JP7445058B1 - 燃焼設備用システムおよび燃焼制御方法 - Google Patents

燃焼設備用システムおよび燃焼制御方法 Download PDF

Info

Publication number
JP7445058B1
JP7445058B1 JP2023087635A JP2023087635A JP7445058B1 JP 7445058 B1 JP7445058 B1 JP 7445058B1 JP 2023087635 A JP2023087635 A JP 2023087635A JP 2023087635 A JP2023087635 A JP 2023087635A JP 7445058 B1 JP7445058 B1 JP 7445058B1
Authority
JP
Japan
Prior art keywords
flame
incinerated
combustion
incinerator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023087635A
Other languages
English (en)
Inventor
知大 高橋
真之 池田
浩都 草加
卓一郎 大丸
孝 池田
智記 横井
稔彦 瀬戸口
潤司 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2023087635A priority Critical patent/JP7445058B1/ja
Application granted granted Critical
Publication of JP7445058B1 publication Critical patent/JP7445058B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

【課題】製造費用の上昇を抑制しつつ、適切な燃焼制御を行うことができる燃焼設備用システムおよび燃焼制御方法を提供することを目的とする。【解決手段】燃焼設備用システムは、火炎情報導出部と、制御部とを備える。火炎情報導出部は、焼却炉内の温度、被焼却物の供給量、被焼却物のカロリー、被焼却物の含有水分、被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、焼却炉内の火炎の位置または形状に関する値を導出する。制御部は、火炎情報導出部により導出された火炎の位置または形状に関する値に基づき、焼却炉に関する燃焼制御を行う。【選択図】図4

Description

本開示は、燃焼設備用システムおよび燃焼制御方法に関する。
特許文献1には、炉長方向で、乾燥火格子から後燃焼火格子までの範囲内で隣接する高温ガス吹込口同士間位置と、最前の高温ガス吹込口の前方位置と、最後の高温ガス吹込口の後方位置とにそれぞれ配された複数の温度検出手段と、上記複数の温度検出手段のなかで最高の温度を示す温度検出手段の位置を燃切点と判定する燃切点位置判定手段とを備える廃棄物焼却炉が開示されている。
特開2015-187514号公報
しかしながら、特許文献1に記載の廃棄物焼却炉では、火炎の状態を検出するために焼却炉に新たな設備(例えば複数の温度検出手段)を設置する必要があり、製造費用の上昇を抑制することが難しくなる。
本開示は、上記課題を解決するためになされたものであって、焼却炉の内部に設けられる炉内温度センサに関する製造費用の上昇を抑制しつつ、適切な燃焼制御を行うことができる燃焼設備用システムおよび燃焼制御方法を提供することを目的とする。
上記課題を解決するために、本開示に係る燃焼設備用システムは、焼却炉内における被焼却物の搬送方向を奥行方向と称する場合、前記焼却炉内の温度、前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の前記奥行方向の位置に関連した第1要素に関する値と、前記火炎の前記奥行方向の別の位置または前記火炎の前記奥行方向の形状に関連した第2要素に関する値とを導出する火炎情報導出部と、前記火炎情報導出部により導出された前記第1要素に関する値および前記第2要素に関する値に基づき、前記焼却炉に関する燃焼制御を行う制御部と、を備える。前記制御部は、前記第1要素および前記第2要素に設定された優先度に基づき、前記第1要素および前記第2要素のうち優先度が高い一方の要素が基準から外れる場合にはまず前記一方の要素に基づいて前記燃焼制御を行い、前記一方の要素が基準から外れないが優先度が低い他方の要素が基準から外れる場合には前記他方の要素に基づいて前記燃焼制御を行う。
本開示に係る燃焼制御方法は、焼却炉内における被焼却物の搬送方向を奥行方向と称する場合、1つ以上のコンピュータが、前記焼却炉内の温度、前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の前記奥行方向の位置に関連した第1要素に関する値と、前記火炎の前記奥行方向の別の位置または前記火炎の前記奥行方向の形状に関連した第2要素に関する値とを導出し、導出した前記第1要素に関する値および前記第2要素に関する値に基づき、前記焼却炉に関する燃焼制御を行う、ことを含む。前記燃焼制御を行うことは、前記第1要素および前記第2要素に設定された優先度に基づき、前記第1要素および前記第2要素のうち優先度が高い一方の要素が基準から外れる場合にはまず前記一方の要素に基づいて前記燃焼制御を行い、前記一方の要素が基準から外れないが優先度が低い他方の要素が基準から外れる場合には前記他方の要素に基づいて前記燃焼制御を行うことを含む。
本開示の燃焼設備用システムおよび燃焼制御方法によれば、焼却炉の内部に設けられる炉内温度センサに関する製造費用の上昇を抑制しつつ、適切な燃焼制御を行うことができる。
本開示の第1実施形態の焼却設備を説明するための概略構成図である。 本開示の第1実施形態の貯留部を説明するための概略構成図である。 本開示の第1実施形態の貯留部を説明するための平面図である。 本開示の第1実施形態の焼却設備の機能構成を示すブロック図である。 本開示の第1実施形態の火炎に関する値を説明するための図である。 本開示の第1実施形態のソフトセンサの生成を説明するための図である。 本開示の第1実施形態の学習段階の流れを示すフローチャートである。 本開示の第1実施形態の火炎の重心位置に基づく制御例を示す図である。 本開示の第1実施形態の制御の流れを示すフローチャートである。 本開示における火炎の重心位置が炉尻側に偏る場合を説明ための図である。 本開示の第2実施形態の制御例を説明するための図である。 本開示の第3実施形態の制御例を説明するための図である。 本開示の第4実施形態の焼却設備の機能構成を示すブロック図である。 本開示の第4実施形態の制御例を説明するための図である。 本開示の実施形態のコンピュータの構成を示すハードウェア構成図である。
以下、本開示の実施形態を、図面を参照して説明する。以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。本開示で「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含み得る。また「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含み得る。本開示で「XXまたはYY」とは、XXとYYのうちいずれか一方の場合に限定されず、XXとYYの両方の場合も含み得る。これは選択的要素が3つ以上の場合も同様である。「XX」および「YY」は、任意の要素(例えば任意の情報)である。
本出願で「取得する」とは、送信要求を送信して能動的に取得する場合に限定されず、他の装置から送信される情報を受動的に受信することで取得する場合も含み得る。また「取得」とは、目的の情報(取得対象の情報)を外部から直接取得する場合に限定されず、外部から得られた情報に対して演算または加工などを行うことで、目的の情報を生成して取得する場合も含み得る。
また以下に説明する実施形態では、説明の便宜上、後述するホッパ21に対して炉本体30が位置する側を「後」、その反対側を「前」と定義する。なお以下では説明の便宜上、「前側」を「炉前側」と称し、「後側」を「炉尻側」と称する場合がある。また、ホッパ21から炉本体30に向かう方向を基準として「左」および「右」を定義する。
(第1実施形態)
<1.焼却設備の全体構成>
図1は、焼却設備1を説明するための概略構成図である。焼却設備1は、例えば、都市ごみ、産業廃棄物、またはバイオマスなどを被焼却物Sとするストーカ炉である。なお、焼却設備1は、ストーカ炉に限定されるものではなく、別タイプの焼却設備でもよい。以下では説明の便宜上、「被焼却物」を「ごみ」と称する場合がある。焼却設備1は、例えば、貯留部2(図2参照)、焼却炉3、排熱回収ボイラ4、減温塔5、集塵装置6、煙道7、煙突8、および制御装置100を備える。
貯留部2は、収集された被焼却物Sを一時的に貯留する。焼却炉3は、貯留部2から投入された被焼却物Sを搬送しながら燃焼させる炉である。焼却炉3内での被焼却物Sの燃焼に伴って焼却炉3では排ガスが発生する。発生した排ガスは、焼却炉3の上部に設けられた排熱回収ボイラ4に送られる。排熱回収ボイラ4は、焼却炉3で発生した排ガスと水との間で熱交換を行うことで水を加熱して蒸気を発生させる。排熱回収ボイラ4を通過した排ガスは、減温塔5で冷却された後、集塵装置6に送られる。排ガスは、集塵装置6でススや塵埃が除去された後、煙道7および煙突8を通じて大気中に排出される。
<2.貯留部>
まず、貯留部2について詳しく説明する。
図2は、貯留部2を説明するための概略構成図である。貯留部2は、収集された被焼却物Sを一時的に貯留し、貯留した被焼却物Sを焼却炉3に投入する設備である。貯留部2は、例えば、ごみピット11、1つ以上のクレーン12、およびカメラ13を備える。
(ごみピット)
ごみピット11は、焼却炉3の前段に設けられ、焼却炉3に投入される前の被焼却物Sが一時的に貯留される収容部である。
図3は、貯留部2を説明するための平面図である。ごみピット11は、例えば、複数の領域Rを有する。本実施形態では、1つ以上の領域Rに対して、第1貯留エリアA11が設定される。また、別の1つ以上の領域Rに対して、第2貯留エリアA12が設定される。第1貯留エリアA11は、相対的に低いカロリーの被焼却物S(以下「低カロリー被焼却物S1」と称する)が貯留されるエリアである。一方で、第2貯留エリアA12は、相対的に高いカロリーの被焼却物S(以下「高カロリー被焼却物S2」と称する)が貯留されるエリアである。
ここで、被焼却物Sが低カロリー被焼却物S1であるか、高カロリー被焼却物S2であるかは、例えば、パッカー車による被焼却物Sの回収先に基づいて分類されてもよいし、ごみピット11に搬入された被焼却物Sをカメラ13で撮像して画像診断を行うことで分類してもよいし、その他の手法でもよい。なお、第1貯留エリアA11および第2貯留エリアA12の設定は、図3に示す例に限定されない。
(クレーン)
クレーン12は、貯留部2の天井に設けられている。クレーン12は、後述する制御部130からの制御指示に基づいて駆動される。例えば、パッカー車からごみピット11に新しい被焼却物Sが搬入された場合、制御部130からの制御指示(例えば、搬入された被焼却物Sが低カロリー被焼却物S1であるか、高カロリー被焼却物S2であるかを示す判定結果)に基づき、搬入された被焼却物Sが低カロリー被焼却物S1である場合はその被焼却物Sを第1貯留エリアA11に移動させ、搬入された被焼却物Sが高カロリー被焼却物S2である場合はその被焼却物Sを第2貯留エリアA12に移動させる。
また、クレーン12は、ごみピット11に貯留された被焼却物Sを焼却炉3のホッパ21に投入させる制御指示を制御部130から受信した場合、ごみピット11において被焼却物Sの把持先の領域Rまで移動し、把持先の領域Rにて被焼却物Sを把持し、把持した被焼却物Sをホッパ21に投入する。本実施形態では、クレーン12は、低カロリー被焼却物S1を投入させる制御指示を制御部130から受信した場合、第1貯留エリアA11に含まれる領域Rから低カロリー被焼却物S1を把持してホッパ21に投入する。一方で、クレーン12は、高カロリー被焼却物S2を投入させる制御指示を制御部130から受信した場合、第2貯留エリアA12に含まれる領域Rから高カロリー被焼却物S2を把持してホッパ21に投入する。
以上、本実施形態では、被焼却物Sのカロリーに応じて被焼却物Sが2種類に分類される例について説明した。なお、被焼却物Sのカロリーに応じた分類は、3種類以上でもよい。なお別の観点では、被焼却物Sは、カロリーに応じて分類されなくてもよい。
<3.焼却炉>
次に図1に戻り、焼却炉3について詳しく説明する。
焼却炉3は、例えば、供給機構20、炉本体30、ストーカ40、排出シュート43、複数の風箱50、火炉60、および送風機構70を有する。
<3.1 供給機構>
供給機構20は、クレーン12によって運ばれた被焼却物Sを、一時的に貯留するとともに、後述する炉本体30の処理空間Vに向けて順次供給する機構である。供給機構20は、例えば、ホッパ21、フィーダ22、押出装置23(図4参照)、水分計測器24、および散水装置25を有する。
(ホッパ)
ホッパ21は、炉本体30の内部へ被焼却物Sを供給するために設けられた貯留部である。ホッパ21は、被焼却物Sが投入されるための入口部と、後述する炉本体30の処理空間Vに通じる出口部とを有する。ホッパ21には、クレーン12によって運ばれた被焼却物Sが投入される。
(フィーダ)
フィーダ22は、ホッパ21の底部に設けられている。フィーダ22は、例えば、ホッパ21の底部に沿う板状に形成されている。フィーダ22は、押出装置23によって駆動され、ホッパ21から炉本体30の処理空間Vに向かう方向に沿って往復移動可能である。フィーダ22は、押出装置23によって駆動され、ホッパ21の内部に堆積した被焼却物Sを炉本体30の処理空間Vに向けて押し出す。
(水分計測器)
水分計測器24は、ホッパ21に投入される被焼却物Sの含有水分に関する情報(例えば水分率または水分量)を検出する計測器である。例えば、水分計測器24は、ホッパ21に設けられた照射部および検出部と、解析部とを有する。照射部は、ホッパ21内に堆積する被焼却物Sに所定の周波数帯域の電磁波を照射する。検出部は、照射部から照射されて、被焼却物Sを透過したまたは被焼却物Sで反射した電磁波を受信する。解析部は、例えば、電磁波の特性変化(例えば振幅の変化または位相の変化)と水分率との関係を示す相関関係情報を予め記憶している。解析部は、照射部と検出部との間での電磁波の特性変化と、上記相関関係情報とに基づき、被焼却物Sの水分率を検出する。なお、水分計測器24は、上記水分率と、ホッパ21に投入される被焼却物Sの重量とに基づき、被焼却物Sの水分量を検出してもよい。
(散水装置)
散水装置25は、被焼却物Sに対して散水を行うことで、被焼却物Sの含有水分を調整する装置である。散水装置25は、例えば、ホッパ21に設けられている。散水装置25は、被焼却物Sの含有水分の調整を行う場合、後述する制御部130からの制御指示に基づき、ホッパ21内の被焼却物Sに対して散水を行う。
<3.2 炉本体>
炉本体30は、ホッパ21に隣接して設けられ、被焼却物Sを搬送しながら燃焼させる設備である。以下では、燃焼設備1における被焼却物Sの搬送方向を「搬送方向D」と称する。搬送方向Dは、「奥行方向」と称されてもよい。
炉本体30は、搬送方向Dにおける上流側から下流側に向けて、乾燥段30a、燃焼段30b、および後燃焼段30cをこの順に有する。乾燥段30aは、燃焼段30bおよび後燃焼段30cよりも上流側に位置し、ホッパ21から供給された被焼却物Sを、ストーカ40上での燃焼に先立って乾燥させる領域である。燃焼段30bおよび後燃焼段30cは、乾燥段30aを通過して乾燥した状態の被焼却物Sをストーカ40上で燃焼させる領域である。燃焼段30bでは、被焼却物Sから発生する熱分解ガスによる拡散燃焼が起き、火炎Fが生じる。後燃焼段30cでは、被焼却物Sの拡散燃焼後の固定炭素燃焼が起きるため、火炎Fは生じない。
(炉内温度センサ)
炉本体30は、例えば、炉内温度センサ31を有する。炉内温度センサ31は、例えば熱電対であり、炉本体30の内部の温度を検出する。本実施形態では、炉本体30の内部の温度を検出する温度センサとしては、炉内温度センサ31が1つのみ設けられている。炉本体30の内部の温度は、「焼却炉内の温度」の一例である。なお、炉内温度センサ31は、炉本体30に代えて/加えて、火炉60または別の場所に設けられてもよい。火炉60または別の場所で検出される温度は、「焼却炉内の温度」の別の一例である。
(カメラ)
炉本体30は、例えば、可視光カメラ32と、赤外カメラ33とを有する。可視光カメラ32および赤外カメラ33は、炉本体30の内部を撮影する。例えば、可視光カメラ32および赤外カメラ33は、搬送方向Dにおける炉本体30の下流側の端部(以下「炉尻」と称する)に設けられ、炉尻から搬送方向Dの上流側を撮像する。
可視光カメラ32は、例えば、火炎Fを撮像する。赤外カメラ33は、例えば、火炎Fを透過して炉本体30の乾燥段30aに堆積した被焼却物S(ごみ層)を撮像する。また、赤外カメラ33は、乾燥段30aに堆積した被焼却物Sに代えて/加えて、ホッパ21の出口部を撮像してもよい。すなわち、赤外カメラ33は、ホッパ21の出口部において、フィーダ22上に堆積した被焼却物Sを含む画像(被焼却物Sの堆積状態を示す画像)を撮像してもよい。可視光カメラ32および赤外カメラ33の撮像結果は、制御装置100に送信される。可視光カメラ32または赤外カメラ33の撮像結果は、「焼却炉内を撮影した画像」の一例である。
なお、赤外カメラ33は、例えばステレオ方式で配置された複数の赤外カメラにより構成されてもよい。また、可視光カメラ32および赤外カメラ33は、炉本体30の炉尻に代えて、別の位置(炉本体30の左側壁または右側壁など)に設けられてもよい。また、可視光カメラ32および赤外カメラ33の両方または片方は、省略されてもよい。
<3.3 ストーカ>
ストーカ40は、複数の火格子41と、火格子駆動装置42(図4参照)とを含む。複数の火格子41は、炉本体30の底面となるストーカ面40aを形成している。ストーカ面40aには、供給機構20によって被焼却物Sが層状に供給される。ストーカ面40aは、上述した乾燥段30a、燃焼段30b、および後燃焼段30cに亘り設けられている。複数の火格子41は、固定火格子と、可動火格子とを含む。固定火格子は、後述する風箱50の上面に固定されている。可動火格子は、一定の速度で搬送方向Dに沿って往復移動することで、可動火格子と固定火格子の上(ストーカ面40a上)にある被焼却物Sを攪拌混合しながら下流側へ搬送する。
<3.4 排出シュート>
排出シュート43は、燃焼を終えて灰となった被焼却物Sを炉本体30よりも下方に位置する灰押出装置へ落下させる装置である。排出シュート43は、炉本体30の炉尻に設けられている。
<3.5 風箱>
複数の風箱50は、ストーカ40の下方に設けられ、ストーカ40を通じて炉本体30の内部に燃焼用の一次空気を供給する。一次空気は、「燃焼空気」の一例である。本実施形態では、複数の風箱50は、例えば複数の火格子41に対応して搬送方向Dに並べて配置されている。各風箱50には、風箱50内の圧力を検出する風箱圧力センサ51が設けられている。風箱50内の圧力は、当該風箱50から炉本体30の内部に供給される一次空気の圧力に相当する。各風箱圧力センサ51の検出結果、および/または、複数の風箱圧力センサ51の検出結果のセットは、「燃焼空気の供給に関する情報」の一例である。
<3.6 火炉>
火炉60は、炉本体30の上部から上方に向けて延びている。火炉60は、火格子41の上方に配置されて燃焼後のガスが流入する。すなわち、炉本体30内で被焼却物Sが燃焼することで生じた排ガスは、火炉60を通じて排熱回収ボイラ4に流れる。火炉60は、排ガスが流れる空間の前側に位置した前壁60aと、排ガスが流れる空間の後側に位置した後壁60bとを含む。前壁60aおよび後壁60bは、例えば、それぞれ鉛直方向に延びている。
<3.7 送風機構>
送風機構70は、炉本体30および火炉60の内部に燃焼空気を供給する。送風機構70は、例えば、送風機71、一次空気ライン72、空気予熱器73、二次空気ライン74、ダンパ75、および空気流量センサ76を有する。
送風機71は、炉本体30および火炉60の内部に燃焼空気を圧送する押込送風機である。送風機71は、例えば、第1送風機71Aと、第2送風機71Bとを含む。第1送風機71Aは、一次空気ライン72および複数の風箱50を通じて炉本体30の内部(例えば処理空間V)に燃焼用の一次空気を圧送する。第2送風機71Bは、二次空気ライン74を通じて、火炉60の内部に燃焼用の二次空気を圧送する。二次空気は、「燃焼空気」の別の一例である。
一次空気ライン72は、第1送風機71Aと複数の風箱50とを接続している。一次空気ライン72の途中には、1つ以上(例えば複数)の一次空気ダンパ75Aが設けられている。本実施形態では、複数の一次空気ダンパ75Aは、複数の風箱50と1対1で対応して設けられている。一次空気ダンパ75Aは、当該一次空気ダンパ75Aの開度によって、当該一次空気ダンパ75Aが対応する風箱50に一次空気ライン72から流入する一次空気の流量を変更する。言い換えると、複数の一次空気ダンパ75Aの開度によって、複数の風箱50における一次空気の分配量(どの風箱50から優先して炉本体30内に一次空気を供給するか)が変更される。各一次空気ダンパ75Aの開度、および/または、複数の一次空気ダンパ75Aの開度のセットは、「燃焼空気の供給に関する情報」の別の一例である。
空気予熱器73は、第1送風機71Aから圧送される一次空気を予熱する熱交換器である。例えば、空気予熱器73は、一次空気ライン72の途中に設けられている。空気予熱器73は、予熱した一次空気の温度を検出する予熱温度センサ73aを有する。予熱温度センサ73aの検出結果は、「燃焼空気の温度に関する情報」の別の一例である。
二次空気ライン74は、第2送風機71Bと火炉60とを接続している。本実施形態では、二次空気ライン74は、第1供給口74aと、第2供給口74bとを有する。第1供給口74aは、火炉60の前壁60aに開口し、火炉60の前壁60aから火炉60内の空間(排ガス流路)に二次空気を供給する。一方で、第2供給口74bは、火炉60の後壁60bに開口し、火炉60の後壁60bから火炉60内の空間(排ガス流路)に二次空気を供給する。
二次空気ライン74の途中には、1つ以上(例えば複数)の二次空気ダンパ75Bが設けられている。本実施形態では、複数の二次空気ダンパ75Bは、火炉60に設けられた複数の供給口(例えば供給口74a,74b)と1対1で対応して設けられている。二次空気ダンパ75Bは、当該二次空気ダンパ75Bの開度によって、複数の供給口(例えば供給口74a,74b)における二次空気の分配量(どの供給口から優先して火炉60内に二次空気を供給するか)が変更される。各二次空気ダンパ75Bの開度、および/または、複数の二次空気ダンパ75Bの開度のセットは、「燃焼空気の供給に関する情報」の別の一例である。以下では説明の便宜上、一次空気ダンパ75Aと二次空気ダンパ75Bとを合わせて「ダンパ75」と称する。
空気流量センサ76は、炉本体30および火炉60の内部に供給される燃焼空気の流量を検出する。空気流量センサ76は、例えば、第1空気流量センサ76Aと、第2空気流量センサ76Bとを含む。第1空気流量センサ76Aは、一次空気ライン72の途中に設けられ、一次空気ライン72を通じて供給される一次空気の流量を検出する。第2空気流量センサ76Bは、二次空気ライン74の途中に設けられ、二次空気ライン74を通じて供給される二次空気の流量を検出する。第1空気流量センサ76Aおよび第2空気流量センサ76Bの各々の検出結果は、「燃焼空気の供給に関する情報」の別の一例である。
<4.ガスセンサ>
次に、ガスセンサ81について説明する。ガスセンサ81は、排ガス中の成分を検出するセンサである。ガスセンサ81は、例えば、排ガスに含まれる酸素濃度、一酸化炭素濃度(未燃分)、二酸化炭素濃度、またはNOx濃度などを検出可能である。ガスセンサ81は、例えば、煙道7に設けられているが、煙突8の内部に設けられてもよく、別の場所に設けられてもよい。ガスセンサ81の検出結果は、「排ガス中の成分に関する情報」の一例である。
<5.制御装置>
次に、制御装置100について説明する。
図4は、焼却設備1の機能構成を示すブロック図である。制御装置100は、焼却設備1を統括的に制御する。例えば、制御装置100は、炉本体30における被焼却物Sの燃焼制御を行う。本開示で「燃焼制御」とは、被焼却物Sの燃焼の関する制御を広く意味し、例えば、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、一次空気の流量および/または分配量、一次空気の温度、二次空気の流量および/または分配量などのうち1つ以上を制御することを意味する。
本実施形態では、制御装置100は、例えば、情報取得部110、火炎情報導出部120、および制御部130を有する。制御部130による制御対象の装置(以下「制御対象装置VD」と称する)は、クレーン12、押出装置23、散水装置25、火格子駆動装置42、送風機71、空気予熱器73、およびダンパ75などを含む。
<5.1 情報取得部>
情報取得部110は、焼却設備1に設けられた各種センサにより検出された検出結果を取得する。例えば、情報取得部110は、貯留部2に設けられたカメラ13の検出結果(被焼却物Sのカロリーに関する情報)、水分計測器24の検出結果(被焼却物Sの含有水分に関する情報)、炉内温度センサ31の検出結果(焼却炉3内の温度に関する情報)、可視光カメラ32の撮影結果(炉尻から見た燃焼火炎に関する情報)、赤外カメラ33の撮影結果(ごみ層に関する情報)、各風箱圧力センサ51の検出結果(一次空気の流量および/または分配量に関する情報)、予熱温度センサ73aの検出結果(一次空気の温度(燃焼空気の温度)に関する情報)、空気流量センサ76の検出結果(燃焼空気の流量に関する情報)、ガスセンサ81の検出結果(排ガス中の成分に関する情報)を取得する。以下では、これらを纏めて「各種検出情報」と称する。
また、情報取得部110は、制御対象装置VDに含まれる各装置の状態を示す制御情報を各装置または制御部130から取得する。例えば、情報取得部110は、ごみピット11におけるクレーン12の把持先を示す制御情報(被焼却物Sのカロリーに関する情報)、押出装置23によるフィーダ22の駆動状態を示す制御情報(被焼却物Sの供給量に関する情報、例えばフィーダ22の移動速度および/またはストローク長)、火格子駆動装置42の駆動状態を示す制御情報(被焼却物Sの搬送速度に関する情報)、送風機71の駆動量を示す制御情報(燃焼空気の供給に関する情報)、空気予熱器73の加熱量を示す制御情報(一次空気の供給に関する情報)、およびダンパ75の開度を示す制御情報(燃焼空気の供給に関する情報)を取得する。以下では、これらを纏めて「各種制御情報」と称する。
<5.2 火炎情報導出部>
火炎情報導出部120は、情報取得部110により取得された各種情報(上述した各種検出情報および各種制御情報)に含まれる1つ以上の情報に基づき、焼却炉3内の火炎Fの位置または形状に関する値を導出する。本実施形態では、火炎情報導出部120は、焼却炉3内の温度、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または焼却炉3内を撮影した画像のそれぞれに関する情報のうち1つ以上に基づき、焼却炉3内の火炎Fの位置または形状に関する値を導出する。
本実施形態では、火炎情報導出部120は、上述した各種情報に含まれる1つ以上の情報を入力情報とするソフトセンサにより、焼却炉3内の火炎Fの位置または形状に関する値を導出する。本開示で「ソフトセンサ」とは、実際には測定していない値を計算により推定することで、その値を測定しているかのように扱うことができるセンサを意味する。なお、本実施形態のソフトセンサの詳細については、詳しく後述する。
本実施形態では、火炎情報導出部120は、火炎Fの位置に関する値として、火炎Fの重心位置Gと、火炎Fの燃え切り位置PEとを算出する。なおこれに代えて/加えて、火炎情報導出部120は、搬送方向Dを「奥行方向」と称する場合、火炎Fの形状に関する値として、火炎Fの奥行方向の幅Wを導出してもよい。まずこれら内容について説明する。ただし、実施形態は、以下の例に限定されない。
(火炎の重心位置、燃え切り位置、奥行方向の幅)
図5は、火炎Fの位置および形状に関する値を説明するための図である。
図5中の(a)は、炉頂カメラ90(図1参照)により撮影された画像IM1の例を示す。炉頂カメラ90は、例えば、後述するソフトセンサを生成するために必要な情報(例えば、学習用の正解データ)を収集するために一時的に設置される特設カメラである。
図5中の(b)は、画像IM1に対して所定の画像処理(例えば2値化処理)を行い、火炎Fが存在する領域を抽出した画像IM2を示す。画像IM2において、火炎Fが存在する領域の上流端(炉前側の端)が火炎Fの始点PSであり、火炎Fが存在する領域の下流端(炉尻側の端)が火炎Fの燃え切り位置PEである。そして、画像IM2において、火炎Fの始点PSと燃え切り位置PEとの間の奥行方向の距離(奥行方向に延びた火炎Fの長さ)が「火炎Fの奥行方向の幅W」に該当する。
図5中の(c)は、画像IM2に対して所定の画像処理(例えば画像モーメント法を用いた処理)を行うことで火炎Fの重心位置Gを導出し、導出した重心位置Gを画像IM1に重畳した画像IM3を示す。本開示で「火炎の重心位置」とは、例えば、炉上から見て火炎Fが存在する座標に対して画像モーメント法から得られる座標を指し、火炎Fが集中している箇所の中心位置を示す。なお、火炎Fの重心位置Gは、別の計算手法により求められた、火炎Fが集中している箇所の中心位置を示す値でもよい。
例えば、画像モーメント法では、以下に示す式(1)に基づき、火炎Fの重心位置Gを導出する。式(1)中において、Mはモーメント、xおよびyは座標位置である。この場合、火炎Fの重心位置Gは、(M10/M00,01/M00)により求まる。
Figure 0007445058000002
なお、式(1)に示す例では、2値化処理された画像IM2に基づき火炎Fの重心位置Gが導出される場合を説明した。上記例に代えて、火炎Fの重心位置Gは、画像IM1に含まれる輝度値に対して重み付けを行った画像モーメント法などにより求められてもよい。
ここで、火炎Fの重心位置Gは、火炎Fの奥行方向の幅Wの中心位置Cとは異なる場合がある。中心位置Cは、火炎Fの始点PSと燃え切り位置PEとの中間の位置である。例えば、火炎Fの集中箇所が炉尻側に偏る場合、火炎Fの重心位置Gは、火炎Fの中心位置Cよりも炉尻側に位置する(図5中の(c)参照)。一方で、火炎Fの集中箇所が炉前側に偏る場合、火炎Fの重心位置Gは、火炎Fの中心位置Cよりも炉前側に位置する。
(ソフトセンサ)
次に、本実施形態のソフトセンサの詳細について説明する。本実施形態では、火炎情報導出部120は、上述した各種情報に含まれる1つ以上の情報を入力情報(説明変数)とした回帰分析または深層学習を用いたソフトセンサにより、火炎Fの重心位置G、燃え切り位置PE、および奥行方向の幅Wなどの各値を導出する(推定する)。以下では一例として、深層学習により学習された予測モデルMを用いる場合について説明する。予測モデルMは、「学習済みモデル」の一例である。
図6は、ソフトセンサの生成を説明するための図である。また、図7は、学習段階の流れを示すフローチャートである。まず、炉頂カメラ90および各種センサなどを用いて、時系列で取得された複数の画像IM1を含む学習用のデータが収集される(図7中のS101)。
次に、図6中の(a)に示すように、時系列で取得された複数の画像IM1に対して上述した画像処理を適用し、各画像IM1における火炎Fの重心位置Gを求める。次に、図6中の(b)に示すように、求めた火炎Fの重心位置Gを時系列で並べることで、重心位置Gの時間変化を求める。
次に、求められた火炎Fの重心位置Gの時間変化と、情報取得部110により取得される各種情報(上述した各種検出情報および各種制御情報)の時間変化とを用いた相関分析を行い、火炎Fの重心位置Gと、情報取得部110により取得される各種情報との相関係数を算出する。なお相関分析では、各種情報間の時間遅れおよび/または時間進みが考慮されてもよい。
そして、情報取得部110により取得される各種情報のなかで、算出された相関係数が所定条件を満たす(例えば、算出された相関係数が閾値以上である、または算出された相関係数が上位から数えて所定番目以内である)1つ以上の情報を、ソフトセンサの入力情報(説明変数)として抽出(選択)して決定する(図7中のS102)。なお、相関係数の算出は、火炎Fの重心位置Gに代えて/加えて、別の指標(例えば、火炎Fの燃え切り位置PEまたは火炎Fの奥行方向の幅W)に基づいて行われてもよい。
次に、ソフトセンサで用いられる予測モデルMの生成を行う。本実施形態では、時系列で取得された複数の画像IM1に対して上述した画像処理を行うことで、火炎Fの位置または形状に関する値(例えば、火炎Fの重心位置G、火炎Fの燃え切り位置PE、および火炎Fの奥行方向の幅W)の正解データを求める。そして、上記複数の画像IM1の各々について、上記入力情報(説明変数)として抽出された1つ以上の情報と、火炎Fの位置または形状に関する値の正解データとを対応付けることで、教師データを生成する(図7中のS103)。そして、生成された教師データを用いた学習を行うことで、予測モデルMを生成する(図7中のS104)。すなわち、上記入力情報として抽出された1つ以上の情報が入力された場合に、火炎Fの位置または形状に関する値を出力させるように学習された予測モデルMを生成する。
これにより、火炎情報導出部120は、所定の周期で情報取得部110により取得される各種情報のなかで、上記入力情報として抽出された1つ以上の情報を予測モデルMに入力させ、火炎Fの位置または形状に関する値(例えば、火炎Fの重心位置G、火炎Fの燃え切り位置PE、および火炎Fの奥行方向の幅W)を予測モデルMから出力させることで、これら情報を導出する。なお入力情報が複数の情報を含む場合、上記入力情報では、各種情報間の時間遅れおよび/または時間進みが考慮されてもよい。
<5.3 制御部>
制御部130は、火炎情報導出部120により導出された火炎Fの位置または形状に関する値に基づき、焼却炉3に関する燃焼制御を行う。例えば、制御部130は、火炎Fの重心位置G、火炎Fの燃え切り位置PE、または火炎Fの奥行方向の幅Wのうち1つ以上に基づき、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、一次空気の供給量および/または分配量、燃焼空気の温度(例えば一次空気の温度)、二次空気の供給量および/または分配量などのうち1つ以上の制御を行う。
本実施形態では、制御部130は、押出装置23を制御してフィーダ22の移動速度またはストローク長を変更することで、被焼却物Sの供給量を変更する。制御部130は、ごみピット11におけるクレーン12の把持先を変更することで、被焼却物Sのカロリーを変更する。制御部130は、散水装置25による散水を行うことで、被焼却物Sの含有水分を変更する。制御部130は、火格子駆動装置42を制御して火格子41の駆動速度を変更することで、被焼却物Sの搬送速度を変更する。制御部130は、送風機71を制御することで、一次空気の流量および/または二次空気の流量を変更する。制御部130は、空気予熱器73による加熱を行うことで、一次空気の温度を変更する。制御部130は、ダンパ75の開度を制御することで、一次空気の分配量および/または二次空気の分配量を制御する。
(火炎の重心位置に基づく場合の制御例)
本実施形態では、制御部130は、火炎情報導出部120により導出された火炎Fの重心位置Gに基づき、焼却炉3に関する燃焼制御を行う。例えば、制御部130は、火炎情報導出部120により導出された火炎Fの重心位置Gが計画位置(重心計画位置)と異なる場合、火炎Fの重心位置Gを上記計画位置に近付けるように、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、一次空気の流量および/または分配量、燃焼空気の温度(例えば一次空気の温度)のうち1つ以上を制御する。なお本開示で「計画位置」とは、1つの位置に限定されず、上記奥行方向においてある程度の幅を有した計画位置でもよい。この定義は、以下の別の制御でも同様である。
例えば、制御部130は、上方から見た場合に火炉60の搬送方向Dの中心位置(前壁60aと後壁60bとの間の中央位置)に対応して設定される計画位置に火炎Fの重心位置Gを近づけるように、焼却炉3に関する燃焼制御を行う。
例えば、制御部130は、火炎Fの重心位置Gが上記計画位置よりも炉尻側にある場合、被焼却物Sの供給量を減らす(例えばフィーダ22の移動速度を低下させるまたはストローク長を短くする)、被焼却物Sのカロリーを減らす(例えば低カロリー被焼却物S1をホッパ21に投入させるようにクレーン12の把持先を変更する)、被焼却物Sの含有水分を低く維持する(例えば散水装置25による散水を抑制する)、被焼却物Sの搬送速度を低下させる(例えば火格子41の駆動速度を低下させる)、一次空気の供給量を増加させる(例えば第1送風機71Aの駆動量を増加させる)、炉前側の位置に対する一次空気の分配量を多くする(例えば炉前側に位置する1つ以上の風箱50に対応する一次空気ダンパ75Aの開度を大きくする)、空気予熱器73による予熱温度を高くすることのうち1つ以上を行い、被焼却物Sの乾燥が上流側で進むようにする。一方で、制御部130は、火炎Fの重心位置Gが上記計画位置よりも炉前側にある場合、上述した内容とは逆の制御を行う。
図8は、火炎Fの重心位置Gに基づく制御例を示す図である。図8中の(a)は、火炎Fの重心位置Gが計画位置にある場合を示す。図8中の(b)は、火炎Fが炉尻側に移動した場合を示す。この場合、制御部130は、被焼却物Sの供給量を減らすなど火炎Fの重心位置Gを炉前側に移動させるための制御を行う。図8中の(c)は、上記制御により火炎Fが計画位置に戻った状態を示す。
(火炎の燃え切り位置に基づく場合の制御例)
本実施形態では、制御部130は、火炎情報導出部120により導出された火炎Fの燃え切り位置PEに基づき、焼却炉3に関する燃焼制御を行ってもよい。例えば、制御部130は、火炎情報導出部120により導出された燃え切り位置PEが計画位置(燃え切り計画位置)と異なる場合、燃え切り位置PEを上記計画位置に近付けるように、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、一次空気の流量および/または分配量、燃焼空気の温度(例えば一次空気の温度)のうち1つ以上を制御する。
例えば、制御部130は、上方から見た場合に火炉60の後壁60bよりも前方の所定位置に対応して設定される計画位置に火炎Fの燃え切り位置PEを近づけるように、焼却炉3に関する燃焼制御を行う。なお、制御内容の詳細は、上述した火炎Fの重心位置Gに基づく制御の説明において「重心位置G」を「燃え切り位置PE」と読み替えればよい。
(火炎の奥行方向の幅に基づく場合の制御例)
本実施形態では、制御部130は、火炎情報導出部120により導出された火炎Fの奥行方向の幅Wに基づき、焼却炉3に関する燃焼制御を行ってもよい。例えば、制御部130は、火炎情報導出部120により導出された火炎Fの奥行方向の幅Wが計画幅と異なる場合、火炎Fの奥行方向の幅Wを上記計画幅に近付けるように、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、一次空気の流量および/または分配量、燃焼空気の温度(例えば一次空気の温度)のうち1つ以上を制御する。なお本開示で「計画幅」とは、1つの幅に限定されず、上記奥行方向において上限値と下限値との間に規定される範囲を有する幅でもよい。
例えば、制御部130は、上方から見た場合に火炉60の前壁60aと後壁60bとの間の長さよりも短く設定される所定の計画幅に火炎Fの奥行方向の幅Wを近づけるように、焼却炉3に関する燃焼制御を行う。
例えば、制御部130は、火炎Fの奥行方向の幅Wが上記所定の計画幅よりも長い場合、被焼却物Sの供給量を減らす(例えばフィーダ22の移動速度を低下させるまたはストローク長を短くする)、被焼却物Sのカロリーを減らす(例えば低カロリー被焼却物S1をホッパ21に投入させるようにクレーン12の把持先を変更する)、被焼却物Sの含有水分を低く維持する(例えば散水装置25による散水を抑制する)、被焼却物Sの搬送速度を低下させる(例えば火格子41の駆動速度を低下させる)、一次空気の供給量を増加させる(例えば第1送風機71Aの駆動量を増加させる)、炉前側の位置に対する一次空気の分配量を多くする(例えば炉前側に位置する1つ以上の風箱50に対応する一次空気ダンパ75Aの開度を大きくする)、空気予熱器73による予熱温度を高くすることのうち1つ以上を行う。一方で、制御部130は、火炎Fの奥行方向の幅Wが上記所定の計画幅よりも短い場合、上述した内容とは逆の制御を行う。
<6.制御の流れ>
次に、制御の流れについて説明する。
図9は、第1実施形態の制御の流れを示すフローチャートである。本実施形態では、所定の周期で以下のフローが繰り返される。
まず、情報取得部110により各種情報(例えば各種検出情報および各種制御情報)が取得される(S201)。次に、情報取得部110により取得された各種情報のなかで予め選択された1つ以上の情報が入力情報として予測モデルMに入力される(S202)。これにより、火炎Fの位置(重心位置Gおよび燃え切り位置PEなど)と、火炎Fの形状(奥行方向の幅Wなど)が予測モデルMから出力させることで導出される(S203)。
次に、制御部130は、予測モデルMから出力された各種値に基づき燃焼制御を行う。本実施形態では、制御部130は、火炎Fの重心位置G、火炎Fの燃え切り位置PE、または、火炎Fの奥行方向の幅Wのうち2つ以上の要素に基づいて制御を行う。なお本開示において「2つ以上の要素に基づいて制御を行う」とは、上記2つ以上の要素に対して優先度を設定し、優先度が高い第1要素が基準から外れる場合にはまず第1要素に基づいて制御を行い、第1要素が基準から外れないが優先度が低い第2要素が基準から外れる場合に第2要素に基づいて制御を行う場合なども該当し得る。
図9に示す例では、まず、制御部130は、予測モデルMから出力された火炎Fの重心位置Gが計画位置(重心計画位置)であるか否かを判定する(S204)。制御部130は、火炎Fの重心位置Gが計画位置でない場合(S204:NO)、火炎Fの重心位置Gを計画位置に近付けるための制御を行う(S205)。この場合、制御部130は、上記制御の後、所定時間待機してS201の処理に戻る。一方で、制御部130は、火炎Fの重心位置Gが計画位置である場合(S204:YES)、S206の処理に進む。
次に、制御部130は、予測モデルMから出力された火炎Fの奥行方向の幅Wが計画幅であるか否かを判定する(S206)。制御部130は、火炎Fの奥行方向の幅Wが計画幅でない場合(S206:NO)、火炎Fの奥行方向の幅Wを計画幅に近付けるための制御を行う(S207)。この場合、制御部130は、上記制御の後、所定時間待機してS201の処理に戻る。一方で、制御部130は、火炎Fの奥行方向の幅Wが計画幅である場合(S206:YES)、S208の処理に進む。
次に、制御部130は、予測モデルMから出力された火炎Fの燃え切り位置PEが計画位置(燃え切り計画位置)であるか否かを判定する(S208)。制御部130は、火炎Fの燃え切り位置PEが計画位置でない場合(S208:NO)、火炎Fの燃え切り位置PEを計画位置に近付けるための制御を行う(S209)。この場合、制御部130は、上記制御の後、所定時間待機してS201の処理に戻る。一方で、制御部130は、火炎Fの燃え切り位置PEが計画位置である場合(S208:YES)、所定時間待機してS201の処理に戻る。
<7.作用効果>
ここで比較例として、焼却炉の奥行方向に複数の温度センサを並べて配置し、複数の温度センサが検出する温度の高低で火炎の燃え切り位置を特定し、特定した火炎の燃え切り位置に基づいて燃焼制御を行う燃焼設備について考える。このような比較例の構成では、まず、焼却炉に新たな設備(複数の温度センサ)を設置する必要があり、製造費用の上昇を抑えることが難しくなる。また、火炎の状態として火炎の燃え切り位置のみを特定して燃焼制御を行う場合、燃焼の緻密な制御による火炎位置の安定化や排ガス成分の安定化の観点では不十分な場合がある。
一方で、本実施形態では、ソフトセンサに基づいて火炎の位置または形状に関する値が導出されるため、焼却炉に特別な設備(例えば複数の温度センサ)を設置することを避けることができる。このため、製造費用の上昇を抑制しつつ、炉のコンセプトに沿った位置に火炎を保持することができる。また、ソフトセンサで火炎状態を把握することで、ハードの追加・改造が必要なくなり、簡素な構造で実現できる。このため、構造上、あるいは、使用環境によって物理センサの設置が困難な場合であっても、ソフトセンサで火炎位置を把握できる。また、ハードウェアの故障による検知不能が無くなる。
また、ソフトセンサに基づいて火炎の位置または形状に関する2つ以上の要素(例えば、重心位置G、燃え切り位置PE、および奥行方向の幅W)を導出し、これら2つ以上の要素に基づいて燃焼制御を行うことができる。例えば、火炎Fの位置に関する値(例えば重心位置Gまたは燃え切り位置PE)と、火炎Fの形状に関する値(例えば奥行方向の幅Wき)といった2種類の要素に基づくことで、火炎Fの全体構造を把握して制御を行うことができる。このため、燃焼の緻密な制御による火炎位置の安定化や排ガス成分の安定化(例えば低NOx化)を行いやすくなる。
ここで、火炎Fの重心位置Gが炉尻側に偏る場合の事象について説明する。
図10は、火炎Fの重心位置Gが炉尻側に偏る場合を説明するための図である。図10に示すように、火炎Fの重心位置Gが炉尻側に偏る場合、事象(a)として、溶融した灰が火炉60の後壁60bに付着しクリンカKを形成し、このクリンカKが火格子41上に崩落して火格子41が損傷する場合がある。また、事象(b)として、火炉60の後壁60bまたはその近傍の耐火材が高温にさらされ、損傷する場合がある。
そこで本実施形態では、火炎情報導出部120により火炎Fの重心位置Gを導出させ、導出された火炎Fの重心位置Gが計画位置と異なる場合、火炎Fの重心位置Gを上記計画位置に近付けるように燃焼制御が行われる。このような構成によれば、火炎Fの重心位置Gが炉尻側に偏る場合、火炎Fの重心位置Gを上流側に移動させる制御が行われ、上記事象(a)および上記事象(b)が生じることを抑制することができる。
(第2実施形態)
次に、第2実施形態について説明する。第2実施形態は、火炎Fの重心位置Gと、火炎Fの奥行方向の幅Wとについて異なるパラメータを用いて制御が行われる点で、第1実施形態とは異なる。なお以下に説明する以外の構成は、第1実施形態の構成と同じである。
本実施形態では、火炎情報導出部120は、火炎Fの重心位置Gと、火炎Fの奥行方向の幅Wとを導出する。そして、制御部130は、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、または燃焼空気の温度(例えば一次空気の温度)に関する1つ以上のパラメータ(以下「重心位置制御用パラメータ」と称する)を用いて火炎Fの重心位置Gを制御する。一方で、制御部130は、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、または燃焼空気の温度(例えば一次空気の温度)に関するパラメータであって、上記重心位置制御用パラメータとは異なる別の1つ以上のパラメータ(以下「奥行方向幅制御用パラメータ」)を用いて火炎Fの奥行方向の幅Wを制御する。
例えば、1つの組合せ例では、重心位置制御用パラメータの一例は、被焼却物Sの供給速度または搬送速度であり、奥行方向幅制御用パラメータの一例は、複数の風箱50に対する1次空気の分配量である。また別の組合せ例では、重心位置制御用パラメータの一例は、被焼却物Sのカロリーであり、奥行方向幅制御用パラメータの一例は、1次空気の予熱温度である。なお、これらはあくまで例示であり、上述した以外の種々の組み合わせが可能である。
図11は、第2実施形態の制御例を説明するための図である。図11中の(a)は、火炎Fの奥行方向の幅Wが大きく、且つ、火炎Fの重心位置Gが炉尻側に偏った状態を示す。図11中の(b)は、図11中の(a)の状態に対して、炉本体30内の上流側の領域に対する一次空気の分配量を多くさせることで奥行方向の幅Wを減少させた状態を示す(奥行方向幅制御用パラメータを用いた制御例)。図11中の(c)は、図11中の(b)の状態に対して、被焼却物Sの供給速度(フィーダ22の駆動状態)または被焼却物Sの搬送速度(火格子41の駆動状態)を制御することで、火炎Fの重心位置Gを上流側に移動させた状態を示す。
このような構成によれば、例えば相対的に影響度が大きいパラメータを用いて相対的に重要度が高い要素(例えば火炎Fの重心位置G)の対する対応を行うとともに、例えば相対的に影響度が小さいパラメータを用いて相対的に重要度が低い要素(例えば火炎Fの奥行方向の幅W)の対する対応を行うことができるなど、複数の要素に対してより柔軟な対応を行うことができる。これにより、より適切な燃焼制御を実現することができる。
(第3実施形態)
次に、第3実施形態について説明する。第3実施形態は、排ガス中の成分を考慮して燃焼空気の供給が制御される点で、第1実施形態とは異なる。なお以下に説明する以外の構成は、第1実施形態の構成と同じである。
本実施形態では、制御部130は、火炎情報導出部120により導出された火炎Fの位置(例えば重心位置Gまたは中心位置C)に燃焼空気(一次空気および/または二次空気)を集中させるように、焼却炉3の炉本体30および/または火炉60に対する燃焼空気の供給を制御する。例えば、制御部130は、火炎情報導出部120により導出された火炎Fの位置に一次空気を集中させるように、1つ以上の一次空気ダンパ75Aを制御することで、一次空気の奥行方向に関する分配量(例えば複数の風箱50に対する分配量)を制御する。また、制御部130は、上記例に代えて/加えて、火炎情報導出部120により導出された火炎Fの位置に二次空気を集中させるように、1つ以上の二次空気ダンパ75Bを制御することで、奥行方向の第1側(例えば炉前側)から火炉60に供給される二次空気と奥行方向の上記第1側とは反対側の第2側(例えば炉尻側)から火炉60に供給される二次空気との分配量を制御する。
なお以下では、二次空気の分配量を制御する場合の例を取り上げて説明する。本実施形態では、制御部130は、焼却炉3内の所定位置と比べて火炎Fの位置(例えば重心位置Gまたは中心位置C)が奥行方向の第1側に位置する場合、上記第1側から火炉60内に供給する二次空気の流量よりも第1側とは反対である第2側から火炉60内に供給する二次空気の流量を多くする。1つの例では、「炉前側」が「第1側」の一例であり、「炉尻側」が「第2側」の一例である。なお別の例では、「炉尻側」が「第1側」の一例であり、「炉前側」が「第2側」の一例でもよい。
図12は、第3実施形態の制御例を説明するための図である。図12中の(a)は、火炎Fの位置が計画位置にある状態を示す。この場合、奥行方向の中央領域に位置する風箱50に対する一次空気の分配量が多くなるように一次空気ダンパ75Aが制御される。また、炉前側の二次空気の供給口74aから火炉60内に供給する二次空気の分配量と、炉尻側の二次空気の供給口74bから火炉60内に供給する二次空気の分配量とが略均等になるように二次空気ダンパ75Bが制御される。
図12中の(b)は、図12中の(a)の状態に対して、火炎Fの位置が炉尻側に偏った状態を示す。この場合、炉尻側に位置する風箱50に対する一次空気の分配量が多くなるように一次空気ダンパ75Aが制御される。また、炉前側の供給口74aから火炉60内に供給する二次空気の分配量が、炉尻側の供給口74bから火炉60内に供給する二次空気の分配量と比べて多くなるように(すなわち炉前側からの二次空気と炉尻側からの二次空気の合流位置(二次空気の供給量が最も多くなる位置)が炉尻側に位置するように二次空気ダンパ75Bが制御される。
図12中の(c)は、図12中の(b)の状態に対して所定の制御を行うことで、火炎Fの位置が計画位置に復帰した状態を示す。所定の制御は、例えば、一次空気の分配量および/または二次空気の分配量とは異なるパラメータを用いた制御であり、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、または被焼却物Sの搬送速度のうち1つ以上に関する制御である。
そして、図12中の(c)の状態に火炎の位置が戻った場合、奥行方向の中央領域に位置する風箱50に対する一次空気の分配量が再び多くなるように一次空気ダンパ75Aが制御される。また、炉前側の供給口74aから火炉60内に供給する二次空気の分配量と、炉尻側の供給口74bから火炉60内に供給する二次空気の分配量とが再び略均等になるように二次空気ダンパ75Bが制御される。
このような構成によれば、火炎Fの重心位置Gが移動した場合は、火炎Fの重心位置G付近の火格子41からの空気配分を高くすることや、それに応じて火炉60に流入する排ガス分布も移動するため、二次空気の前後配分を制御することで排ガス通過箇所に二次空気が集中させることができる。これにより、不完全燃焼ガス(CO)が過剰に発生している箇所の空気供給不足を抑制する、および/または、NOxが過剰に発生している箇所への空気供給過多を抑制することができる。
(第4実施形態)
次に、第4実施形態について説明する。第4実施形態は、粉体層高さ(例えば被焼却物Sの灰層高さ)が取得され、粉体層高さと火炎Fの位置とに基づいて制御が行われる点で、第1実施形態とは異なる。なお以下に説明する以外の構成は、第1実施形態の構成と同じである。
図13は、第4実施形態の焼却設備1の機能構成を示すブロック図である。本実施形態では、制御装置100は、粉体層高さ導出部140を有する。
(粉体層高さ導出部)
粉体層高さ導出部140は、焼却炉3内の粉体層高さの値を導出する。例えば、粉体層高さ導出部140は、赤外カメラ33により撮影された画像に対して画像処理を行うことで、焼却炉3内の粉体層高さを導出する。これに代えて、粉体層高さ導出部140は、風箱50と炉本体30内との差圧から粉体層高さを推定してもよく、炉本体の側壁に設けられた覗き窓から計測された計測結果に基づき粉体層高さを導出してもよい。粉体層高さ導出部140により導出される粉体層高さの値は、実測値でもよいし、推定値でもよい。
(粉体層高さと火炎の位置とに基づく制御)
本実施形態では、制御部130は、火炎情報導出部120により導出された火炎Fの位置に関する値と、粉体層高さ導出部140により導出された粉体層高さの値とに基づき、粉体層高さが閾値未満の領域に火炎Fの位置(例えば重心位置Gまたは中心位置C)が存在する場合、火炎の位置(例えば重心位置Gまたは中心位置C)を移動させるように燃焼制御を行う。例えば、制御部130は、粉体層高さが上記閾値以上の領域に火炎Fの位置が移動するように、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、または燃焼空気の供給のうち1つ以上を制御する。
図14は、第4実施形態の制御例を説明するための図である。図14中の(a)は、粉体層高さが閾値以上の領域に火炎Fの位置が存在する場合を示す。図14中の(b)は、何らかの要因により粉体層高さが減少し、粉体層高さが閾値未満の領域に火炎Fの位置が存在する状態を示す。図14中の(c)は、図14中の(b)に対して、粉体層高さが上記閾値以上の領域に火炎Fの位置が移動するように制御が行われた状態を示す。
このような構成によれば、粉体層高さが閾値未満の領域に火炎Fの位置が存在することが原因で火格子41が損傷することを抑制することができる。これにより、燃焼設備1の稼働率を高めることができる。
(その他の実施形態)
以上、本開示の実施形態について説明したが、具体的な構成はこの実施形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更なども含まれる。例えば、「燃焼空気の温度」は、一次空気の温度に限定されず、二次空気の温度が該当してもよい。例えば、「燃焼空気の温度の制御」としては、二次空気の温度が不図示の予熱器により制御されてもよい。
図15は、実施形態に係るコンピュータ1100の構成を示すハードウェア構成図である。コンピュータ1100は、例えば、プロセッサ1110、メインメモリ1120、ストレージ1130、インターフェース1140を備える。
上述の制御装置100の各機能部は、コンピュータ1100に実装される。そして、上述した各機能部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各機能部が使用する記憶領域をメインメモリ1120に確保する。
プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。また、コンピュータ1100は、上記構成に加えて、又は上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリなどが挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インターフェース1140又は通信回線を介してコンピュータ1100に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
<付記>
各実施形態に記載の燃焼設備用システムおよび燃焼制御方法は、例えば以下のように把握される。
(1)第1態様の燃焼設備用システム(例えば制御装置100)は、焼却炉3内の温度、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または焼却炉3内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、焼却炉3内の火炎Fの位置または形状に関する値を導出する火炎情報導出部120と、火炎情報導出部120により導出された火炎Fの位置または形状に関する値に基づき、焼却炉3に関する燃焼制御を行う制御部130と、を備える。
このような構成によれば、ソフトセンサに基づいて火炎の位置または形状に関する値が導出されるため、焼却炉に特別な設備(例えば複数の温度センサ)を設置することを避けることができる。このため、製造費用の上昇を抑制することができる。また、ソフトセンサに基づいて火炎の位置または形状に関する要素を導出し、導出した要素に基づいて適切な燃焼制御を行うことができる。その結果、例えば、燃焼の緻密な制御による火炎位置の安定化や排ガス成分の改善(例えば低NOx化)を行いやすくなる。
(2)第2態様の燃焼設備用システムは、(1)に記載の燃焼設備用システムにおいて、火炎情報導出部120は、火炎Fの重心位置Gを導出し、制御部130は、火炎情報導出部120により導出された火炎Fの重心位置Gに基づき、焼却炉3に関する燃焼制御を行う。このような構成によれば、最も燃え盛っている位置である火炎Fの重心位置Gの近くに燃焼空気を優先的に供給することができ、燃焼制御を行いやすくなる。
(3)第3態様の燃焼設備用システムは、(2)に記載の燃焼設備用システムにおいて、制御部130は、火炎情報導出部120により導出された火炎Fの重心位置Gが計画位置と異なる場合、火炎Fの重心位置Gを上記計画位置に近付けるように、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、または燃焼空気の温度のうち1つ以上を制御する。このような構成によれば、例えば、焼却炉内に形成されたクリンカが火格子41上に崩落して火格子41が損傷することや、焼却炉の耐火材が高温にさらされて損傷することなどをより効果的に抑制することができる。
(4)第4態様の燃焼設備用システムは、(1)から(3)のうちいずれか1つに記載の燃焼設備用システムにおいて、焼却炉3内における被焼却物Sの搬送方向Dを奥行方向と称する場合、火炎情報導出部120は、火炎Fの奥行方向の幅Wを導出し、制御部130は、火炎情報導出部120により導出された火炎Fの奥行方向の幅Wに基づき、焼却炉3に関する燃焼制御を行う。このような構成によれば、火炎Fが点在した場合にも火炎Fの全体構造に応じた燃焼制御を行いやすくなる。
(5)第5態様の燃焼設備用システムは、(1)から(4)のうちいずれか1つに記載の燃焼設備用システムにおいて、火炎情報導出部120は、火炎Fの重心位置Gと、火炎Fの奥行方向の幅Wとを導出し、制御部130は、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、または燃焼空気温度のうち1つ以上であるパラメータを用いて火炎Fの重心位置Gを制御し、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、または燃焼空気の温度のうち上記1つ以上のパラメータとは異なる別の1つ以上のパラメータを用いて火炎Fの奥行方向の幅Wを制御する。
このような構成によれば、複数の要素に対してより柔軟な対応を行うことができる。例えば相対的に影響度が大きいパラメータを用いて相対的に重要度が高い要素(例えば火炎Fの重心位置G)の対する対応を行うとともに、例えば相対的に影響度が小さいパラメータを用いて相対的に重要度が低い要素(例えば火炎Fの奥行方向の幅W)の対する対応を行うことができる。これにより、より適切な燃焼制御を実現することができる。
(6)第6態様の燃焼設備用システムは、(1)から(5)のうちいずれか1つに記載の燃焼設備用システムにおいて、焼却炉3内における被焼却物Sの搬送方向Dを奥行方向と称する場合、制御部130は、火炎情報導出部120により導出された火炎Fの位置に前記燃焼空気を集中させるように、焼却炉3に対する燃焼空気の供給を制御する。このような構成によれば、火炎Fに対してより適切に燃焼空気を供給することができ、燃焼制御のさらなる適切化を図ることができる。一例としては、不完全燃焼ガス(CO)が過剰に発生している箇所の空気供給不足を抑制する、および/または、NOxが過剰に発生している箇所への空気供給過多を抑制することができる。
(7)第7態様の燃焼設備用システムは、(1)から(6)のうちいずれか1つに記載の燃焼設備用システムにおいて、焼却炉3内の粉体層高さの値を導出する粉体層高さ導出部140をさらに備え、火炎情報導出部120は、火炎Fの位置に関する値を導出し、制御部130は、火炎情報導出部120により導出された火炎Fの位置に関する値と、粉体層高さ導出部140により導出された粉体層高さの値とに基づき、上記粉体層高さが閾値未満の領域に火炎Fの位置が存在する場合、火炎Fの位置を移動させるように燃焼制御を行う。このような構成によれば、粉体層高さが閾値未満の領域に火炎Fの位置が存在することが原因で火格子41が損傷することを抑制することができる。
(8)第8態様の燃焼制御方法は、1つ以上のコンピュータが、焼却炉3内の温度、被焼却物Sの供給量、被焼却物Sのカロリー、被焼却物Sの含有水分、被焼却物Sの搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または焼却炉3内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、焼却炉3内の火炎の位置または形状に関する値を導出し、導出した火炎Fの位置または形状に関する値に基づき、焼却炉3に関する燃焼制御を行う。このような構成によれば、(1)の燃焼設備用システムと同様に、製造費用の上昇を抑制しつつ、適切な燃焼制御を行うことができる。
1…燃焼設備
2…貯留部
3…焼却炉
11…ごみピット
12…クレーン
21…ホッパ
22…フィーダ
23…押出装置
24…水分計測器
25…散水装置
30…炉本体
31…炉内温度センサ
32…可視光カメラ
33…赤外カメラ
40…ストーカ
50…風箱
51…風箱圧力センサ
60…火炉
60a…前壁
60b…後壁
70…送風機構
71…送風機
73…空気予熱器
75…ダンパ
81…ガスセンサ
100…制御装置
110…情報取得部
120…火炎情報導出部
130…制御部
140…粉体層高さ導出部
S…被焼却物
M…予測モデル

Claims (8)

  1. 焼却炉内における被焼却物の搬送方向を奥行方向と称する場合、
    前記焼却炉内の温度、前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の前記奥行方向の位置に関連した第1要素に関する値と、前記火炎の前記奥行方向の別の位置または前記火炎の前記奥行方向の形状に関連した第2要素に関する値とを導出する火炎情報導出部と、
    前記火炎情報導出部により導出された前記第1要素に関する値および前記第2要素に関する値に基づき、前記焼却炉に関する燃焼制御を行う制御部と、
    を備え
    前記制御部は、前記第1要素および前記第2要素に設定された優先度に基づき、前記第1要素および前記第2要素のうち優先度が高い一方の要素が基準から外れる場合にはまず前記一方の要素に基づいて前記燃焼制御を行い、前記一方の要素が基準から外れないが優先度が低い他方の要素が基準から外れる場合には前記他方の要素に基づいて前記燃焼制御を行う、
    燃焼設備用システム。
  2. 前記火炎情報導出部は、前記第1要素に関する値として、前記火炎の重心位置を導出し、
    前記制御部は、前記火炎情報導出部により導出された前記火炎の重心位置に基づき、前記焼却炉に関する燃焼制御を行う、
    請求項1に記載の燃焼設備用システム。
  3. 前記制御部は、前記火炎情報導出部により導出された前記火炎の重心位置が計画位置と異なる場合、前記火炎の重心位置を前記計画位置に近付けるように、前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、前記燃焼空気の供給、または前記燃焼空気の温度のうち1つ以上を制御する、
    請求項2に記載の燃焼設備用システム。
  4. 焼却炉内の温度、被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の位置または形状に関する値を導出する火炎情報導出部と、
    前記火炎情報導出部により導出された前記火炎の位置または形状に関する値に基づき、前記焼却炉に関する燃焼制御を行う制御部と、
    を備え、
    前記焼却炉内における前記被焼却物の搬送方向を奥行方向と称する場合、
    前記火炎情報導出部は、前記火炎の形状に関する値として、前記火炎の前記奥行方向の幅を導出し、
    前記制御部は、前記火炎情報導出部により導出された前記火炎の前記奥行方向の幅に基づき、前記焼却炉に関する燃焼制御を行う、
    焼設備用システム。
  5. 前記火炎情報導出部は、前記火炎の位置または形状に関する値として、前記火炎の重心位置と、前記火炎の前記奥行方向の幅とを導出し、
    前記制御部は、
    前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、前記燃焼空気の供給、または前記燃焼空気の温度に関する1つ以上のパラメータを用いて前記火炎の重心位置を制御し、
    前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、前記燃焼空気の供給、または前記燃焼空気の温度に関するパラメータであって、前記1つ以上のパラメータとは異なる別の1つ以上のパラメータを用いて前記火炎の前記奥行方向の幅を制御する、
    請求項4に記載の燃焼設備用システム。
  6. 前記火炎情報導出部は、前記第1要素に関する値を導出し、
    記制御部は、前記火炎情報導出部により導出された前記第1要素に関する値が示す前記火炎の位置に前記燃焼空気を集中させるように、前記焼却炉に対する前記燃焼空気の供給を制御する、
    請求項1または請求項2に記載の燃焼設備用システム。
  7. 焼却炉内の温度、被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の位置または形状に関する値を導出する火炎情報導出部と、
    前記焼却炉内の粉体層高さの値を導出する粉体層高さ導出部と、
    前記焼却炉に関する燃焼制御を行う制御部と、
    を備え、
    前記火炎情報導出部は、前記火炎の位置に関する値を導出し、
    前記制御部は、前記火炎情報導出部により導出された前記火炎の位置に関する値と、前記粉体層高さ導出部により導出された前記粉体層高さの値とに基づき、前記粉体層高さが閾値未満の領域に前記火炎の位置が存在する場合、前記火炎の位置を移動させるように前記燃焼制御を行う、
    燃焼設備用システム。
  8. 焼却炉内における被焼却物の搬送方向を奥行方向と称する場合、
    1つ以上のコンピュータが、
    前記焼却炉内の温度、前記被焼却物の供給量、前記被焼却物のカロリー、前記被焼却物の含有水分、前記被焼却物の搬送速度、燃焼空気の供給、燃焼空気の温度、排ガス中の成分、または前記焼却炉内を撮影した画像のそれぞれに関する情報のうち1つ以上を入力情報とするソフトセンサにより、前記焼却炉内の火炎の前記奥行方向の位置に関連した第1要素に関する値と、前記火炎の前記奥行方向の別の位置または前記火炎の前記奥行方向の形状に関連した第2要素に関する値とを導出し、
    導出した前記第1要素に関する値および前記第2要素に関する値に基づき、前記焼却炉に関する燃焼制御を行う、
    ことを含み、
    前記燃焼制御を行うことは、前記第1要素および前記第2要素に設定された優先度に基づき、前記第1要素および前記第2要素のうち優先度が高い一方の要素が基準から外れる場合にはまず前記一方の要素に基づいて前記燃焼制御を行い、前記一方の要素が基準から外れないが優先度が低い他方の要素が基準から外れる場合には前記他方の要素に基づいて前記燃焼制御を行うことを含む、
    燃焼制御方法。
JP2023087635A 2023-05-29 2023-05-29 燃焼設備用システムおよび燃焼制御方法 Active JP7445058B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023087635A JP7445058B1 (ja) 2023-05-29 2023-05-29 燃焼設備用システムおよび燃焼制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023087635A JP7445058B1 (ja) 2023-05-29 2023-05-29 燃焼設備用システムおよび燃焼制御方法

Publications (1)

Publication Number Publication Date
JP7445058B1 true JP7445058B1 (ja) 2024-03-06

Family

ID=90096958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023087635A Active JP7445058B1 (ja) 2023-05-29 2023-05-29 燃焼設備用システムおよび燃焼制御方法

Country Status (1)

Country Link
JP (1) JP7445058B1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071142A1 (ja) 2018-10-05 2020-04-09 三菱重工業株式会社 ストーカ式焼却設備及び被焼却物の焼却方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071142A1 (ja) 2018-10-05 2020-04-09 三菱重工業株式会社 ストーカ式焼却設備及び被焼却物の焼却方法

Similar Documents

Publication Publication Date Title
JP6543389B1 (ja) 炉内状況判定方法及び燃焼制御方法
JP6880146B2 (ja) 燃焼状況評価方法及び燃焼制御方法
TWI819707B (zh) 焚化爐設備之控制裝置
JP2022069679A (ja) ストーカ炉の燃焼制御装置及び方法、並びに、燃料移動量の検出装置及び方法
WO2021075488A1 (ja) 燃焼状況評価方法及び燃焼制御方法
JP7445058B1 (ja) 燃焼設備用システムおよび燃焼制御方法
JP6779779B2 (ja) ごみ焼却設備
JP2019219108A (ja) 炉内状況判定方法及び蒸発量制御方法
CN114729746A (zh) 燃烧设备的控制装置、燃烧设备的控制方法及程序
WO2023063107A1 (ja) 制御装置
WO2021075484A1 (ja) 燃焼状況評価方法及び燃焼制御方法
WO2021075489A1 (ja) 燃焼状況評価方法及び燃焼制御方法
JP7384078B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP2021103063A (ja) ごみ焼却炉のごみ層厚評価方法及びごみ焼却炉の燃焼制御方法
WO2021095431A1 (ja) 燃焼方法及び燃焼制御方法
JP6880143B2 (ja) 燃焼状況評価方法及び燃焼制御方法
JP6880142B2 (ja) 燃焼状況評価方法及び燃焼制御方法
JP7478297B1 (ja) 情報処理システム、情報処理方法、学習システム、および学習方法
JP7403295B2 (ja) 燃焼設備、演算方法およびプログラム
JP2022071891A (ja) 炉内画像作成方法、炉内状況判定方法、及び燃焼状況評価方法
JP7351599B2 (ja) ごみ焼却炉の燃切点推定方法及びごみ焼却炉の燃切点調整方法
TW202336704A (zh) 圖像檢查裝置、機器學習裝置、圖像檢查方法、圖像檢查程式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230706

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7445058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150