WO2023037742A1 - 焼却炉設備の制御装置 - Google Patents

焼却炉設備の制御装置 Download PDF

Info

Publication number
WO2023037742A1
WO2023037742A1 PCT/JP2022/026871 JP2022026871W WO2023037742A1 WO 2023037742 A1 WO2023037742 A1 WO 2023037742A1 JP 2022026871 W JP2022026871 W JP 2022026871W WO 2023037742 A1 WO2023037742 A1 WO 2023037742A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
dust
furnace
supplied
combustion air
Prior art date
Application number
PCT/JP2022/026871
Other languages
English (en)
French (fr)
Inventor
武蔵 坂本
隆博 窪田
立享 西宮
稔彦 瀬戸口
潤司 今田
幸司 滑澤
慶一 林
知通 江草
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to KR1020237043865A priority Critical patent/KR20240010034A/ko
Priority to CN202280043995.2A priority patent/CN117529628A/zh
Publication of WO2023037742A1 publication Critical patent/WO2023037742A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply

Definitions

  • the present disclosure relates to a control device for incinerator equipment.
  • the present disclosure claims priority based on Japanese Patent Application No. 2021-147752 filed in Japan on September 10, 2021, the contents of which are incorporated herein.
  • garbage incineration equipment is equipped with a hopper, and the garbage thrown into the hopper by a crane is sequentially supplied to the incinerator by a dust feeder placed under the hopper.
  • the specific gravity of the garbage is calculated from the volume and weight of the garbage put into the hopper of the garbage incineration equipment, and the specific gravity of the garbage is multiplied by the supply volume of the garbage to determine the garbage supplied into the incinerator. , and further calculates the amount of heat input from the weight of the supplied refuse, and controls the supply of refuse into the incinerator so that the amount of heat input per unit time is constant.
  • Patent Document 1 a range of time (for example, 1 to 2 hours) required from being thrown into the hopper to being supplied to the incinerator is set, and the weight of garbage to be supplied into the incinerator is set from that point. It is calculated by multiplying the average value of the specific gravity of the garbage that has been put into the hopper in the past within the specified time range by the supply volume of the garbage. In order to stabilize the combustion state in the furnace, it is preferable to more accurately estimate the amount of waste to be supplied and the control amount to replace it, and to execute control according to the estimated amount of supply and the like in advance.
  • the present disclosure provides a control device for incinerator equipment that can solve the above-described problems.
  • a control device is a control device for an incinerator facility having a furnace that burns and conveys incinerators, and a combustion air supply unit that supplies combustion air to the furnace.
  • a combustion air control unit for controlling the combustion air before the incineration material is introduced into the furnace, based on the supply amount or calorific value of the incineration material supplied to the furnace;
  • a change in the height of the incinerated matter in the hopper is detected by dimensional measurement, and the volume of the incinerated matter put into the hopper is calculated based on the change in height of the incinerated matter.
  • the incineration air control unit controls the amount of incineration based on the supply amount or calorific value of the incineration material a predetermined time before the residence time estimated by the calculation unit elapses after the incineration material is thrown into the hopper. Controls combustion air.
  • control device for the incinerator facility it is possible to stabilize the combustion state in the furnace of the garbage incineration facility.
  • FIG. 12 is a second diagram illustrating estimation processing of the amount of heat generated by dust and the like according to the fourth embodiment;
  • FIG. 14 is a third diagram for explaining estimation processing of the calorific value of dust and the like according to the fourth embodiment; It is a figure which shows an example of the hardware constitutions of the control apparatus which concerns on each embodiment.
  • XX or YY is not limited to either one of XX and YY, but may include both XX and YY. This is also the case when there are three or more selective elements.
  • XX and YY are arbitrary elements (eg, arbitrary information).
  • FIG. 1 is a figure showing an example of the garbage incineration equipment concerning each embodiment.
  • Garbage incineration equipment 100 includes a hopper 1 into which garbage is thrown, a chute 2 that guides the garbage thrown into the hopper 1 downward, a feeder 10 that feeds the garbage supplied through the chute 2 into a combustion chamber 6, and a feeder.
  • a fire grate 3 for drying and burning while transporting the refuse supplied by 10 a combustion chamber 6 for burning the refuse, an ash outlet 7 for discharging ash, and a blower 4 for supplying air.
  • a road 14 a boiler 9, a crane 17 for conveying garbage, a sensor 15 for detecting the surface of the garbage from above the hopper 1, and an image sensor 16 for photographing the inside of the combustion chamber 6 are provided.
  • the crane 17 grabs and transports garbage from the garbage pit (not shown) and throws it into the hopper 1.
  • the crane 17 is provided with a weight scale 17a.
  • the weight scale 17 a measures the weight of the garbage conveyed by the crane 17 .
  • the weighing scale 17 a is connected to the control device 20 , and the weight measured by the weighing scale 17 a , that is, the weight of the garbage thrown into the hopper 1 is transmitted to the control device 20 .
  • a sensor 15 is installed above the hopper 1 so as to detect the entire surface of the dust that has been thrown into the hopper 1 and accumulated.
  • a sensor 15 is provided to detect the volume of garbage thrown into the hopper 1 and the height of the garbage accumulated in the hopper 1 and the chute 2 .
  • the sensor 15 is, for example, a LiDAR (Light Detection and Ranging) device.
  • LiDAR is a technology that scans and irradiates an object with a laser beam or the like, and measures the distance and direction to the object based on the brightness of the reflected light.
  • the distance from the sensor 15 can be measured for the entire surface of the dust.
  • the volume of the trash dropped into the hopper 1 can be calculated from the difference in the height of the trash before and after dropping the trash into the hopper 1 from the crane 17 .
  • the sensor 15 is connected to the control device 20 , and the measured values measured by the sensor 15 are transmitted to the control device 20 .
  • the feeder 10 is a dust feeding device that supplies dust to the grate 3 by pushing out the dust supplied through the chute 2 .
  • the feeder 10 repeats the action of pushing out the dust toward the combustion chamber 6 and the action of pulling it back to its original position.
  • the control device 20 adjusts the amount of dust supplied to the combustion chamber 6 by controlling the push-out operation and the pull-back operation of the feeder 10 .
  • a fire grate 3 is provided at the bottom of the chute 2 and the combustion chamber 6 to convey refuse.
  • the fire grate 3 includes a drying zone 3A for drying the waste by evaporating the water content of the waste supplied by the feeder 10, a combustion zone 3B located downstream of the drying zone 3A and burning the dried waste, and a combustion zone 3B.
  • a post-combustion zone 3C is located in the downstream and burns unburned components such as fixed carbon components that have passed through without being burned until they become ash.
  • the operating speed of the grate 3 is controlled by the control of the control device 20 .
  • the blower 4 is provided below the grate 3 and supplies air to each part of the grate 3 via the wind boxes 5A to 5E.
  • Branch pipes connecting the pipe 8 and the wind boxes 5A to 5E are connected to the pipe 8 that guides the air sent from the blower 4 to the wind boxes 5A to 5E, and the branch pipes are provided with dampers 8A to 8E, respectively.
  • the control device 20 controls the amount of air blown (rotational speed) of the blower 4 and the opening degrees of the dampers 8A to 8E.
  • the dampers 8A-8E may be collectively referred to as primary combustion air dampers.
  • the combustion chamber 6 consists of a primary combustion chamber 6A and a secondary combustion chamber 6B above the grate 3, and the boiler 9 is arranged downstream of the combustion chamber 6.
  • the primary combustion chamber 6A is provided above the grate 3, and the secondary combustion chamber 6B is provided further above the primary combustion chamber 6A.
  • garbage is burned, and the pyrolysis gas generated in the primary combustion chamber 6A is mixed with the secondary combustion air and sent to the secondary combustion chamber 6B. burn the unburned components of A conduit 14 connecting the blower 4 and the secondary combustion chamber 6B is connected to the secondary combustion chamber 6B of the combustion chamber 6.
  • the damper 14A By opening and closing a damper 14A provided in the conduit 14, the secondary combustion chamber 6B is air can be supplied to The control device 20 controls the opening of the damper 14A.
  • the damper 14A may be described as a secondary combustion air damper.
  • An image sensor 16 is installed at a position where the dust supplied to the combustion chamber 6 can be photographed. Image sensor 16 is connected to control device 20 , and images captured by image sensor 16 are transmitted to control device 20 .
  • Image sensor 16 is, for example, an infrared camera. In the example of FIG. 1, the image sensor 16 is provided at a position for photographing the supply of dust from the front in the horizontal direction. may have been
  • a temperature sensor 18 for measuring the temperature inside the combustion chamber 6 is provided in the combustion chamber 6 .
  • the temperature sensor 18 is connected to the control device 20 , and the temperature inside the furnace measured by the temperature sensor 18 is transmitted to the control device 20 .
  • the combustion chamber 6 is provided with an oxygen concentration sensor 19 for measuring the oxygen concentration inside the combustion chamber 6 .
  • the oxygen concentration sensor 19 is connected to the control device 20 , and the oxygen concentration in the furnace measured by the oxygen concentration sensor 19 is transmitted to the control device 20 .
  • the boiler 9 exchanges heat between the exhaust gas sent from the combustion chamber 6 and the water circulating inside the boiler 9 to generate steam.
  • the steam is supplied through a pipeline 13 to a turbine for power generation (not shown).
  • the pipeline 13 is provided with a steam flow rate sensor 11 that detects the flow rate of steam.
  • the steam flow rate sensor 11 is connected to the control device 20 , and the main steam flow rate measured by the steam flow rate sensor 11 is transmitted to the control device 20 .
  • the control device 20 controls the operation of the feeder 10 and the opening degrees of the primary combustion air damper and the secondary combustion air damper so that the main steam flow rate measured by the steam flow rate sensor 11 becomes a predetermined target value, for example. .
  • An exhaust gas outlet of the boiler 9 is connected to a flue 12, and exhaust gas heat-recovered by the boiler 9 passes through the flue 12, passes through an exhaust gas treatment facility (not shown), and is discharged to the outside.
  • the control device 20 includes a data acquisition section 21 , a dust height calculation section 22 , an image estimation section 23 , a supply amount estimation section 24 , a determination section 25 , a control section 26 and a storage section 27 .
  • the data acquisition unit 21 acquires various data such as measurement values measured by the sensors 11, 14a, 15, 16, 17a, 18, and 19 and user instruction values. For example, the data acquisition unit 21 acquires the measured value of the main steam flow rate measured by the steam flow rate sensor 11 .
  • the dust height calculator 22 calculates the height of dust at each position on the surface of dust accumulated in the hopper 1 and the chute 2 based on the distance to the dust surface detected by the sensor 15 .
  • the height of the dust is the height when the predetermined position of the chute 2 is used as a reference.
  • the image estimating unit 23 analyzes the image captured by the image sensor 16, and estimates the supply amount (volume, weight) and calorific value (LHV: Lower Heating Value) of the refuse supplied into the furnace by the feeder 10. For example, the image estimating unit 23 compares images taken before and after the feeder 10 pushes out dust, extracts an image area in which the pushed-out dust is shown, and compares the shape and area of the extracted image area. , based on the output of the feeder 10, the volume of refuse fed into the furnace is estimated. Alternatively, the image estimating unit 23 estimates the volume of dust based on an estimation model constructed by learning the relationship between the image area in which the pushed-out dust is captured and the amount of dust supplied, and the extracted image area. do.
  • the image estimation unit 23 multiplies the estimated volume by the density calculated by the calculation method described later to calculate the weight of the dust supplied into the furnace. Further, the image estimation unit 23 estimates the calorific value (LHV) from the weight of the refuse supplied into the furnace based on a predetermined conversion formula. Normally, garbage incineration equipment samples the density and calorific value of garbage, analyzes the relationship between the two, and calculates the calorific value from the density of garbage according to the type of garbage processed by the incinerator. is derived. The image estimation unit 23 uses this conversion formula to estimate the amount of heat generated from the weight of the dust obtained by the image analysis. Control using the image estimation unit 23 will be described in the third embodiment.
  • the supply amount estimating unit 24 calculates the volume change of the garbage in the hopper 1 based on the change in the height of the garbage calculated by the garbage height calculating unit 22 .
  • the supply amount estimator 24 estimates the amount of dust supplied into the furnace per unit time based on the volume change of the dust in the hopper 1 .
  • the supply amount estimating unit 24 estimates the density and moisture content of the dust to be supplied into the furnace based on the distribution of the dust in the hopper 1 and the chute 2 and the residence time ⁇ T of the dust in the hopper 1. For example, Estimate the calorific value of the waste that will be supplied into the furnace in the future for the residence time.
  • the supply amount estimator 24 estimates the amount of dust supplied and/or the amount of heat generated when the feeder 10 operates this time or after the next time, before the dust is actually supplied into the furnace. As a result, control of the primary combustion air supplied into the combustion chamber 6 and the like can be executed in advance before the dust is supplied to the combustion chamber 6 .
  • the details of the dust supply amount and calorific value estimation processing by the supply amount estimation unit 24 will be described in the fourth embodiment.
  • the judgment unit 25 judges whether or not to perform the preceding control for stabilizing the combustion state in the furnace based on the supply amount of dust and/or the amount of heat generated estimated by the supply amount estimation unit 24 .
  • the determination unit 25 determines whether or not the combustion state in the furnace has stabilized as a result of the preceding control.
  • the control unit 26 controls the operation of the feeder 10, the opening degrees of the primary combustion air dampers (damper 8A to 8E) and the secondary combustion air damper (damper 14A), and the like.
  • the control unit 26 performs preliminary control of the primary combustion air damper and the feeder 10 based on the judgment of the judgment unit 25 .
  • advance control especially with respect to the primary combustion air, it is better to control the supply amount in advance to an appropriate level so as not to excessively precede, so that the combustion can be stabilized.
  • the storage unit 27 stores the measurement values acquired by the data acquisition unit 21 and information necessary for control, such as a conversion formula for calculating the amount of heat generated from the density of dust.
  • FIG. 2 is a flow chart showing an example of the operation of the control device according to the first embodiment.
  • the control device 20 executes the following process (preceding control) at predetermined time intervals.
  • the data acquisition unit 21 acquires the measured value of the sensor 15 and outputs it to the dust height calculation unit 22.
  • the dust height calculator 22 calculates the height of dust accumulated in the hopper 1 at that point in time based on the measurement value of the sensor 15 , that is, information on the distance from the sensor 15 to the dust surface of the hopper 1 .
  • the dust height calculator 22 outputs the height of dust for each predetermined time to the supply amount estimator 24 .
  • the supply amount estimator 24 estimates the supply amount of dust and/or the amount of heat generated (step S1). For example, the supply amount estimator 24 calculates the amount of dust supplied to the combustion chamber 6 per unit time from the change in the height of the dust per unit time (decrease in height).
  • the supply amount estimator 24 calculates the density of the dust from the volume and weight of the dust measured when the dust is thrown into the hopper 1, and determines that the dust is supplied after the retention time ⁇ T calculated by a predetermined method. Calculate the amount of heat generated when At this time, the supply amount estimator 24 determines the density of the dust supplied after the residence time ⁇ T, the distribution of the dust thrown into the hopper 1 at different timings in the hopper 1 and the chute 2, and the dust thrown into the hopper 1 at different timings. are supplied into the furnace at the same time, and the fact that the waste thrown in at a certain timing moves to the lower part of the chute 2 and is compressed by the weight of the waste thrown in later (consolidation). is used to estimate the density of dust supplied into the furnace (details will be described in the fourth embodiment). The supply amount estimator 24 outputs the estimated supply amount of dust and the amount of heat generated to the determination unit 25 .
  • the determination unit 25 determines whether the amount of dust supplied per unit time and/or the amount of heat generated by dust supplied after the residence time ⁇ T has increased by a certain amount or more (step S2). For example, the determination unit 25 compares the previously estimated supply amount with the currently estimated supply amount, determines whether the supply amount increases by a certain amount or more, The amounts are compared to determine if the supply increases by a certain amount. For example, if the amount of dust supplied and the amount of heat generated increases by a certain amount or more, or if at least one of the amount of dust supplied or the amount of heat generated increases by a certain amount or more (Step S2; Yes), the control unit 26 continues the current control.
  • the control unit 26 performs control to decrease the supply amount of the primary combustion air in advance (step S3). For example, the control unit 26 reduces the opening degrees of the dampers 8A to 8E to reduce the amount of air supplied to the combustion chamber 6.
  • the control unit 26 may reduce only the opening of the damper 8A in order to reduce the amount of air supplied to the drying area 3A, or may reduce the amount of air supplied to the drying area 3A and the combustion area 3B. Therefore, the opening degrees of the dampers 8A to 8C may be decreased.
  • the control unit 26 may reduce the rotational speed of the blower 4 in addition to/instead of reducing the opening degree of the damper 8A or the like.
  • the amount of reduction in the degree of opening of the dampers 8A to 8E and the amount of reduction in the rotational speed of the blower 4 are estimated in step S1 based on, for example, a function that defines the relationship between the control amount and the amount of supply and/or the amount of heat generated. It may be determined according to the amount of dust supplied or the amount of heat generated.
  • the control unit 26 may execute control to reduce the opening degree of the damper 8A or the like and the rotation speed of the blower 4 only for a predetermined fixed time, or the amount of dust supplied and/or the amount of heat generated per unit time is kept constant. The control of the damper 8A and the like may be continued until it becomes.
  • the volume estimated in step S1 is calculated from the change in the height of the dust measured by the LiDAR from time to time.
  • the preceding control may be started immediately after the determination in step S2 (the latest decrease in volume can be regarded as the supply amount that was put into the furnace immediately before. Therefore, starting the advance control at this timing means that the control is started immediately according to the supply amount of the refuse actually thrown into the furnace, which is more advanced control than the conventional feedback control. Become.).
  • the calorific value estimated in step S1 is the calorific value
  • the calorific value according to the amount of waste supplied into the furnace after the retention time ⁇ T after being put into the hopper 1, as will be described later in the fourth embodiment. can be estimated.
  • the timing at which the waste is supplied into the furnace (after the residence time .DELTA.T) can be known.
  • the calorific value of the dust that will be supplied into the furnace in the future can be known at a point in time slightly before the dust is about to be supplied into the furnace.
  • the determination in step S2 may be performed, and the preceding control may be started according to the determination result.
  • the dust to be supplied into the furnace in the near future here means dust existing in pattern 1 in FIGS. 6 and 7, which will be described later.
  • the pre-control in step S3 is started a predetermined time before the supply timing, the pre-control is started before the dust is actually put into the furnace.
  • the determination in step S2 may be performed in accordance with the dust supply timing estimated based on the residence time ⁇ T (for example, at the same time as or immediately after the supply), and the preceding control may be started immediately after that. In this case, as in the case of the dust supply amount described in (1), the preceding control is started immediately before or after the dust is thrown into the furnace.
  • the determination in step S2 is not limited to the embodiment in which the determination in step S2 is performed based on the actual value of the dust supply amount based on the dust height change described in (1). , the judgment of step S2 is made, and then the preceding control can be started.
  • the volume and weight of the existing dust that is, the amount of dust to be supplied into the furnace in the future
  • step S2 Even if it is estimated that the calculated supply amount of dust will be supplied into the furnace in the future, and the determination in step S2 is performed a predetermined time before the supply timing, just before the supply of dust into the furnace is about to occur. (Good.) Furthermore, if it can be estimated that the refuse will be thrown into the furnace after a residence time ⁇ T has elapsed since the refuse was put into the hopper 1, it is not necessarily necessary to wait until just before the refuse is put into the furnace before executing the preceding control. It is possible to start the advance control earlier than before. The timing at which the preceding control is started may be arbitrarily adjusted depending on the equipment, the type of dust, and the like.
  • the primary combustion air supply amount is often feedback-controlled so that the main steam flow rate measured by the steam flow rate sensor 11 is constant. Since it is possible to control the primary combustion air according to the amount of supply and the amount of heat generated, the state (atmosphere) of the air in the combustion chamber 6 is adjusted in advance to match the amount of supply of dust and the amount of heat generated. As a result, the combustion state can be stabilized. This also applies to step S7 (when increasing the supply amount of primary combustion air), which will be described later.
  • the control unit 26 controls the feeder 10 to supply the refuse into the furnace (step S4).
  • the control unit 26 calculates the extrusion rate of the feeder 10 so that the main steam flow rate measured by the steam flow rate sensor 11 becomes a predetermined target value, moves the feeder 10 by the calculated extrusion rate, and enters the furnace. supply garbage.
  • the order of steps S3 and S4 shown in FIG. 2 is for convenience, and the control unit 26 performs control to decrease the supply amount of primary combustion air and control to supply dust into the furnace in parallel.
  • the determination unit 25 acquires the gas temperature in the combustion chamber 6 measured by the temperature sensor 18 through the data acquisition unit 21 .
  • the determination unit 25 determines whether or not the in-furnace gas temperature remains within a predetermined range for a predetermined time or longer (step S5). If the in-furnace gas temperature remains within the predetermined range for a certain period of time or more (step S5; Yes), the control unit 26 terminates the preceding control (preceding supply of primary combustion air) according to the first embodiment. If the in-furnace gas temperature continues for a certain period of time or more and does not fall within the predetermined range (step S5; No), the control unit 26 repeats the processing from step S3.
  • step S2 determines that the amount of dust supplied per unit time and/or the amount of dust supplied after the retention time ⁇ T has elapsed. It is determined whether or not the calorific value of the dust that has been collected has decreased by a certain amount or more (step S6). If the amount of dust supplied and the amount of heat generated decreases by a certain amount or more, or if one of the amount of dust supplied or the amount of heat generated decreases by a certain amount or more (step S6; Yes), the control unit 26 continues the current control.
  • the control unit 26 performs control to increase the supply amount of the primary combustion air (step S7). For example, the control unit 26 increases the opening degrees of the dampers 8A to 8E to increase the amount of air supplied to the combustion chamber 6. FIG. At this time, the control unit 26 may increase only the opening degree of the damper 8A in order to increase the amount of air supplied to the drying area 3A, or may increase the amount of air supplied to the drying area 3A and the combustion area 3B. For this reason, the opening degrees of the dampers 8A to 8C may be increased. The control unit 26 may increase the rotational speed of the blower 4 in addition to/instead of increasing the opening of the damper 8A or the like.
  • the amount of increase in the opening of the damper 8A or the like and the amount of increase in the number of rotations of the blower 4 are based on functions that define the relationship between these control amounts and the amount of supply and/or the amount of heat generated. It may be determined according to the amount of supply or the amount of heat generated.
  • the control unit 26 may execute control to increase the opening degree of the damper 8A or the like or the rotation speed of the blower 4 only for a predetermined fixed time, or the amount of dust supplied and/or the amount of heat generated per unit time is kept constant. The control of the damper 8A and the like may be continued until it becomes.
  • the start of increasing the opening degree of the damper 8A and the like and increasing the rotational speed of the blower 4 is started prior to the actual dust supply, or at a timing just before or after the dust supply, as described in step S3.
  • the control unit 26 controls the feeder 10 to supply the refuse into the furnace (step S8).
  • the controller 26 controls the feeder 10 based on the main steam flow rate measured by the steam flow rate sensor 11 .
  • the order of steps S7 and S8 shown in FIG. 2 is for convenience, and the control unit 26 performs control to increase the supply amount of primary combustion air and control to supply dust into the furnace in parallel.
  • the determination unit 25 acquires the gas temperature in the combustion chamber 6 measured by the temperature sensor 18 through the data acquisition unit 21 .
  • the determination unit 25 determines whether or not the in-furnace gas temperature is within a predetermined range for a predetermined time or more (step S9). If the in-furnace gas temperature remains within the predetermined range for a certain period of time or longer (step S9; Yes), the control unit 26 terminates the preceding control (preceding supply of primary combustion air) according to the first embodiment. If the in-furnace gas temperature does not stay within the predetermined range for a certain period of time or more (step S9; No), the control unit 26 repeats the processing from step S7.
  • step S6 if the dust supply amount per unit time and/or the calorific value of the dust supplied after the residence time ⁇ T does not decrease by a certain amount or more (step S6; No), that is, the dust supply amount per unit time If the change is within a certain range, the process returns to step S1. If the determination in step S6 is No, the controller 26 controls the opening of the damper 8A and the like and the feeder 10 so that the main steam flow rate measured by the steam flow rate sensor 11 becomes the target value. The control of the feeder 10 is the same as the control of steps S4 and S8.
  • step S6 the supply amount of the primary combustion air is controlled only when the dust supply amount and the calorific value are above or below a certain level. Then, the relationship between the dust supply amount and/or calorific value and the primary combustion air supply amount is represented by a predetermined function, and based on this function and the supply amount and/or calorific value estimated in step S1, The damper 8A and the like and the blower 4 may be controlled at all times.
  • the supply amount of the primary combustion air is adjusted according to the dust supply amount and the calorific value estimated in advance. As a result, an atmosphere that stabilizes the combustion state of the combustion chamber 6 can be created, and the generation of CO and NOx can be suppressed.
  • FIG. 3 is a first flow chart showing an example of the operation of the control device according to the second embodiment. The same reference numerals are given to the same processing as in the first embodiment, and a brief description will be given.
  • the control device 20 executes the following process (preceding control) at predetermined time intervals.
  • the supply amount estimation unit 24 estimates the supply amount of dust and/or the amount of heat generated based on the height of dust measured by LiDAR (step S1).
  • the supply amount estimator 24 outputs the estimated supply amount of dust and the amount of heat generated to the determination unit 25 .
  • the determination unit 25 determines whether the amount of dust supplied per unit time and/or the amount of heat generated by dust supplied after the residence time ⁇ T has increased by a certain amount or more (step S2).
  • the control unit 26 performs control to decrease the amount of primary combustion air supplied in advance (step S3).
  • the control unit 26 reduces the opening degrees of the dampers 8A to 8E and the rotational speed of the blower 4 to reduce the supply amount of the primary combustion air.
  • the control unit 26 controls the feeder 10 to supply refuse into the furnace, but reduces the amount of refuse supplied into the furnace in order to suppress excessive combustion (step S41). .
  • the controller 26 reduces the stroke of the feeder 10 to reduce the amount of dust supplied to the combustion chamber 6 .
  • the control unit 26 reduces the amount of dust supplied to the combustion chamber 6 by decreasing the moving speed of the feeder 10, or by decreasing both the extrusion amount and the moving speed. may be decreased.
  • the control unit 26 may reduce (temporarily stop) the supply amount of dust by stopping the feeder 10 .
  • the control unit 26 may push out the feeder 10 by half of the normal amount to supply about half of the dust, and stop the feeder 10 at that position for a predetermined time.
  • control unit 26 may be controlled based on a function defining the relationship between the output amount or moving speed of the feeder 10 and the amount of dust supplied and/or the amount of heat generated, and the amount of dust supplied and the amount of heat generated estimated in step S1. , may control the feeder 10 .
  • the control unit 26 may reduce the stroke or movement speed of the feeder 10 only for a predetermined period of time, or may control the feeder 10 until the amount of supply and/or the amount of heat generated per unit time becomes constant. may continue to run.
  • the timing closer to the supply of target dust (dust for which the determination in step S2 is YES) is closer to the timing at which the control of step S3 is started, or when the dust is supplied (dwelling time). after time ⁇ T).
  • the amount of dust supplied (volume and weight) is estimated based on the volume change calculated from the height change of dust measured by LiDAR every moment, and this estimated value is supplied to the furnace this time. If it is considered to be the dust supply amount, the preceding control may be started immediately after the determination in step S2.
  • the calorific value corresponding to the amount of waste supplied into the furnace after the residence time ⁇ T from the introduction into the hopper 1 can be estimated.
  • the calorific value of the garbage that will be supplied into the furnace in the future is known. Therefore, the judgment in step S2 is made in advance based on the calorific value of the dust that will be supplied into the furnace in the future. After that, and a predetermined time before the timing of supplying the dust into the furnace (or at the same time as the timing of supplying the dust), the control for reducing the amount of dust supplied may be started.
  • the primary combustion air supply amount and the dust supply amount are often feedback-controlled so that the main steam flow rate measured by the steam flow rate sensor 11 is constant. Since the amount of combustion air and dust supplied can be controlled, the combustion state in the combustion chamber 6 can be stabilized. This also applies to steps S7 and S81, which will be described later.
  • the determination unit 25 acquires the gas temperature inside the combustion chamber 6 measured by the temperature sensor 18 through the data acquisition unit 21 .
  • the determination unit 25 determines whether or not the in-furnace gas temperature remains within a predetermined range for a predetermined time or longer (step S5). If the in-furnace gas temperature remains within the predetermined range for a certain period of time or more (step S5; Yes), the control unit 26 terminates the preliminary control of the primary combustion air and dust supply amount according to the second embodiment. If the in-furnace gas temperature does not fall within the predetermined range for a certain period of time or more (step S5; No), the control unit 26 repeats the processing from step S3.
  • step S2 determines that the amount of dust supplied per unit time and/or the amount of heat generated by the dust supplied after the residence time ⁇ T is A decision is made as to whether or not there is a decrease above a certain level (step S6).
  • step S6 determines that the amount of dust supply and/or the amount of heat generated decreases by a certain amount or more (step S6; Yes).
  • step S7 the control unit 26 increases the opening degrees of the dampers 8A to 8E or increases the rotational speed of the blower 4 to increase the amount of primary combustion air supplied.
  • the control unit 26 controls the feeder 10 to supply refuse into the furnace, and increases the amount of refuse supplied into the furnace in order to promote combustion (step S81).
  • the control unit 26 increases the extrusion amount (stroke) of the feeder 10, increases the moving speed of the feeder 10, or increases both the extrusion amount and the moving speed to increase the dust supply amount.
  • the control unit 26 may be controlled based on a function defining the relationship between the output amount or moving speed of the feeder 10 and the amount of dust supplied and/or the amount of heat generated, and the amount of dust supplied and the amount of heat generated estimated in step S1. , may control the feeder 10 .
  • the control unit 26 may perform the above control of the feeder 10 only for a predetermined fixed period of time, or may perform the above control of the feeder 10 until the amount of supply and/or the amount of heat generated per unit time becomes constant. .
  • the controls in steps S7 and S81 may be started in advance, as described in step S41.
  • the determination unit 25 acquires the gas temperature inside the combustion chamber 6 measured by the temperature sensor 18 through the data acquisition unit 21 .
  • the judgment unit 25 judges whether or not the in-furnace gas temperature continues for a certain period of time or more and is within a predetermined range (step S9).
  • the control unit 26 terminates the preceding control (preceding supply of primary combustion air) according to the second embodiment. If the in-furnace gas temperature does not stay within the predetermined range for a certain period of time or more (step S9; No), the control unit 26 repeats the processing from step S7.
  • step S6 if the dust supply amount per unit time and/or the calorific value of the dust supplied after the residence time ⁇ T does not decrease by a certain amount or more (step S6; No), that is, the dust supply amount per unit time If the change is within a certain range, the process returns to step S1. If the determination in step S6 is No, the controller 26 controls the opening of the damper 8A and the like and the feeder 10 based on the steam flow rate measured by the steam flow rate sensor 11 .
  • step S2 and S6 the amount of supply of primary combustion air is controlled only when the amount of dust supplied or the amount of heat generated is above or below a certain level.
  • the relationship between the amount of dust supplied and/or the calorific value and the amount of primary combustion air supplied is represented by a predetermined function, and based on this function and the supply amount and/or the calorific value estimated in step S1 , the damper 8A and the like and the blower 4 may be controlled at all times.
  • the relationship between the dust supply amount and/or heat generation amount and the stroke or movement speed of the feeder 10 is represented by a predetermined function, and based on this function and the supply amount and/or heat generation amount estimated in step S1 , may control the operation of the feeder 10 .
  • the estimated amount of supply or amount of heat is changed. Accordingly, by adjusting the dust supply amount in advance in conjunction with the primary combustion air, it is possible to create an atmosphere that stabilizes the combustion state of the combustion chamber 6 and suppress the generation of CO and NOx. .
  • FIG. 4 shows an operation example when combined with the first embodiment.
  • FIG. 4 is a flow chart showing an example of the operation of the control device according to the second embodiment.
  • the same reference numerals are given to the same processing as in the first embodiment, and a brief description will be given.
  • the control device 20 executes the following process (preceding control) at predetermined time intervals.
  • the supply amount estimation unit 24 estimates the supply amount of dust and/or the amount of heat generated based on the height of dust measured by LiDAR (step S1).
  • the supply amount estimator 24 outputs the estimated supply amount of dust and the amount of heat generated to the determination unit 25 .
  • the determination unit 25 determines whether the amount of dust supplied per unit time and/or the amount of heat generated by dust supplied after the residence time ⁇ T has increased by a certain amount or more (step S2).
  • the control unit 26 performs control to decrease the amount of primary combustion air supplied in advance (step S3).
  • the control unit 26 reduces the amount of primary combustion air supplied by reducing the opening degrees of the dampers 8A to 8E and the rotational speed of the blower 4 .
  • the control unit 26 controls the feeder 10 to supply the refuse into the furnace (step S4).
  • the image estimation unit 23 analyzes the image captured by the image sensor 16 and estimates the amount of dust supplied to the combustion chamber 6 (step S42).
  • the image estimation unit 23 outputs the estimated value of the dust supply amount to the control unit 26 .
  • the control unit 26 adjusts the supply amount of the primary combustion air and/or the secondary combustion air based on the estimated amount of dust supply (step S43). For example, if the estimated dust supply amount is larger than the supply amount estimated in step S1, the opening of the damper 8A or the like is decreased so that the supply amount of the primary combustion air is further decreased, or the rotational speed of the blower 4 is reduced.
  • control unit 26 reduces the amount of secondary combustion air supplied in addition to the primary combustion air by reducing the opening degree of the damper 14A, thereby reducing the oxygen concentration in the secondary combustion chamber 6B. conduct. Conversely, if the estimated dust supply amount is less than the supply amount estimated in step S1, adjustment may be made to mitigate the opening of the damper 8A or the like and the reduction in the rotational speed of the blower 4.
  • the determination unit 25 determines whether or not the in-furnace gas temperature and/or the oxygen concentration have continued for a predetermined time or longer and are within a predetermined range (step S51).
  • the determination unit 25 acquires the temperature in the combustion chamber 6 measured by the temperature sensor 18 and the oxygen concentration in the combustion chamber 6 measured by the oxygen concentration sensor 19 through the data acquisition unit 21, and determines the gas temperature in the combustion chamber 6 and / Or it is determined whether or not the oxygen concentration in the combustion chamber 6 is within a predetermined range.
  • the control unit 26 terminates the preliminary control of the primary combustion air according to the third embodiment. If the in-furnace gas temperature and/or oxygen concentration continue for a certain period of time or longer and do not fall within the predetermined range (step S51; No), the control unit 26 repeats the processing from step S3.
  • step S2 determines that the amount of dust supplied per unit time and/or the amount of heat generated by the dust supplied after the residence time ⁇ T is A decision is made as to whether or not there is a decrease above a certain level (step S6).
  • step S6 determines that the amount of dust supply and/or the amount of heat generated decreases by a certain amount or more (step S6; Yes).
  • step S7 the control unit 26 increases the opening degrees of the dampers 8A to 8E or increases the rotational speed of the blower 4 to increase the amount of primary combustion air supplied.
  • the control unit 26 controls the feeder 10 to supply the refuse into the furnace (step S8).
  • the image estimation unit 23 analyzes the image captured by the image sensor 16 and estimates the amount of dust supplied to the combustion chamber 6 (step S82).
  • the image estimation unit 23 outputs the estimated value of the dust supply amount to the control unit 26 .
  • the control unit 26 adjusts the supply amount of the primary combustion air and/or the secondary combustion air based on the estimated amount of dust supply (step S83). For example, if the estimated dust supply amount is smaller than the supply amount estimated in step S1, the opening of the damper 8A or the like is increased to further increase the supply amount of the primary combustion air, or the rotational speed of the blower 4 is increased.
  • the control unit 26 increases the amount of secondary combustion air supplied in addition to the primary combustion air by increasing the opening of the damper 14A, thereby increasing the oxygen concentration in the secondary combustion chamber 6B.
  • the control unit 26 controls the opening of the damper 14A according to the dust supply amount estimated from the image, based on a function that defines the relationship between the estimated value of the dust supply amount and the opening of the damper 14A. do. Conversely, if the estimated dust supply amount is larger than the supply amount estimated in step S1, the opening of the damper 8A or the like and the increase in the rotation speed of the blower 4 may be adjusted to moderate.
  • the determination unit 25 determines whether or not the in-furnace gas temperature and/or the oxygen concentration remain within a predetermined range for a predetermined time or longer (step S91).
  • the determination unit 25 acquires the temperature in the combustion chamber 6 measured by the temperature sensor 18 and the oxygen concentration in the combustion chamber 6 measured by the oxygen concentration sensor 19 through the data acquisition unit 21, and determines the gas temperature in the combustion chamber 6 and / Or it is determined whether or not the oxygen concentration in the combustion chamber 6 remains within a predetermined range for a predetermined time or more.
  • the control unit 26 terminates the preliminary control of the primary combustion air according to the third embodiment. If the in-furnace gas temperature and/or oxygen concentration continue for a certain period of time or longer and do not fall within the predetermined range (step S91; No), the control unit 26 repeats the processing from step S7.
  • the amount of dust supplied and the amount of heat generated are estimated from the image information after the dust is thrown into the furnace, and the secondary air is also controlled, thereby further stabilizing the combustion.
  • the amount of dust supplied and the amount of heat generated in step S1 are estimated from the measured value of the distance to the surface of the dust in the hopper 1, but the amount of dust actually supplied to the furnace and the amount of heat generated may deviate. have a nature.
  • the supply amounts of the primary combustion air and the secondary combustion air are controlled based on the image of the actually supplied dust.
  • the deviation of the estimated value in step S1 can be compensated.
  • the actual amount of dust in the furnace Since the amount of thrown-in dust is estimated from the image, it is possible to estimate the amount of supplied dust instantaneously, and it is possible to detect the amount of dust supplied with high accuracy with little time lag.
  • FIG. 4 shows the operation when combined with the first embodiment, but when combined with the second embodiment, the processes of steps S4 and S8 are replaced with the processes of steps S41 and S81 in FIG. 3, respectively. be done.
  • step S43 in addition to adjusting the primary combustion air and the secondary combustion air, the stroke and moving speed of the feeder 10 are adjusted. For example, if the estimated dust supply amount is larger than the supply amount estimated in step S1, the control unit 26 further shortens the stroke of the feeder 10 or slows down the moving speed.
  • step S83 in addition to adjusting the primary combustion air and the secondary combustion air, the stroke and moving speed of the feeder 10 are adjusted.
  • the control unit 26 further lengthens the stroke of the feeder 10 or speeds up the movement speed.
  • the control unit 26 adjusts the dust supply amount estimated from the image based on a function that defines the relationship between the estimated dust supply amount and the stroke or moving speed of the feeder 10. It controls the floating feeder 10 .
  • FIG. 5 is a first diagram for explaining estimation processing of the calorific value of dust and the like according to the fourth embodiment.
  • a sectional view of the hopper 1 and the chute 2 is shown in the left diagram 50 of FIG.
  • Each of the illustrated layers I1 to I5 is a layer of dust formed by throwing dust into the hopper 1 once. For example, the dust thrown into the hopper 1 five times before forms the layer I5, the dust thrown four times before forms the layer I4, and the dust thrown three times before forms the layer I3.
  • the layer I2 is formed by the dust thrown in two times before, and the layer I1 is formed by the dust thrown in immediately before.
  • the supply amount estimating unit 24 estimates the average residence time ⁇ T until the newly introduced dust in the layer I1 is supplied into the furnace, and the dust is introduced after the average residence time ⁇ T.
  • the dust height calculator 22 momentarily detects the distance from the sensor 15 to the dust surface at each position on the entire dust surface in the hopper 1 by LiDAR.
  • the supply amount estimator 24 calculates the volume of the thrown-in dust based on the increase in the height of the dust before and after the dust is thrown.
  • the supply amount estimation unit 24 obtains the weight of the dust measured by the weighing scale 17a when the dust on the layer I5 is transported, and divides the weight by the calculated dust volume to calculate the density of the dust on the layer I5. .
  • the supply amount estimator 24 calculates the dust density of each layer when the dust of the layers I4 to I1 is thrown.
  • FIG. 51 shows the calculated relationship between dust density and layer.
  • the vertical axis of FIG. 51 indicates the density, and the horizontal axis indicates the position (layer) in the hopper 1 and the chute 2 .
  • the line graph 51a shows, from the left, the density of the layer I5, the density of the layer I4, the density of the layer I3, the density of the layer I2, and the density of the layer I1.
  • the supply amount estimator 24 calculates the calorific value using a conversion formula for calculating the calorific value from the density of each layer and the previously derived dust density. It is generally known that there is a negative correlation between dust density and calorific value.
  • FIG. 52 shows the amount of heat generated according to the dust density of each layer. The vertical axis of FIG. 52 indicates the calorific value (LHV), and the horizontal axis indicates time.
  • FIG. 52 shows, for example, the transition of the calorific value corresponding to the density of the dust supplied into the furnace at each time when the dust is supplied into the furnace at a predetermined supply amount per unit time from the state of FIG.
  • the line graph 52a shows, from the left, the amount of heat generated in the layer I5, the amount of heat generated in the layer I4, the amount of heat generated in the layer I3, the amount of heat generated in the layer I2, and the amount of heat generated in the layer I1.
  • FIG. 53 shows the calorific value during combustion of each layer I1 to I5.
  • the vertical axis of FIG. 53 indicates the calorific value (LHV), and the horizontal axis indicates time.
  • a graph 53a shows transition of the calorific value (LHV process value) calculated based on the actual value of the main steam flow rate.
  • the user registers in the storage unit 27 data indicating the transition of the calorific value calculated based on the measured values.
  • the supply amount estimation unit 24 calculates the calorific value illustrated in FIG. 53 and registers it in the storage unit 27 .
  • the supply amount estimation unit 24 moves the graph 52a calculated in the procedure 2 along the time axis, and generates heat calculated based on the graph 52a of the calorific value based on the density of each layer and the flow rate of the main steam. Calculate the degree of correlation with the quantity graph 53a.
  • the supply amount estimator 24 searches for the movement amount ⁇ T in the graph 52a when the degree of correlation is the largest. ⁇ T when the degree of correlation is the largest is defined as the average residence time ⁇ T. Since the retention time varies depending on the amount of waste to be treated, it is necessary to consider changes in the quality of waste and the operation plan. For example, the average residence time ⁇ T is calculated each time the waste quality or operation plan changes.
  • the supply amount estimator 24 After calculating the average residence time ⁇ T, the supply amount estimator 24 calculates the density each time garbage is thrown into the hopper 1, and calculates the calorific value by a conversion formula. Then, the supply amount estimation unit 24 records the calculation result (estimated value) in the storage unit 27 together with the time. Assuming that the present is the time when the feeder is controlled and the dust is supplied, the heat generation amount estimated in the past by the average residence time ⁇ T is the estimated value of the heat generation amount of the dust to be supplied this time. The supply amount estimating unit 24 reads the estimated value of the amount of heat generated in the past for the average residence time ⁇ T recorded in the storage unit 27, and estimates the amount of heat generated (step S1 in FIGS. 2 to 4).
  • the supply amount estimating unit 24 records the calculation result of the volume change based on the height change in the hopper 1 per unit time in the storage unit 27 together with the time.
  • the change in volume may be an estimated value of the supply amount of dust to be supplied this time.
  • Estimation method 2 In Estimation Method 1, it is assumed that all the dust thrown into the furnace is dust thrown into the hopper 1 at the same timing, and the density of the dust is assumed to be constant. However, in reality, based on the distribution of the dust in the chute 2, the dust thrown in at different timings is mixed and supplied into the furnace. In estimation method 2, considering the distribution and compaction of the garbage (the density resulting from compression by the garbage thrown in later), the density of the garbage put into the furnace is calculated, and the calculated density of the garbage is converted. Estimate the calorific value of the dust from the formula.
  • Fig. 6 shows the density calculation method that takes into account the distribution and consolidation of dust.
  • a preliminary analysis is performed to model that garbage thrown in at different timings is distributed and accumulated in layers I1 to I5 in the hopper 1 and the chute 2 .
  • Garbage in each layer is the garbage thrown into the hopper 1 from the crane 17 at one time of throwing.
  • I6 and I7 indicate that the dust has already been supplied into the furnace.
  • Patterns 1 to 4 are examples of supply patterns assuming a certain amount of output from the feeder 10 at one time. When analyzed in this way, in pattern 1, which is the next scheduled supply range, dust on layers I3 to I5 is to be supplied.
  • FIG. 62 is a graph showing the weighted moving average coefficients of the layers I1 to I7 at each time when the dust volumes of the layers I1 to I7 are the same (all the maximum weighted moving average coefficients are 0.1). shown.
  • the vertical axis of FIG. 62 is the load moving average coefficient, and the horizontal axis is time (the time during which the refuse is supplied into the furnace by the feeder 10).
  • each mountain corresponds to dust on each layer, and in the example of FIG.
  • each mountain corresponds to layers I7 to I1 in order from the leftmost mountain.
  • the height of each pile has a positive correlation with the size of the volume of the garbage thrown in, and if the volume of garbage thrown into the hopper 1 differs each time, the peak value of the pile will differ each time.
  • the overlap of each pile is related to the ratio of the garbage thrown into the furnace at that time. For example, if the throwing time of pattern 1 shown in FIG. From the values on the vertical axis at the corresponding times, it is possible to comprehend the dust input ratio (weighted moving average coefficient) of layers I3 to I5. When the weighted moving average coefficients of I3 to I5 at the time when the dust in the range enclosed by pattern 1 is supplied from FIG. 62 are examined, the values in the first row of Table 61 are obtained. Similarly, the weighted moving average coefficients of layers I1 to I7 in patterns 2 to 4 are shown in rows 2 to 4 of Table 61.
  • dust densities g1-g7 that take into account the consolidation of layers I1-I7.
  • density g1 is the density of dust in layer I1 considering consolidation
  • density g2 is the density of dust in layer I2 considering consolidation
  • density g7 is the density of dust in layer I7 considering consolidation.
  • a dust distribution pattern for example, pattern 1
  • the following equation (1) can be used to calculate the dust density G when dust within the range of pattern 1 is fed into the furnace.
  • G (g1 x 0 + g2 x 0 + g3 x 0.01 + g4 x 0.1 + g5 x 0.04 + g6 ⁇ 0+g7 ⁇ 0) ⁇ (0.01+0.1+0.04)
  • the left figure 70 shows the dust layers I1 to I5 in the hopper 1 and the chute 2.
  • FIG. The vertical axis in FIG. 71 indicates density, and the horizontal axis indicates time.
  • the line graph 71a shows, from the left, the density of the layer I5, the density of the layer I4, the density of the layer I3, the density of the layer I2, and the density of the layer I1. These are called densities A.
  • Density A is the density of dust on the top layer at that time. For example, when the layer I5 is thrown in at a certain time, the height is lowered moment by moment according to the supply of refuse into the furnace. It shows the density of dust on the top layer in such a cycle.
  • a graph 72a is the residence time until the dust at each position (height) in FIG. 71 is supplied into the furnace. Residence time can be calculated by dividing the volume of debris present from the debris position (height) to the furnace entrance at the corresponding time in FIG. 71 by the average daily volume change rate.
  • FIG. 73 shows the transition of the density B.
  • FIG. The vertical axis in FIG. 73 is density, and the horizontal axis is time.
  • Density B is the density of dust just before it is fed into the furnace. For example, if the dust supplied into the furnace is in the range of pattern 1, the density can be calculated by the above equation (1). Assuming that the position of "X1" min of layer I4 in FIG. 72 is included in pattern 1, it can be seen that pattern 1 is thrown into the furnace after "X1" minutes. Then, the density B after "X1" minutes can be calculated by the above equation (1) using the weighted moving average coefficient of pattern 1 in Table 61 illustrated in FIG.
  • the density B in other pattern 2 and so on can be calculated.
  • the supply amount estimating unit 24 calculates the residence time until the dust put into the hopper 1 is supplied into the furnace based on a certain time and the density B of the dust when it is supplied into the furnace, Graph 73a of FIG. 73 is obtained.
  • the supply amount estimation unit 24 calculates the calorific value based on the calculated density B at each time and the conversion formula.
  • the calculated calorific value is shown in graph 74a in FIG. In this way, according to the estimation method 2, the residence time of dust, the density B considering the distribution and consolidation of dust, and the calorific value corresponding to the density B can be estimated in advance.
  • the supply amount estimator 24 estimates the calorific value of dust in the following procedure.
  • the dust height calculator 22 detects the distance from the sensor 15 to the dust surface at each position on the entire dust surface in the hopper 1 every moment by LiDAR, and calculates the height of the dust.
  • the supply amount estimator 24 calculates the volume and density of dust.
  • the supply amount estimator 24 calculates the estimated value of the retention time by dividing the total volume of the residual waste in the hopper by the average volume change rate per day (m3/unit time).
  • the supply amount estimator 24 calculates the density of the dust to be thrown into the furnace after the residence time by using the compaction of the dust in the hopper 1 and the weight moving average density. .
  • the supply amount estimation unit 24 selects dust supply patterns 1-4. By applying the residence time corresponding to the selected pattern to the horizontal axis of FIG. 62, the weighted moving average coefficient is determined and the dust density according to the pattern is estimated. For example, in the case of pattern 1, the supply amount estimation unit 24 estimates the dust density of pattern 1 using equation (1).
  • the supply amount estimating unit 24 may analyze the consolidation g1 to g7 of the dust at each distribution position necessary for this calculation, the relationship between the input time and the input ratio (FIG. 62), or may use these separately analyzed information. You may perform calculation of procedure 3 using it.
  • the supply amount estimator 24 selects the pattern of dust to be supplied to the furnace. For example, the supply amount estimator 24 selects pattern 1 as the next dust pattern to be supplied to the furnace. The supply amount estimation unit 24 selects the dust density of pattern 1 estimated in procedure 3 .
  • the supply amount estimator 24 estimates the calorific value based on the dust density of the selected pattern and the conversion formula.
  • the supply amount estimator 24 may estimate an input fuel flow rate (kJ/h), which is the flow rate of fuel (waste) supplied into the furnace.
  • the density of refuse supplied in the furnace (dust By estimating the calorific value of the dust from the moisture content), more accurate estimation becomes possible.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of a control device according to each embodiment;
  • a computer 900 includes a CPU 901 , a main memory device 902 , an auxiliary memory device 903 , an input/output interface 904 and a communication interface 905 .
  • the control device 20 described above is implemented in a computer 900 .
  • Each function described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads out the program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 secures a storage area in the main storage device 902 according to the program.
  • the CPU 901 secures a storage area for storing data being processed in the auxiliary storage device 903 according to the program.
  • a program for realizing all or part of the functions of the control device 20 is recorded in a computer-readable recording medium, and the program recorded in this recording medium is read by a computer system and executed, thereby performing each functional unit.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the "computer system” includes the home page providing environment (or display environment) if the WWW system is used.
  • the term "computer-readable recording medium” refers to portable media such as CDs, DVDs, and USBs, and storage devices such as hard disks built into computer systems.
  • the computer 900 receiving the distribution may develop the program in the main storage device 902 and execute the above process.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • control device 20 described in each embodiment is understood as follows.
  • the control device 20 for the incinerator facility includes a furnace (combustion chamber 6, fire grate 3) that conveys while burning the incinerator (garbage), and the furnace A control device 20 for an incinerator facility 1 having a combustion air supply unit (damper 8A to 8F, blower 4, damper 14A) that supplies combustion air, wherein the supply amount of the incinerator to be supplied to the furnace or A combustion air control unit (control unit 26) for controlling the combustion air before the incinerator is charged into the furnace based on the amount of heat generated.
  • the atmosphere in the furnace inside the combustion chamber 6) can be adjusted according to the amount of dust supplied and the amount of heat generated before the dust is supplied, and the combustion in the furnace can be stabilized.
  • the control device 20 according to the second aspect is the control device 20 of (1), wherein the feeder that supplies the incinerator to the furnace and the A feeder control unit (control unit 26) that controls the operation of the feeder is further provided.
  • the amount of dust supplied can be adjusted according to the amount of dust supplied and the amount of heat generated when the dust is supplied, and combustion in the furnace can be stabilized.
  • the control device 20 is the control device 20 of (1) to (2), in which imaging means (image sensor 16 ) and an estimating unit (image estimating unit 23) for estimating the supply amount or calorific value of the incineration material put into the furnace from the image information obtained by the imaging means, and the combustion air
  • the control unit controls the combustion air (primary combustion air, secondary combustion air) based on the supplied amount of the incinerated material or the calorific value estimated by the estimation unit.
  • the control device 20 is the control device 20 of (1) to (3), in which the height of the incinerated matter in the hopper (inside the hopper 1 and the chute 2) is determined by three-dimensional measurement. Detecting the change in thickness, the consolidation of the incinerated matter (g1 to g7), the distribution of the incinerated matter in the hopper (I1 to I7), and the ratio of the incinerated matter supplied into the furnace (input 4.
  • the incineration facility according to any one of claims 1 to 3, further comprising a calculation unit (supply amount estimating unit) that calculates the supply amount or the calorific value immediately before being supplied into the furnace based on the ratio) controller. As a result, it is possible to estimate the amount of supplied dust and the amount of heat generated before supplying the dust.
  • the control device 20 is the control device 20 of (4), wherein the calculation unit detects the distance of the entire surface of the incineration object by LiDAR (Light Detection and Ranging). , based on the change in the distance, calculate the volume of the incinerated material put into the hopper, calculate the density from the weight and volume of the incinerated material put into the hopper, and calculate the density for a certain period of time in the past Then, the calorific value estimated from the density of the material to be incinerated supplied to the furnace is correlated with the actually measured calorific value, and the material to be incinerated is supplied to the furnace after being put into the hopper.
  • LiDAR Light Detection and Ranging
  • the residence time until the end of the residence time is estimated, and the calorific value after the residence time is estimated.
  • the calorific value of the refuse supplied to the furnace after the residence time can be estimated, and the control of the primary combustion air can be started before the refuse is supplied to the furnace.
  • the present disclosure provides a control device for incinerator equipment that can solve the above-described problems.
  • Garbage incineration facility Hopper 2 Chute 3 Fire grate 3A Dry zone 3B Combustion zone 3C Post-combustion zone 4 ... blower, 5A to 5E ... wind box, 6 ... combustion chamber, 7 ... ash outlet, 8A to 8E, 14A ... damper, 9 ... boiler, 10 ... feeder, DESCRIPTION OF SYMBOLS 11... steam flow rate sensor, 12... flue, 13, 14... pipeline, 15... sensor (LiDAR), 16... image sensor, 17... crane, 17a...
  • Weight scale 18 Temperature sensor 19
  • Oxygen concentration sensor 20 Control device 21
  • Data acquisition unit 22 Dust height calculation unit 23

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

焼却炉設備の燃焼の安定化させる制御装置を提供する。焼却炉設備の制御装置は、被焼却物を燃焼させながら搬送する炉本体と、前記炉に燃焼用空気を供給する燃焼用空気供給部とを有する焼却炉設備の制御装置であって、前記炉に供給する被焼却物の供給量または発熱量に基づいて、前記被焼却物が前記炉内に投入される前に前記燃焼用空気の制御を行う燃焼用空気制御部、を備える。

Description

焼却炉設備の制御装置
 本開示は、焼却炉設備の制御装置に関する。本開示は、2021年9月10日に、日本に出願された特願2021-147752号に基づき優先権を主張し、その内容をここに援用する。
 一般にゴミ焼却設備にはホッパが付設され、クレーンでホッパ内に投入されたゴミは、ホッパ下部に配される給じん装置により、順次、焼却炉へと供給されるようになっている。特許文献1には、ゴミ焼却設備のホッパに投入されるゴミの体積と重量から、ゴミの比重を計算し、ゴミの供給容積にゴミの比重を乗じることにより、焼却炉内へ供給されるゴミの供給重量を計算し、さらに、ゴミの供給重量から入熱量を計算して、単位時間あたりの入熱量が一定となるように、ゴミを焼却炉内に供給する制御する制御装置が開示されている。
日本国特許第6779779号公報
 特許文献1では、ホッパに投入されてから焼却炉に供給されるまでに要する時間の範囲(例えば、1~2時間)を設定し、焼却炉内へのゴミの供給重量を、その時点から設定した時間の範囲だけ過去にホッパに投入されたゴミの比重の平均値にゴミの供給容積を乗じることにより計算している。炉内の燃焼状態を安定化させるためには、より正確にゴミの供給量やそれに代わる制御量を推定し、推定した供給量などに応じた制御を先行的に実行することが好ましい。
 本開示は、上述の課題を解決することのできる焼却炉設備の制御装置を提供する。
 本開示の一態様によれば、制御装置は、被焼却物を燃焼させながら搬送する炉と、前記炉に燃焼用空気を供給する燃焼用空気供給部とを有する焼却炉設備の制御装置であって、前記炉に供給する被焼却物の供給量または発熱量に基づいて、前記被焼却物が前記炉内に投入される前に前記燃焼用空気の制御を行う燃焼用空気制御部と、3次元計測によりホッパ内の前記被焼却物の高さ変化を検出し、前記被焼却物の高さの変化に基づいて、前記ホッパへ投入された前記被焼却物の体積を計算し、前記ホッパへ投入された前記被焼却物の重量と前記体積から密度を計算し、過去の一定期間に前記炉に供給された前記被焼却物の密度より推定した前記発熱量と実際に計測された前記発熱量の相関比較を行い、前記被焼却物が前記ホッパへ投入されてから前記炉に供給されるまでの滞留時間を推定し、前記被焼却物の圧密と、前記ホッパ内の前記被焼却物の分布と、前記炉内に供給される被焼却物の比率に基づき、前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量または発熱量を算出する算出部と、を備え、前記燃焼用空気制御部は、前記被焼却物が前記ホッパへ投入されてから前記算出部によって推定された前記滞留時間が経過するよりも所定時間前に当該被焼却物の供給量または発熱量に基づく前記燃焼用空気の制御を行う。
 上記した焼却炉設備の制御装置によれば、ゴミ焼却設備の炉内の燃焼状態を安定化することができる。
各実施形態に係るゴミ焼却設備の一例を示す図である。 第一実施形態に係る制御装置の動作の一例を示すフローチャートである。 第二実施形態に係る制御装置の動作の一例を示すフローチャートである。 第三実施形態に係る制御装置の動作の一例を示すフローチャートである。 第四実施形態に係るゴミの発熱量等の推定処理を説明する第1の図である。 第四実施形態に係るゴミの発熱量等の推定処理を説明する第2の図である。 第四実施形態に係るゴミの発熱量等の推定処理を説明する第3の図である。 各実施形態に係る制御装置のハードウェア構成の一例を示す図である。
 以下、実施形態のゴミ焼却設備を、図面を参照して説明する。以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。「XXまたはYY」とは、XXとYYのうちいずれか一方の場合に限定されず、XXとYYの両方の場合も含み得る。これは選択的要素が3つ以上の場合も同様である。「XX」および「YY」は、任意の要素(例えば任意の情報)である。
(システム構成)
 図1は、各実施形態に係るゴミ焼却設備の一例を示す図である。
 ゴミ焼却設備100は、ゴミが投入されるホッパ1と、ホッパ1に投入されたゴミを下部へ導くシュート2と、シュート2を通じて供給されたゴミを燃焼室6内に供給するフィーダ10と、フィーダ10によって供給されたゴミを受けて、ゴミを移送しながら乾燥と燃焼を行う火格子3と、ゴミを燃焼する燃焼室6と、灰を排出する灰出口7と、空気を供給する送風機4と、送風機4によって供給された空気を火格子3の各部へ導く複数の風箱5A~5Eと、送風機4によって供給された空気を燃焼室6(二次燃焼室6B)へ直接的に供給する管路14と、ボイラ9と、ゴミを搬送するクレーン17と、ホッパ1の上方からゴミの表面を検出するセンサ15と、燃焼室6内の様子を撮影する画像センサ16と、を備える。
 クレーン17は、ゴミピット(図示せず)からゴミを掴んで搬送し、ホッパ1へ投入する。クレーン17には、重量計17aが設けられている。重量計17aは、クレーン17が搬送したゴミの重量を計測する。重量計17aは制御装置20と接続されていて、重量計17aが計測した重量、つまり、ホッパ1に投入されるゴミの重量は、制御装置20へ送信される。ホッパ1の上方には、ホッパ1に投入されて蓄積したゴミの表面全体を検出できるようにセンサ15が設置されている。センサ15は、ホッパ1に投入されるゴミの体積、ホッパ1およびシュート2に蓄積されているゴミの高さを検出するために設けられている。センサ15は、例えば、LiDAR(Light Detection and Ranging)装置である。LiDARとは、レーザ光等を対象物へ走査しながら照射し、反射光の輝度に基づいて、対象物までの距離や方向などを計測する技術である。LiDARによって、蓄積したゴミの表面全体にレーザ光を走査しながら照射することで、ゴミの表面全体についてセンサ15からの距離を計測することができる。これにより、ホッパ1およびシュート2に堆積されたゴミの高さを検出することができる。クレーン17からホッパ1内へゴミを投下する前後のゴミの高さの差分から、ホッパ1へ投下されたゴミの体積を計算することができる。センサ15は制御装置20と接続されていて、センサ15が計測した計測値は、制御装置20へ送信される。
 フィーダ10は、シュート2を通じて供給されたゴミを押し出すことにより、ゴミを火格子3へ供給する給じん装置である。フィーダ10は、ゴミを燃焼室6側へ押し出す動作と、元の位置に引き戻る動作を繰り返す。制御装置20は、フィーダ10の押し出す動作と引き戻す動作を制御することにより、燃焼室6へのゴミの供給量を調整する。火格子3は、シュート2及び燃焼室6の底部に設けられゴミを搬送する。火格子3は、フィーダ10によって供給されたゴミの水分を蒸発させて乾燥させる乾燥域3Aと、乾燥域3Aの後流に位置し、乾燥したゴミを燃焼させる燃焼域3Bと、燃焼域3Bの後流に位置し、燃焼されずに通過してきた固定炭素分等の未燃分を灰になるまで燃焼させる後燃焼域3Cとを備えている。制御装置20の制御により、火格子3の動作速度が制御される。
 送風機4は、火格子3の下方に設けられ、風箱5A~5Eを介して、空気を火格子3の各部に供給する。送風機4か送る空気を風箱5A~5Eへ導く管路8には、管路8と風箱5A~5Eのそれぞれを接続する枝管が接続され、枝管には各々ダンパ8A~8Eが設けられ、ダンパ8A~8Eの開度を調節することにより、風箱5A~5Eへ供給される燃焼空気の流量を調節することができる。制御装置20は、送風機4の送風量(回転数)、ダンパ8A~8Eの開度を制御する。ダンパ8A~8Eを総称して1次燃焼空気ダンパと記載する場合がある。
 燃焼室6は、火格子3の上方に、一次燃焼室6Aと二次燃焼室6Bとからなり、ボイラ9は、燃焼室6の後流に配設されている。一次燃焼室6Aは、火格子3の上方に設けられ、一次燃焼室6Aのさらに上方に二次燃焼室6Bが設けられている。一次燃焼室6Aでは、ゴミを燃焼させ、一次燃焼室6Aで生じた熱分解ガスが、二次燃焼空気と混合されて二次燃焼室6Bに送られ、この二次燃焼室で熱分解ガス中の未燃成分を燃焼させる。燃焼室6の二次燃焼室6Bには、送風機4と二次燃焼室6Bを接続する管路14が接続されていて、管路14に設けられたダンパ14Aの開閉により、二次燃焼室6Bに空気を供給することができる。制御装置20は、ダンパ14Aの開度を制御する。ダンパ14Aを二次燃焼用空気ダンパと記載する場合がある。燃焼室6に供給されるゴミを撮影できる位置に、画像センサ16が設置されている。画像センサ16は、制御装置20と接続されており、画像センサ16が撮影した画像は、制御装置20へ送信される。画像センサ16は、例えば、赤外線カメラである。図1の例では、画像センサ16は、ゴミの供給を水平方向の正面から撮影する位置に設けられているが、例えば、ゴミが燃焼室6に供給される様子を上方から撮影する位置に設けられていてもよい。燃焼室6には、燃焼室6内の温度を計測する温度センサ18が設けられている。温度センサ18は制御装置20と接続されていて、温度センサ18が計測した炉内の温度は、制御装置20へ送信される。燃焼室6には、燃焼室6内の酸素濃度を計測する酸素濃度センサ19が設けられている。酸素濃度センサ19は制御装置20と接続されていて、酸素濃度センサ19が計測した炉内の酸素濃度は、制御装置20へ送信される。
 ボイラ9は、燃焼室6から送られた排ガスとボイラ9内を循環する水と熱交換して蒸気を発生させる。蒸気は管路13を通じて図示しない発電用のタービンへ供給される。管路13には、蒸気の流量を検出する蒸気流量センサ11が設けられている。蒸気流量センサ11は制御装置20と接続されていて、蒸気流量センサ11が計測した主蒸気流量は、制御装置20へ送信される。制御装置20は、例えば、蒸気流量センサ11が計測する主蒸気流量が所定の目標値となるように、フィーダ10の動作、一次燃焼用空気ダンパおよび二次燃焼用空気ダンパの開度を制御する。ボイラ9の排ガス出口には、煙道12が接続されていて、ボイラ9で熱回収された排ガスは煙道12を通過して不図示の排ガス処理設備を通過後、外部に排出される。
 制御装置20は、データ取得部21と、ゴミ高さ計算部22と、画像推定部23と、供給量推定部24と、判断部25と、制御部26と、記憶部27と、を備える。
 データ取得部21は、各センサ11、14a、15、16、17a、18、19が計測した計測値、ユーザの指示値など各種データを取得する。例えば、データ取得部21は、蒸気流量センサ11が計測した主蒸気流量の計測値を取得する。
 ゴミ高さ計算部22は、センサ15が検出したゴミ表面までの距離に基づいて、ホッパ1およびシュート2に蓄積されたゴミの表面の各位置におけるゴミの高さを計算する。ゴミの高さは、シュート2の所定位置を基準としたときの高さである。
 画像推定部23は、画像センサ16が撮影した画像を解析して、フィーダ10により炉内へ供給されたゴミの供給量(体積、重量)と発熱量(LHV:Lower Heating Value)を推定する。例えば、画像推定部23は、フィーダ10がゴミを押し出す動作を行う前後に撮影された画像を比較して、押し出されたゴミが写った画像領域を抽出し、抽出した画像領域の形状や面積と、フィーダ10の押出量に基づいて、炉内へ供給されたゴミの体積を推定する。あるいは、画像推定部23は、押し出されたゴミが写った画像領域とゴミの供給量との関係を学習して構築された推定モデルと、抽出した画像領域とに基づいて、ゴミの体積を推定する。画像推定部23は、推定した体積に後述する計算方法で計算した密度を乗じて、炉内へ供給されたゴミの重量を計算する。さらに画像推定部23は、所定の換算式に基づいて、炉内へ供給されたゴミの重量から発熱量(LHV)を推定する。通常、ゴミ焼却設備では、ゴミの密度と発熱量がサンプリングされ、両者の関係を解析し、その焼却設備で処理されるゴミの種類などに応じた、ゴミの密度から発熱量を算出する換算式が導出されている。画像推定部23は、この換算式を用いて、画像解析で得られるゴミの重量から発熱量を推定する。画像推定部23を用いた制御については第三実施形態で述べる。
 供給量推定部24は、ゴミ高さ計算部22が計算したゴミの高さの変化に基づいて、ホッパ1内のゴミの体積変化を計算する。供給量推定部24は、ホッパ1内のゴミの体積変化に基づいて、単位時間あたりの炉内へのゴミの供給量を推定する。供給量推定部24は、ホッパ1およびシュート2内におけるゴミの分布やホッパ1内のゴミの滞留時間ΔTに基づいて、炉内へ供給されるゴミの密度やゴミ水分率を推定し、例えば、滞留時間だけ未来に炉内へ供給されるゴミの発熱量を推定する。供給量推定部24は、実際にゴミが炉内に供給される前に、今回または次回以降にフィーダ10が動作したときに供給されるゴミの供給量および/または発熱量を推定する。これにより、ゴミが燃焼室6に供給される前に、燃焼室6内に供給される1次燃焼空気の制御などを先行して実行することができる。供給量推定部24によるゴミの供給量、発熱量の推定処理の詳細については、第四実施形態で述べる。
 判断部25は、供給量推定部24が推定したゴミの供給量および/または発熱量に基づいて、炉内の燃焼状態を安定化させるための先行制御を行うか否かの判断を行う。判断部25は、先行制御の結果、炉内の燃焼状態が安定した状態となったかどうかの判断を行う。
 制御部26は、フィーダ10の動作、一次燃焼用空気ダンパ(ダンパ8A~8E)および二次燃焼用空気ダンパ(ダンパ14A)の開度などを制御する。制御部26は、判断部25の判断に基づいて、一次燃焼用空気ダンパやフィーダ10の先行制御を行う。先行制御のうち、特に一次燃焼用空気については、過度に先行しすぎない程度に前もって適切な供給量に制御した方が、燃焼の安定化を実現することができる。
 記憶部27は、データ取得部21が取得した計測値や、制御に必要な情報、例えば、ゴミの密度から発熱量を算出する換算式などを記憶する。
<第一実施形態>
 図2を参照して、第一実施形態に係る処理(一次燃焼用空気の供給制御)について説明する。
(動作)
 図2は、第一実施形態に係る制御装置の動作の一例を示すフローチャートである。
 制御装置20は、所定の時間間隔で、以下の処理(先行制御)を実行する。
 データ取得部21が、センサ15の計測値を取得し、ゴミ高さ計算部22へ出力する。ゴミ高さ計算部22は、センサ15の計測値、つまり、センサ15からホッパ1のゴミ表面までの距離の情報に基づいて、その時点におけるホッパ1に蓄積されたゴミの高さを計算する。ゴミ高さ計算部22は、所定時間ごとのゴミの高さを供給量推定部24へ出力する。供給量推定部24は、ゴミの供給量および/または発熱量を推定する(ステップS1)。例えば、供給量推定部24は、単位時間あたりのゴミの高さの変化(高さの減少分)から、単位時間あたりに燃焼室6へ供給されるゴミの供給量を計算する。供給量推定部24は、ホッパ1にゴミが投入されたときに計測されたゴミの体積と重量からゴミの密度を計算し、所定の方法で計算した滞留時間ΔT後にこのゴミが供給されるとしたときの発熱量を計算する。このとき、供給量推定部24は、滞留時間ΔT後に供給されるゴミの密度を、ホッパ1およびシュート2内における異なるタイミングでホッパ1へ投入されたゴミの分布状況、異なるタイミングで投入されたゴミが同時に炉内へ供給されるときの割合、あるタイミングで投入されたゴミがシュート2の下部へ移動して、後から投入されたゴミの重さによって圧縮されること(圧密)などを考慮して炉内へ供給されるゴミの密度を推定する(詳細は第四実施形態で述べる。)。供給量推定部24は、推定したゴミの供給量、発熱量を判断部25へ出力する。
 次に判断部25は、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上増加するかどうかを判定する(ステップS2)。例えば、判断部25は、前回推定された供給量と今回推定された供給量を比較して、供給量が一定以上増加するかどうかを判定し、前回推定された発熱量と今回推定された発熱量を比較して、供給量が一定以上増加するかどうかを判定する。例えば、制御部26は、ゴミの供給量および発熱量が一定以上増加する場合、あるいは供給量、発熱量の少なくとも一方が一定以上増加する場合(ステップS2;Yes)、現状のままの制御を継続するならば、過度な燃焼状態となると判断し、燃焼状態を抑制するための先行制御の実行を制御部26へ指令する。制御部26は、先行的に一次燃焼用空気の供給量を減少する制御を行う(ステップS3)。例えば、制御部26は、ダンパ8A~8Eの開度を低下させ、燃焼室6へ供給する空気量を低下させる。このとき、制御部26は、乾燥域3Aへ供給する空気量を減少させるためにダンパ8Aの開度だけを小さくしてもよいし、乾燥域3Aおよび燃焼域3Bへ供給する空気量を減少させるためにダンパ8A~8Cの開度を低下させてもよい。制御部26は、ダンパ8A等の開度を低下させることに加えて/代えて送風機4の回転数を低下させてもよい。
 ダンパ8A~8Eの開度の低下量や送風機4の回転数を低下量は、例えば、それらの制御量と供給量および/または発熱量の関係を規定する関数等に基づいて、ステップS1で推定したゴミの供給量や発熱量に応じて決定されてもよい。制御部26は、所定の一定時間のみダンパ8A等の開度や送風機4の回転数を低下させる制御を実行してもよいし、単位時間あたりのゴミの供給量および/または発熱量が一定になるまで、ダンパ8A等の制御を継続して実行してもよい。
 ダンパ8A等の開度減少や送風機4の回転数低下を開始するタイミングについては、(1)例えば、ステップS1で推定したのが、時々刻々のLiDARにより計測したゴミ高さ変化から計算された体積変化に基づくゴミの供給量(体積や重量)の場合、ステップS2の判定の直後に先行制御を開始してもよい(最新の体積の減少は、直前に炉内に投入された供給量とみなせるから、このタイミングで先行制御を開始することは、実際に炉内に投入されたゴミの供給量に応じて即座に制御を開始することになる。従来のフィードバック制御に比べて先行的な制御となる。)。(2)ステップS1で推定したのが発熱量の場合、後に第四実施形態で述べるようにホッパ1へ投入されてから滞留時間ΔT後に炉内へ供給されるゴミの供給量に応じた発熱量を推定することができる。言い方を変えれば、ホッパ1へ投入された時点でそのゴミが炉内へ供給されるタイミング(滞留時間ΔT後)が分かることになる。これにより、そのゴミが炉内へ供給されそうになる少し前の時点で、少し未来に炉内へ供給されるゴミの発熱量が分かることになるので、例えば、その供給タイミングよりも所定時間前にステップS2の判定を行って、その判定結果に応じて先行制御を開始してもよい。ここでいう少し未来に炉内へ供給されるゴミとは、後述する図6、図7のパターン1に存在するゴミのことである。供給タイミングよりも所定時間前にステップS3の先行制御を開始すれば、実際の炉内へのゴミ投入より前に先行制御を開始することになる。又は、滞留時間ΔTに基づいて推定されるゴミの供給タイミングに合わせて(例えば、供給と同時~直後)ステップS2の判定を行い、その直後に先行制御を開始してもよい。この場合には(1)で説明したゴミの供給量の場合と同様、ゴミを炉内へ投入する直前~直後あたりに先行制御を開始することになる。(ゴミの供給量についても、(1)で説明したゴミ高さ変化に基づくゴミの供給量の実績値に基づいてステップS2の判定を行う実施形態に限定されず、事前の推定値に基づいて、ステップS2の判定を行い、その後、先行制御を開始するようにすることができる。つまり、発熱量の場合と同様、次にプッシャ10が押し出されると炉内へ供給されることになる位置に存在するゴミの体積や重量(即ち、少し未来に炉内へ供給されるゴミの供給量)を推定し、実際にゴミが炉内へ供給される前に先行制御を開始することができる。例えば、ホッパ1に投入されたゴミが滞留時間ΔT後に、図6、図7に例示するパターン1の位置に至ると推定する。そして、パターン1に占めるゴミの体積や重量を計算し、そのゴミが炉内へ供給されそうになる少し前に、計算した供給量のゴミが少し未来に炉内へ供給されると推定して、その供給タイミングよりも所定時間前にステップS2の判定を行ってもよい。)さらに言えば、ホッパ1へゴミが投入されてから滞留時間ΔT後に炉内へ投入されることが推定できれば、必ずしもゴミの炉内投入直前まで待って先行制御を行わなければならないわけではなく、もっと前に先行制御を開始することができる。どのタイミングで先行制御を開始するかについては設備やゴミの種類などによって任意に調整すればよい。一般には、例えば、蒸気流量センサ11が計測した主蒸気流量が一定になるように一次燃焼用空気の供給量がフィードバック制御されることが多いが、このような従来制御に比べ、早期にゴミの供給量や発熱量に応じた一次燃焼用空気に制御することができるので、燃焼室6内の空気の状態(雰囲気)を先行的にゴミの供給量や発熱量に見合ったものに予め整えておくことができ、その結果、燃焼状態を安定化することができる。このことは、後述するステップS7(一次燃焼用空気の供給量を増加させる場合)についても同様である。
 制御部26は、フィーダ10を制御して、ゴミを炉内へ供給する(ステップS4)。例えば、制御部26は、蒸気流量センサ11が計測した主蒸気流量が所定の目標値となるようなフィーダ10の押出量を計算し、計算した押出量だけフィーダ10を移動させて、炉内へゴミを供給する。図2に示すステップS3、S4の順番は便宜的なもので、制御部26は、一次燃焼用空気の供給量を減少させる制御とゴミを炉内へ供給する制御とを並行して行う。次に判断部25が、温度センサ18が計測した燃焼室6内のガス温度を、データ取得部21を通じて取得する。判断部25は、炉内ガス温度が一定時間以上継続して、所定範囲内となるか否かを判定する(ステップS5)。炉内ガス温度が一定時間以上、所定範囲内となる場合(ステップS5;Yes)、制御部26は、第一実施形態に係る先行制御(一次燃焼用空気の先行供給)を終了する。炉内ガス温度が一定時間以上継続して、所定範囲内とはならない場合(ステップS5;No)、制御部26は、ステップS3からの処理を繰り返す。
 ステップS2の判定において、単位時間あたりのゴミの供給量等が一定以上増加しない場合(ステップS2;No)、判断部25は、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上低下するかどうかを判定する(ステップS6)。制御部26は、ゴミの供給量および発熱量が一定以上低下する場合、あるいは供給量、発熱量の一方が一定以上低下する場合(ステップS6;Yes)、現状のままの制御を継続するならば、燃焼状態が悪化・低下すると判断し、炉内の燃焼を促進するために先行制御の実行を制御部26へ指令する。制御部26は、一次燃焼用空気の供給量を増加する制御を行う(ステップS7)。例えば、制御部26は、ダンパ8A~8Eの開度を増加させ、燃焼室6へ供給する空気量を増加させる。このとき、制御部26は、乾燥域3Aへ供給する空気量を増加させるためにダンパ8Aの開度だけを増大させてもよいし、乾燥域3Aおよび燃焼域3Bへ供給する空気量を増加させるためにダンパ8A~8Cの開度を増大させてもよい。制御部26は、ダンパ8A等の開度を増加させることに加えて/代えて送風機4の回転数を増大させてもよい。
 ダンパ8A等の開度の増加量や送風機4の回転数を増加量は、これらの制御量と供給量および/または発熱量の関係を規定する関数等に基づいて、ステップS1で推定したゴミの供給量や発熱量に応じて決定されてもよい。制御部26は、所定の一定時間のみダンパ8A等の開度や送風機4の回転数を増加させる制御を実行してもよいし、単位時間あたりのゴミの供給量および/または発熱量が一定になるまで、ダンパ8A等の制御を継続して実行してもよい。ダンパ8A等の開度増加や送風機4の回転数増加を開始は、ステップS3で説明したとおり、実際のゴミの供給に先行して、あるいはゴミ供給の直前~直後のタイミングで開始する。制御部26は、フィーダ10を制御して、ゴミを炉内へ供給する(ステップS8)。例えば、制御部26は、蒸気流量センサ11が計測した主蒸気流量に基づいて、フィーダ10を制御する。図2に示すステップS7、S8の順番は便宜的なもので、制御部26は、一次燃焼用空気の供給量を増加させる制御とゴミを炉内へ供給する制御とを並行して行う。次に判断部25が、温度センサ18が計測した燃焼室6内のガス温度を、データ取得部21を通じて取得する。判断部25は、炉内ガス温度が一定時間以上、所定範囲内か否かを判定する(ステップS9)。炉内ガス温度が一定時間以上、所定範囲内となる場合(ステップS9;Yes)、制御部26は、第一実施形態に係る先行制御(1次燃焼用空気の先行供給)を終了する。炉内ガス温度が一定時間以上、所定範囲内とはならない場合(ステップS9;No)、制御部26は、ステップS7からの処理を繰り返す。
 ステップS6にて、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上減少しない場合(ステップS6;No)、つまり、単位時間あたりのゴミの供給量等の変化が一定範囲内の場合、ステップS1へ戻る。ステップS6がNoの判定の場合、制御部26は、例えば、蒸気流量センサ11が計測した主蒸気流量が目標値となるように、ダンパ8A等の開度、フィーダ10の制御を行う。フィーダ10の制御については、ステップS4,8の制御と同様である。
 図2のフローチャートでは、ステップS2、S6にて、ゴミの供給量や発熱量が一定以上または一定以下の場合のみ一次燃焼空気の供給量を制御することとしたが、このような判定を行わずに、ゴミの供給量および/または発熱量と一次燃焼用空気の供給量との関係を所定の関数で表し、この関数と、ステップS1で推定した供給量および/または発熱量とに基づいて、常時、ダンパ8A等や送風機4を制御してもよい。
 第一実施形態によれば、燃焼室6へゴミが供給される前に、事前に推定したゴミの供給量や発熱量に応じて一次燃焼用空気の供給量を調整する。これにより、燃焼室6の燃焼状態を安定化させる雰囲気とすることができ、COやNOxの発生を抑制することができる。
<第二実施形態>
 次に図3を参照して、第二実施形態に係る処理(1次燃焼空気およびゴミ供給量の制御)について説明する。第二実施形態では、一次燃焼用空気に加え、燃焼室6内へ供給するゴミの供給量を、ゴミ供給量や発熱量の推定値に基づいて、先行的に制御する。
(動作)
 図3は、第二実施形態に係る制御装置の動作の一例を示す第1のフローチャートである。第一実施形態と同様の処理については、同じ符号を付し、簡単に説明を行う。
 制御装置20は、所定の時間間隔で、以下の処理(先行制御)を実行する。
 まず、供給量推定部24が、LiDARによって計測されたゴミ高さなどに基づいて、ゴミの供給量および/または発熱量を推定する(ステップS1)。供給量推定部24は、推定したゴミの供給量、発熱量を判断部25へ出力する。
 次に判断部25は、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上増加するかどうかを判定する(ステップS2)。ゴミの供給量および/または発熱量が一定以上増加する場合(ステップS2;Yes)、制御部26は、先行的に一次燃焼用空気の供給量を減少する制御を行う(ステップS3)。制御部26は、ダンパ8A~8Eの開度を減少させたり、送風機4の回転数を低下させたりして一次燃焼用空気の供給量を減少させる。
 これと並行して、制御部26は、フィーダ10を制御してゴミを炉内へ供給するが、過度な燃焼を抑制するために、炉内へのゴミの供給量を減少させる(ステップS41)。例えば、制御部26は、フィーダ10の押出量(ストローク)を低下させ、燃焼室6へ供給するゴミの供給量を減少させる。あるいは、制御部26は、フィーダ10の移動速度を低下させ、燃焼室6へ供給するゴミの供給量を減少させることによって、または、押出量と移動速度の両方を低下させることによってゴミ供給量を減少させてもよい。制御部26は、フィーダ10を停止することによってゴミの供給量を減少(一時的に停止)させてもよい。例えば、制御部26は、フィーダ10を通常の半分だけ押し出して、約半分のゴミを供給し、その位置で所定時間だけフィーダ10を停止させておいてもよい。例えば、制御部26は、フィーダ10の押出量や移動速度とゴミの供給量および/または発熱量の関係を規定する関数等と、ステップS1で推定したゴミの供給量や発熱量とに基づいて、フィーダ10を制御してもよい。
 制御部26は、所定の一定時間のみフィーダ10のストロークの低下、移動速度の低下など実行してもよいし、単位時間あたりの供給量および/または発熱量が一定になるまで、フィーダ10に対する制御を継続して実行してもよい。
 ゴミの供給量を減少させるタイミングについては、ステップS3の制御を開始するタイミングよりも、対象とするゴミ(ステップS2の判定がYesとなるゴミ)の供給に近いタイミングあるいは当該ゴミの供給時(滞留時間ΔT後)に実行する。例えば、ステップS1で、時々刻々のLiDARが計測したゴミ高さ変化から計算された体積変化に基づいてゴミの供給量(体積や重量)を推定し、この推定値が今回炉内に供給されたゴミの供給量であると考える場合、ステップS2の判定の直後に先行制御を開始してもよい。
 ステップS1で推定したのが発熱量の場合、第四実施形態で述べるようにホッパ1への投入から滞留時間ΔT後に炉内へ供給されるゴミの供給量に応じた発熱量が推定できることにより、そのゴミが炉内へ供給されそうになる少し前に、少し未来に炉内へ供給されることになるゴミの発熱量が分かる。従って、事前に少し未来に炉内へ供給されることになるゴミの発熱量に基づいてステップS2の判定を行い、判定結果に応じてステップS3の先行制御を行い、ステップS3の制御の開始タイミングより後であって、且つ、炉内へゴミの供給タイミングよりも所定時間前に(あるいは、供給タイミングと同時に)ゴミの供給量を減少させる制御を開始してもよい。一般に、蒸気流量センサ11が計測した主蒸気流量が一定になるように一次燃焼用空気の供給量やゴミの供給量がフィードバック制御されることが多いが、このような制御に比べ、早期に一次燃焼用空気およびゴミの供給量を制御することができるので、燃焼室6内の燃焼状態を安定化することができる。このことは、後述するステップS7、S81についても同様である。
 次に判断部25が、温度センサ18が計測した燃焼室6内のガス温度を、データ取得部21を通じて取得する。判断部25は、炉内ガス温度が一定時間以上継続して、所定範囲内となるか否かを判定する(ステップS5)。炉内ガス温度が一定時間以上、所定範囲内となる場合(ステップS5;Yes)、制御部26は、第二実施形態に係る一次燃焼用空気およびゴミ供給量の先行制御を終了する。炉内ガス温度が一定時間以上、所定範囲内とはならない場合(ステップS5;No)、制御部26は、ステップS3からの処理を繰り返す。
 判断部25は、単位時間あたりのゴミの供給量等が一定以上増加しない場合(ステップS2;No)、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上低下するかどうかを判定する(ステップS6)。ゴミの供給量および/または発熱量が一定以上低下する場合(ステップS6;Yes)、制御部26は、先行的に一次燃焼用空気の供給量を増加する制御を行う(ステップS7)。制御部26は、ダンパ8A~8Eの開度を増加させたり、送風機4の回転数を増加させたりして一次燃焼用空気の供給量を増加させる。
 ステップS7と並行して、制御部26は、フィーダ10を制御してゴミを炉内へ供給するが、燃焼を促進するために、炉内へのゴミの供給量を増加させる(ステップS81)。例えば、制御部26は、フィーダ10の押出量(ストローク)を増大させたり、フィーダ10の移動速度を増大させたり、あるいは、押出量と移動速度の両方を増大させてゴミ供給量を増加させる。例えば、制御部26は、フィーダ10の押出量や移動速度とゴミの供給量および/または発熱量の関係を規定する関数等と、ステップS1で推定したゴミの供給量や発熱量とに基づいて、フィーダ10を制御してもよい。制御部26は、所定の一定時間のみフィーダ10の上記制御を実行してもよいし、単位時間あたりの供給量および/または発熱量が一定になるまでフィーダ10の上記制御を実行してもよい。
 ゴミの供給量を増加させるタイミングについては、ステップS41で説明したとおり、先行的にステップS7、S81の制御を開始してもよい。
 次に判断部25が、温度センサ18が計測した燃焼室6内のガス温度を、データ取得部21を通じて取得する。判断部25は、炉内ガス温度が一定時間以上継続して、所定範囲内か否かを判定する(ステップS9)。炉内ガス温度が一定時間以上、所定範囲内となる場合(ステップS9;Yes)、制御部26は、第二実施形態に係る先行制御(1次燃焼用空気の先行供給)を終了する。炉内ガス温度が一定時間以上、所定範囲内とはならない場合(ステップS9;No)、制御部26は、ステップS7からの処理を繰り返す。
 ステップS6にて、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上減少しない場合(ステップS6;No)、つまり、単位時間あたりのゴミの供給量等の変化が一定範囲内の場合、ステップS1へ戻る。ステップS6がNoの判定の場合、制御部26は、蒸気流量センサ11が計測した蒸気流量に基づいて、ダンパ8A等の開度、フィーダ10の制御を行う。
 図2のフローチャートでは、ステップS2、S6にて、ゴミの供給量や発熱量が一定以上または一定以下の場合のみ一次燃焼用空気の供給量を制御することとしたが、このような判定を行わずに、ゴミの供給量および/または発熱量と一次燃焼用空気の供給量との関係を所定の関数で表し、この関数と、ステップS1で推定した供給量および/または発熱量とに基づいて、常時、ダンパ8A等や送風機4を制御してもよい。同様に、ゴミの供給量および/または発熱量とフィーダ10のストロークや移動速度との関係を所定の関数で表し、この関数と、ステップS1で推定した供給量および/または発熱量とに基づいて、フィーダ10の動作を制御してもよい。
 第二実施形態によれば、ゴミの供給量を推定した直後に、または、発熱量が推定されてから実際にゴミが供給されるまでの一定時間の遅れをもって、推定した供給量や発熱量に応じて一次燃焼用空気と連動してゴミ供給量を先行的に調整することにより、燃焼室6の燃焼状態を安定化させる雰囲気とすることができ、COやNOxの発生を抑制することができる。
<第三実施形態>
 次に図4を参照して、第三実施形態に係る処理について説明する。第三実施形態では、実際に炉内に供給されたゴミの供給量に応じて、一次燃焼用空気などの先行制御を調整する。第三実施形態は、第一実施形態と第二実施形態の何れとも組み合わせることが可能であるが、図4に、第一実施形態と組み合わせた場合の動作例を示す。
(動作)
 図4は、第二実施形態に係る制御装置の動作の一例を示すフローチャートである。第一実施形態と同様の処理については、同じ符号を付し、簡単に説明を行う。
 制御装置20は、所定の時間間隔で、以下の処理(先行制御)を実行する。
 まず、供給量推定部24が、LiDARによって計測されたゴミ高さなどに基づいて、ゴミの供給量および/または発熱量を推定する(ステップS1)。供給量推定部24は、推定したゴミの供給量、発熱量を判断部25へ出力する。
 次に判断部25は、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上増加するかどうかを判定する(ステップS2)。ゴミの供給量および/または発熱量が一定以上増加する場合(ステップS2;Yes)、制御部26は、先行的に一次燃焼用空気の供給量を減少する制御を行う(ステップS3)。制御部26は、ダンパ8A~8Eの開度を減少させたり、送風機4の回転数を低下させたりして一次燃焼用空気の供給量を減少する。
 これと並行して、制御部26は、フィーダ10を制御してゴミを炉内へ供給する(ステップS4)。次に画像推定部23が、画像センサ16の撮影した画像を解析して、燃焼室6に供給されたゴミの供給量を推定する(ステップS42)。画像推定部23は、ゴミの供給量の推定値を制御部26へ出力する。制御部26は、ゴミの供給量の推定値に基づいて、一次燃焼用空気および/または二次燃焼用空気の供給量を調整する(ステップS43)。例えば、ゴミ供給量の推定値がステップS1で推定した供給量よりも多い場合、さらに一次燃焼用空気の供給量が減少するようにダンパ8A等の開度を減少させたり、送風機4の回転数を低下させたりする。また、制御部26は、ダンパ14Aの開度を減少させることにより、一次燃焼用空気に加えて、二次燃焼用空気の供給量を減らし、二次燃焼室6Bにおける酸素濃度を低下させる制御を行う。反対に、ゴミ供給量の推定値がステップS1で推定した供給量よりも少ない場合、ダンパ8A等の開度や送風機4の回転数の低下度を緩和するように調整してもよい。次に判断部25は、炉内ガス温度および/または酸素濃度が一定時間以上継続して、所定範囲内か否かを判定する(ステップS51)。判断部25は、温度センサ18が計測した燃焼室6内の温度と酸素濃度センサ19が計測した燃焼室6内の酸素濃度を、データ取得部21を通じて取得し、燃焼室6内のガス温度および/または燃焼室6内の酸素濃度が所定範囲内となるか否かを判定する。炉内ガス温度および/または酸素濃度が一定時間以上、所定範囲内となる場合(ステップS51;Yes)、制御部26は、第三実施形態に係る一次燃焼用空気の先行制御を終了する。炉内ガス温度および/または酸素濃度が一定時間以上継続して、所定範囲内とはならない場合(ステップS51;No)、制御部26は、ステップS3からの処理を繰り返す。
 判断部25は、単位時間あたりのゴミの供給量等が一定以上増加しない場合(ステップS2;No)、単位時間あたりのゴミの供給量および/または滞留時間ΔT後に供給されるゴミの発熱量が一定以上低下するかどうかを判定する(ステップS6)。ゴミの供給量および/または発熱量が一定以上低下する場合(ステップS6;Yes)、制御部26は、先行的に一次燃焼用空気の供給量を増加する制御を行う(ステップS7)。制御部26は、ダンパ8A~8Eの開度を増加させたり、送風機4の回転数を増加させたりして一次燃焼用空気の供給量を増加させる。
 これと並行して、制御部26は、フィーダ10を制御してゴミを炉内へ供給する(ステップS8)。次に画像推定部23が、画像センサ16の撮影した画像を解析して、燃焼室6に供給されたゴミの供給量を推定する(ステップS82)。画像推定部23は、ゴミの供給量の推定値を制御部26へ出力する。制御部26は、ゴミの供給量の推定値に基づいて、一次燃焼用空気および/または二次燃焼用空気の供給量を調整する(ステップS83)。例えば、ゴミ供給量の推定値がステップS1で推定した供給量よりも少ない場合、さらに一次燃焼用空気の供給量が増加するようにダンパ8A等の開度を増加させたり、送風機4の回転数を上昇させたりする。制御部26は、ダンパ14Aの開度を増加させることにより、一次燃焼用空気に加えて、二次燃焼用空気の供給量を増やし、二次燃焼室6Bにおける酸素濃度を上昇させる制御を行う。例えば、制御部26は、ゴミ供給量の推定値とダンパ14Aの開度との関係を規定した関数等に基づいて、画像から推定されたゴミの供給量に応じたダンパ14Aの開度に制御する。反対に、ゴミ供給量の推定値がステップS1で推定した供給量よりも多い場合、ダンパ8A等の開度や送風機4の回転数の上昇度を緩和するように調整してもよい。次に判断部25は、炉内ガス温度および/または酸素濃度が一定時間以上継続して、所定範囲内となるか否かを判定する(ステップS91)。判断部25は、温度センサ18が計測した燃焼室6内の温度と酸素濃度センサ19が計測した燃焼室6内の酸素濃度を、データ取得部21を通じて取得し、燃焼室6内のガス温度および/または燃焼室6内の酸素濃度が一定時間以上、所定範囲内となるか否かを判定する。炉内ガス温度および/または酸素濃度が一定時間以上、所定範囲内となる場合(ステップS91;Yes)、制御部26は、第三実施形態に係る一次燃焼用空気の先行制御を終了する。炉内ガス温度および/または酸素濃度が一定時間以上継続して、所定範囲内とはならない場合(ステップS91;No)、制御部26は、ステップS7からの処理を繰り返す。
 第三実施形態によれば、炉内へのゴミ投入後の画像情報からごみの供給量、発熱量を推定して、二次空気も制御することにより、燃焼の安定化をより一層図ることができる。ステップS1におけるゴミの供給量、発熱量の推定は、ホッパ1のゴミ表面までの距離の計測値から推定しているが、実際に炉内に供給されるゴミの供給量、発熱量とずれる可能性がある。これに対し、本実施形態のステップS42、43、82、83の処理によれば、実際に供給されたゴミの画像に基づいて、一次燃焼用空気や二次燃焼用空気の供給量を制御することにより、ステップS1における推定値のずれを補償することができる。
 本実施形態によれば、ホッパ1のゴミ表面の高さから体積変化を検出したり、フィーダ10の動作からゴミの炉内への供給量を検出したりする手法と異なり、実際に炉内に投入されるゴミ量を画像から推定するため、瞬時のゴミ供給量の推定が可能となり、時間のずれが少ない高精度なゴミ供給量検知が可能となる。
 図4には、第一実施形態と組み合わせた場合の動作を示したが、第二実施形態と組み合わせた場合には、ステップS4、S8の処理がそれぞれ図3におけるステップS41、S81の処理に置き換えられる。ステップS43では、一次燃焼用空気、二次燃焼用空気の調整に加え、フィーダ10のストローク、移動速度を調整する。例えば、ゴミ供給量の推定値がステップS1で推定した供給量よりも多い場合、制御部26は、さらにフィーダ10のストロークを短くしたり、移動速度を遅くしたりする。同様に、ステップS83では、一次燃焼用空気、二次燃焼用空気の調整に加え、フィーダ10のストローク、移動速度を調整する。例えば、ゴミ供給量の推定値がステップS1で推定した供給量よりも少ない場合、制御部26は、さらにフィーダ10のストロークを長くしたり、移動速度を速くしたりする。これらのフィーダ10の制御を行う場合、制御部26は、ゴミ供給量の推定値とフィーダ10のストロークや移動速度の関係を規定した関数等に基づいて、画像から推定されたゴミの供給量に浮応じたフィーダ10の制御を行う。
<第四実施形態>
 次に図5~図7を参照して、第四実施形態に係る処理について説明する。第四実施形態では、第一実施形態~第三実施形態のステップS1の処理について説明する。
(推定方法1)
 図5は、第四実施形態に係るゴミの発熱量等の推定処理を説明する第一の図である。
 図5の左図50にホッパ1及びシュート2の断面図を示す。図示するI1~I5の各層のそれぞれは、ホッパ1内への1回のゴミの投入によって形成されるゴミの層である。例えば、今から5回前にホッパ1内へ投入されたゴミによって層I5が形成され、4回前に投入されたゴミによって層I4が形成され、3回前に投入されたゴミによって層I3が形成され、2回前に投入されたゴミによって層I2が形成され、直前に投入されたゴミによって層I1が形成されている。推定方法1では、供給量推定部24が次に説明する手順で、新しく投入された層I1のゴミが炉内へ供給されるまでの平均滞留時間ΔTを推定し、平均滞留時間ΔT後に投入されるゴミによる発熱量(LHV)を推定する。
(手順1)ゴミ高さ計算部22は、時々刻々と、LiDARによりホッパ1におけるゴミ表面全体の各位置におけるセンサ15からゴミ表面まで距離を検出する。層I5のゴミが投入された際、供給量推定部24は、ゴミ投入の前後におけるゴミ高さの増加分に基づいて、投入されたゴミの体積を計算する。供給量推定部24は、層I5のゴミの搬送時に重量計17aが計測したゴミの重量を取得し、その重量を計算したゴミの体積で除算することにより、層I5のゴミの密度を計算する。同様に、供給量推定部24は、層I4~I1のゴミが投入される際に各層のゴミの密度を計算する。供給量推定部24は、各層I1~I4のゴミの密度を記憶部27に記録する。計算されたゴミの密度と層の関係を図51に示す。図51の縦軸は密度、横軸はホッパ1およびシュート2内の位置(層)を示す。折れ線グラフ51aは、左から順に層I5の密度、層I4の密度、層I3の密度、層I2の密度、層I1の密度である。
(手順2)供給量推定部24は、各層の密度と予め導出されたゴミ密度から発熱量を算出する換算式とを用いて発熱量を計算する。一般にゴミ密度と発熱量は負の相関があることが知られている。各層のゴミ密度に応じた発熱量を図52に示す。図52の縦軸は発熱量(LHV)、横軸は時間を示す。図52は、例えば、図50の状態から単位時間あたり所定の供給量でゴミを炉内へ供給したときの各時刻における炉内へ供給されるゴミの密度に応じた発熱量の推移を表している。折れ線グラフ52aは、左から順に層I5の発熱量、層I4の発熱量、層I3の発熱量、層I2の発熱量、層I1の発熱量である。
(手順3)次に、図50に示す各層のゴミが実際に焼却炉内に投入されたときの発熱量を計算する。例えば、層I5のゴミが層I1の位置にあった状態から開始して(図50の層I4~I1のゴミは未投入。)、その後、I4~I1の順にゴミを投入しつつ、各層I1~I5(図50の層I1~I5)のゴミが燃焼している間の主蒸気流量を蒸気流量センサ11によって計測し、計測した主蒸気流量をクレーン17によってホッパ1へ投入したゴミ重量の1時間の積算値で割った値を用いて、各時刻の発熱量(LHV)を計算する。この発熱量の計算方法は公知であり、任意の公知の方法で、各層I1~I5のゴミを燃焼させたときの発熱量を計算することができる。各層I1~I5の燃焼時の発熱量を図53に示す。図53の縦軸は発熱量(LHV)、横軸は時間を示す。グラフ53aは、主蒸気流量の実績値に基づいて計算された発熱量(LHVプロセス値)の推移を示す。ユーザは、計測値に基づいて計算した発熱量の推移を示すデータを記憶部27に登録する。あるいは、供給量推定部24が図53に例示する発熱量を計算し、記憶部27に登録する。
(手順4)次に、供給量推定部24が、手順2で算出したグラフ52aを時間軸方向に移動させながら、各層の密度に基づく発熱量のグラフ52aと主蒸気流量に基づいて算出した発熱量のグラフ53aとの相関度を計算する。供給量推定部24は、相関度が一番大きくなる場合のグラフ52aの移動量ΔTを探索する。相関度が一番大きくなる場合のΔTを、平均滞留時間ΔTとする。滞留時間は、ゴミ処理量によって変化するため、ゴミ質の変化や運転計画などを考慮する必要がある。例えば、ゴミ質や運転計画が変化する度に平均滞留時間ΔTを算出する。
(手順5)平均滞留時間ΔTを算出した後は、供給量推定部24は、ホッパ1にゴミが投入されるたびに密度を計算し、換算式により発熱量を計算する。そして、供給量推定部24は、その計算結果(推定値)を時刻と共に記憶部27へ記録しておく。これにより、現在がフィーダ制御を行ってゴミを供給する時点だとすると、現在に対し、平均滞留時間ΔTだけ過去に推定した発熱量が、今回供給されるゴミの発熱量の推定値である。供給量推定部24は、記憶部27に記録された平均滞留時間ΔTだけ過去の発熱量の推定値を読み出して、発熱量を推定する(図2~図4のステップS1)。今回のゴミの供給によるゴミ高さ変化に基づくゴミの体積変化を計算して(例えば、単位高さ×ホッパ1またはシュート2の断面積を高さ方向にゴミ高さ変化分だけ積算する。ホッパ1やシュート2の断面積は既知である。)、炉内へのゴミの供給量の推定値を算出する(図2~図4のステップS1)。これが、今回供給されたゴミの供給量の推定値である。
 または、供給量推定部24は、単位時間あたりのホッパ1内の高さ変化に基づく体積変化の計算結果を時刻と共に記憶部27へ記録しておき、現在に対し、平均滞留時間ΔTだけ過去の体積変化が、今回供給されるゴミの供給量の推定値であるとしてもよい。
(推定方法2)
 推定方法1では、炉内に投入されるゴミが全て同じタイミングでホッパ1へ投入されたゴミであると考え、ゴミの密度を一定と考えた。しかし、実際には、シュート2内のゴミの分布に基づいて、異なるタイミングで投入されたゴミが混ざって炉内へ供給される。推定方法2では、ゴミの分布や圧密(後から投入されたゴミによって圧縮された結果の密度)を考慮して、炉内へ投入されるゴミの密度を計算し、計算したゴミの密度と換算式からゴミの発熱量を推定する。
 図6にゴミの分布と圧密を考慮した密度の計算方法を示す。まず、左図60に示すように、事前の解析により、ホッパ1およびシュート2内では、異なるタイミングで投入したゴミが層I1~I5のように分布して蓄積されることをモデル化する。各層のゴミは、それぞれ、ある1回の投入時にクレーン17からホッパ1内へ投入されたゴミである。I6、I7はすでに炉内へ供給されたゴミであることを示している。別の解析により、層I1~I5のように分布して蓄積された状態から、フィーダ10に所定の動作を行わせることよりゴミを炉内へ供給すると、まず、パターン1で囲まれた範囲に蓄積されたゴミが次回炉内へ供給され、パターン2で囲まれた範囲に蓄積されたゴミがその次の回に炉内へ供給され、パターン3はさらにその次、パターン4の範囲のゴミは4回目のフィーダ制御によって炉内へ供給されることを解析する。パターン1~4は、フィーダ10のある1回の押出量を想定した場合の供給パターンの一例である。このように解析した場合、次回の供給予定範囲であるパターン1では、層I3~I5のゴミが供給対象となる。別の解析により、予めパターン1のゴミが供給されるときの層I3~I5のゴミの割合に関する荷重移動平均係数(ゴミの投入比率)を算出する(図62)。一例として、層I1~I7のゴミの体積が同じであった場合(全て荷重移動平均係数の最大値が0.1)の各時刻における層I1~I7の荷重移動平均係数を示すグラフを図62に示す。図62の縦軸は荷重移動平均係数、横軸は時間(フィーダ10によってゴミを炉内へ供給する時間)である。図62のグラフにおいて、各山は各層のゴミに対応し、図62の例では最も左の山から順にそれぞれの山がそれぞれ層I7~I1に対応する。各山の高さは投入されるゴミの体積の大きさと正の相関があり、ホッパ1へ投入されるゴミの体積が毎回異なる場合、山のピーク値は毎回異なることになる。各山の重なりは、その時刻における炉内へ投入されるゴミの投入比率に関係し、例えば、ある時刻を基準として、図60に示すパターン1の投入時間が分かれば、図62の横軸の対応する時刻における縦軸の値から層I3~I5のゴミの投入比率(荷重移動平均係数)を把握することができる。図62からパターン1で囲った範囲のゴミが供給される時刻におけるI3~I5の荷重移動平均係数を調べると、表61の1行目の値が得られる。同様にパターン2~4における各層I1~I7の荷重移動平均係数を表61の2~4行目に示す。
 さらに別の解析により、層I1~I7の圧密を考慮したゴミの密度g1~g7が算出される。例えば、密度g1が圧密を考慮した層I1のゴミの密度、密度g2が圧密を考慮した層I2のゴミの密度、・・・、密度g7が圧密を考慮した層I7のゴミの密度である。炉内に供給されるゴミの分布パターン(例えば、パターン1)と、そのパターンにおける各層の荷重移動平均係数が与えられるとすると(表61)、このパターンのゴミ密度は、各層のゴミ密度gX(X=1~7)に荷重移動平均係数を乗じた値の合計を、当該パターンの荷重移動平均係数の合計で除算して得られる。例えば、パターン1の場合、次式(1)によって、パターン1の範囲のゴミが炉内へ供給されるときのゴミ密度Gを計算することができる。
 G=(g1×0+g2×0+g3×0.01+g4×0.1+g5×0.04+
    g6×0+g7×0)÷(0.01+0.1+0.04) ・・・(1)
 次に図7を参照する。左図70にホッパ1およびシュート2内のゴミ層I1~I5を示す。図71の縦軸は密度、横軸は時間を示す。折れ線グラフ71aは、左から順に層I5の密度、層I4の密度、層I3の密度、層I2の密度、層I1の密度である。これらを密度Aと呼ぶ。密度Aはその時々の最上層のゴミの密度である。例えば、ある時刻に層I5が投入されると、ゴミの炉内への供給に応じて時々刻々と高さが低下し、ある高さとなると、層I4に対応するゴミがホッパ1へ投入されるといったサイクルにおける最上層のゴミの密度を示している。
 図72の縦軸は滞留時間、横軸は時間である。グラフ72aは、図71の各位置(高さ)のゴミが炉内へ供給されるまでの滞留時間である。滞留時間は、図71の対応する時間におけるゴミの位置(高さ)から炉の入口までに存在するゴミの体積を1日の平均体積変化率で除算することによって計算することができる。
 次に各層の各位置について計算した滞留時間の後の密度Bを計算する。図73に密度Bの推移を示す。図73の縦軸は密度、横軸は時間である。密度Bとは、炉内へ供給される直前のゴミの密度である。例えば、炉内へ供給されるゴミがパターン1の範囲であれば、上式(1)によって計算できる密度である。図72における層I4の「X1」minの位置がパターン1に含まれるとすると、パターン1は、「X1」分後に炉内へ投入されることが分かる。すると「X1」分後の密度Bは、図6に例示した表61のパターン1の荷重移動平均係数を用いて、上述の式(1)にて計算することができる。同様にして、他のパターン2などにおける密度Bを計算することができる。このようにして、ある層のゴミが投入されると(パターン1であれば関係する層I5~I3までが投入された時点で)、前もってある滞留時間後の密度Bを計算することができる。供給量推定部24は、ホッパ1内に投入されたゴミについて、ある時刻を基準とする炉内へ供給されるまでの滞留時間と炉内へ供給されるときのゴミの密度Bを計算し、図73のグラフ73aを得る。次に供給量推定部24は、計算した各時刻の密度Bと、換算式に基づいて発熱量を計算する。計算した発熱量を図74のグラフ74aに示す。このようにして、推定方法2によれば、前もって、ゴミの滞留時間と、ゴミの分布や圧密を考慮した密度Bと、密度Bに対応した発熱量とを推定することができる。
 次に推定方法2の手順について説明する。供給量推定部24は、以下の手順でゴミの発熱量を推定する。図60等にて例示するホッパ1およびシュート2内のゴミの分布(I1~I5)、炉内に供給されるゴミの範囲を示すパターンの情報(パターン1~4)は事前に解析され、記憶部27に記録されている。
(手順1)ゴミ高さ計算部22は、時々刻々と、LiDARによりホッパ1におけるゴミ表面全体の各位置におけるセンサ15からゴミ表面まで距離を検出し、ゴミの高さを計算する。供給量推定部24は、ゴミの体積と密度を計算する。
(手順2)供給量推定部24は、ホッパ内残留ごみの総体積を1日の平均体積変化率(m3/単位時間)で除すことにより、滞留時間の推定値を算出する。
(手順3)算出した滞留時間と図62より、供給量推定部24は、滞留時間後に炉内へ投入するゴミの密度を、ホッパ1内のゴミの圧密、荷重移動平均密度を用いて算出する。例えば、供給量推定部24は、ゴミの供給パターン1~4を選定する。選定されたパターンに対応する滞留時間を図62の横軸に適用することにより、荷重移動平均係数が決定し、パターン応じたゴミ密度が推定される。例えば、パターン1であれば、供給量推定部24は、パターン1のゴミ密度を式(1)により推定する。供給量推定部24は、この算出に必要な各分布位置におけるゴミの圧密g1~g7、投入時間と投入比率の関係(図62)を解析してもよいし、別途解析されたこれらの情報を利用して手順3の算出を行ってもよい。
(手順4)供給量推定部24は、炉に供給するゴミのパターンを選定する。例えば、供給量推定部24は、次に炉に供給されるゴミのパターンとしてパターン1を選定する。供給量推定部24は、手順3で推定したパターン1のゴミ密度を選定する。
(手順5)供給量推定部24は、選定したパターンのゴミ密度と換算式により発熱量を推定する。供給量推定部24は、炉内へ供給した燃料(ゴミ)の流量である投入燃料流量(kJ/h)を推定してもよい。
 滞留時間の算出について、推定方法2では、ゴミ残量(体積)を1日の平均体積変化率で除算することによって計算することとしたが、時々刻々の体積変化によってゴミの移動を推定し、注目する位置のゴミ(例えば、層I4の最下端のゴミ)が投入直前の位置(例えば、パターン1の範囲に含まれる位置)まで移動することを検出し、注目するゴミが投入直前の位置に至ったタイミングで、次回投入されるゴミの発熱量や供給量を推定してもよい。この方法であれば、先行制御を開始するタイミングは燃焼室6への供給の直前となるが、推定精度を向上することができる。
 本実施形態によれば、LiDARの計測値によるゴミの体積変化と、過去の体積変化の実績データを用いて、ごみの分布やホッパ内滞留時間を考慮して算出した炉内供給ゴミ密度(ごみ水分率でもよい)からゴミの発熱量を推定することで、より精度の高い推定が可能となる。
 図8は、各実施形態に係る制御装置のハードウェア構成の一例を示す図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
 上述の制御装置20は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
 制御装置20の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
 各実施形態に記載の制御装置20は、例えば以下のように把握される。
(1)第1の態様に係る焼却炉設備(ゴミ焼却設備)の制御装置20は、被焼却物(ゴミ)を燃焼させながら搬送する炉(燃焼室6、火格子3)と、前記炉に燃焼用空気を供給する燃焼用空気供給部(ダンパ8A~8F、送風機4、ダンパ14A)とを有する焼却炉設備1の制御装置20であって、前記炉に供給する被焼却物の供給量または発熱量に基づいて、前記被焼却物が前記炉内に投入される前に前記燃焼用空気の制御を行う燃焼用空気制御部(制御部26)、を備える。
 これにより、ゴミの供給前にそのゴミの供給量や発熱量に応じた炉内(燃焼室6内)雰囲気とすることができ、炉内の燃焼を安定化することができる。
(2)第2の態様に係る制御装置20は、(1)の制御装置20であって、前記炉に前記被焼却物を供給するフィーダと、前記供給量または前記発熱量に基づいて、前記フィーダの動作を制御するフィーダ制御部(制御部26)と、をさらに備える。
 これにより、ゴミの供給時にそのゴミの供給量や発熱量に応じてゴミの供給量を調節することができ、炉内の燃焼を安定化することができる。
(3)第3の態様に係る制御装置20は、(1)~(2)の制御装置20であって、前記被焼却物が前記炉に投入された状態を撮像する撮像手段(画像センサ16)と、前記撮像手段により得らえた画像情報から前記炉に投入された前記被焼却物の供給量または発熱量を推定する推定部(画像推定部23)と、をさらに備え、前記燃焼用空気制御部は、前記推定部で推定された投入後の前記被焼却物の供給量または発熱量に基づいて前記燃焼用空気(一次燃焼用空気、二次燃焼用空気)を制御する。
 実際に炉内へ供給されたゴミの供給量などに応じて、燃焼用空気を制御することにより、精度よく炉内の燃焼を安定化することができる。
(4)第4の態様に係る制御装置20は、(1)~(3)の制御装置20であって、3次元計測によりホッパ内(ホッパ1およびシュート2内)の前記被焼却物の高さ変化を検出し、前記被焼却物の圧密(g1~g7)と、前記ホッパ内の前記被焼却物の分布(I1~I7)と、前記炉内に供給される被焼却物の比率(投入比率)に基づき、前記炉内へ供給される直前の前記供給量または前記発熱量を算出する算出部(供給量推定部)、をさらに備える請求項1から3いずれか一項に記載の焼却設備の制御装置。
 これにより、ゴミの供給前にこれら供給されるゴミの供給量や発熱量を推定することができる。
(5)第5の態様に係る制御装置20は、(4)の制御装置20であって、前記算出部は、LiDAR(Light Detection and Ranging)により前記被焼却物の表面全体の距離を検出し、前記距離の変化に基づいて、前記ホッパへ投入された前記被焼却物の体積を計算し、前記ホッパへ投入された前記被焼却物の重量と前記体積から密度を計算し、過去の一定期間に前記炉に供給された前記被焼却物の密度より推定した前記発熱量と実際に計測された前記発熱量の相関比較を行い、前記被焼却物が前記ホッパへ投入されてから前記炉に供給されるまでの滞留時間を推定するとともに、前記滞留時間後の前記発熱量を推定する。
 これにより、滞留時間後に炉へ供給されるゴミの発熱量を推定することができ、ゴミが炉に供給される前に一次燃焼用空気の制御を開始することができる。
 本開示は、上述の課題を解決することのできる焼却炉設備の制御装置を提供する。
100・・・ゴミ焼却設備、1・・・ホッパ、2・・・シュート、3・・・火格子、3A・・・乾燥域、3B・・・燃焼域、3C・・・後燃焼域、4・・・送風機、5A~5E・・・風箱、6・・・燃焼室、7・・・灰出口、8A~8E、14A・・・ダンパ、9・・・ボイラ、10・・・フィーダ、11・・・蒸気流量センサ、12・・・煙道、13、14・・・管路、15・・・センサ(LiDAR)、16・・・画像センサ、17・・・クレーン、17a・・・重量計、18・・・温度センサ、19・・・酸素濃度センサ、20・・・制御装置、21・・・データ取得部、22・・・ゴミ高さ計算部、23・・・画像推定部、24・・・供給量推定部、25・・・判断部、26・・・制御部、27・・・記憶部、900・・・コンピュータ、901・・・CPU、902・・・主記憶装置、903・・・補助記憶装置、904・・・入出力インタフェース、905・・・通信インタフェース

Claims (6)

  1.  被焼却物を燃焼させながら搬送する炉と、前記炉に燃焼用空気を供給する燃焼用空気供給部とを有する焼却炉設備の制御装置であって、
     前記炉に供給する被焼却物の供給量または発熱量に基づいて、前記被焼却物が前記炉内に投入される前に前記燃焼用空気の制御を行う燃焼用空気制御部と、
     3次元計測によりホッパ内の前記被焼却物の高さ変化を検出し、前記被焼却物の高さの変化に基づいて、前記ホッパへ投入された前記被焼却物の体積を計算し、前記ホッパへ投入された前記被焼却物の重量と前記体積から密度を計算し、過去の一定期間に前記炉に供給された前記被焼却物の密度より推定した前記発熱量と実際に計測された前記発熱量の相関比較を行い、前記被焼却物が前記ホッパへ投入されてから前記炉に供給されるまでの滞留時間を推定し、前記被焼却物の圧密と、前記ホッパ内の前記被焼却物の分布と、前記炉内に供給される被焼却物の比率に基づき、前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量または発熱量を算出する算出部と、
    を備え、
     前記燃焼用空気制御部は、前記被焼却物が前記ホッパへ投入されてから前記算出部によって推定された前記滞留時間が経過するよりも所定時間前に当該被焼却物の供給量または発熱量に基づく前記燃焼用空気の制御を行う、
     焼却炉設備の制御装置。
  2.  前記炉に前記被焼却物を供給するフィーダと
     前記供給量または前記発熱量に基づいて、前記フィーダの動作を制御するフィーダ制御部、をさらに備え、
     前記フィーダ制御部は、前記被焼却物が前記ホッパへ投入されてから前記算出部によって推定された前記滞留時間が経過するよりも所定時間前に当該被焼却物の供給量または発熱量に基づく前記フィーダの制御を行う、請求項1に記載の焼却炉設備の制御装置。
  3.  前記被焼却物が前記炉に投入された状態を撮像する撮像手段と、
     前記撮像手段により得らえた画像情報から前記炉に投入された前記被焼却物の供給量または発熱量を推定する画像推定部と、をさらに備え、
     前記燃焼用空気制御部は、前記画像推定部で推定された投入後の前記被焼却物の供給量または発熱量に基づいて前記燃焼用空気を制御する、
     請求項1または2に記載の焼却炉設備の制御装置。
  4.  前記燃焼用空気制御部は、前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上増加する場合、前記燃焼用空気を低下させる制御を行い、
     前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上低下する場合、前記燃焼用空気を増加させる制御を行う、
     請求項1から請求項3のいずれか一項に記載の焼却炉設備の制御装置。
  5.  前記フィーダ制御部は、前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上増加する場合、前記フィーダの押出量および/又は移動速度を低下させる制御を行い、
     前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上低下する場合、前記フィーダの押出量および/又は移動速度を増大させる制御を行う、
     請求項2または請求項2を引用する請求項3に記載の焼却炉設備の制御装置。
  6.  前記フィーダ制御部は、前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上増加する場合、前記燃焼用空気の制御の後であって、且つ、推定された前記滞留時間が経過するよりも所定時間前に、前記フィーダの押出量および/又は移動速度を低下させる制御を行い、
     前記滞留時間後に前記炉内へ供給される前記被焼却物の供給量および/又は発熱量が一定以上低下する場合、前記燃焼用空気の制御の後であって、且つ、推定された前記滞留時間が経過するよりも所定時間前に、前記フィーダの押出量および/又は移動速度を増大させる制御を行う、
     請求項2または請求項2を引用する請求項3に記載の焼却炉設備の制御装置。
PCT/JP2022/026871 2021-09-10 2022-07-06 焼却炉設備の制御装置 WO2023037742A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237043865A KR20240010034A (ko) 2021-09-10 2022-07-06 소각로 설비의 제어 장치
CN202280043995.2A CN117529628A (zh) 2021-09-10 2022-07-06 焚烧炉设备的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147752A JP7064643B1 (ja) 2021-09-10 2021-09-10 焼却炉設備の制御装置
JP2021-147752 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023037742A1 true WO2023037742A1 (ja) 2023-03-16

Family

ID=81535295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026871 WO2023037742A1 (ja) 2021-09-10 2022-07-06 焼却炉設備の制御装置

Country Status (5)

Country Link
JP (1) JP7064643B1 (ja)
KR (1) KR20240010034A (ja)
CN (1) CN117529628A (ja)
TW (1) TWI819707B (ja)
WO (1) WO2023037742A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478297B1 (ja) 2023-09-08 2024-05-02 三菱重工業株式会社 情報処理システム、情報処理方法、学習システム、および学習方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201435A (ja) * 1998-01-19 1999-07-30 Hitachi Ltd ごみ焼却発電プラントとその負荷制御方法
JP2003004435A (ja) * 2001-06-18 2003-01-08 Mikio Shimokawa ごみ堆積状況検出システム
JP2005024126A (ja) * 2003-06-30 2005-01-27 Takuma Co Ltd 燃焼制御方法
JP2005090774A (ja) * 2003-09-12 2005-04-07 Takuma Co Ltd ゴミ焼却炉のゴミ供給量推定装置
WO2017085941A1 (ja) * 2015-11-19 2017-05-26 株式会社タクマ 廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置
JP2017116252A (ja) * 2015-12-17 2017-06-29 Jfeエンジニアリング株式会社 火格子式廃棄物焼却炉及び火格子式廃棄物焼却炉による廃棄物焼却方法
JP2017145981A (ja) * 2016-02-15 2017-08-24 日立造船株式会社 ストーカ式焼却炉
JP2019011917A (ja) * 2017-06-30 2019-01-24 三菱重工環境・化学エンジニアリング株式会社 ごみピット容量管理システム、及びごみピット容量管理方法
JP2019086255A (ja) * 2017-11-09 2019-06-06 川崎重工業株式会社 ストーカ炉の燃焼制御装置及び方法、並びに、燃料移動量の検出装置及び方法
JP2019132485A (ja) * 2018-01-30 2019-08-08 株式会社タクマ 焼却炉内のごみ量推定機能を備えた燃焼制御システム
WO2021075490A1 (ja) * 2019-10-18 2021-04-22 川崎重工業株式会社 燃焼状況評価方法及び燃焼制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM517295U (zh) * 2015-11-02 2016-02-11 Sino Environmental Services Corp 具提升焚化爐鍋爐蒸汽產量穩定性之燃燒控制系統

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201435A (ja) * 1998-01-19 1999-07-30 Hitachi Ltd ごみ焼却発電プラントとその負荷制御方法
JP2003004435A (ja) * 2001-06-18 2003-01-08 Mikio Shimokawa ごみ堆積状況検出システム
JP2005024126A (ja) * 2003-06-30 2005-01-27 Takuma Co Ltd 燃焼制御方法
JP2005090774A (ja) * 2003-09-12 2005-04-07 Takuma Co Ltd ゴミ焼却炉のゴミ供給量推定装置
WO2017085941A1 (ja) * 2015-11-19 2017-05-26 株式会社タクマ 廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置
JP2017116252A (ja) * 2015-12-17 2017-06-29 Jfeエンジニアリング株式会社 火格子式廃棄物焼却炉及び火格子式廃棄物焼却炉による廃棄物焼却方法
JP2017145981A (ja) * 2016-02-15 2017-08-24 日立造船株式会社 ストーカ式焼却炉
JP2019011917A (ja) * 2017-06-30 2019-01-24 三菱重工環境・化学エンジニアリング株式会社 ごみピット容量管理システム、及びごみピット容量管理方法
JP2019086255A (ja) * 2017-11-09 2019-06-06 川崎重工業株式会社 ストーカ炉の燃焼制御装置及び方法、並びに、燃料移動量の検出装置及び方法
JP2019132485A (ja) * 2018-01-30 2019-08-08 株式会社タクマ 焼却炉内のごみ量推定機能を備えた燃焼制御システム
WO2021075490A1 (ja) * 2019-10-18 2021-04-22 川崎重工業株式会社 燃焼状況評価方法及び燃焼制御方法

Also Published As

Publication number Publication date
CN117529628A (zh) 2024-02-06
TW202311668A (zh) 2023-03-16
JP7064643B1 (ja) 2022-05-10
KR20240010034A (ko) 2024-01-23
TWI819707B (zh) 2023-10-21
JP2023040645A (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2023037742A1 (ja) 焼却炉設備の制御装置
JP6723864B2 (ja) ごみ移動速度検出機能を備えた燃焼制御装置
JP6880146B2 (ja) 燃焼状況評価方法及び燃焼制御方法
JP2022069679A (ja) ストーカ炉の燃焼制御装置及び方法、並びに、燃料移動量の検出装置及び方法
WO2021075488A1 (ja) 燃焼状況評価方法及び燃焼制御方法
JP2022161065A (ja) ごみ質予測装置、焼却炉の燃焼制御装置、ごみ質予測方法、ごみ質予測モデルの学習方法およびごみ質予測モデルプログラム
JP7256016B2 (ja) 予測モデル生成装置、予測モデル生成装置による予測モデル生成方法、及び予測装置
WO2023063107A1 (ja) 制御装置
JP2018105590A (ja) ごみ焼却設備
JP7059955B2 (ja) 廃棄物供給量測定装置及び方法そして廃棄物焼却装置及び方法
JP6782203B2 (ja) 発熱量推定方法、発熱量推定装置、及びごみ貯蔵設備
WO2021075489A1 (ja) 燃焼状況評価方法及び燃焼制御方法
JP2003161420A (ja) ストーカ焼却炉の燃焼制御方法及び燃焼制御装置
JP2021143768A (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP2021103063A (ja) ごみ焼却炉のごみ層厚評価方法及びごみ焼却炉の燃焼制御方法
JP7445058B1 (ja) 燃焼設備用システムおよび燃焼制御方法
JP6803446B1 (ja) 燃焼方法及び燃焼制御方法
WO2022230356A1 (ja) 予測装置、予測方法、予測プログラム、施設制御装置、施設制御方法、および制御プログラム
JP2024021222A (ja) ごみの性状推定方法及びごみの性状推定装置
JP7351599B2 (ja) ごみ焼却炉の燃切点推定方法及びごみ焼却炉の燃切点調整方法
JP7478297B1 (ja) 情報処理システム、情報処理方法、学習システム、および学習方法
JP7428080B2 (ja) 情報処理装置、情報処理方法、燃焼制御装置、および燃焼制御方法
JP7354924B2 (ja) 情報処理装置、情報処理方法、廃棄物供給速度の計測装置ならびに計測方法、燃切点の位置測定装置ならびに測定方法、および燃焼制御装置ならびに燃焼制御方法
KR20240073073A (ko) 제어 장치
JPH10185157A (ja) ゴミ質判定方法、装置、及び、ゴミ焼却炉の燃焼制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237043865

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043865

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280043995.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE