WO2022230024A1 - 内視鏡の対物光学素子 - Google Patents

内視鏡の対物光学素子 Download PDF

Info

Publication number
WO2022230024A1
WO2022230024A1 PCT/JP2021/016663 JP2021016663W WO2022230024A1 WO 2022230024 A1 WO2022230024 A1 WO 2022230024A1 JP 2021016663 W JP2021016663 W JP 2021016663W WO 2022230024 A1 WO2022230024 A1 WO 2022230024A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
optical element
repellent
wedge
objective optical
Prior art date
Application number
PCT/JP2021/016663
Other languages
English (en)
French (fr)
Inventor
大徳 菅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2021/016663 priority Critical patent/WO2022230024A1/ja
Publication of WO2022230024A1 publication Critical patent/WO2022230024A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to objective optical elements for endoscopes.
  • the surface of the glass lens has a hydrophilic portion in which the photocatalytic oxide particles are exposed to the outside air, and a water-repellent fluororesin is exposed to the outside air.
  • a technique has been proposed that has a structure in which both portions exhibiting water repellency are microscopically dispersed on the surface (see, for example, Patent Document 2).
  • Patent Literatures 1 and 2 have the problem that when minute water droplets adhere, the water droplets cannot be completely removed without applying an external force.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an objective optical element for an endoscope that can effectively prevent adhesion of water droplets, mucus, and the like.
  • an objective optical element of an endoscope is arranged at the distal end of an insertion section that is inserted into the inside of an observation target, and is arranged inside the endoscope facing the observation target site.
  • An objective optical element of a scope comprising: a water-repellent portion formed around an optical axis on a surface on the side of an observation target portion; and a hydrophilic portion formed on a peripheral portion of the surface on the side of the observation target portion, wherein the hydrophilic portion is formed by juxtaposing a plurality of wedge-shaped hydrophilic regions, the area of which gradually decreases toward the optical axis, around the optical axis.
  • the objective optical element of the endoscope according to the present invention is arranged at the distal end of the insertion section inserted into the inside of the observation target, and the objective optical element of the endoscope facing the observation target site is positioned on the observation target site side. It consists of a first water-repellent portion formed around the optical axis on the surface, and a plurality of wedge-shaped water-repellent regions whose areas gradually decrease from the outer periphery of the first water-repellent portion toward the outer periphery of the objective optical element. a water-repellent portion having a second water-repellent portion; and a hydrophilic portion formed between the second water-repellent portions adjacent to the periphery of the observation target site side surface.
  • the objective optical element of the endoscope according to the present invention is disposed at the distal end of the insertion section that is inserted into the interior of the observation target, and the objective optical element of the endoscope facing the observation target site has a plurality of wedge-shaped optical elements.
  • a water-repellent portion consisting of a water-repellent region and a hydrophilic portion consisting of a plurality of wedge-shaped hydrophilic regions are provided. , alternately arranged adjacent to each other.
  • FIG. 1 is a diagram schematically showing a schematic configuration of an endoscope system using an objective optical element according to an embodiment of the invention.
  • 2 is a cross-sectional view of the distal end portion of the endoscope used in FIG. 1.
  • FIG. 3 is a front view of the distal end portion of the endoscope used in FIG. 1.
  • FIG. 4 is a schematic diagram showing the surface state of the objective optical element.
  • FIG. 5 is a schematic diagram showing the surface state of the objective optical element according to Modification 1 of the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the surface state of the objective optical element according to Modification 2 of the embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing a schematic configuration of an endoscope system using a rigid endoscope using an objective optical element according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing the overall configuration of an endoscope system 1 using an objective optical element according to an embodiment of the invention.
  • an endoscope system 1 includes an endoscope 2 which is introduced into a subject and captures an image of the interior of the subject to generate an image signal within the subject.
  • an information processing device 3 that performs predetermined image processing on the obtained image signal and controls each part of the endoscope system 1; a light source device 4 that generates illumination light for the endoscope 2; and a display device 5 for displaying an image of the image signal.
  • the endoscope 2 includes an insertion portion 6 to be inserted into the subject, an operation portion 7 on the base end side of the insertion portion 6 and held by the operator, and a flexible universal endoscope extending from the operation portion 7 . code 8;
  • the insertion portion 6 is realized using a light guide made of illumination fiber, an electric cable, an optical fiber, or the like.
  • the insertion section 6 includes a distal end portion 6a containing an imaging device, a bending tube (to be described later), a bendable bending portion 6b, and a flexible flexible tube provided on the proximal end side of the bending portion 6b. and a portion 6c.
  • the distal end portion 6a is provided with an illumination portion that illuminates the inside of the subject via an illumination lens, an observation portion that images the inside of the subject, and an opening that communicates with the treatment instrument channel.
  • An objective optical element which will be described later, is arranged at the distal end portion 6a.
  • the operation unit 7 includes a bending knob 7a for bending the bending portion 6b in the vertical direction and the horizontal direction, a treatment instrument insertion portion 7b for inserting a treatment instrument such as bioforceps or a laser scalpel into the body cavity of the subject, and an information processing device. 3. It has a plurality of switches 7c for operating peripheral devices such as the light source device 4, the air supply device, the water supply device, the gas supply device, and the curved tube. A treatment instrument inserted from the treatment instrument insertion portion 7b is exposed from an opening at the distal end of the insertion portion 6 through a treatment instrument channel provided inside.
  • the universal cord 8 is configured using a light guide made of illumination fiber, a cable, and the like.
  • the universal cord 8 is branched at its proximal end, and one branched end is a connector 8a and the other proximal end is a connector 8b.
  • the connector 8 a is detachable from the connector of the information processing device 3 .
  • the connector 8 b is detachable from the light source device 4 .
  • the universal cord 8 propagates the illumination light emitted from the light source device 4 to the tip portion 6a via the connector 8b and a light guide made up of illumination fibers. Also, the universal cord 8 transmits an image signal captured by an imaging device, which will be described later, to the information processing device 3 via the cable and the connector 8a.
  • the information processing device 3 performs predetermined image processing on the image signal output from the connector 8a, and controls the endoscope system 1 as a whole.
  • the light source device 4 is configured using a light source that emits light, a condenser lens, and the like.
  • the light source device 4 emits light from the light source under the control of the information processing device 3, and transmits the light to the endoscope 2 connected via the light guide composed of the illumination fiber of the connector 8b and the universal cord 8. It is supplied as illumination light for the inside of the subject.
  • the display device 5 is configured using a display or the like using liquid crystal or organic EL (Electro Luminescence).
  • the display device 5 displays various kinds of information including an image subjected to predetermined image processing by the information processing device 3 via the video cable 5a. Accordingly, the operator can observe a desired position in the subject and determine symptoms by operating the endoscope 2 while viewing the image (in-vivo image) displayed by the display device 5 .
  • FIG. 2 is a cross-sectional view of the distal end portion 6a of the endoscope 2.
  • FIG. 3 is a front view of the distal end portion 6a of the endoscope 2.
  • the distal end portion 6a is provided with an endoscope distal end frame 10, and the distal end side of the endoscope distal end frame 10 facing the observation target site is covered with a distal end cover 11.
  • a bending member 12 is fitted to the rear end side of the endoscope distal end frame 10, and the bending member 12 from the rear end of the distal end cover 11 is covered with a cover member 13 serving as an outer skin.
  • a nozzle 14a is fixed to the endoscope distal end frame 10 via a nozzle support frame 14, and a pipe 15 forming a conduit communicating with the nozzle 14a is fitted.
  • the rear end of the pipe 15 is fitted with a tube 16 forming a channel for air/liquid supply.
  • An objective lens designating frame 22 is fixed to the endoscope distal end frame 10 , and an observation optical system 20 consisting of a plurality of lens groups including the distal lens 21 is arranged in the objective lens designating frame 22 .
  • the tip lens 21 functions as an objective optical element in the present application.
  • An imaging unit 30 is arranged behind the observation optical system 20 .
  • the image pickup unit 30 has a solid-state image pickup device 31 made of CMOS, CCD, or the like, and a circuit board 32 on which electronic components such as capacitors, resistors, and transistors are mounted.
  • a cover glass 33 is bonded to the imaging surface of the solid-state imaging element 31, and a centering cover glass 34 fixed to face the rear end lens 23 of the observation optical system 20 is laminated and bonded to the cover glass 33. be done.
  • FIG. 4 is a schematic diagram showing the surface state of the tip lens 21 that functions as an objective optical element.
  • a water-repellent portion 50 and a hydrophilic portion 53 are formed on the surface of the tip lens 21 on the observation target site side.
  • the water-repellent portion 50 includes a first water-repellent portion 51 which is formed in a substantially circular shape around the optical axis on the surface of the tip lens 21 on the observation target site side, and the first water-repellent portion 51 . and a second water-repellent portion 52 consisting of a plurality of wedge-shaped water-repellent regions 52a whose area gradually decreases from the outer periphery of the tip lens 21 toward the outer periphery of the tip lens 21 .
  • the hydrophilic portion 53 is formed on the peripheral edge portion of the surface of the tip lens 21 on the side of the observation site, and a plurality of wedge-shaped hydrophilic regions 53a whose areas gradually decrease toward the optical axis of the tip lens 21 are arranged side by side around the optical axis. It becomes
  • the diameter of the first water-repellent portion 51 is preferably 0% to 80%, more preferably 0% to 50%, of the diameter of the tip lens 21 from the viewpoint of water removability.
  • the plurality of wedge-shaped hydrophilic regions 53a constituting the hydrophilic portion 53 are fan-shaped with an acute apex angle ⁇ , and the arcs of the plurality of wedge-shaped hydrophilic regions 53a are arranged so as to be connected.
  • the vertices of the plurality of wedge-shaped hydrophilic regions 53a are arranged in parallel along a circle centered on the optical axis.
  • a wedge-shaped water-repellent region 52a is arranged continuously with the first water-repellent portion 51 between the sides of the adjacent wedge-shaped hydrophilic regions 53a.
  • the angle ⁇ of the vertex of the wedge-shaped water-repellent region 52 a is an acute angle, and the wedge-shaped water-repellent regions 52 a are arranged side by side so as to reach the outer circumference of the tip lens 21 .
  • the angle ⁇ of the vertex of the wedge-shaped hydrophilic region 53a and the wedge-shaped water-repellent region 52a is preferably 0° to 90°, more preferably 0° to 30°.
  • the surface of the tip lens 21 on the observation site side is provided with a substantially circular first water-repellent portion 51 around the optical axis, and a wedge-shaped water-repellent region 52a is formed along the outer periphery in the circumferential direction.
  • the wedge-shaped hydrophilic regions 53a are alternately arranged adjacent to each other.
  • the surface of the tip lens 21 may be subjected to water-repellent treatment and hydrophilic treatment sequentially, or Since the lens 21 is water-repellent, the water-repellent portion 50 and the hydrophilic portion 53 may be formed by performing only the hydrophilic treatment for forming the hydrophilic portion 53 on the surface of the tip lens 21 .
  • Hydrophilic treatment can be performed by electron beam irradiation, etching with a chemical solution, painting or coating with a hydrophilic material, or the like.
  • the water-repellent treatment can be performed by painting or coating with a water-repellent material.
  • FIG. 5 is a schematic diagram showing the surface state of the objective optical element according to Modification 1 of the embodiment of the present invention
  • FIG. It is a schematic diagram which shows a state.
  • the wedge-shaped hydrophilic region 53a may be formed in a curved line in which the angle ⁇ of the vertex is an acute angle and the sides curve toward each other. Moreover, as shown in FIG. 6, the side edges of the wedge-shaped hydrophilic region 53a may be formed stepwise. The apex of the wedge-shaped hydrophilic region 53a does not have to be sharp, and may be rounded or flat.
  • the water-repellent portion 50 is formed around the optical axis on the surface of the tip lens 21 on the observation target site side, and the outer peripheral edge of the first water-repellent portion 51 is formed.
  • the second water-repellent portion 52 consists of a plurality of protruding wedge-shaped water-repellent regions 52a.
  • the shape of the portion 50 is not limited to this shape.
  • the water-repellent portion may be only the first water-repellent portion 51 formed around the optical axis. 2 Only the water-repellent portion 52 may be used as the water-repellent portion.
  • the tip lens 21 of the observation optical system 20 that acquires an image of the observation target site is formed with the water-repellent portion 50 and the hydrophilic portion 53, but it is not limited to this.
  • Water droplets can be removed from the surface of the tip lens of the illumination optical system by forming a water-repellent portion and a hydrophilic portion in a similar configuration on the tip lens of the illumination optical system without applying an external force such as air supply. It becomes possible to perform uniform illumination.
  • FIG. 7 is a diagram schematically showing a schematic configuration of an endoscope system using a rigid endoscope using an objective optical element according to an embodiment of the present invention.
  • a rigid endoscope 100 shown in FIG. 7 includes an insertion portion 101, a light source device 102, a light guide 103, a first camera head 104A and a second camera head 104B having different imaging element functions, and a first transmission device.
  • a cable 105 , a display device 106 , a second transmission cable 107 , a control device 108 and a third transmission cable 109 are provided.
  • the insertion portion 101 is hard or at least partially soft and has an elongated shape.
  • the insertion portion 101 is inserted into a subject such as a patient.
  • the insertion section 101 is configured using one or a plurality of lenses inside, and is provided with an observation optical system that combines observation images.
  • the light guide 103 is connected to the light source device 102 .
  • the light source device 102 emits white light for illuminating the inside of the subject at one end of the light guide 103, excitation light or infrared light for the drug administered or dispersed to the subject ( supply).
  • the light source device 102 is configured using a semiconductor laser element such as an LED (Light Emitting Diode) light source or an LD (Laser Diode).
  • the light source device 102 and the control device 108 may be configured to communicate individually as shown in FIG. 7, or may be integrated.
  • the light guide 103 has one end detachably connected to the light source device 102 and the other end detachably connected to the insertion section 101 .
  • the light guide 103 guides the light emitted from the light source device 102 from one end to the other end and supplies the light to the insertion section 101 .
  • the camera head 104 is detachably connected to the eyepiece portion 101A of the insertion portion 101 . Under the control of the control device 9, the camera head 104 generates video data (image pickup signal) by capturing an observation image formed by the insertion section 101, and outputs this video data.
  • the camera head 104 also includes an operation ring portion 111 that is rotatable in the circumferential direction, and a plurality of input portions 110 that receive input of instruction signals for instructing various operations of the endoscope system 1 . .
  • the first transmission cable 105 transmits video data output from the camera head 104 to the control device 108 , and transmits control signals, synchronization signals, clock signals, power, etc. output from the control device 108 to the camera head 104 . transmit.
  • the display device 106 can be connected to the control device 108 via the second transmission cable 107, and displays a display image based on the video data processed by the control device 108 under the control of the control device 108.
  • the second transmission cable 107 has one end detachably connected to the display device 106 and the other end detachably connected to the control device 108 .
  • a second transmission cable 107 transmits a display image based on video data processed by the control device 108 to the display device 106 .
  • the control device 108 is configured using a memory and a processor having hardware such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable Gate Array). .
  • Control device 108 controls light source device 102, camera head 104 and display device 106 via first transmission cable 105, second transmission cable 107 and third transmission cable 109, respectively, according to a program recorded in memory. controls the operation of Also, the control device 108 performs various image processing on the video data input from the camera head 104 via the first transmission cable 105 and outputs the processed data to the second transmission cable 107 .
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the third transmission cable 109 has one end detachably connected to the light source device 102 and the other end detachably connected to the control device 108 .
  • a third transmission cable 109 transmits a control signal from the control device 108 to the light source device 102 .
  • a water-repellent portion is formed around the optical axis on the observation target side surface of the tip lens facing the observation target site, and the observation target site side surface is and a hydrophilic portion formed in the peripheral edge portion, and a plurality of wedge-shaped hydrophilic regions whose areas gradually decrease toward the optical axis are arranged in parallel around the optical axis to reduce the external force. It can remove minute water droplets without adding water.
  • the water-repellent portion and the hydrophilic portion can adopt various configurations as described above.
  • the gist of the present invention is not limited to these descriptions, and the scope of the claims. should be interpreted broadly based on the description. Further, it goes without saying that various changes and alterations based on these descriptions are also included in the gist of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

水滴や粘液等の付着を効果的に防止しうる内視鏡の対物光学素子を提供する。本発明に係る、内視鏡の対物光学素子は、観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、観察対象部位側表面の光軸周辺に形成された撥水部と、前記観察対象部位側表面の周縁部に形成された親水部と、を具備し、前記親水部は、前記光軸に向かって面積が徐々に減少する複数のくさび形親水領域を光軸回りに並接してなる。

Description

内視鏡の対物光学素子
 本発明は、内視鏡の対物光学素子に関する。
 観察対象である体腔等に先端部を挿入して観察を行う内視鏡において、生体内で発生する水蒸気により対物光学系の表面に曇りが生じることや、生体内の粘液等が対物光学系の表面に付着することが問題となる。従来、体腔等に挿入される内視鏡の観察光学系や照明光学系の観察対象側のレンズの表面に、電子線を照射することにより親水性を向上させ、曇りを防止する技術が提案されている(例えば、特許文献1参照)。また、メガネやダイビング用ゴーグル等のレンズにおいて、ガラスレンズの表面が、光触媒性酸化物粒子が外気と接するように露出した親水性を呈する部分と、撥水性フッ素樹脂が外気と接するように露出した撥水性を呈する部分の双方が表面に微視的に分散された構造を有する技術が提案されている(例えば、特許文献2参照)。
特開平10-43128号公報 特開平10-48578号公報
 しかしながら、特許文献1および2の技術では、微小な水滴が付着した場合、外力を加えないと完全に水滴を除去することができないという問題を有している。
 本発明は、上記に鑑みてなされたものであって、水滴や粘液等の付着を効果的に防止しうる内視鏡の対物光学素子を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る内視鏡の対物光学素子は、観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、観察対象部位側表面の光軸周辺に形成された撥水部と、前記観察対象部位側表面の周縁部に形成された親水部と、を具備し、前記親水部は、前記光軸に向かって面積が徐々に減少する複数のくさび形親水領域を光軸回りに並接してなる。
 また、本発明に係る内視鏡の対物光学素子は、観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、観察対象部位側表面の光軸周辺に形成された第1撥水部と、前記第1撥水部の外周縁から前記対物光学素子の外周に向かって面積が徐々に減少する複数のくさび形撥水領域からなる第2撥水部とを有する撥水部と、前記観察対象部位側表面の周縁部から隣接する前記第2撥水部間に形成された親水部と、を具備する。
 また、本発明に係る内視鏡の対物光学素子は、観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、複数のくさび形撥水領域からなる撥水部と、複数のくさび形親水領域からなる親水部とを具備し、観察対象部位側表面に円周方向に沿って前記くさび形撥水領域と前記くさび型親水領域が、交互に隣接して配置されている。
 本発明によれば、外力を加えることなく、微小な水滴や汚れの付着を防止することができる。
図1は、本発明の実施の形態に係る対物光学素子を使用する内視鏡システムの概略構成を模式的に示す図である。 図2は、図1で使用する内視鏡の先端部の断面図である。 図3は、図1で使用する内視鏡の先端部の正面図である。 図4は、対物光学素子の表面状態を示す模式図である。 図5は、本発明の実施の形態の変形例1に係る対物光学素子の表面状態を示す模式図である。 図6は、本発明の実施の形態の変形例2に係る対物光学素子の表面状態を示す模式図である。 図7は、本発明の実施の形態に係る対物光学素子を使用する硬性鏡を使用する内視鏡システムの概略構成を模式的に示す図である。
 以下、本発明に係る内視鏡の対物光学素子を使用する内視鏡システムの実施の形態について、図面を参照しながら説明する。なお、本発明は以下の実施の形態に限定されるものではなく、以下の実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものも含まれる。
[実施の形態]
 図1は、本発明の実施の形態にかかる対物光学素子を使用する内視鏡システム1の全体構成を模式的に示す図である。図1に示すように、内視鏡システム1は、被検体内に導入され、被検体の体内を撮像して被検体内の画像信号を生成する内視鏡2と、内視鏡2が撮像した画像信号に所定の画像処理を施すとともに内視鏡システム1の各部を制御する情報処理装置3と、内視鏡2の照明光を生成する光源装置4と、情報処理装置3による画像処理後の画像信号を画像表示する表示装置5と、を備える。
 内視鏡2は、被検体内に挿入される挿入部6と、挿入部6の基端部側であって術者が把持する操作部7と、操作部7から延伸する可撓性のユニバーサルコード8と、を備える。
 挿入部6は、照明ファイバからなるライトガイド、電気ケーブルまたは光ファイバ等を用いて実現される。挿入部6は、撮像装置を内蔵した先端部6aと、後述する湾曲管を備え、湾曲自在な湾曲部6bと、湾曲部6bの基端部側に設けられた可撓性を有する可撓管部6cと、を有する。先端部6aには、照明レンズを経由して被検体内を照明する照明部、被検体内を撮像する観察部、処置具用チャンネルを連通する開口部が設けられている。後述する対物光学素子は、先端部6aに配置される。
 操作部7は、湾曲部6bを上下方向および左右方向に湾曲させる湾曲ノブ7aと、被検体の体腔内に生体鉗子、レーザメス等の処置具が挿入される処置具挿入部7bと、情報処理装置3、光源装置4、送気装置、送水装置、送ガス装置および湾曲管等の周辺機器の操作を行う複数のスイッチ部7cと、を有する。処置具挿入部7bから挿入された処置具は、内部に設けられた処置具用チャンネルを経て挿入部6先端の開口部から表出する。
 ユニバーサルコード8は、照明ファイバからなるライトガイド、ケーブル等を用いて構成される。ユニバーサルコード8は、基端で分岐しており、分岐した一方の端部がコネクタ8aであり、他方の基端がコネクタ8bである。コネクタ8aは、情報処理装置3のコネクタに対して着脱自在である。コネクタ8bは、光源装置4に対して着脱自在である。ユニバーサルコード8は、光源装置4から出射された照明光を、コネクタ8b、および照明ファイバからなるライトガイドを経由して先端部6aに伝播する。また、ユニバーサルコード8は、後述する撮像装置が撮像した画像信号を、ケーブルおよびコネクタ8aを経由して情報処理装置3に伝送する。
 情報処理装置3は、コネクタ8aから出力される画像信号に所定の画像処理を施すとともに、内視鏡システム1全体を制御する。
 光源装置4は、光を発する光源や、集光レンズ等を用いて構成される。光源装置4は、情報処理装置3の制御のもと、光源から光を発し、コネクタ8bおよびユニバーサルコード8の照明ファイバからなるライトガイドを経由して接続された内視鏡2へ、被写体である被検体内に対する照明光として供給する。
 表示装置5は、液晶または有機EL(Electro Luminescence)を用いた表示ディスプレイ等を用いて構成される。表示装置5は、映像ケーブル5aを経由して情報処理装置3によって所定の画像処理が施された画像を含む各種情報を表示する。これにより、術者は、表示装置5が表示する画像(体内画像)を見ながら内視鏡2を操作することにより、被検体内の所望の位置の観察および症状を判定することができる。
 次に、内視鏡2の先端部6aに配置される対物光学素子について図面を参照して説明する。図2は、内視鏡2の先端部6aの断面図である。図3は、内視鏡2の先端部6aの正面図である。
 図2に示すように、先端部6aには、内視鏡先端枠10が設けられ、内視鏡先端枠10の観察対象部位に対向する先端側は先端カバー11で覆われている。内視鏡先端枠10の後端側は湾曲部材12が篏合され、先端カバー11の後端から湾曲部材12にかけて外皮となるカバー部材13で覆われている。
 内視鏡先端枠10には、ノズル支持枠14を介してノズル14aが固定されるとともにノズル14aに連通する管路を形成するパイプ15が篏合されている。パイプ15の後端には、送気送液用のチャンネルを形成するチューブ16が篏合されている。
 また、内視鏡先端枠10には、対物レンズ指示枠22が固着され、この対物レンズ指示枠22に、先端レンズ21を含む複数のレンズ群からなる観察光学系20が配設されている。先端レンズ21が、本願における対物光学素子として機能する。観察光学系20の後方には撮像ユニット30が配設されている。撮像ユニット30は、CMOSやCCD等からなる個体撮像素子31と、コンデンサ、抵抗、トランジスタ等の電子部品を実装した回路基板32とを有する。
 個体撮像素子31の撮像面には、カバーガラス33が接合され、このカバーガラス33に、観察光学系20の後端レンズ23と対向して固定される芯だし用のカバーガラス34が張り合わせて接合される。
 先端部6aの先端側の正面には、図3に示すように、先端レンズ21が露出する観察窓40と、吸引チャンネル41と、2つの照明窓42と、送気送液用のノズル43が配設されている。
 図4は、対物光学素子として機能する先端レンズ21の表面状態を示す模式図である。先端レンズ21の観察対象部位側表面には、撥水部50と、親水部53が形成されている。図4に示すように、撥水部50は、先端レンズ21の観察対象部位側表面の光軸周辺に略円形状をなして形成される第1撥水部51と、第1撥水部51の外周縁から先端レンズ21の外周に向かって面積が徐々に減少する複数のくさび形撥水領域52aからなる第2撥水部52とを有する。親水部53は、先端レンズ21の観察対象部位側表面の周縁部に形成され、先端レンズ21の光軸に向かって面積が徐々に減少する複数のくさび形親水領域53aを光軸回りに並接してなる。第1撥水部51の径は、水除去性の観点から、先端レンズ21の径の0%~80%であることが好ましく、0%~50%であることがさらに好ましい。
 親水部53を構成する複数のくさび形親水領域53aは頂点の角度θが鋭角な扇形であって、複数のくさび形親水領域53aの円弧が連接して配置されている。複数のくさび形親水領域53aの頂点は、光軸を中心とする円に沿って並接されている。隣接するくさび形親水領域53aの側辺間は、第1撥水部51に連続して配置されるくさび形撥水領域52aである。くさび形撥水領域52aの頂点の角度θは鋭角であり、先端レンズ21の外周に至るように並設されている。くさび形親水領域53aおよびくさび形撥水領域52aの頂点の角度θは、0°~90°が好ましく、0°~30°がさらに好ましい。
 本実施の形態では、先端レンズ21の観察対象部位側表面を、光軸周辺に略円形状の第1撥水部51を配置し、外周の円周方向に沿って、くさび形撥水領域52aとくさび形親水領域53aを交互に隣接して配置している。このように、撥水部50と親水部53とを先端レンズ21の観察対象側表面に配設することにより、先端レンズ21の光軸中心から外周側に表面張力の勾配を形成することができる。先端レンズ21の表面に形成された表面張力の勾配により、先端レンズ21表面に付着した水滴は親水性で表面張力が小さい外周側に移動するため、送気等による外力を加えることなく先端レンズ21の表面から水滴を除去することができる。
 先端レンズ21の観察対象部位側表面に、撥水部50と親水部53とを形成する手法としては、先端レンズ21表面に撥水処理と親水処理とを順次に行ってもよく、あるいは、先端レンズ21は撥水性であるため、親水部53を形成する親水処理のみ先端レンズ21表面に行うことにより、撥水部50と親水部53とを形成してもよい。親水処理は、電子線の照射や、薬液によるエッチング、親水性材料の塗装またはコーティング等により行うことができる。撥水処理は、撥水性材料の塗装またはコーティング等により行うことができる。
 上記の実施の形態では、親水部53を構成する複数のくさび形親水領域53aは扇形としているが、先端レンズ21の光軸に向かって面積が徐々に減少する形状であって、先端レンズ21の光軸中心から外周側に表面張力の勾配を形成することができれば、当該形状に限定するものではない。図5は、本発明の実施の形態の変形例1に係る対物光学素子の表面状態を示す模式図であり、図6は、本発明の実施の形態の変形例2に係る対物光学素子の表面状態を示す模式図である。
 図5に示すように、くさび形親水領域53aは、頂点の角度θは鋭角であって、側辺が互いに向けて湾曲する曲線で形成されていてもよい。また、図6に示すように、くさび形親水領域53aは、側辺が階段状に形成されていてもよい。なお、くさび形親水領域53aの頂点は、尖っている必要はなく、丸みを帯びていても、平坦であってもよい。
 また、上記の実施の形態では、撥水部50を、先端レンズ21の観察対象部位側表面の光軸周辺に形成される第1撥水部51と、第1撥水部51の外周縁から突出する複数のくさび形撥水領域52aからなる第2撥水部52とにより構成しているが、先端レンズ21の光軸中心から外周側に表面張力の勾配を形成することができれば、撥水部50の形状は、当該形状に限定するものではない。例えば、撥水部は、光軸周辺に形成される第1撥水部51のみとしてもよく、また、光軸周辺を撥水部とすることなく、複数のくさび形撥水領域52aからなる第2撥水部52のみを撥水部としてもよい。
 さらに、上記の実施の形態では、観察対象部位の画像を取得する観察光学系20の先端レンズ21に撥水部50と親水部53とを形成しているが、これに限定するものではなく、照明光学系の先端レンズにも同様な構成で撥水部と親水部を形成することにより、送気等による外力を加えることなく照明光学系の先端レンズの表面から水滴を除去することができ、均一な照明を行うことが可能となる。
 さらにまた、上記の実施の形態では、消化器系の内視鏡の先端レンズに導入した例について説明したが、これに限定するものではなく、例えば、外科手術用の内視鏡である硬性鏡の挿入部の対物光学素子に適用してもよい。図7は、本発明の実施の形態に係る対物光学素子を使用する硬性鏡を使用する内視鏡システムの概略構成を模式的に示す図である。
 図7に示す硬性鏡100は、挿入部101と、光源装置102と、ライトガイド103と、互いに撮像素子の機能が異なる第1のカメラヘッド104Aおよび第2のカメラヘッド104Bと、第1の伝送ケーブル105と、表示装置106と、第2の伝送ケーブル107と、制御装置108と、第3の伝送ケーブル109と、を備える。
 挿入部101は、硬質または少なくとも一部が軟性で細長形状を有する。挿入部101は、患者等の被検体内に挿入される。挿入部101は、内部に1または複数のレンズを用いて構成され、観察像を結合する観察光学系が設けられている。
 光源装置102は、ライトガイド103の一端が接続される。光源装置102は、制御装置108による制御のもと、ライトガイド103の一端に被検体内を照明するための白色光、被検体に投与または散布された薬剤に励起光または赤外光を出射(供給)する。光源装置102は、LED(Light Emitting Diode)光源やLD(Laser Diode)等の半導体レーザ素子を用いて構成される。光源装置102と制御装置108とは、図7に示すように個別で通信する構成をしてもよいし、一体化した構成であってもよい。
 ライトガイド103は、一端が光源装置102に着脱自在に接続され、かつ、他端が挿入部101に着脱自在に接続される。ライトガイド103は、光源装置102から出射された光を一端から他端に導光し、挿入部101へ供給する。
 カメラヘッド104は、挿入部101の接眼部101Aが着脱自在に接続される。カメラヘッド104は、制御装置9の制御のもと、挿入部101によって結像された観察像を撮像することによって映像データ(撮像信号)を生成し、この映像データを出力する。また、カメラヘッド104は、円周方向に回転可能に設けられた操作リング部111と、内視鏡システム1の各種の操作を指示する指示信号の入力を受け付ける複数の入力部110と、を備える。
 第1の伝送ケーブル105は、一端が第1のコネクタ部105Aを介して制御装置108に着脱自在に接続され、他端が第2のコネクタ部105Bを介してカメラヘッド104に接続される。第1の伝送ケーブル105は、カメラヘッド104から出力される映像データを制御装置108へ伝送し、かつ、制御装置108から出力される制御信号、同期信号、クロック信号および電力等をカメラヘッド104へ伝送する。
 表示装置106は、第2の伝送ケーブル107を介して制御装置108に接続可能であり、制御装置108の制御のもと、制御装置108において処理された映像データに基づく表示画像を表示する。
 第2の伝送ケーブル107は、一端が表示装置106に着脱自在に接続され、他端が制御装置108に着脱自在に接続される。第2の伝送ケーブル107は、制御装置108において処理された映像データに基づく表示画像を表示装置106に伝送する。
 制御装置108は、メモリと、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)およびFPGA(Field Programmable Gate Array)等のハードウェアを有するプロセッサを用いて構成される。制御装置108は、メモリに記録されたプログラムに従って、第1の伝送ケーブル105、第2の伝送ケーブル107および第3の伝送ケーブル109の各々を介して、光源装置102、カメラヘッド104および表示装置106の動作を統括的に制御する。また、制御装置108は、第1の伝送ケーブル105を経由してカメラヘッド104から入力された映像データに対して、各種の画像処理を行って第2の伝送ケーブル107へ出力する。
 第3の伝送ケーブル109は、一端が光源装置102に着脱自在に接続され、他端側が制御装置108に着脱自在に接続される。第3の伝送ケーブル109は、制御装置108からの制御信号を光源装置102に伝送する。
 上記の硬性鏡100において、観察光学系を構成するレンズのうちの観察対象部位に対向する先端レンズの観察対象側表面に、光軸周辺に形成された撥水部と、観察対象部位側表面の周縁部に形成された親水部と、を形成し、親水部を光軸に向かって面積が徐々に減少する複数のくさび形親水領域を光軸回りに並接するように配置することにより、外力を加えることなく微小な水滴を除去することができる。なお、硬性鏡100においても、撥水部と親水部の公営は、上記したような種々の構成を採用することができる。
 以上、本発明に係る内視鏡の対物光学素子について、発明を実施するための形態により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。
 1 内視鏡システム
 2 内視鏡
 3 情報処理装置
 4 光源装置
 5 表示装置
 6 挿入部
 6a 先端部
 6b 湾曲部
 6c 可撓管部
 7 操作部
 7a 湾曲ノブ
 7b 処置具挿入部
 7c スイッチ部
 8 ユニバーサルコード
 8a、8b コネクタ
 10 内視鏡先端枠
 11 先端カバー
 12 湾曲部材
 13 カバー部材
 14 ノズル支持枠
 15 パイプ
 16 チューブ
 20 観察光学系
 21 先端レンズ
 22 対物レンズ指示枠
 23 後端レンズ
 30 撮像ユニット
 31 個体撮像素子
 32 回路基板
 33、34 カバーガラス
 40 観察窓
 41 吸引チャンネル
 42 照明窓
 43 ノズル
 50 撥水部
 51 第1撥水部
 52 第2撥水部
 52a くさび形撥水領域
 53 親水部
 53a くさび形親水領域
 100 硬性鏡
 101 挿入部
 102 光源装置
 103 ライトガイド
 104 カメラヘッド
 104A 第1のカメラヘッド
 104B 第2のカメラヘッド
 105 第1の伝送ケーブル
 106 表示装置
 107 第2の伝送ケーブル
 108 制御装置
 109 第3の伝送ケーブル
 110 入力部
 111 操作リング部

Claims (17)

  1.  観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、
     観察対象部位側表面の光軸周辺に形成された撥水部と、
     前記観察対象部位側表面の周縁部に形成された親水部と、
     を具備し、前記親水部は、前記光軸に向かって面積が徐々に減少する複数のくさび形親水領域を光軸回りに並接してなる、内視鏡の対物光学素子。
  2.  前記親水部を構成する複数のくさび形親水領域は頂点の角度が鋭角な扇形であって、前記複数のくさび形親水領域の円弧が連接して配置され、隣接するくさび形親水領域の側辺間は、前記撥水部に連続して配置される撥水領域である請求項1に記載の内視鏡の対物光学素子。
  3.  前記複数のくさび形親水領域の頂点の角度は鋭角であり、側辺は互いに向けて湾曲する曲線で形成されている請求項1に記載の内視鏡の対物光学素子。
  4.  前記複数のくさび形親水領域の頂点は、前記光軸を中心とする円に沿って並接されている、請求項1に記載の内視鏡の対物光学素子。
  5.  前記撥水部および前記親水部は、前記観察対象部位の画像を取得する観察光学系の先端レンズに形成される請求項1に記載の内視鏡の対物光学素子。
  6.  観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、
     観察対象部位側表面の光軸周辺に形成された第1撥水部と、前記第1撥水部の外周縁から前記対物光学素子の外周に向かって面積が徐々に減少する複数のくさび形撥水領域からなる第2撥水部とを有する撥水部と、
     前記観察対象部位側表面の周縁部から隣接する前記第2撥水部間に形成された親水部と、
     を具備する、内視鏡の対物光学素子。
  7.  前記第2撥水部を構成するくさび形撥水領域の頂点の角度は鋭角であり、前記対物光学素子の外周に至る請求項6に記載の内視鏡の対物光学素子。
  8.  前記撥水部および前記親水部は、前記観察対象部位の画像を取得する観察光学系の先端レンズに形成される請求項6に記載の内視鏡の対物光学素子。
  9.  観察対象の内部に挿入される挿入部の先端に配置され、観察対象部位に対向する内視鏡の対物光学素子において、
     複数のくさび形撥水領域からなる撥水部と、複数のくさび形親水領域からなる親水部とを具備し、観察対象部位側表面に円周方向に沿って前記くさび形撥水領域と前記くさび型親水領域が、交互に隣接して配置されている内視鏡の対物光学素子。
  10.  前記くさび形撥水領域と前記くさび型親水領域の頂点の角度は鋭角であり、各頂点が他方の底辺側に位置して配置されている、請求項9に記載の内視鏡の対物光学素子。
  11.  前記くさび型親水領域の頂点の角度は鋭角であり、側辺は互いに向けて湾曲する曲線で形成されている請求項9に記載の内視鏡の対物光学素子。
  12.  前記観察対象部位側表面の光軸周辺は、前記くさび形撥水領域と連続する撥水領域である、請求項9に記載の内視鏡の対物光学素子。
  13.  前記くさび形撥水領域と前記くさび型親水領域の頂点の角度は鋭角であり、各頂点が他方の底辺側に位置して配置されている、請求項12に記載の内視鏡の対物光学素子。
  14.  前記くさび型親水領域の側辺は、互いに向けて湾曲する曲線で形成されている請求項13に記載の内視鏡の対物光学素子。
  15.  前記観察対象部位側表面の光軸周辺は、前記くさび形撥水領域と連続する撥水領域である、請求項13に記載の内視鏡の対物光学素子。
  16.  前記撥水領域は、前記光軸を中心とした円形をなす請求項12に記載の内視鏡の対物光学素子。
  17.  前記撥水部および前記親水部は、前記観察対象部位の画像を取得する観察光学系の先端レンズに形成される請求項9に記載の内視鏡の対物光学素子。
PCT/JP2021/016663 2021-04-26 2021-04-26 内視鏡の対物光学素子 WO2022230024A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016663 WO2022230024A1 (ja) 2021-04-26 2021-04-26 内視鏡の対物光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016663 WO2022230024A1 (ja) 2021-04-26 2021-04-26 内視鏡の対物光学素子

Publications (1)

Publication Number Publication Date
WO2022230024A1 true WO2022230024A1 (ja) 2022-11-03

Family

ID=83846798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016663 WO2022230024A1 (ja) 2021-04-26 2021-04-26 内視鏡の対物光学素子

Country Status (1)

Country Link
WO (1) WO2022230024A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099260A (ja) * 1996-09-27 1998-04-21 Olympus Optical Co Ltd 内視鏡
WO2015075951A1 (ja) * 2013-11-25 2015-05-28 京セラ株式会社 レンズユニット、撮像装置、および車載カメラ
JP2018197821A (ja) * 2017-05-24 2018-12-13 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール
JP2019159079A (ja) * 2018-03-13 2019-09-19 マクセルホールディングス株式会社 レンズ、および、レンズユニット
WO2019203024A1 (ja) * 2018-04-20 2019-10-24 コニカミノルタ株式会社 透明部材及び透明部材の製造方法
JP2020046512A (ja) * 2018-09-18 2020-03-26 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099260A (ja) * 1996-09-27 1998-04-21 Olympus Optical Co Ltd 内視鏡
WO2015075951A1 (ja) * 2013-11-25 2015-05-28 京セラ株式会社 レンズユニット、撮像装置、および車載カメラ
JP2018197821A (ja) * 2017-05-24 2018-12-13 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール
JP2019159079A (ja) * 2018-03-13 2019-09-19 マクセルホールディングス株式会社 レンズ、および、レンズユニット
WO2019203024A1 (ja) * 2018-04-20 2019-10-24 コニカミノルタ株式会社 透明部材及び透明部材の製造方法
JP2020046512A (ja) * 2018-09-18 2020-03-26 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール

Similar Documents

Publication Publication Date Title
US7981027B2 (en) Endoscope and front cover
JP4856286B2 (ja) 内視鏡システム
EP1894510B1 (en) Endoscope
US8343043B2 (en) Endoscope
EP2110070B1 (en) Endoscope apparatus
JP4668831B2 (ja) 内視鏡
US20180344140A1 (en) Illuminator window for a multiple viewing element endoscope
WO2015122355A1 (ja) 内視鏡システム
JP5608580B2 (ja) 内視鏡
JP5138125B2 (ja) 内視鏡撮像ユニットの組立方法及び内視鏡
WO2011145392A1 (ja) 内視鏡、内視鏡用キャップ及び内視鏡装置
WO2022230024A1 (ja) 内視鏡の対物光学素子
US9537574B2 (en) Optical transmitting and receiving unit
JP6038425B2 (ja) 内視鏡及びこの内視鏡を含む内視鏡システム
JP2001087217A (ja) 内視鏡
WO2017141466A1 (ja) 超極細撮像ユニット、ビデオスコープ
JPH11342105A (ja) 内視鏡の観察装置
JP2009165632A (ja) 内視鏡用先端フード及びそれを用いる内視鏡ユニット
CN218922543U (zh) 一种视角可变的电子关节镜组件
US11213192B2 (en) Endoscope device and method with illumination fiber bundles having multiple numerical apertures
JP2001340286A (ja) 内視鏡
JP6407044B2 (ja) 内視鏡装置
US20220347936A1 (en) Endoscopic bendable tube, endoscope, and method of manufacturing endoscopic bendable tube
JP2003235789A (ja) 内視鏡の観察装置
JP2001275927A (ja) 指装着用内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939187

Country of ref document: EP

Kind code of ref document: A1