WO2022228227A1 - 高通量碳化硅陶瓷过滤膜及其制备方法 - Google Patents

高通量碳化硅陶瓷过滤膜及其制备方法 Download PDF

Info

Publication number
WO2022228227A1
WO2022228227A1 PCT/CN2022/087871 CN2022087871W WO2022228227A1 WO 2022228227 A1 WO2022228227 A1 WO 2022228227A1 CN 2022087871 W CN2022087871 W CN 2022087871W WO 2022228227 A1 WO2022228227 A1 WO 2022228227A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
ceramic filter
filter membrane
carrier
flux
Prior art date
Application number
PCT/CN2022/087871
Other languages
English (en)
French (fr)
Inventor
袁林峰
马切尔约翰尼
Original Assignee
南京依柯卡特排放技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110450376.2A external-priority patent/CN114345143B/zh
Priority claimed from CN202110448901.7A external-priority patent/CN113121241B/zh
Application filed by 南京依柯卡特排放技术股份有限公司 filed Critical 南京依柯卡特排放技术股份有限公司
Priority to EP22794698.5A priority Critical patent/EP4332071A1/en
Priority to JP2023548880A priority patent/JP2024508257A/ja
Priority to US18/280,280 priority patent/US20240033690A1/en
Publication of WO2022228227A1 publication Critical patent/WO2022228227A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4578Coating or impregnating of green ceramics or unset concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/48Influencing the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing

Definitions

  • the invention relates to the technical field of ceramic filter membranes, in particular to a high-flux silicon carbide ceramic filter membrane and a preparation method thereof.
  • the traditional silicon carbide membrane preparation is the same as the ceramic membrane, and its structure is also a sandwich structure, that is, a support layer, an intermediate layer and a separation layer.
  • the support layer is the carrier of the film and mainly ensures the mechanical strength of the film.
  • the separation layer plays the role of true filtration separation. Because the pore size of the carrier is often at least 25 times larger than that of the separation layer particles, in the existing process, an intermediate layer needs to be coated between the support layer and the separation layer to prevent the particles from penetrating into the support layer during the preparation of the separation layer. However, due to the existence of the intermediate layer, the flux is objectively reduced. At the same time, the gap between the micropore diameters of the carrier, the intermediate layer and the separation layer in the traditional process is small, usually varying between 1-5 times, resulting in low flux. , increasing the difficulty.
  • the preparation process of the traditional silicon carbide film process requires at least three sintering, the preparation process is relatively complex and the cost is high, and the product needs to be coated many times, resulting in low yield and low throughput.
  • the traditional process after each coating is sintered at high temperature (usually it needs to be sintered at 2000-2400 °C, under the protection of inert gas such as argon), it needs to be oxidized at high temperature (at 700-1200 °C, under the condition of ventilation) , in order to remove the carbon remaining from high temperature sintering, which originates from the green body or coating slurry containing organic substances such as binders and dispersants. If carbon is not removed, since carbon is a hydrophobic substance, it is difficult for the solvent/water in the slurry to enter the pores of the carrier through capillary force during film coating, so the final film cannot be formed.
  • the product needs to be oxidized after high temperature sintering.
  • the removal of carbon makes the surface hydrophilic and the pore size becomes relatively larger, which is beneficial for the slurry solvent/water to enter the carrier pores through capillary force and finally form a coating film, but this requires a coating in the coating slurry
  • the particle size is large enough so that it does not enter the carrier due to capillary forces.
  • the purpose of the present invention is to provide a preparation method of a high-flux silicon carbide ceramic filter body that does not remove carbon after the sintering process, that is, the carrier is not oxidized to remove carbon after sintering, but the residual carbon is retained.
  • the membrane layer slurry and the preparation process to reduce the surface tension, so that the film layer slurry can still be coated by capillary force when the carrier is hydrophobic, and the film layer is finely divided by the same-sex repulsion caused by the same charge on the surface of the carrier and the coating particles.
  • the particles are coated on a carrier with an average pore size of 10 ⁇ m or more.
  • a first aspect of the present invention proposes a method for preparing a high-flux silicon carbide ceramic filter body, comprising the following steps:
  • the preparation of the carrier specifically includes the following process:
  • a multi-channel tubular blank is extruded, and then the blank is sintered, and the blank is recrystallized to form on the wall of the channel.
  • a microporous structure with a first mean pore diameter is produced to produce a carrier;
  • the silicon carbide powder with the first particle size mismatch ratio comprises silicon carbide powder I and silicon carbide powder II, and the median particle size of the silicon carbide powder I is 5-5% of the median particle size of the silicon carbide powder II. 30 times. More preferably, the median particle size of the silicon carbide powder I is between 10-30 ⁇ m; the median particle size of the silicon carbide powder II is between 0.5-6 ⁇ m.
  • the first adjuvant comprises a binder, a plasticizer and a dispersant. More preferably, the mass ratio of the silicon carbide powder I, silicon carbide powder II, binder, plasticizer, dispersant and water is (50-75): (10-20): (4-8): (1-3): (1-3): (10-20).
  • drying the multi-channel tubular green body is further included before the high temperature sintering of the green body.
  • the film layer slurry is prepared by mixing silicon carbide powder with a second particle size mismatch ratio, a second auxiliary agent and water, and the silicon carbide powder with a second particle size mismatch ratio comprises silicon carbide powder III and silicon carbide powder IV, the median particle size of silicon carbide powder III is 3-8 times that of silicon carbide powder IV.
  • the median particle size of the silicon carbide powder III is between 0.5-6 ⁇ m, and the median particle size of the silicon carbide powder IV is between 0.1-3 ⁇ m.
  • the second auxiliary agent comprises a binder, a plasticizer, a dispersant, a defoaming agent and a surfactant, wherein silicon carbide powder III, silicon carbide powder IV, binder, plasticizer, dispersant
  • the mass ratio of agent, defoamer, surfactant and water is (5-15): (5-15): (3-10): (5-15): (0-1.5): (0-1.5) :(1-5):(50-80).
  • the pH value of the membrane layer slurry is between 6-10.
  • the membrane layer slurry is first processed by the following pretreatment method and then loaded into the channel:
  • the membrane layer slurry enters the channel at a speed of 20-100 mm/s.
  • the predetermined time is 3-15 seconds.
  • the high temperature sintering of the channel membrane layer and the high temperature sintering of the green body include degumming treatment.
  • the temperature is raised to 300-500° C., and the temperature is kept for 2-5 hours, and the green body and the channel film layer are degummed.
  • the sintering temperature for recrystallization of the channel membrane layer is lower than the sintering temperature for recrystallization of the green body. More preferably, the sintering temperature for recrystallization of the channel membrane layer is between 1600-2000°C, and the sintering temperature for the recrystallization of the green body is between 2000-2400°C.
  • the particles in the membrane layer slurry carry the same charge as the carrier surface.
  • the second aspect of the present invention also provides a high-flux silicon carbide ceramic filter membrane prepared according to the aforementioned preparation method of a high-flux silicon carbide ceramic filter membrane, which is composed of a carrier and a separation layer, and does not include an intermediate layer.
  • the first mean pore diameter is greater than or equal to 10 ⁇ m, and the second mean pore diameter is 0.2 ⁇ m or less. It is especially preferred that the second mean pore diameter is in the range of 0.15 ⁇ m to 0.2 ⁇ m.
  • the third aspect of the present invention also provides a high-flux silicon carbide ceramic filter membrane, the ceramic filter membrane is composed of a carrier with micropores and a separation layer with micropores, and does not include an intermediate layer; wherein the ceramic filter membrane has The average pore diameter of the micropores in the microporous carrier is 20 times or more the average pore diameter of the micropores in the separation layer with micropores.
  • the average pore diameter of the micropores in the carrier with micropores is more than 10 ⁇ m, and the average pore diameter of the micropores in the separation layer with micropores is less than 0.2 ⁇ m.
  • the average pore size of the micropores in the separation layer with micropores is between 0.15 ⁇ m and 0.2 ⁇ m.
  • the present invention adjusts and optimizes the preparation process of the ceramic filter membrane, removes the intermediate layer and the preparation process of the intermediate layer in the traditional process, optimizes the membrane layer slurry formula, and does not oxidize after the carrier is sintered and prepared.
  • the residual carbon is used to block the micropores of the carrier to a certain extent, thereby reducing the probability of the small particles of silicon carbide in the separation layer entering the pores of the carrier.
  • the layer slurry is applied to avoid the entry of fine particles into the micropores of the carrier due to capillary filtration and film formation.
  • a silicon carbide membrane separation layer with an average pore diameter of 150 nm can be directly coated on the silicon carbide carrier with an average pore diameter of 10 ⁇ m or more, so that the silicon carbide membrane can be sintered twice at the ultrafiltration application level, and the preparation of the filtration membrane is completed. , which avoids the insufficiency of multi-layer structure (carrier, intermediate layer and separation layer) and at least 3 times of firing of the previous ceramic membranes. Due to the reduction of the preparation of the intermediate layer, the production cost is greatly reduced, and the qualified rate of the product is improved.
  • the ceramic filtration membrane prepared by the present invention is only composed of a silicon carbide carrier and a separation layer, and realizes the preparation of a separation layer with a high-magnification pore size on a large pore size carrier, without an intermediate layer.
  • the flux of the present invention can be greatly increased, and the tested flux is increased by more than 30%.
  • Fig. 1 is the process roadmap of the preparation of ceramic filter membrane by three-step sintering and oxidation in the existing traditional process.
  • FIG. 2 is a process flow diagram of preparing a ceramic filter membrane by removing an intermediate layer according to an exemplary embodiment of the present invention.
  • FIG. 3 is an example of a manufacturing process of a ceramic filter membrane according to an exemplary embodiment of the present invention.
  • FIG. 4 is an example of the preparation process of the silicon carbide carrier in the preparation process of the ceramic filter membrane of the exemplary embodiment of the present invention.
  • FIG. 5 is an example of the preparation and decarbonization process of the separation layer in the preparation process of the ceramic filter membrane of the exemplary embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a ceramic body comprising a carrier, intermediate and separation layers prepared using the conventional process shown in FIG. 1 .
  • Example 7 is a schematic diagram of a silicon carbide ceramic membrane prepared by using the preparation method of a ceramic filter membrane in Example 1, which does not include an intermediate layer.
  • FIG. 8 is a test chart of the carrier pore size of the silicon carbide ceramic membrane prepared by the preparation method of the ceramic filter membrane in Example 1, wherein the average pore size of the carrier is 10.5 ⁇ m.
  • FIG. 9 is a pore size test diagram of the separation layer of the silicon carbide ceramic membrane prepared by the method for preparing a ceramic filter membrane in Example 1, wherein the average pore size of the separation layer is 0.15 ⁇ m.
  • FIG. 10 is a pore size diagram of a carrier of a silicon carbide ceramic membrane prepared by the method for preparing a ceramic filter membrane in Example 2, which does not include an intermediate layer, and the average pore size of the carrier is 15 ⁇ m.
  • FIG. 11 is a pore size test diagram of the separation layer of the silicon carbide ceramic membrane prepared by the method for preparing the ceramic filter membrane in Example 2, wherein the average pore size of the separation layer is 0.2 ⁇ m.
  • FIG. 1 shows an example diagram of a ceramic membrane with a typical sandwich structure prepared according to a traditional sintering process, which has a typical carrier, intermediate layer, and separation layer structure, and the mean pore size of the intermediate layer is approximately the mean pore size of the separation layer. 2 times, and the flux is affected due to the presence of the intermediate layer and the lower size of the pore size of the separation layer, resulting in a certain reduction.
  • the present invention aims to propose an improved method for preparing a ceramic filter membrane, remove the intermediate layer and its preparation process, and adopt a single direct coating separation layer process on the basis of the carrier, that is, after the carrier is sintered, it is directly coated with The separation layer is covered, and the carbon removal can be carried out after sintering.
  • a separation layer with an average pore diameter of 150 nm is directly coated on the top, which effectively prevents the silicon carbide fine particles of the membrane layer slurry from entering the pores of the carrier during coating.
  • it can avoid the insufficiency of multiple coatings, that is, at least two coatings (coating the intermediate layer on the carrier first, and then coating the separation layer on the intermediate layer) and 3 times of sintering in the traditional preparation process of the ceramic membrane, thereby reducing the production rate. cost and improve product qualification rate. Due to the removal of the intermediate layer, the flux of the ceramic membrane with the same pore size can be greatly improved.
  • the preparation method of the present invention is especially suitable for preparing ceramic filtration membranes with separation layers whose pore diameters of microporous structures differ by more than 20 times on the basis of large pore size carriers.
  • the carrier and the separation layer attached to the surface of the carrier are composed, especially the average pore size of the carrier micropores (first pore size D1) is 20 times or more than the average pore size of the separation layer micropores (second pore size D2).
  • first pore size D1 is 20 times or more than the average pore size of the separation layer micropores
  • second pore size D2 the average pore size of the separation layer micropores
  • the preparation process includes: preparing a multi-channel tubular body, and sintering the multi-channel tubular body at a high temperature to prepare a carrier with a microporous structure with a first average pore diameter;
  • the slurry is loaded into the channel from the bottom of the prepared carrier, and after the membrane layer slurry reaches the top of the carrier for a predetermined time, the membrane layer slurry in the channel is released to form a channel membrane layer; wherein the particles of the membrane layer slurry and the The surface of the carrier carries the same charge; the channel membrane layer is dried; under the protection of an inert atmosphere, the channel membrane layer is sintered at a high temperature to form a microporous structure with a second average pore size, and a separation layer is produced; and the separation layer is subjected to high-temperature oxidation sintering to remove residual carbon.
  • the process includes:
  • the multi-channel tubular blank After mixing the silicon carbide powder with the first particle size mismatch ratio, the first auxiliary agent and water, the multi-channel tubular blank is extruded, and then the blank is sintered at high temperature, and the blank is recrystallized. forming a microporous structure with a first mean pore diameter to produce a carrier;
  • the carrier is erected, the membrane layer slurry is loaded into each channel from the bottom of the carrier, and the membrane layer slurry in the channel is released after the membrane layer slurry reaches the top of the carrier for a predetermined time to form a channel membrane layer;
  • the silicon carbide powder with the mismatch ratio of two particle sizes, the second auxiliary agent and water are mixed, and the pH value of the slurry is controlled between 6-10;
  • the channel membrane layer is sintered at high temperature to form a microporous structure with a second mean pore diameter, and a separation layer is produced;
  • the separation layer is oxidized and sintered at high temperature to remove the carbon remaining in the separation layer.
  • the multi-channel tubular body is dried in a drying chamber for 24-48 hours, and the environmental conditions in the drying chamber are controlled as follows: relative humidity 20-60%, temperature 25-50°C. During the drying process, hot air is passed through the green body channel with a flow rate of 0.5-2m/s.
  • the silicon carbide powder with the first particle size mismatch ratio comprises silicon carbide powder I and silicon carbide powder II, and the median particle size of the silicon carbide powder I is 50% of the median particle size of the silicon carbide powder II. 5-30 times.
  • the median particle size of the silicon carbide powder I is between 10-30 ⁇ m; the median particle size of the silicon carbide powder II is between 0.5-6 ⁇ m.
  • Exemplary first adjuvants include binders, plasticizers, and dispersants.
  • the mass ratio of silicon carbide powder I, silicon carbide powder II, binder, plasticizer, dispersant and water is (50-75): (10-20): (4-8): (1 -3): (1-3): (10-20).
  • methyl hydroxyethyl cellulose or polyvinyl alcohol can be selected as the aforementioned binder, polyethylene glycol or phthalate is used as plasticizer, and acrylic polymer is used as dispersant.
  • the silicon carbide powder with the second particle size mismatch ratio comprises silicon carbide powder III and silicon carbide powder IV, and the median particle size of the silicon carbide powder III is 3-3 times the median particle size of the silicon carbide powder IV. 8 times.
  • the median particle size of the silicon carbide powder III is between 0.5-6 ⁇ m
  • the median particle size of the silicon carbide powder IV is between 0.1-3 ⁇ m.
  • the median particle size of the silicon carbide powder III and the silicon carbide powder IV can be controlled between 0.1-1.5 ⁇ m, so as to effectively prepare a microporous structure with a pore diameter of 200 ⁇ m or less.
  • median particle size in the embodiments of the present invention is also referred to as the median particle size.
  • Exemplary second adjuvants include binders, plasticizers, dispersants, defoamers, and surfactants, wherein silicon carbide powder III, silicon carbide powder IV, binders, plasticizers, dispersants, The mass ratio of defoamer, surfactant and water is (5-15):(5-15):(3-10):(5-15):(0-1.5):(0-1.5):( 1-5): (50-80).
  • the carbon aforementioned binder at least one of methyl hydroxyethyl cellulose or polyvinyl alcohol can be used.
  • the plasticizer is polyethylene glycol or phthalate; the dispersant is acrylic polymer; the defoamer is silicone polyether, and the surfactant is alcohol.
  • the uniformly mixed membrane layer slurry according to the aforementioned mass ratio is first processed by the following pretreatment method and then loaded into the channel:
  • the membrane layer slurry is controlled to be loaded into the channel at a speed of 20-100 mm/s. More preferably, after the film layer slurry reaches the top of the carrier, it is kept for 3-15 seconds to achieve effective coating, and the film layer is formed by capillary action.
  • the carbon removal is not carried out by oxidation, and the residual carbon is used to block the micropores of the carrier to a certain extent, thereby reducing the probability of the small particles of silicon carbide in the separation layer entering the carrier pores.
  • the same-sex charge repulsion between the particles of the membrane slurry and the surface of the carrier is combined to prevent the membrane slurry from entering the micropores of the carrier due to capillary filtration and film formation during coating.
  • various methods can be used to adjust the particles (silicon carbide particles) to carry the same charge as the carrier surface, for example, through the adjustment of fluid (slurry) characteristics, pH adjustment, etc., which can be used. One of them, or a combination of two or more means.
  • the pH value of the slurry can be controlled between 6-10, so that the membrane The particles in the layer slurry and the surface of the carrier carry the same charge, and the particles in the film layer slurry are prevented from entering the pore size of the carrier through the repulsion of the same charge.
  • the high temperature sintering of the channel film layer and the high temperature sintering of the green body include degumming treatment. For example, under the protection of argon atmosphere, heating and heating, heating to 300-500 ° C, and holding for 2-5 hours, the green body and the film layer are degummed.
  • the temperature is again heated to the holding range for recrystallization to carry out recrystallization. Finally cooled to room temperature with the furnace.
  • the sintering temperature for the recrystallization of the channel membrane layer is lower than the sintering temperature for the recrystallization of the green body.
  • the sintering temperature for recrystallization of the channel membrane layer is between 1600-2000°C, and the sintering temperature for the recrystallization of the green body is between 2000-2400°C.
  • the raw materials of the aforementioned green body and slurry can be obtained through commercial channels.
  • the purity of silicon carbide powder I is greater than 98%, and the purity of silicon carbide powder II is greater than 99%.
  • the purity of silicon carbide powder III and silicon carbide powder IV is greater than 99%.
  • raw materials silicon carbide powder I, silicon carbide powder II, methyl hydroxyethyl cellulose, polyethylene glycol, acrylic polymer and water, according to the mass ratio of 60:18:6:2:2:12.
  • the median particle size of the silicon carbide powder I is 20 times the median particle size of the silicon carbide powder II.
  • the median particle size of silicon carbide powder I 20 ⁇ m, the purity is greater than 98%, the median particle size of silicon carbide powder II: 1 ⁇ m, the purity is greater than 99%.
  • Mixing of raw materials According to the order of adding liquid first and then powder, mix the raw materials selected in proportion at room temperature (20-25 degrees Celsius) to form a uniform mixture.
  • Molding put the obtained mixture into an extrusion molding machine, and shape into a multi-channel tubular body under the extrusion pressure of 120 MPa.
  • Drying Dry the extruded body in a drying chamber for 24 hours, relative humidity: 50-60%, temperature 25-30°C, hot air is passed through the body channel, and the flow rate is 2m/s.
  • High temperature sintering and recrystallization the dried green body is sintered at high temperature under the protection of argon atmosphere. The temperature was raised to 500°C, and the temperature was kept for 2 hours, and the green body was degummed. After the degumming is completed, the temperature is raised to 2400°C, and the sintering and heating process is carried out for 18 hours. The green body is recrystallized and sintered for 5 hours, and finally cooled to room temperature with the furnace.
  • Slurry preparation silicon carbide powder III, silicon carbide powder IV, methyl hydroxyethyl cellulose, phthalate, acrylic polymer dispersant, silicone polyether defoamer, alcohol surfactant PEG and water were mixed uniformly according to the mass ratio of 15:10:5:8:1.5:1.5:3:56, the pH was controlled at 8-9, and alumina balls with a diameter of 8-10mm were added for 48 hours of rolling milling to obtain a film layer slurry;
  • the median particle size of the silicon carbide powder III is 5 times the median particle size of the silicon carbide powder IV.
  • the median particle size of silicon carbide powder III 1.5 ⁇ m, the purity is greater than 99%, the median particle size of silicon carbide powder IV: 0.3 ⁇ m, the purity is greater than 99%.
  • Membrane coating put the carrier upright, put the membrane slurry into the carrier channel from the bottom at a speed of 80mm/s, wait for the membrane slurry to reach the top of the carrier, stop for 4 seconds, and finally release the membrane slurry in the carrier channel, use Capillary action forms the membrane layer.
  • Film layer drying The prepared silicon carbide film is dried in a drying room for 24 hours, relative humidity: 50-60%, temperature 25-30°C, and hot air is passed through the green body channel with a flow rate of 2m/s.
  • High temperature sintering and recrystallization The dried silicon carbide film is sintered at high temperature under the protection of argon atmosphere. The temperature was raised to 500° C., and the temperature was maintained for 2 hours to debond the silicon carbide film. After the degumming is completed, the temperature is raised to 1600 ° C, recrystallization and sintering is carried out, the holding time is 5 hours, and finally the furnace is cooled to room temperature. The sintering heating process was carried out for 20 hours.
  • Oxidation and sintering Under the condition of ventilation, the obtained silicon carbide film is oxidized and sintered at 800 °C to remove residual carbon and improve the mechanical strength of the film.
  • the obtained product is a 100% recrystallized silicon carbide film, as shown in Figure 7.
  • the separation layer has a thickness of about 47.9 ⁇ m, is attached to the surface of the carrier, and does not contain an intermediate layer.
  • the average pore size of the microporous structure of the carrier of the prepared ceramic membrane is 10.5 ⁇ m (see Figure 8), and the average pore size of the microporous structure of the separation layer is 0.15 ⁇ m (see Figure 9), realizing the preparation of large-pore size carriers. And on this basis, the coating and preparation of a separation layer with a small mean pore size (0.15 ⁇ m) is realized, which not only ensures the quality of the filtered water, but also ensures high flux based on the large pore size carrier.
  • raw materials silicon carbide powder I, silicon carbide powder II, methyl hydroxyethyl cellulose, polyethylene glycol, acrylic polymer and water, according to the mass ratio of 65:15:5:1:1:13.
  • the median particle size of the silicon carbide powder I is 15 times the median particle size of the silicon carbide powder II.
  • the median particle size of silicon carbide powder I 30 ⁇ m, the purity is greater than 98%, the median particle size of silicon carbide powder II: 2 ⁇ m, the purity is greater than 99%.
  • Mixing of raw materials According to the order of adding liquid first and then powder, mix the raw materials selected in proportion at room temperature (20-25 degrees Celsius) to form a uniform mixture.
  • Molding put the obtained mixture into an extrusion molding machine, and shape into a multi-channel tubular body under the extrusion pressure of 120 MPa.
  • Drying Dry the extruded body in a drying chamber for 24 hours, relative humidity: 50-60%, temperature 25-30°C, hot air is passed through the body channel, and the flow rate is 2m/s.
  • High temperature sintering and recrystallization the dried green body is sintered at high temperature under the protection of argon atmosphere. The temperature was raised to 500°C, and the temperature was kept for 2 hours, and the green body was degummed. After the degumming is completed, the temperature is raised to 2400°C, and the sintering and heating process is carried out for 25 hours. The green body is recrystallized and sintered for 5 hours, and finally cooled to room temperature with the furnace.
  • Slurry preparation silicon carbide powder III, silicon carbide powder IV, methyl hydroxyethyl cellulose, phthalate, acrylic polymer dispersant, silicone polyether defoamer, alcohol surfactant PEG and water were mixed uniformly according to the mass ratio of 15:15:6:6:1.5:1.5:4:51, the pH was controlled at 7-8, and alumina balls with a diameter of 8-10mm were added for 48 hours of rolling milling to obtain a film layer slurry;
  • the median particle size of the silicon carbide powder III is 5 times the median particle size of the silicon carbide powder IV.
  • the median particle size of silicon carbide powder III 1.5 ⁇ m, the purity is greater than 99%, the median particle size of silicon carbide powder IV: 0.3 ⁇ m, the purity is greater than 99%.
  • Membrane coating put the carrier upright, put the membrane slurry into the carrier channel from the bottom at a speed of 80mm/s, wait for the membrane slurry to reach the top of the carrier, stop for 3 seconds, and finally release the membrane slurry in the carrier channel, use Capillary action forms the membrane layer.
  • Film layer drying The prepared silicon carbide film is dried in a drying room for 24 hours, relative humidity: 50-60%, temperature 25-30°C, and hot air is passed through the green body channel with a flow rate of 2m/s.
  • High temperature sintering and recrystallization The dried silicon carbide film is sintered at high temperature under the protection of argon atmosphere. The temperature was raised to 500° C., and the temperature was maintained for 2 hours to debond the silicon carbide film. After the degumming is completed, the temperature is raised to 1800° C., the sintering and heating process is carried out for 25 hours, the recrystallization and sintering is carried out, the holding time is 5 hours, and finally the furnace is cooled to room temperature.
  • Oxidative sintering Under the condition of ventilation, the obtained silicon carbide film is oxidized and sintered at 800°C to remove residual carbon and improve the mechanical strength of the film.
  • the obtained product is a 100% recrystallized silicon carbide film.
  • the average pore size of the microporous structure of the prepared ceramic membrane carrier was 15 ⁇ m (see FIG. 10 ), and the average pore size of the microporous structure of the separation layer was 0.2 ⁇ m (see FIG. 11 ), and no intermediate layer was included.
  • the ceramic membranes prepared in Examples 1 and 2 were tested. From the test results, it can be seen that the average pore size of the microporous structure of the carrier of the prepared ceramic membranes is above 10 ⁇ m (as shown in Figures 8 and 10 ). ), the average pore size of the microporous structure of the separation layer is below 0.2 ⁇ m (as shown in Figures 9 and 11), to realize the preparation of large-pore size carriers and the coating and preparation of small-pore size separation layers on this basis, the technology of the present invention In particular, the preparation of the ceramic filter membrane with the difference between the micropore diameter of the separation layer and the micropore diameter of the carrier is 20 times or more.
  • the preparation of silicon carbide ceramic membranes with the mean pore diameter of the carrier micropores above 10 ⁇ m and the mean pore diameter of the separation layer micropores below 0.2 ⁇ m can be realized.
  • the mean pore size can be controlled within the range of 0.15 ⁇ m-0.2 ⁇ m, enabling the preparation of low-cost, high-throughput ceramic filter membranes.
  • the strength test was carried out on the membrane structure of the ceramic membrane prepared in Example 1, and the separation layer (ie membrane) of the test result had high mechanical strength, and the bending strength reached more than 25MPa.
  • the test results of the films that have passed multiple sets of tests can be maintained at about 35MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

一种高通量碳化硅陶瓷过滤膜及其制备方法,采用在载体基础上单次直接覆分离层工艺,即载体烧结后,直接涂覆分离层,烧结后再进行除碳即可。通过优化烧结工艺,并优化制膜液配方,使其在涂覆时避免因毛细过滤和薄膜形成过程中碳化硅细小颗粒进入载体的微孔内,可实现在平均孔径10μm以上碳化硅载体上直接涂覆平均孔径在0.2μm以下的分离层,在涂覆时有效阻止碳化硅细小颗粒进入载体的微孔内。

Description

高通量碳化硅陶瓷过滤膜及其制备方法 技术领域
本发明涉及陶瓷过滤膜技术领域,具体而言涉及一种高通量碳化硅陶瓷过滤膜及其制备方法。
背景技术
传统碳化硅膜制备跟陶瓷膜一样,其结构也是三明治结构,即为支撑层、中间层和分离层。支撑层是膜的载体,主要保证膜的机械强度。分离层起真正过滤分离作用。因为载体孔径往往是分离层颗粒的至少25倍以上,所以在现有的工艺中,需在支撑层和分离层之间涂覆中间层,以防止分离层制备过程中其颗粒向支撑层渗透。然而,由于中间层的存在,客观上降低了通量,同时传统工艺的载体、中间层以及分离层的微孔孔径之间的差距小,通常在1-5倍之间变化,造成通量低,提高难度大。
如图1所示,碳化硅膜传统工艺的制备流程需要进行至少3次烧结,制备工艺相对复杂、成本高,而产品因为需多次涂覆,导致成品率低、通量低。传统工艺中,每次涂覆高温烧结后(通常需要在2000-2400℃、惰性气体如氩气保护条件下烧结),需对其进行高温氧化(在700-1200℃,通空气条件下进行),以此来去除高温烧结残留下来的碳,这些碳来源于坯体或者涂膜浆料含粘合剂、分散剂等有机物。如果不去除碳,由于碳是疏水性物质,在涂膜时候浆料里的溶剂/水很难通过毛细管力进入载体孔内,因此无法最终形成涂膜。
因此,在传统工艺里,需在高温烧结后对产品进行氧化处理。载体在氧化后,碳的去除使得表面亲水,孔径也相对变大,因而有利于浆料溶剂/水通过毛细管力进入载体孔内最终形成涂膜,但这需要涂膜浆料里的涂层颗粒粒径足够大才能使其不因毛细管力而进入载体。
发明内容
本发明目的在于提供一种在烧结工艺后不去除碳的高通量碳化硅陶瓷过滤体的制备方法,即载体烧结后不进行氧化除碳,而是保留残留的碳,具体通过优化膜层浆液和制备工艺,降低表面张力,使膜层浆液在载体为疏水的情况下仍可利用毛细管力进行涂覆,利用载体表面和涂层颗粒带同性电荷而产生的同性相斥作用,将膜层细小颗粒涂在平均孔径为10μm以上的载体上。
本发明的第一方面提出了一种高通量碳化硅陶瓷过滤体的制备方法,包括以下步骤:
(1)制备多通道管状坯体,并高温烧结多通道管状坯体,制备出具有第一均值孔径的微孔结构的载体;
(2)竖立载体,将膜层浆液从步骤(1)制备的得到的载体底部载入通道,待膜层浆液到达所述载体顶部,保持预定时间后,释放通道里的膜层浆液,形成通道膜层;其中所述膜层浆液的颗粒与所述载体表面携带同性电荷;
(3)干燥步骤(2)制备的通道膜层;
(4)在惰性气氛保护条件下,高温烧结所述通道膜层,形成具有第二均值孔径的微孔结构,制作出分离层;以及
(5)对步骤(4)得到的分离层进行高温氧化烧结,去除残留碳。
优选地,所述载体的制备具体包含以下过程:
将具有第一粒径错配比的碳化硅粉与第一助剂和水混合后,挤出成型多通道管状坯体,再对坯体进行烧结,通过坯体重结晶,在通道的壁上形成具有第一均值孔径的微孔结构,制作出载体;
优选地,所述具有第一粒径错配比的碳化硅粉包含碳化硅粉I和碳化硅粉II,碳化硅粉I的中值粒径为碳化硅粉II的中值粒径的5-30倍。更加优选地,所述碳化硅粉I的中值粒径为在10-30μm之间;碳化硅粉II的中值粒径在0.5-6μm之间。
优选地,所述第一助剂包含粘合剂、增塑剂以及分散剂。更加优选地,所述碳化硅粉I、碳化硅粉II、粘合剂、增塑剂、分散剂与水的质量比为(50-75):(10-20):(4-8):(1-3):(1-3):(10-20)。
优选地,在高温烧结坯体之前,还包含对多通道管状坯体进行干燥。
优选地,所述膜层浆液由具有第二粒径错配比的碳化硅粉、第二助剂与水混合制成,所述具有第二粒径错配比的碳化硅粉包含碳化硅粉III和碳化硅粉IV,碳化硅粉III的中值粒径为碳化硅粉IV的中值粒径的3-8倍。
优选地,所述碳化硅粉III的中值粒径在0.5-6μm之间,所述碳化硅粉IV的中值粒径在0.1-3μm之间。
优选地,所述第二助剂包含粘合剂、增塑剂、分散剂、消泡剂以及表面活性剂,其中,碳化硅粉III、碳化硅粉IV、粘合剂、增塑剂、分散剂、消泡剂、表面活性剂和水的质量比为(5-15):(5-15):(3-10):(5-15):(0-1.5):(0-1.5):(1-5):(50-80)。
优选地,所述膜层浆液的pH值在6-10之间。
优选地,所述膜层浆液先通过如下预处理方法处理再载入通道中:
添加直径8-10mm氧化铝球,滚动碾磨12-48小时。
优选地,所述膜层浆液以20-100mm/s速度进入所述通道。
优选地,在所述步骤(2)中,所述预定时间为3-15秒。
优选地,所述通道膜层的高温烧结以及坯体高温烧结过程中,包含脱胶处理。例如,在氩气气氛保护条件下,升温到300-500℃,保温2-5小时,对坯体和通道膜层进行脱胶。
脱胶完成后,进行高温烧结,对碳化硅颗粒实现重结晶。
优选地,所述通道膜层重结晶的烧结温度低于坯体重结晶的烧结温度。更加优选地,所述通道膜层重结晶的烧结温度在1600-2000℃之间,坯体重结晶的烧结温度在2000-2400℃之间。
优选地,膜层浆液中的颗粒与载体表面携带同性电荷。
本发明的第二方面还提出一种根据前述高通量碳化硅陶瓷过滤膜的制备方法所制备的高通量碳化硅陶瓷过滤膜,由载体和分离层构成,并且,不包含中间层。
尤其优选地,所述第一均值孔径所述10μm以上,第二均值孔径在0.2μm以下。尤其优选的是,第二均值孔径在0.15μm-0.2μm。
本发明的第三方面还提出一种高通量碳化硅陶瓷过滤膜,所述陶瓷过滤膜由具有微孔的载体和具有微孔的分离层构成,并且,不包含中间层;其中所述具有微孔的载体中微孔的平均孔径是所述具有微孔的分离层中微孔的平均孔径的20倍或者20倍以上。
优选地,所述具有微孔的载体中微孔的平均孔径在10μm以上,所述具有微孔的分离层中微孔的平均孔径在0.2μm以下。
优选地,所述具有微孔的分离层中微孔的平均孔径在0.15μm-0.2μm之间。
与现有技术相比,本发明对陶瓷过滤膜的制备工艺进行调整优化,去除传统工艺中的中间层以及中间层的制备过程,通过膜层浆液配方优化,在载体烧结制备后,不进行氧化除碳,利用残留的碳起到一定堵载体微孔的作用,从而降低分离层碳化硅小颗粒进入载体孔内的概率,同时结合膜层浆液的颗粒与载体表面的同性电荷排斥作用,使膜层浆液在涂覆时避免因毛细过滤和薄膜形成过程中细小颗粒进入载体的微孔内。
通过本发明的工艺优化,可在平均孔径10μm以上碳化硅载体上直接涂覆平均孔径为150nm的碳化硅膜分离层,使碳化硅膜在超滤应用水平上实现2次烧结即完成过滤膜制备,避免了以往陶瓷膜需多层结构(载体、中间层以及分离层)以及至少3次烧成的不足,由于减少中间层的制备,大幅降低了生产成本,且提高产品的合格率。
同时,本发明制备的陶瓷过滤膜,仅由碳化硅载体和分离层构成,实现在大孔径载体上的高倍率孔径的分离层的制备,不包含中间层,对比现有同等孔径规格的过滤膜产品,本发 明通量可大幅提升,经测试的通量提升达到30%以上。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
附图说明
在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是现有传统工艺采用三步烧结与氧化的制备陶瓷过滤膜工艺路线图。
图2本发明示例性实施例的去除中间层的制备陶瓷过滤膜的工艺路线图。
图3是本发明示例性实施例的陶瓷过滤膜的制备过程示例。
图4是本发明示例性实施例的陶瓷过滤膜的制备过程中碳化硅载体的制备过程示例。
图5是本发明示例性实施例的陶瓷过滤膜的制备过程中分离层的制备与去碳过程示例。
图6是采用图1所示传统工艺制备的包含载体、中间和分离层的陶瓷体的示意图。
图7是采用实施例1的陶瓷过滤膜制备方法制得的碳化硅陶瓷膜的示意图,其中不包含中间层。
图8是采用实施例1的陶瓷过滤膜制备方法制得的碳化硅陶瓷膜的载体孔径测试图,其中载体孔径均值为10.5μm。
图9是采用实施例1的陶瓷过滤膜制备方法制得的碳化硅陶瓷膜的分离层的孔径测试图,其中分离层孔径均值为0.15μm。
图10是采用实施例2的陶瓷过滤膜制备方法制得的碳化硅陶瓷膜的载体孔径图,其中不包含中间层,载体孔径均值为15μm。
图11是采用实施例2的陶瓷过滤膜制备方法制得的碳化硅陶瓷膜的分离层的孔径测试图,其中分离层孔径均值为0.2μm。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包含本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为 本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
如图1所示的传统三明治结构的陶瓷膜的制备工艺,制备过程需要至少进行3次烧结,并且在每次涂覆高温烧结后,需对其进行高温氧化,以去除高温烧结残留下来的碳,因为制备工艺相对复杂,成本高,产品因为需多次涂覆,成品率低。如图6所示为根据传统烧结工艺制备的具有典型三明治结构的陶瓷膜的示例图,其具有典型的载体、中间层和分离层结构,并且中间层的孔径均值是分离层的孔径均值的约2倍,而且由于中间层的存在以及其与分离层的孔径的低倍尺寸,造成通量受影响,造成一定程度的降低。
如图2所示,本发明旨在提出一种改进的陶瓷过滤膜的制备方法,去除中间层及其制备过程,采用在载体基础上单次直接覆分离层工艺,即载体烧结后,直接涂覆分离层,烧结后再进行除碳即可。通过优化烧结工艺,并优化制膜液配方,使其在涂覆时避免因毛细过滤和薄膜形成过程中碳化硅细小颗粒进入载体的微孔结构内,可实现在平均孔径10μm以上的碳化硅载体上直接涂覆平均孔径为150nm微孔的分离层,在涂覆时有效阻止膜层浆液的碳化硅细小颗粒进入载体的孔内。由此,可避免陶瓷膜传统制备工艺中需多次涂覆即至少2次涂覆(先在载体上涂中间层,再在中间层上涂分离层)和3次烧结的不足,从而降低生产成本,提高产品合格率。由于中间层的去除,同等孔径的陶瓷膜的通量可大幅提升。
本发明的制备方法尤其是适用于在大孔径载体的基础上制备微孔结构的孔径相差达到20倍以上的分离层的陶瓷过滤膜,在所制备的陶瓷过滤膜结构中,仅由大孔径的载体以及附在载体表面的分离层构成,尤其是载体微孔的平均孔径值(第一孔径D1)是分离层微孔的平均孔径值(第二孔径D2)的20倍或者20倍以上,在以下的实施例中,我们以在具有平均孔径10μm及以上的微孔结构的碳化硅载体上,直接涂覆平均孔径小于0.2μm的微孔结构的分离层为例进行进一步说明。
如附图所示,我们更加具体地阐述本发明的制备方法的示例性实现。
如图3所示的制备工艺过程,其过程包含:制备多通道管状坯体,并高温烧结多通道管状坯体,制备出具有第一均值孔径的微孔结构的载体;竖立载体,将膜层浆液从制备得到的载体底部载入通道,待膜层浆液到达所述载体顶部,保持预定时间后,释放通道里的膜层浆液,形成通道膜层;其中所述膜层浆液的颗粒与所述载体表面携带同性电荷;干燥通道膜层;在惰性气氛保护条件下,高温烧结所述通道膜层,形成具有第二均值孔径的微孔结构,制作出分离层;以及对分离层进行高温氧化烧结,去除残留碳。
作为本发明的一个具体的示例,以高通量低成本的碳化硅陶瓷过滤膜的制备为例,其过程包含:
将具有第一粒径错配比的碳化硅粉与第一助剂和水混合后,挤出成型多通道管状坯体,再对坯体进行高温烧结,通过坯体重结晶,在通道的壁上形成具有第一均值孔径的微孔结构,制作出载体;
竖立载体,将膜层浆液从载体底部载入每个通道,待膜层浆液到达载体顶部,保持预定时间后释放通道里的膜层浆液,形成通道膜层;其中所述膜层浆液由具有第二粒径错配比的碳化硅粉、第二助剂与水混合制成,并且浆液pH值控制在6-10之间;
干燥通道膜层;
在气氛保护条件下,通过高温烧结通道膜层,形成具有第二均值孔径的微孔结构,制作出分离层;以及
对分离层进行高温氧化烧结,去除分离层残留的碳。
尤其希望的是,在坯体重结晶前,还包含对多通道管状坯体的干燥。例如,将多通道管状坯体在干燥室内干燥24-48小时,干燥室内控制的环境条件为:相对湿度20-60%,温度25-50℃。干燥过程中,对坯体通道通热空气,流速0.5-2m/s。
优选地,所述具有第一粒径错配比的碳化硅粉包含碳化硅粉I和碳化硅粉II,所述碳化硅粉I的中值粒径为碳化硅粉II的中值粒径的5-30倍。尤其是,所述碳化硅粉I的中值粒径在10-30μm之间;碳化硅粉II的中值粒径在0.5-6μm之间。
作为示例的第一助剂包含粘合剂、增塑剂以及分散剂,。尤其优选地,碳化硅粉I、碳化硅粉II、粘合剂、增塑剂、分散剂与水的质量比为(50-75):(10-20):(4-8):(1-3):(1-3):(10-20)。
优选地,前述粘合剂尤其可选择甲基羟乙基纤维素或聚乙烯醇,增塑剂采用聚乙二醇或邻苯二甲酸酯,分散剂采用丙烯酸类聚合物。
优选地,所述具有第二粒径错配比的碳化硅粉包含碳化硅粉III和碳化硅粉IV,碳化硅粉III的中值粒径为碳化硅粉IV的中值粒径的3-8倍。尤其是,碳化硅粉III的中值粒径在0.5-6μm之间,所述碳化硅粉IV的中值粒径在0.1-3μm之间。
尤其优选地,碳化硅粉III和碳化硅粉IV的中值粒径均可控制在0.1-1.5μm之间,以有效制备出200μm以下孔径的微孔结构。
应当理解,本发明实施例的中值粒径,也称为粒度中值。
作为示例的第二助剂包含粘合剂、增塑剂、分散剂、消泡剂以及表面活性剂,其中,碳化硅粉III、碳化硅粉IV、粘合剂、增塑剂、分散剂、消泡剂、表面活性剂和水的质量比为(5-15):(5-15):(3-10):(5-15):(0-1.5):(0-1.5):(1-5):(50-80)。
优选地,碳前述粘合剂可采用甲基羟乙基纤维素或聚乙烯醇中的至少一种。增塑剂采用聚乙二醇或邻苯二甲酸酯;分散剂采用丙烯酸类聚合物;消泡剂采用硅氧烷聚醚类、表面活 性剂采用醇类。
按照前述的质量比混合均匀后的膜层浆液,先通过如下预处理方法处理再载入通道中:
添加直径8-10mm氧化铝球,滚动碾磨12-48小时。
优选地,在本发明的一些实施例中,控制所述膜层浆液以20-100mm/s速度载入所述通道。更加优选地,膜层浆液到达载体顶部后,保持3-15秒,以实现有效涂覆,通过毛细孔作用形成膜层。
如此,通过膜层浆液配方优化,在载体烧结制备后,不进行氧化除碳,利用残留的碳起到一定堵载体微孔的作用,从而降低分离层碳化硅小颗粒进入载体孔内的概率,同时结合膜层浆液的颗粒与载体表面的同性电荷排斥作用,使膜层浆液在涂覆时避免因毛细过滤和薄膜形成过程中细小颗粒进入载体的微孔内。
可选地,膜层浆液的配置过程中,可通过多种方式来调控使得其颗粒(碳化硅颗粒)与载体表面携带同性电荷,例如通过流体(浆液)特性调节、pH调节等,可采用其中的一种,或者采用2种以上手段的配合实现。
例如,在配置具有第二粒径错配比的碳化硅粉、第二助剂与水混合制成的分离层膜层浆液中,可通过控制浆液pH值控制在6-10之间,使得膜层浆液中的颗粒与载体表面携带同性电荷,通过同性电荷相斥作用,阻止膜层浆液中的颗粒进入载体的孔径中。
如图4、图5所示的工艺过程,本发明的一些实施例中,所述通道膜层的高温烧结以及坯体高温烧结过程中,包含脱胶处理。例如,氩气气氛保护条件下,进行加热升温,升温到300-500℃,保温2-5小时,对坯体和膜层进行脱胶。
脱胶完成后,再次加热升温到重结晶的保温范围,进行重结晶。最后随炉冷却到室温。
在具体实施过程中,通道膜层重结晶的烧结温度低于坯体重结晶的烧结温度。优选地,通道膜层重结晶的烧结温度在1600-2000℃之间,坯体重结晶的烧结温度在2000-2400℃之间。
前述坯体和浆液的原料,均通过市售渠道购买可获得。优选地,碳化硅粉I的纯度大于98%,碳化硅粉II纯度大于99%。碳化硅粉III与碳化硅粉IV的纯度大于99%。
下面结合具体的示例对前述制备方法进行说明。
实施例1
1)碳化硅坯体的成型和烧结
原材料选取:碳化硅粉I、碳化硅粉II、甲基羟乙基纤维素、聚乙二醇、丙烯酸类聚合物和水,按质量比60:18:6:2:2:12选取备用。
碳化硅粉I的中值粒径为碳化硅粉II的中值粒径的20倍。碳化硅粉I的中值粒径:20μm, 纯度大于98%,碳化硅粉II的中值粒径:1μm,纯度大于99%。
原材料混合:按先加液体再加粉体次序,将按比例选取的原材料在室温(20-25摄氏度)下混合形成均匀的混合物。
成型:将所得的混合物放入挤出成型机,挤出压力120MPa条件下成型为多通道管状坯体。
干燥:将挤出坯体在干燥室干燥24小时,相对湿度:50-60%,温度25-30℃,对坯体通道通热空气,流速2m/s。
高温烧结重结晶:干燥后的坯体在氩气气氛保护条件下,进行高温烧结。升温到500℃,保温2小时,对坯体进行脱胶。脱胶完成后,升温到2400℃,烧结升温过程18小时,对坯体进行重结晶烧结,保温时间5小时,最后随炉冷却到室温。
2)碳化硅膜层的涂覆
浆液制备:碳化硅粉III、碳化硅粉IV、甲基羟乙基纤维素、邻苯二甲酸酯、丙烯酸类聚合物分散剂、硅氧烷聚醚类消泡剂、醇类表面活性剂PEG和水,按质量比15:10:5:8:1.5:1.5:3:56混合均匀,pH控制在8-9,添加直径8-10mm氧化铝球进行48小时滚动碾磨,制得膜层浆液;
碳化硅粉III的中值粒径为碳化硅粉IV的中值粒径的5倍。
碳化硅粉III的中值粒径:1.5μm,纯度大于99%,碳化硅粉IV的中值粒径:0.3μm,纯度大于99%。
膜层涂覆:将载体竖直放立,将膜层浆液以80mm/s速度从底部进入载体通道,等膜层浆液到达载体顶部,停止4秒,最后释放载体通道里的膜层浆液,利用毛细孔作用形成膜层。
膜层干燥:将制备的碳化硅膜在干燥室干燥24小时,相对湿度:50-60%,温度25-30℃,对坯体通道通热空气,流速2m/s。
高温烧结重结晶:干燥后的碳化硅膜在氩气气氛保护条件下,进行高温烧结。升温到500℃,保温2小时,对碳化硅膜进行脱胶。脱胶完成后,升温到1600℃,进行重结晶烧结,保温时间5小时,最后随炉冷却到室温。烧结升温过程20小时。
氧化烧结:在通空气条件下,对所得碳化硅膜进行800℃氧化烧结,以此去除残留碳,提高膜的抗机械强度,所得产品为100%重结晶碳化硅膜,如图7所示,分离层厚度约47.9μm,附在载体表面,并且不包含中间层。
经检测,所制备的陶瓷膜的载体的微孔结构的孔径均值为10.5μm(见图8),分离层的微孔结构的孔径均值为0.15μm(见图9),实现大孔径载体的制备以及在此基础上实现小均 值孔径(0.15μm)的分离层的涂覆与制备,既保证过滤水的水质,同时基于大孔径的载体,保障高通量。
实施例2
1)碳化硅坯体的成型和烧结
原材料选取:碳化硅粉I、碳化硅粉II、甲基羟乙基纤维素、聚乙二醇、丙烯酸类聚合物和水,按质量比65:15:5:1:1:13选取备用。
碳化硅粉I的中值粒径为碳化硅粉II的中值粒径的15倍。碳化硅粉I的中值粒径:30μm,纯度大于98%,碳化硅粉II的中值粒径:2μm,纯度大于99%。
原材料混合:按先加液体再加粉体次序,将按比例选取的原材料在室温(20-25摄氏度)下混合形成均匀的混合物。
成型:将所得的混合物放入挤出成型机,挤出压力120MPa条件下成型为多通道管状坯体。
干燥:将挤出坯体在干燥室干燥24小时,相对湿度:50-60%,温度25-30℃,对坯体通道通热空气,流速2m/s。
高温烧结重结晶:干燥后的坯体在氩气气氛保护条件下,进行高温烧结。升温到500℃,保温2小时,对坯体进行脱胶。脱胶完成后,升温到2400℃,烧结升温过程25小时,对坯体进行重结晶烧结,保温时间5小时,最后随炉冷却到室温。
2)碳化硅膜层的涂覆
浆液制备:碳化硅粉III、碳化硅粉IV、甲基羟乙基纤维素、邻苯二甲酸酯、丙烯酸类聚合物分散剂、硅氧烷聚醚类消泡剂、醇类表面活性剂PEG和水,按质量比15:15:6:6:1.5:1.5:4:51混合均匀,pH控制在7-8,添加直径8-10mm氧化铝球进行48小时滚动碾磨,制得膜层浆液;
碳化硅粉III的中值粒径为碳化硅粉IV的中值粒径的5倍。
碳化硅粉III的中值粒径:1.5μm,纯度大于99%,碳化硅粉IV的中值粒径:0.3μm,纯度大于99%。
膜层涂覆:将载体竖直放立,将膜层浆液以80mm/s速度从底部进入载体通道,等膜层浆液到达载体顶部,停止3秒,最后释放载体通道里的膜层浆液,利用毛细孔作用形成膜层。
膜层干燥:将制备的碳化硅膜在干燥室干燥24小时,相对湿度:50-60%,温度25-30℃,对坯体通道通热空气,流速2m/s。
高温烧结重结晶:干燥后的碳化硅膜在氩气气氛保护条件下,进行高温烧结。升温到500℃,保温2小时,对碳化硅膜进行脱胶。脱胶完成后,升温到1800℃,烧结升温过程25 小时,进行重结晶烧结,保温时间5小时,最后随炉冷却到室温。
氧化烧结:在通空气条件下,对所得碳化硅膜进行800℃氧化烧结,以此去除残留碳,提高膜的抗机械强度,所得产品为100%重结晶碳化硅膜。
经检测,所制备的陶瓷膜的载体的微孔结构的孔径均值为15μm(见图10),分离层的微孔结构的孔径均值为0.2μm(见图11),并且不包含中间层。
按照上述实施例制备的陶瓷膜,对实施例1、2制备的陶瓷膜进行测试,通过测试结果可见,所制备的陶瓷膜的载体的微孔结构的孔径均值在10μm以上(如图8、10),分离层的微孔结构的孔径均值在0.2μm以下(如图9、11),实现大孔径载体的制备以及在此基础上实现小孔径的分离层的涂覆与制备,本发明的技术尤其是实现在分离层微孔孔径与载体微孔孔径相差达到20倍或者20倍以上的陶瓷过滤膜的制备。通过以上实施例的原材料与制备工艺,可实现载体微孔的均值孔径在10μm以上,分离层的微孔均值孔径在0.2μm以下的碳化硅陶瓷膜的制备,尤其优选的,分离层的微孔均值孔径可控制在0.15μm-0.2μm范围内,实现低成本、高通量的陶瓷过滤膜的制备。
取本发明实施例1制备的碳化硅陶瓷膜进行测试,同时选取平均孔径相近(0.15μm)的传统三明治结构的陶瓷膜与本发明制备的陶瓷膜作对比可见,传统碳化硅膜(三明治结构)和新型去碳化硅膜(去中间层)纯水通量对比:3000LMH/bar vs 4000LMH/bar,本发明工艺制备的陶瓷膜的通量得到明显的提升,提升30%以上。同时,在孔隙测试结果中,通过本发明制备的陶瓷体,孔隙率达到42%以上,实现高通量过滤。
对本实施例1所制备的陶瓷膜的膜层结构进行强度测试,试验结果的分离层(即膜)具有较高的抗机械强度,弯曲强度达到25MPa以上。通过多组试验的膜的测试结果,可保持在35MPa左右。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (22)

  1. 一种高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,该方法包括如下步骤:
    (1)制备多通道管状坯体,并高温烧结多通道管状坯体,制备出具有第一均值孔径的微孔结构的载体;
    (2)竖立载体,将膜层浆液从步骤(1)制备的得到的载体底部载入通道,待膜层浆液到达所述载体顶部,保持预定时间后,释放通道里的膜层浆液,形成通道膜层;其中所述膜层浆液的颗粒与所述载体表面携带同性电荷;
    (3)干燥步骤(2)制备的通道膜层;
    (4)在惰性气氛保护条件下,高温烧结所述通道膜层,形成具有第二均值孔径的微孔结构,制作出分离层;以及
    (5)对步骤(4)得到的分离层进行高温氧化烧结,去除残留碳。
  2. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述步骤(1)的载体的制备包括如下步骤:
    将具有第一粒径错配比的碳化硅粉与第一助剂和水混合后,挤出成型多通道管状坯体,再对坯体进行烧结,通过坯体重结晶,在通道的壁上形成具有第一均值孔径的微孔结构,即得。
  3. 根据权利要求2所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述具有第一粒径错配比的碳化硅粉包含碳化硅粉I和碳化硅粉II,所述碳化硅粉I的中值粒径为所述碳化硅粉II的中值粒径的5-30倍。
  4. 根据权利要求3所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述碳化硅粉I的中值粒径在10-30μm之间;所述碳化硅粉II的中值粒径在0.5-6μm之间。
  5. 根据权利要求3所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述第一助剂包含粘合剂、增塑剂以及分散剂。
  6. 根据权利要求5所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述碳化硅粉I、所述碳化硅粉II、所述粘合剂、所述增塑剂、所述分散剂与所述水的质量比为(50-75):(10-20):(4-8):(1-3):(1-3):(10-20)。
  7. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,在步骤(1)中,高温烧结多通道管状坯体之前,还包含对所述多通道管状坯体进行干燥。
  8. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,在步骤(2)中,所述膜层浆液由具有第二粒径错配比的碳化硅粉、第二助剂与水混合制成,所述具有第二粒径错配比的碳化硅粉包含碳化硅粉III和碳化硅粉IV,所述碳化硅粉III的中值粒径为所 述碳化硅粉IV的中值粒径的3-8倍。
  9. 根据权利要求8所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述碳化硅粉III的中值粒径在0.5-6μm之间,所述碳化硅粉IV的中值粒径在0.1-3μm之间。
  10. 根据权利要求8所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述第二助剂包含粘合剂、增塑剂、分散剂、消泡剂以及表面活性剂,其中,所述碳化硅粉III、所述碳化硅粉IV、所述粘合剂、所述增塑剂、所述分散剂、所述消泡剂、所述表面活性剂和所述水的质量比为(5-15):(5-15):(3-10):(5-15):(0-1.5):(0-1.5):(1-5):(50-80)。
  11. 根据权利要求8-10中任意一项所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述膜层浆液的pH值在6-10之间。
  12. 根据权利要求8-10中任意一项所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述膜层浆液先通过如下预处理方法处理再载入通道中:
    添加直径8-10mm氧化铝球,滚动碾磨12-48小时。
  13. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,将膜层浆液以20-100mm/s速度载入通道中。
  14. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,在步骤(2)中,所述预定时间为3-15秒。
  15. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,在步骤(1)或(4)中,在坯体的高温烧结以及通道的高温烧结过程中,还包含脱胶处理。
  16. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,在步骤(1)中,坯体高温烧结的温度在2000-2400℃之间。
  17. 根据权利要求1所述的高通量碳化硅陶瓷过滤膜的制备方法,其特征在于,所述高温烧结通道膜层中的温度在1600-2000℃之间坯体。
  18. 一种根据权利要求1-17中任意一项所述的高通量碳化硅陶瓷过滤膜的制备方法所制备的高通量碳化硅陶瓷过滤膜。
  19. 根据权利要求18所述的高通量碳化硅陶瓷过滤膜,其特征在于,所述第一均值孔径在10μm以上,所述第二均值孔径为0.15μm-0.2μm。
  20. 一种高通量碳化硅陶瓷过滤膜,其特征在于,所述陶瓷过滤膜由具有微孔的载体和具有微孔的分离层构成,并且,不包含中间层;其中所述具有微孔的载体中微孔的平均孔径是所述具有微孔的分离层中微孔的平均孔径的20倍或者20倍以上。
  21. 根据权利要求20所述的高通量碳化硅陶瓷过滤膜,其特征在于,所述具有微孔的载体中微孔的平均孔径在10μm以上,所述具有微孔的分离层中微孔的平均孔径在0.2μm以下。
  22. 根据权利要求20所述的高通量碳化硅陶瓷过滤膜,其特征在于,所述具有微孔的分离层中微孔的平均孔径在0.15μm-0.2μm之间。
PCT/CN2022/087871 2021-04-25 2022-04-20 高通量碳化硅陶瓷过滤膜及其制备方法 WO2022228227A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22794698.5A EP4332071A1 (en) 2021-04-25 2022-04-20 High-throughput silicon carbide ceramic filter membrane and preparation method therefor
JP2023548880A JP2024508257A (ja) 2021-04-25 2022-04-20 ハイスループット炭化ケイ素セラミックろ過膜及びその調製方法
US18/280,280 US20240033690A1 (en) 2021-04-25 2022-04-20 High-flux silicon carbide ceramic filter membrane and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110450376.2A CN114345143B (zh) 2021-04-25 2021-04-25 高通量碳化硅陶瓷过滤体的分离层膜层浆液及分离层膜层制备方法
CN202110450376.2 2021-04-25
CN202110448901.7A CN113121241B (zh) 2021-04-25 2021-04-25 高通量碳化硅陶瓷过滤膜及其制备方法
CN202110448901.7 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022228227A1 true WO2022228227A1 (zh) 2022-11-03

Family

ID=83846673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087871 WO2022228227A1 (zh) 2021-04-25 2022-04-20 高通量碳化硅陶瓷过滤膜及其制备方法

Country Status (4)

Country Link
US (1) US20240033690A1 (zh)
EP (1) EP4332071A1 (zh)
JP (1) JP2024508257A (zh)
WO (1) WO2022228227A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283300B (zh) * 2023-03-17 2024-05-17 山东理工大学 一种基于数字光处理的一步共烧碳化硅平板陶瓷膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261867A (zh) * 2014-09-23 2015-01-07 武汉工程大学 一种纯碳化硅多孔陶瓷膜的制备方法
CN105175005A (zh) * 2015-10-15 2015-12-23 山东金德新材料有限公司 一种高强均孔碳化硅陶瓷膜的制备方法
CN106731888A (zh) * 2016-12-23 2017-05-31 江西博鑫精陶环保科技有限公司 负离子抗菌陶瓷分离膜及其制备方法
CN113121241A (zh) * 2021-04-25 2021-07-16 南京依柯卡特排放技术股份有限公司 高通量碳化硅陶瓷过滤膜及其制备方法
CN114345143A (zh) * 2021-04-25 2022-04-15 南京依柯卡特排放技术股份有限公司 高通量碳化硅陶瓷过滤体的分离层膜层浆液及分离层膜层制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537714A1 (de) * 1995-10-10 1997-04-17 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung eines leitfähigen Sinterkörpers auf der Basis von Siliciumcarbid
US9321189B1 (en) * 2013-03-15 2016-04-26 Ibiden Co., Ltd. Method for manufacturing ceramic honeycomb structure
EP3368497A1 (en) * 2015-10-30 2018-09-05 Corning Incorporated Inorganic membrane filtration articles and methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261867A (zh) * 2014-09-23 2015-01-07 武汉工程大学 一种纯碳化硅多孔陶瓷膜的制备方法
CN105175005A (zh) * 2015-10-15 2015-12-23 山东金德新材料有限公司 一种高强均孔碳化硅陶瓷膜的制备方法
CN106731888A (zh) * 2016-12-23 2017-05-31 江西博鑫精陶环保科技有限公司 负离子抗菌陶瓷分离膜及其制备方法
CN113121241A (zh) * 2021-04-25 2021-07-16 南京依柯卡特排放技术股份有限公司 高通量碳化硅陶瓷过滤膜及其制备方法
CN114345143A (zh) * 2021-04-25 2022-04-15 南京依柯卡特排放技术股份有限公司 高通量碳化硅陶瓷过滤体的分离层膜层浆液及分离层膜层制备方法

Also Published As

Publication number Publication date
US20240033690A1 (en) 2024-02-01
EP4332071A1 (en) 2024-03-06
JP2024508257A (ja) 2024-02-26

Similar Documents

Publication Publication Date Title
CN113121241B (zh) 高通量碳化硅陶瓷过滤膜及其制备方法
CN114345143B (zh) 高通量碳化硅陶瓷过滤体的分离层膜层浆液及分离层膜层制备方法
WO2022228227A1 (zh) 高通量碳化硅陶瓷过滤膜及其制备方法
CN108911706B (zh) 一种粉煤灰基陶瓷微滤膜的共烧结制备方法
WO2011122059A1 (ja) 炭素膜構造体及びその製造方法
CN110193292A (zh) 复合陶瓷膜及其制备方法和应用
US20180022648A1 (en) Method for preparing support of molecular sieve membrane
US10391454B2 (en) Monolithic separation membrane structure and method for producing monolithic separation membrane structure
CN102961973A (zh) 使用具有聚酰亚胺气体分离膜的勃姆石粘合层的系统和方法
CN112044285A (zh) 一种高通量陶瓷过滤膜及其制备方法
JP2023011761A (ja) セラミック膜フィルタ
CN114307664A (zh) 一种高通量抗污染陶瓷过滤膜及其制备方法
CN104667762A (zh) 一种无缝金属管的制备方法
CN114425245A (zh) 一种酚醛树脂基复合碳膜及其制备方法和应用
WO2022005144A2 (ko) 테이프 캐스팅 방식을 적용한 평판형 세라믹 분리막 제조방법
KR20110093146A (ko) 다공성 금속지지체에 팔라듐계 박막 코팅방법
CN114950157A (zh) 一种梯度对称结构的平板超滤膜及其制备方法
US10835875B2 (en) Zeolite membrane having AFX structure, membrane structure, and method for manufacturing membrane structure
CN109534803B (zh) 荷电陶瓷膜及其制备方法
KR101969915B1 (ko) 세라믹 복합 분리막의 제조방법 및 이에 따라 제조되는 세라믹 복합 분리막
WO2016104048A1 (ja) ガス分離方法
KR100531743B1 (ko) 세라믹 테이프를 사용하여 제조된 세라믹 분리막 및 이의제조방법
CN113135567A (zh) 一种活性炭的制备方法及其产品
CN115957636B (zh) 一种饮水用陶瓷平板膜及其制备方法
CN111389236A (zh) 一种高效分离超薄无缺陷分子筛膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548880

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18280280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022794698

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022794698

Country of ref document: EP

Effective date: 20231127