判定部102を備えている。判定部102は、画像中の対象領域にごみが写っているか否かを判定する。そして、移動データ生成部103は、判定部102が対象領域にごみが写っていると判定した画像間における移動量を示す移動データを生成する。これにより、対象領域に対象物が写っていない画像がごみの性状の予測に用いられなくなるため、上述のような誤った予測を防ぐことができる。なお、詳細は後述するが、対象領域はホッパの傾斜面上、より詳細には領域d2のように下流側の傾斜面上に設定することが好ましい。
 ごみが写っているか否かは撮影された画像を用いて判定してもよいし、撮影された画像に所定の画像処理を施すことによりごみの有無を判定しやすくした上で判定してもよい。上記画像処理としては、例えばCanny法が挙げられる。Canny法は、画像におけるエッジ検出のためのアルゴリズムである。図3に示す画像D1は、画像DからCanny法でエッジ検出することにより生成された画像である。一般的にごみの外観は、ホッパの表面形状と比べてはるかに複雑である。このため、図3の例では、ごみが写っていない領域d1と比べて、ごみが写る領域d2では多数のエッジが検出されている。
 よって、判定部102は、ホッパを撮影した画像にCanny法を適用してエッジ検出し、対象領域で検出されたエッジの数が閾値以上の画像をごみが写っている画像と判定し、対象領域で検出されたエッジの数が閾値未満の画像をごみが写っていない画像と判定してもよい。
 無論、Canny法以外のエッジ検出手法を適用してもよい。また、エッジ検出以外の手法によりごみの有無を判定することもできる。例えば、判定部102は、画像を構成する各画素の輝度値およびRGB値の少なくとも何れかを解析することによりごみの有無を判定してもよい。また、例えば、判定部102は、ごみの有無を判別できるように学習させた学習済みモデル(例えばニューラルネットワークモデル)によりごみの有無を判定してもよい。
 (移動データの生成方法)
 移動データ生成部103による移動データの生成方法について図4に基づいて説明する。図4は、移動データの生成方法の例を示す図である。より詳細には、図4には、時刻tにホッパの傾斜面上を撮影した画像E1と、時刻t+Δtにホッパの傾斜面上を撮影した画像E2との間におけるごみの移動状態を示す移動データFを、画像相関法により生成する例を示している。なお、図4において、y方向はごみが下降する方向、つまりホッパの傾斜面(図2の傾斜面A1参照)の上流側から下流側に向かう方向であり、x方向は上記傾斜面上におけるy方向に垂直な方向である。
 画像相関法は、時系列の2枚の画像について、各画像に写る各粒子の移動量を画像処理で演算して、算出した移動量をベクトルとして表す手法である。例えば、画像E1において、破線の枠囲みで示すごみは位置e1に写っているが、画像E2では位置e1よりも下方の位置e2に写っている。このごみの移動状態は、移動データFでは、位置e1から位置e2までの変位を示すベクトルf1として表される。また、他の位置についても同様にベクトルが算出される。
 このように、移動データFでは、画像E1およびE2における各位置におけるごみの移動状態が表される。具体的には、移動データFからは、画像E1およびE2における各位置におけるごみは、y方向(ホッパの傾斜面の下流側つまり下降方向)に向かって移動していることが分かる。なお、移動データFにおいて、y方向成分の値が閾値以上のベクトルについては実線の矢印で示し、閾値未満のベクトルについては破線の矢印で示している。これにより、ごみの移動が速い位置と遅い位置があることも分かる。
 以上のように、移動データ生成部103は、画像E1、E2に写る傾斜面に設定された複数の所定の位置のそれぞれに写る画像要素について、当該画像要素が画像E1、E2間で下降方向に移動した移動量を示す移動データを生成してもよい。
 ホッパの傾斜面においては、ごみは概ね同じ下降方向に向けて滑り落ちていくため、ホッパの傾斜面は、ごみがスムーズに下降しているか、下降が滞っているかの判定に好適な位置である。よって、前記の構成によれば、ごみがスムーズに下降しているか、下降が滞っているかを的確に示す移動データを生成することができる。そして、この移動データを用いてごみの性状を予測することにより、信頼性の高い予測を行うことができる。これは、上述のように、ごみの性状の相違は、画像に写るごみの移動状態の相違として表れるためである。
 なお、移動データは、傾斜面以外が写る画像部分についてもまとめて生成してもよい。この場合、性状予測部105は、移動データ生成部103が生成した移動データのうち、傾斜面が写る部分に設定された対象領域内の移動データを用いてごみの性状を予測すればよい。
 無論、ごみの移動方向が概ね同様の方向となる領域を対象領域とすればよいのであり、傾斜面以外の領域を対象領域としてもよい。例えば、ホッパの内表面のうち、傾斜面の下流側で該傾斜面と接続する内表面上の領域(通常は垂直方向に延在する)を対象領域としてもよく、傾斜面上とそれ以外の部分の両方を含む領域を対象領域としてもよい。
 また、移動データは、ごみの移動状態を示すデータであればよく、上述の例に限られない。例えば、ごみの移動速度を移動データとしてもよい。また、異なる時刻に撮影された2枚の画像の差分を示す差分画像を移動データとしてもよい。
 (標準移動量の算出~燃焼状態の予測)
 標準移動量算出部104による標準移動量の算出方法と、性状予測部105によるごみの性状の予測方法と、影響予測部106による燃焼状態の予測について、図5に基づいて説明する。図5は、給じん速度と移動量の関係を示す図である。
 図5に示すグラフHは、あるごみ焼却施設において様々な給じん速度下で測定した様々な性状のごみの移動量をプロットしたものである。なお、グラフHの上側には、給じん速度の分布を示すヒストグラムh1を示し、グラフHの右側には移動量の分布を示すヒストグラムh2を示している。なお、ここで、移動量とは、ごみを撮影した時系列の2枚の画像間に写る当該ごみの下降方向への移動量である。
 図示のように、給じん速度とごみの移動量との間には、給じん速度が大きくなるほど移動量も大きくなるという相関関係が存在する。この相関関係は、例えば回帰分析により定式化することができる。図5の例では、回帰分析により求めた、給じん速度とごみの移動量との関係を示す回帰式であるy=F(x)を示す直線をh3で示している。つまり、h3は回帰直線である。予測装置1は、このような回帰式を標準移動量算出式112として記憶部11に記憶している。
 標準移動量算出部104は、現在の給じん速度を特定して標準移動量算出式112に代入することにより、現在の給じん速度における標準の移動量を算出する。これにより、妥当な値の標準の移動量を算出することができる。例えば、現在の給じん速度がx1であった場合、標準の移動量はy=F(x1)となる。
 この場合、性状予測部105は、移動データ生成部103が生成した移動データが示す移動量と、ごみの標準の移動量との差を予測結果として算出してもよい。上述のように、本発明の発明者らの検討の結果、水分含量が多く燃えにくいごみは、水分含量が少なく燃えやすいごみと比べて、ホッパ内における単位時間あたりの移動量が大きくなる傾向があることが分かっている。このため、移動データが示す移動量と標準の移動量との差は、ごみの燃えやすさを示すものといえる。したがって、上記の構成によれば、ごみの燃えやすさを示す値を予測結果として算出することができる。
 例えば、図5の例のように、現在の給じん速度がx1である場合に、移動データ生成部103が生成した移動データが示す移動量がy1であったとする。この給じん速度と移動量の組み合わせを、図5ではグラフHのグラフ平面上の点h4で表している。上述のように、給じん速度がx1であるときの標準の移動量はy=F(x1)であるから、この例では性状予測部105は、y’=y1-F(x1)を予測結果として算出する。
 このようにして算出されたy’は、その値が大きいほど、そのごみの性状が標準的なごみの性状と乖離していることを示している。より詳細には、y’が負の値である場合には、y’の絶対値が大きいほどそのごみの移動量が小さいことを示す。一般に、軽いごみは、標準的な重量のごみと比べて移動速度が小さく、水分が少なく燃えやすいから、y’が負の値であってy’の絶対値が大きいごみは燃えやすいといえる。
 一方、y’が正の値である場合には、y’の絶対値が大きいほどそのごみの移動量が大きいことを示す。一般に、重いごみは、標準的な重量のごみと比べて移動速度が大きく、水分が多く燃えにくいから、y’が正の値であってy’の絶対値が大きいごみは燃えにくいといえる。
 このため、例えば、図5において、あるごみの移動量と給じん速度が、回帰直線h3よりも上側に設定された領域h5内にプロットされる場合、そのごみは燃えにくいごみであるといえる。一方、図5において、あるごみの移動量と給じん速度が、回帰直線h3よりも下側に設定された領域h6内にプロットされる場合、そのごみは燃えやすいごみであるといえる。点h4は、回帰直線h3より下側の領域h6内にあるから、点h4のごみは燃えやすいごみであるといえる。
 以上のことから、影響予測部106は、y’の値に応じてごみを分類し、その分類結果を予測結果として出力してもよい。例えば、影響予測部106は、性状予測部105が算出したy’の値が領域h5またはh6内にプロットされる場合には燃焼状態への影響があると予測してもよい。影響予測部106は、影響の大きさについては、y’の値の大きさに応じて判定すればよい。また、影響予測部106は、領域h5とh6の間の領域にプロットされる場合には燃焼状態への影響がないと予測してもよい。
 なお、燃焼状態の予測方法は、予想の対象とする燃焼状態に応じた手法を適宜用いればよく、上記の例に限られない。例えば、影響予測部106は、低位発熱量を予測してもよい。この場合、y’の値と低位発熱量との相関関係を定式化しておけばよい。そして、影響予測部106は、その式を用いて低位発熱量を予測すればよい。
 また、標準の移動量の求め方も上述の例に限られない。例えば、上述の例と同様にごみ焼却施設において様々な給じん速度下で様々な性状のごみの移動量を測定した上で、給じん速度を複数の数値範囲に区分して、各区分における標準の移動量を求めておいてもよい。標準の移動量は、例えば各区分における移動量の平均値や中央値等としてもよい。この場合、標準移動量算出部104は、現在の給じん速度が何れの区分に属するかにより標準の移動量を特定すればよい。
 また、回帰分析のような線形モデルにより標準の移動量を求める代わりに、例えばニューラルネットワーク等の非線形モデルにより標準の移動量を求めてもよい。この場合、給じん速度と標準の移動量との関係を機械学習させた標準移動量予測モデルを予め用意しておく。そして、標準移動量算出部104は、この標準移動量予測モデルに給じん速度を入力することにより、標準の移動量を算出すればよい。
 (処理の流れ)
 予測装置1が実行する処理の流れ(予測方法)について図6に基づいて説明する。図6は、予測装置1が実行する処理の一例を示すフローチャートである。なお、図6の処理は、例えば、撮影装置2が新たな画像を撮影する毎に行われる。
 S1では、データ取得部101が、ホッパを上方から撮影した時系列の画像を取得し、画像DB111に記録する。上述のように、これらの画像は撮影装置2(図2参照)が撮影するので、データ取得部101は撮影装置2が撮影した画像を取得すればよい。
 S2では、判定部102が、S1で取得された画像における対象領域にごみが写っているか否かを判定する。対象領域にごみが写っているか否かの判定方法は図3に基づいて説明したとおりであるからここでは説明を繰り返さない。S2でYESと判定された場合にはS3に進み、S2でNOと判定された場合には図6の処理は終了する。
 S3(移動データを生成するステップ)では、移動データ生成部103が、S1で取得された画像と、該画像より前に撮影された画像から、焼却対象物であるごみの移動状態を示す移動データを生成する。例えば、S1で時刻t+Δtに撮影された画像が取得された場合、移動データ生成部103は、画像DB111から時刻tに撮影された画像を読み出す。そして、移動データ生成部103は、時刻tから時刻t+Δtまでの期間におけるごみの移動状態を示す移動データを生成する。移動データの生成方法は図4に基づいて説明したとおりであるからここでは説明を繰り返さない。
 S4では、標準移動量算出部104が、給じん速度を特定すると共に、特定した給じん速度から、標準移動量算出式112を用いて標準の移動量を算出する。なお、給じん速度がどのような値に設定されているかは、予測装置1のユーザが入力部13を介して入力するようにしてもよいし、通信部12を介してごみ処理施設の制御装置と通信することにより特定してもよい。
 S5(性状を予測するステップ)では、性状予測部105が、焼却されるごみの性状を予測する。より詳細には、性状予測部105は、S3で移動データ生成部103が生成した移動データが示す移動量と、S4で標準移動量算出部104が給じん速度を用いて算出した標準の移動量との差を、予測の結果として算出する。上述のように、標準の移動量は給じん速度を用いて算出されているから、S5において、性状予測部105は移動データと給じん速度とに基づいてごみの性状を予測しているといえる。
 S6では、影響予測部106が、S5で性状予測部105が予測したごみの性状に基づいて当該ごみを焼却することによる、焼却炉の燃焼状態への影響を予測する。なお、燃焼状態の予測は必須ではなく、S5の予測結果に基づいてS7以降の処理を行うことも可能である。
 S7では、機器制御部107が、S6の予測結果に基づいて、焼却炉における燃焼状態を良好に保つための制御を行うか否かを判定する。S7でYESと判定された場合にはS8の処理に進み、S8では、機器制御部107は、焼却炉における燃焼状態を良好に保つための制御を行う。一方、S7でNOと判定された場合には、S8の処理は行われずに図6の処理が終了する。
 なお、S7の判定基準は予め定めておけばよく、S8の制御内容の決定方法も予め定めておけばよい。例えば、燃焼状態への影響の大きさを大、中、小、および影響なしの4段階で予測する場合、影響なし以外の予測結果であれば制御を行う(S7でYESと判定する)ようにしてもよい。そして、燃焼状態への影響が大きいと予測された場合ほど、機器制御部107は、燃焼を促進または抑制するための制御の制御量を大きくしてもよい。
 ここで、機器制御部107は、例えば以下のようにして、燃焼を促進する制御を行うか、抑制する制御を行うかを決定してもよい。まず、機器制御部107は、S3で移動データ生成部103が生成した移動データが示す移動量の方が、S4で標準移動量算出部104が給じん速度を用いて算出した標準の移動量よりも大きいか否かを判定する。この判定において、移動データ生成部103が生成した移動データが示す移動量の方が大きいと判定された場合、そのごみは標準的なごみよりも水分量が多く燃えにくいごみであると考えられる。従って、機器制御部107は、燃焼を促進する制御(例えば、バーナによる加熱や燃焼空気量を増加させる制御)を行うことを決定すればよい。一方、標準の移動量の方が大きいと判定された場合、そのごみは標準的なごみよりも水分量が少なく燃えやすいごみであると考えられるため、機器制御部107は、燃焼を抑える制御(例えば、燃焼空気量を減少させる制御)を行うことを決定すればよい。これにより、焼却炉内の燃焼状態を良好な状態に保つことができる。
 また、S7では、ホッパに投入されたごみが焼却炉に送り込まれるまでのタイムラグを考慮した制御を行ってもよい。例えば、機器制御部107は、ホッパに投入されたごみが焼却炉に送り込まれるまでの時間を、給じん速度等を用いて計算し、当該時間の経過時に、当該ごみについて予測された燃焼状態への影響に応じた制御を行ってもよい。
 また、制御内容によっては、その制御の結果が燃焼状態に反映されるまでにタイムラグが生じるものもある。このため、機器制御部107は、制御の結果が燃焼状態に反映されるタイミングが、当該ごみが焼却炉に送り込まれるタイミングと同じか、または早くなるように制御を行ってもよい。
 また、S7において、機器制御部107が性状予測部105の予測結果から制御内容を決定する構成としてもよい。この場合、S6の処理は省略されると共に、影響予測部106は不要となる。
 以上のように、本実施形態に係る予測方法は、ステップ(S3)と、ステップ(S5)と、を含む。ステップ(S3)では、ホッパに投入されたごみを指定された給じん速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記ごみの移動状態を示す移動データを生成する。ステップ(S5)では、前記ステップ(S3)で生成した前記移動データと前記給じん速度とに基づいて、焼却される前記ごみの性状を予測する。この予測方法によれば、焼却施設の運用の改善に寄与することができる。
 なお、実施形態1の冒頭で述べた通り、施設制御システム100は、ごみ焼却施設に限られず、任意の焼却対象物を焼却する焼却施設に適用することができ、ホッパに収容される焼却対象物はごみに限られない。つまり、上述した実施形態に記載した「ごみ」は、任意の「焼却対象物」に読み替えることができる。これは後述する実施形態2以降においても同様である。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。これは後述する実施形態3においても同様である。
 (予測装置の構成)
 図7は、本実施形態に係る予測装置1Aの要部構成の一例を示すブロック図である。予測装置1Aは、標準移動量算出部104を備えておらず、性状予測部105と影響予測部106の代わりに、かさ密度予測部(予測部)105Aと発熱量予測部106Aを備えている点で図1に示した予測装置1と相違している。また、予測装置1Aの記憶部11には、標準移動量算出式112が記憶されておらず、代わりにかさ密度予測式112Aと発熱量予測式113Aが記憶されている点でも予測装置1と相違している。
 かさ密度予測部105Aは、移動データ生成部103が生成した移動データが示す移動量と、給じん速度と、かさ密度予測式112Aを用いて、かさ密度を算出する。かさ密度予測式112Aは、ごみの移動量および給じん速度と、当該ごみのかさ密度との関係を示す数式である。かさ密度の予測方法の詳細は図8に基づいて後述する。
 発熱量予測部106Aは、ごみのかさ密度と、当該ごみを焼却したときの低位発熱量(発熱量)との関係を示す発熱量予測式113Aを用いて、当該ごみを焼却したときの低位発熱量(発熱量)の予測値を算出する。低位発熱量(発熱量)の予測方法の詳細は図9に基づいて後述する。
 (かさ密度の予測方法)
 本発明の発明者らは、ごみの移動量と給じん速度を用いてかさ密度を表すことができないか検討した。この検討の結果、様々なかさ密度のごみについて、移動量と給じん速度を測定した結果を用いた重回帰分析により求めた下記の数式(1)によりかさ密度を予測することができることを見出した。
y=ax1+bx2+cx1*x2+d   (1)
 なお、上記数式(1)において、yはかさ密度[t/m](tは質量の単位:トン)、x1は給じん速度[m/h]、X2はごみの移動量(画像相関法で算出した無次元量)であり、a~dは重回帰分析により求めた係数である。
 図8は、上記数式(1)により算出したかさ密度の予測値を縦軸とし、実際のかさ密度を横軸として、予測値と実際の値との関係を示した図である。図8に示すグラフJから、上記数式(1)により、かさ密度を精度よく予測できていることがわかる。グラフJに示す例において、決定係数は0.8565であった。
 なお、本発明の発明者らは、比較のため、下記の数式(2)によりかさ密度を予測することについても試みた。
y=ax1+b   (2)
 数式(2)によるかさ密度の予測値も、実際のかさ密度とある程度整合するものであったが、決定係数は数式(1)を用いた場合に及ばなかった。このことから、ごみの移動量がかさ密度の推定精度の向上に寄与していることがわかる。
 無論、数式(1)を用いる以外にも、種々の方法により、給じん速度とごみの移動量からかさ密度の予測値を算出することが可能である。つまり、給じん速度およびごみの移動量と、かさ密度との関係をモデル化した任意の予測モデルを用いて、かさ密度の予測値を算出することができる。
 以上のように、本発明の発明者らの検討の結果、ごみのホッパ内における移動量および給じん速度と、そのごみのかさ密度との間には相関関係があることが分かった。したがって、ごみの移動量と給じん速度と当該ごみのかさ密度との関係を示すかさ密度予測式112Aを用いてかさ密度を算出するかさ密度予測部105Aを備えた予測装置1Aによれば、妥当な値のかさ密度を予測結果として算出することができる。
 また、給じん速度は、毎秒変化する値でありリアルタイム性が高い。また、ごみの移動量も、例えば毎分単位で取得できるリアルタイム性の高い情報である。そして、以下説明するように、ごみの移動量は、かさ密度に依存する値でもある。
 まず、給じん速度とごみの移動量との間には相関関係があることが分かっている。ただし、同じ給じん速度であってもごみの移動量にはばらつきが生じる。このばらつきの一因として、ごみの重量の相違が考えられる。つまり、ごみがホッパ内を沈降する際に、重いごみは、軽いごみよりも自重による圧縮の程度が大きく、それにより単位時間あたりの移動量すなわち移動速度が大きくなると考えられる。このように、ごみがホッパ内を沈降する速度は、給じん速度とごみの自重による圧縮の影響を受ける。したがって、給じん速度とごみの自重による圧縮度合いとによって、単位体積あたりの重量であるかさ密度が変わる。よって、ごみの移動量は、給じん速度に加えて、かさ密度にも依存するものといえる。
 このように、上記の構成によれば、リアルタイム性の高い情報からホッパ内のごみのかさ密度を推定することができる。具体的には、ホッパを上方から複数回撮影し、その撮影時における給じん速度を特定するだけでかさ密度の予測値を算出することができる。これにより、かさ密度からごみの低位発熱量をリアルタイムで推定することも可能になり、推定結果を焼却炉の制御へ活かすことも可能となる。
 なお、かさ密度は、後述する数式(3)により算出することも可能である。ただし、この方法では、ごみの処理量(重量)を妥当な値とするために、上記所定期間を例えば1日等の比較的長い期間に設定する必要があり、焼却炉の制御に利用できるようなタイミングでかさ密度を算出することができない。
 (低位発熱量の予測方法)
 発熱量予測部106Aによる低位発熱量の予測方法について、図9に基づいて説明する。図9は、低位発熱量の予測方法を説明する図である。また、図9には、図2に示したホッパAの下部の開口部A2付近の断面概略図もあわせて示している。
 ごみ焼却施設では、ホッパに投入されたごみは、しばらくの間ホッパ内に滞留し、その後、焼却炉に送り込まれて焼却されるため、ホッパを上方から撮影した画像に写るごみが焼却されたときの低位発熱量を測定することは難しい。
 そこで、本発明の発明者らは、まず、焼却炉における一日の平均発熱量とその一日における平均のかさ密度から、かさ密度と低位発熱量との関係を特定した。発熱量予測部106Aは、このようにして特定された関係を利用して、かさ密度から低位発熱量を求める。
 図9に示すように、ホッパAの内部に収容されたごみは、開口部A2から焼却炉Cに送り込まれる。このため、開口部A2の断面積をSoとし、平均給じん速度をVとし、焼却炉Cを一日(24時間)稼働させたときの、当該焼却炉Cの処理量は下記のように表される。
 (1日の処理量)[ton/day]={V[m/h]×24[h/day]}×So[m2]×(かさ密度)[ton/m3
 したがって、かさ密度は下記のように表される。
 (かさ密度)=(1日の処理量)/(V×24×So)   (3)
 図9のKは、上記のようにして求めたかさ密度と、焼却炉Cにおけるその日の低位発熱量Huとの関係を示すグラフである。図示のように、ばらつきはあるものの、全体としてかさ密度と低位発熱量との間には相関があることがわかる。より詳細には、かさ密度と低位発熱量とは比例関係にあり、このため、かさ密度と低位発熱量との関係は直線k1で表すことができる。
 よって、この直線k1の数式を発熱量予測式113Aとして記憶部11に記憶させておけば、発熱量予測部106Aは、当該数式を用いて、かさ密度予測部105Aが予測したかさ密度から低位発熱量を求めることができる。
 以上のように、ごみのかさ密度は、そのごみを焼却したときの低位発熱量と相関があることが分かった。よって、かさ密度と低位発熱量との関係を示す発熱量予測式113Aを用いて低位発熱量を予測する発熱量予測部106Aを備えた予測装置1Aによれば、妥当な値の低位発熱量を予測結果として算出することができる。
 なお、上述のように、ごみの移動量と給じん速度から、かさ密度を算出することができ、かさ密度から低位発熱量を算出することができるため、かさ密度を算出することなく、ごみの移動量と給じん速度から低位発熱量を算出することも可能である。つまり、発熱量予測部106Aは、移動データ生成部103が生成した移動データが示す移動量と、給じん速度と、その給じん速度で焼却炉に送り込まれるごみを焼却したときの低位発熱量との関係を示す数式を用いて、当該ごみの低位発熱量を算出してもよい。このような構成であっても、妥当な値の低位発熱量を、ごみの性状を示す予測結果として算出することができる。
 ごみの低位発熱量を算出する数式としては、例えば上述したような回帰式が適用であるが、この例に限定されない。発熱量予測部106Aは、給じん速度およびごみの移動量と、低位発熱量との関係をモデル化した任意の予測モデルを用いて、低位発熱量の予測値を算出することができる。
 (処理の流れ)
 予測装置1Aが実行する処理の流れ(予測方法)について図10に基づいて説明する。図10は、予測装置1Aが実行する処理の一例を示すフローチャートである。なお、図10のS11~S13の処理の説明は、図6のS1~3と同様であるから省略する。
 S14(性状を予測するステップ)では、かさ密度予測部105Aが、S13で生成された移動データが示す移動量と、当該移動量でごみが移動したときの給じん速度とをかさ密度予測式112Aに代入してかさ密度の予測値を算出する。
 S15では、発熱量予測部106Aが、S14で算出されたかさ密度の予測値を発熱量予測式113Aに代入して低位発熱量の予測値を算出する。なお、上述のように、かさ密度を算出することなく、ごみの移動量と給じん速度から低位発熱量を算出することも可能である。この場合、S14は省略され、S15がごみの性状(具体的には低位発熱量)を予測するステップとなる。
 S16では、機器制御部107が、S15の予測結果に基づいて、焼却炉における燃焼状態を良好に保つための制御を行うか否かを判定する。S16でYESと判定された場合にはS17の処理に進み、S17では、機器制御部107は、焼却炉における燃焼状態を良好に保つための制御を行う。一方、S16でNOと判定された場合には、S17の処理は行われずに図10の処理が終了する。
 なお、S16の判定基準は予め定めておけばよく、S17の制御内容の決定方法も予め定めておけばよい。例えば、S15で算出された低位発熱量の予測値が予め定められた正常範囲外であるときに制御を行う(S16でYESと判定する)ようにしてもよい。そして、発生熱量の予測値が正常範囲の下限値未満であった場合には、機器制御部107は、発生熱量を高めるための制御(例えば、バーナによる加熱や燃焼空気量を増加させる制御)を行えばよい。一方、発生熱量の予測値が正常範囲の上限値を超えた場合には、機器制御部107は、発生熱量を低下させるための制御(例えば、燃焼空気量を減少させる制御)を行えばよい。これにより、焼却炉内の燃焼状態を良好な状態に保つことができる。
 〔実施形態3〕
 (施設制御装置の構成)
 図11は、本実施形態に係る施設制御装置1Bの要部構成の一例を示すブロック図である。施設制御装置1Bは、ホッパを上方から撮影した時系列の複数の画像から生成した移動データと給じん速度とに基づいてごみ焼却施設内の機器を制御する装置である。
 施設制御装置1Bは、上述した予測装置1および予測装置1Aと比べて、ホッパを上方から撮影した時系列の複数の画像から移動データを生成する点で共通しており、ごみの性状の予測を行わずに機器を制御する点で相違している。このため、図2において、予測装置1を施設制御装置1Bに置き換えた施設制御システム100を構成することも可能である。
 施設制御装置1Bは、図1に示した予測装置1と比べて、標準移動量算出部104と性状予測部105と影響予測部106を備えておらず、代わりに制御内容決定部105Bを備えている。また、施設制御装置1Bの記憶部11には、標準移動量算出式112が記憶されておらず、代わりに制御内容決定モデル112Bが記憶されている。
 制御内容決定部105Bは、移動データ生成部103が生成した移動データと給じん速度とに基づいてごみ焼却施設内の機器に対する制御内容を決定する。例えば、制御内容決定部105Bは、(1)ホッパへのごみの投入制御、(2)給じん速度の制御、(3)焼却炉内におけるごみの搬送速度(火格子速度)の制御、(4)焼却炉内におけるごみの燃焼制御、および(5)ピット内のごみの撹拌制御の少なくとも何れかについての制御内容を決定してもよい。制御内容には、例えば制御対象と制御量等が含まれていてもよい。
 なお、これらの制御は、適正な燃焼状態を維持するために必要な制御である。このため、制御内容決定部105Bは、適正な燃焼状態を維持するために行うべき制御がないときには、制御を行わないことを決定する。
 より詳細には、制御内容決定部105Bは、制御内容決定モデル112Bを用いて制御内容を決定する。制御内容決定モデル112Bは、移動データと給じん速度から制御内容を決定できるように構築されたモデルである。例えば、火格子速度の制御量を決定する場合、移動量と給じん速度を説明変数とし、適正な燃焼状態を維持するために最適な火格子速度を目的変数とする制御内容決定モデル112Bを用いてもよい。このような制御内容決定モデル112Bは、重回帰分析で構築することもできるし、ニューラルネット等の他のアルゴリズムで構築することもできる。
 そして、機器制御部107は、制御内容決定部105Bが決定した制御をごみ焼却施設の機器に対して行う。上述のように、制御内容決定部105Bは移動データと給じん速度とに基づいて制御内容を決定するから、機器制御部107は、移動データと給じん速度とに基づいてごみ焼却施設の機器を制御しているといえる。
 以上のように、施設制御装置1Bは、移動データ生成部103と、機器制御部107と、を備えている。移動データ生成部103は、ホッパに投入されたごみを指定された給じん速度で焼却炉に送り込む焼却施設において、ホッパを上方から撮影した時系列の複数の画像から、ごみの移動状態を示す移動データを生成する。機器制御部107は、移動データ生成部103が生成した移動データと給じん速度とに基づいて、(1)ホッパへのごみの投入制御、(2)給じん速度の制御、(3)焼却炉内におけるごみの搬送速度の制御、(4)焼却炉内におけるごみの燃焼制御、および(5)ピット内のごみの撹拌制御、の少なくとも何れかを行う。
 上述のように、ごみ等の焼却対象物の性状の相違は、画像に写る焼却対象物の移動状態の相違として表れる。そして、焼却対象物の性状の相違は、焼却対象物の適正な燃焼状態を維持するために必要な制御の内容に影響を与える。よって、画像に写るごみの移動状態から、ごみの適正な燃焼状態を維持するために必要な制御を特定することができる。したがって、上記の構成によれば、ごみの性状に応じた妥当な制御を行い、焼却施設の運用の改善に寄与することができる。
 (処理の流れ)
 施設制御装置1Bが実行する処理の流れ(施設制御方法)について図12に基づいて説明する。図12は、施設制御装置1Bが実行する処理の一例を示すフローチャートである。なお、図12のS21~S23の処理の説明は、図6のS1~3と同様であるから省略する。
 S24では、制御内容決定部105Bが、制御内容決定モデル112Bを用いて制御内容を決定する。例えば、S23で生成された移動データが移動量を示すデータであり、制御内容決定モデル112Bが、移動量と給じん速度を説明変数とし、適正な燃焼状態を維持するために最適な給じん速度の変化量を目的変数とするモデルであったとする。この場合、制御内容決定部105Bは、S23で生成された移動データが示す移動量と、給じん速度を制御内容決定モデル112Bに入力して得られる値から、適正な燃焼状態を維持するために最適な給じん速度の変化量を決定する。
 S25では、機器制御部107が、焼却炉における燃焼状態を良好に保つための制御を行うか否かを判定する。S25でYESと判定された場合にはS26の処理に進み、S26では、機器制御部107は、S24で決定された内容の制御を行う。一方、S25でNOと判定された場合には、S26の処理は行われずに図12の処理が終了する。
 なお、S25の判定基準は予め定めておけばよい。例えば、S24で制御を行わないこと、あるいは制御量がゼロであると決定されない限り、制御を行う(S25でYES)と判定するようにしてもよい。また、例えば、最適と予測される制御内容と共にその予測の確信度を示す数値を出力する制御内容決定モデル112Bを用いる場合、確信度が閾値以上の場合に制御を行う(S25でYES)と判定するようにしてもよい。また、例えば、S24で決定した制御内容をオペレータに提示して、その制御を実行するか否かをオペレータに入力させてもよい。
 以上のように、本実施形態に係る施設制御方法は、ステップ(S23)と、ステップ(S26)と、を含む。ステップ(S23)では、ホッパに投入されたごみを指定された給じん速度で焼却炉に送り込む焼却施設において、ホッパを上方から撮影した時系列の複数の画像から、ごみの移動状態を示す移動データを生成する。ステップ(S26)では、ステップ(S23)で生成した移動データと給じん速度とに基づいて、(1)ホッパへのごみの投入制御、(2)給じん速度の制御、(3)焼却炉内におけるごみの搬送速度の制御、(4)焼却炉内におけるごみの燃焼制御、および(5)ピット内のごみの撹拌制御、の少なくとも何れかを行う。この施設制御方法によれば、焼却施設の運用の改善に寄与することができる。
 〔ブリッジの発生について〕
 ホッパでは、ホッパ内のごみが架橋状に詰まるブリッジが発生することがある。ブリッジが発生すると、ホッパの上部(ブリッジの発生箇所およびその上方)におけるごみの移動量は、ごみの性状によらず、著しく少なくなるか、あるいはゼロになる。したがって、ブリッジが発生しているときに撮影された画像からごみの性状を予測することは難しい。
 このため、上記各実施形態で説明した予測装置1および1Aは、ブリッジの発生を検知するブリッジ検知部を備え、ブリッジ検知部がブリッジの発生を検知したときには、ごみの性状の予測を行わないようにしてもよい。また、予測装置1および1Aは、ブリッジの発生中はごみの性状の予測結果をホールドしておき、ブリッジが解消した後で性状の予測を再開してもよい。
 ブリッジの発生および解消を検知する方法は特に限定されず、例えば移動データ生成部103が生成する移動データが示すごみの移動量に基づいてブリッジの発生および解消を検知することもできる。施設制御装置1Bも同様であり、ブリッジの発生を検知して、ブリッジの発生中には制御をホールドしておき、ブリッジが解消した後で制御を再開してもよい。
 また、逆に、ブリッジの発生がごみの性状の予測結果に影響を与えることを利用して、ごみの性状の予測結果からブリッジの発生を検知することも可能である。例えば、予測装置1Aは、予測したかさ密度と、実測したかさ密度との間に乖離が生じている場合に、ブリッジが発生したと判定してもよい。また、長時間ブリッジが続いた場合には、低位発熱量への影響も生じるため、予測装置1Aは、予測した低位発熱量が、図9に示す直線k1から乖離している場合に、ブリッジが発生したと判定してもよい。
 〔変形例〕
 上述の各実施形態で説明した各処理の実行主体は任意であり、上述の例に限られない。つまり、相互に通信可能な複数の装置により、予測装置1、1A、施設制御装置1Bと同様の機能を有するシステムを構築することができる。例えば、図6におけるS1~S3の処理をある情報処理装置に実行させ、生成された移動データを他の情報処理装置に送信して、当該他の情報処理装置によりS4~S8の処理を行うようにしてもよい。図9および図12に示す各処理についても同様である。
 〔ソフトウェアによる実現例〕
 予測装置1、1A、施設制御装置1B(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に制御部10に含まれる各部)としてコンピュータを機能させるためのプログラム(予測プログラム/制御プログラム)により実現することができる。
 この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1   予測装置
103 移動データ生成部
104 標準移動量算出部
105 性状予測部(予測部)
1A 予測装置
103 移動データ生成部
105A かさ密度予測部(予測部)
1B  施設制御装置
103 移動データ生成部
107 機器制御部

Claims (10)

  1.  ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成する移動データ生成部と、
     前記移動データ生成部が生成した前記移動データと前記速度とに基づいて、焼却される前記焼却対象物の性状を予測する予測部と、を備える予測装置。
  2.  前記移動データは、前記焼却対象物の移動量を示すデータであり、
     前記予測部は、前記移動データ生成部が生成した前記移動データが示す移動量と、前記焼却対象物を前記速度で前記焼却炉に送り込むときの前記焼却対象物の標準の移動量との差を前記予測の結果として算出する、請求項1に記載の予測装置。
  3.  前記焼却対象物を前記焼却炉に送り込む速度と、当該速度で焼却対象物を前記焼却炉に送り込んだときの当該焼却対象物の標準の移動量との関係を示す数式を用いて前記標準の移動量を算出する標準移動量算出部を備える、請求項2に記載の予測装置。
  4.  前記移動データは、前記焼却対象物の移動量を示すデータであり、
     前記予測部は、前記移動データ生成部が生成した前記移動データが示す移動量と、前記焼却対象物を前記焼却炉に送り込む速度と、当該焼却対象物のかさ密度との関係を示す数式を用いて、前記かさ密度を前記予測の結果として算出する、請求項1に記載の予測装置。
  5.  前記移動データは、前記焼却対象物の移動量を示すデータであり、
     前記予測部は、前記移動データ生成部が生成した前記移動データが示す移動量と、前記焼却対象物を前記焼却炉に送り込む速度と、当該焼却対象物を焼却したときの低位発熱量との関係を示す数式を用いて、前記低位発熱量を前記予測の結果として算出する、請求項1に記載の予測装置。
  6.  ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成する移動データ生成部と、
     前記移動データ生成部が生成した前記移動データと前記速度とに基づいて、(1)前記ホッパへの焼却対象物の投入制御、(2)前記速度の制御、(3)前記焼却炉内における前記焼却対象物の搬送速度の制御、(4)前記焼却炉内における前記焼却対象物の燃焼制御、および(5)前記焼却対象物の撹拌制御、の少なくとも何れかを行う機器制御部と、を備える施設制御装置。
  7.  1または複数の情報処理装置が実行する焼却対象物の性状の予測方法であって、
     ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成するステップと、
     前記ステップで生成した前記移動データと前記速度とに基づいて、焼却される前記焼却対象物の性状を予測するステップと、を含む予測方法。
  8.  1または複数の情報処理装置が実行する施設制御方法であって、
     ホッパに投入された焼却対象物を指定された速度で焼却炉に送り込む焼却施設において、前記ホッパを上方から撮影した時系列の複数の画像から、前記焼却対象物の移動状態を示す移動データを生成するステップと、
     前記ステップで生成した前記移動データと前記速度とに基づいて、(1)前記ホッパへの焼却対象物の投入制御、(2)前記速度の制御、(3)前記焼却炉内における前記焼却対象物の搬送速度の制御、(4)前記焼却炉内における前記焼却対象物の燃焼制御、および(5)前記焼却対象物の撹拌制御、の少なくとも何れかを行うステップと、を含む施設制御方法。
  9.  請求項1に記載の予測装置としてコンピュータを機能させるための予測プログラムであって、上記移動データ生成部および上記予測部としてコンピュータを機能させるための予測プログラム。
  10.  請求項6に記載の施設制御装置としてコンピュータを機能させるための制御プログラムであって、前記移動データ生成部および前記機器制御部としてコンピュータを機能させるための制御プログラム。
PCT/JP2022/009042 2021-04-26 2022-03-03 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム WO2022230356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280030887.1A CN117203469A (zh) 2021-04-26 2022-03-03 预测装置、预测方法、预测程序、设施控制装置、设施控制方法、以及控制程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074378A JP2022168717A (ja) 2021-04-26 2021-04-26 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム
JP2021-074378 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230356A1 true WO2022230356A1 (ja) 2022-11-03

Family

ID=83846935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009042 WO2022230356A1 (ja) 2021-04-26 2022-03-03 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム

Country Status (3)

Country Link
JP (1) JP2022168717A (ja)
CN (1) CN117203469A (ja)
WO (1) WO2022230356A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358012A (ja) * 1986-08-26 1988-03-12 Kubota Ltd 焼却炉のごみ定量供給方法
JP2003254526A (ja) * 2002-02-27 2003-09-10 Takuma Co Ltd ごみ供給熱量計測装置およびごみ供給制御装置
JP2005016852A (ja) * 2003-06-26 2005-01-20 Kobe Steel Ltd 廃棄物処理炉の制御方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358012A (ja) * 1986-08-26 1988-03-12 Kubota Ltd 焼却炉のごみ定量供給方法
JP2003254526A (ja) * 2002-02-27 2003-09-10 Takuma Co Ltd ごみ供給熱量計測装置およびごみ供給制御装置
JP2005016852A (ja) * 2003-06-26 2005-01-20 Kobe Steel Ltd 廃棄物処理炉の制御方法及び装置

Also Published As

Publication number Publication date
JP2022168717A (ja) 2022-11-08
CN117203469A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JP5361595B2 (ja) 燃焼炉に供給される燃焼対象物の処理システム、処理方法およびこれらを用いた燃焼炉の燃焼制御システム
JP7443683B2 (ja) 自動燃焼制御方法および監視センタ
JP7256016B2 (ja) 予測モデル生成装置、予測モデル生成装置による予測モデル生成方法、及び予測装置
WO2023037742A1 (ja) 焼却炉設備の制御装置
JP2024001991A (ja) 情報処理装置、情報処理方法、およびプログラム
WO2022230356A1 (ja) 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム
JP2005249349A (ja) 廃棄物処理プラント設備の運転制御方法及び運転制御装置
JP6779779B2 (ja) ごみ焼却設備
JP6782203B2 (ja) 発熱量推定方法、発熱量推定装置、及びごみ貯蔵設備
JP2021173497A (ja) 廃棄物供給異常検知方法、廃棄物供給制御方法、廃棄物供給異常検知装置および廃棄物供給制御装置
JP7093757B2 (ja) 燃焼設備の制御装置、燃焼設備の制御方法およびプログラム
CN118159776A (zh) 控制装置
US11994287B2 (en) Method for operating a furnace unit
JP2024021222A (ja) ごみの性状推定方法及びごみの性状推定装置
JP2021138505A (ja) 自動運転制御装置、自動運転制御システム、自動運転制御方法、および廃棄物処理施設
JP2005090774A (ja) ゴミ焼却炉のゴミ供給量推定装置
JPH07119946A (ja) ごみ焼却炉
JP2024021223A (ja) ごみの攪拌方法及びごみの攪拌システム
JP2023098425A (ja) 情報処理装置、状態判定方法、制御決定方法、状態判定プログラム、および制御決定プログラム
JP2023098427A (ja) 情報処理装置、制御内容決定方法、ごみ調整方法、制御内容予測モデルの生成方法、強化学習モデルの生成方法、制御内容決定プログラム、およびごみ調整プログラム
JP2024079907A (ja) ごみ焼却炉の燃焼制御方法及びごみ焼却炉の燃焼制御装置
JP7445058B1 (ja) 燃焼設備用システムおよび燃焼制御方法
JP3825579B2 (ja) 溶融スラグ流の画像認識方法
WO2021235464A1 (ja) 情報処理装置、情報処理プログラム、および情報処理方法
JP7539249B2 (ja) 流動床式焼却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030887.1

Country of ref document: CN

Ref document number: 2301006968

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202347077715

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202308009S

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22795279

Country of ref document: EP

Kind code of ref document: A1