WO2022227838A1 - 一种中空纤维无机膜的制备方法 - Google Patents

一种中空纤维无机膜的制备方法 Download PDF

Info

Publication number
WO2022227838A1
WO2022227838A1 PCT/CN2022/078518 CN2022078518W WO2022227838A1 WO 2022227838 A1 WO2022227838 A1 WO 2022227838A1 CN 2022078518 W CN2022078518 W CN 2022078518W WO 2022227838 A1 WO2022227838 A1 WO 2022227838A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hollow fiber
mass
hollow
fiber inorganic
Prior art date
Application number
PCT/CN2022/078518
Other languages
English (en)
French (fr)
Inventor
马军
吕东伟
张惠
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US18/557,121 priority Critical patent/US20240238733A1/en
Publication of WO2022227838A1 publication Critical patent/WO2022227838A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0037Organic membrane manufacture by deposition from the gaseous phase, e.g. CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Definitions

  • the invention relates to a preparation method of a hollow fiber inorganic membrane.
  • Membrane separation technology refers to a technology that selectively separates molecules of different particle sizes under the action of a certain driving force (pressure differential force, concentration difference, potential difference or temperature difference) through the selective permeability of the membrane. Compared with other separation methods, membrane separation technology has the advantages of high energy efficiency, simple equipment, good flexibility, small footprint and easy industrial application. Membrane separation technology is simple to operate and can generally be carried out at room temperature, with good economy; less energy consumption during the separation process and no secondary pollution; a wide range of applications, from general inorganic substances, organic substances to bacteria, etc. Separation can be achieved, and the pore size of the membrane can be selected according to the separation goal to achieve selective separation and recovery of useful substances; the process is simple, the scale can be easily expanded, and industrial applications are easy to achieve.
  • a certain driving force pressure differential force, concentration difference, potential difference or temperature difference
  • Membrane materials with excellent performance in all aspects are the key to membrane separation technology.
  • Materials that can be used as membranes are very common, and both natural and synthetic organic polymer materials and inorganic materials can be used as membrane substrates.
  • all inorganic materials and polymer materials that can form films can be used to prepare films.
  • Organic membrane materials have the advantages of many types, relatively low cost and easy processing, and occupy a considerable proportion in the market.
  • organic membranes have their inherent disadvantages: low thermal stability and chemical resistance, which severely limit their performance under extreme conditions (e.g., higher temperatures, lower or higher pH, and aggressive organic chemicals)
  • the organic membrane is easy to scale and has a short service life, which limits the application of organic membranes.
  • inorganic membranes Compared with organic membranes, inorganic membranes have the following technical advantages: high porosity, good separation, high flux; better thermal, mechanical and chemical stability and longer membrane life; better hydrophilicity, low pressure high throughput and less prone to fouling.
  • the market for inorganic membranes in industrial applications and academic research is relatively small, the application of inorganic membranes in water and wastewater treatment has received global attention due to the unique properties of inorganic materials.
  • hollow fiber membranes are attracting more and more attention because of their extremely high packing density compared to flat membranes, allowing the largest membrane area per unit volume.
  • the purpose of the present invention is to provide a preparation method of a hollow fiber inorganic membrane in order to solve the problem that the existing membrane technology cannot have both the high membrane flux and the high rejection rate of the membrane.
  • a preparation method of hollow fiber inorganic membrane is carried out according to the following steps:
  • a preparation method of a hollow fiber inorganic membrane of the present invention uses the electrical conductivity of the metal membrane to carry out surface modification by electrochemical deposition, and grows a metal organic framework (MOF) on the hollow fiber inorganic conductive membrane to prepare a high-pass high porosity isoporous inorganic membranes.
  • MOF membranes have excellent ion selectivity, can effectively separate equivalent alkali metal ions, and can control the pore size and the special structure of the pores to provide high membrane flux, eliminating the trade-off between high flux and selectivity of the membrane.
  • the membrane is electrically conductive, and a micro-electric field-assisted molecular dynamics system can be used to achieve higher membrane flux, higher rejection, longer membrane life and excellent anti-fouling performance by coupling the micro-electric field and utilizing electrostatic repulsion and cathodic protection mechanisms. , the trade-off of breakthrough membrane flux and rejection.
  • a preparation method of a hollow fiber inorganic membrane of the present invention is a combination of membrane technology and advanced oxidation technology (AOPs).
  • AOPs advanced oxidation technology
  • An effective strategy to improve the removal efficiency of organic pollutants during low-pressure membrane filtration is to combine with AOPs.
  • AOPs catalyst as raw material to make hollow fiber inorganic catalytic membrane, combining membrane technology with advanced oxidation technology to achieve good water treatment effect.
  • Natural organic matter (NOM) is ubiquitous in water sources and cannot be completely removed by conventional water treatment processes. As a free radical scavenger, it can consume a large number of oxidative radicals, and can also adsorb on the catalyst surface and block the reaction sites.
  • Catalytic oxide membrane can effectively eliminate the adverse effects of NOM on advanced oxidation process by virtue of its superior separation performance.
  • Catalytic oxide membrane has excellent separation performance and efficient oxidation performance.
  • the separation layer of the anti-pollution conductive catalytic filtering multifunctional hollow fiber membrane of the present invention can also be a carbon material, such as carbon nanotubes and graphene oxide.
  • the base film was prepared by using metal oxides as inorganic raw materials, and the carbon nanotube separation layer was constructed in situ on the surface of the base film by dip coating method and autocatalytic chemical vapor deposition method.
  • the metal oxide base film can provide hydroxyl groups as carbon nanotubes in situ growth active sites of nanocatalysts.
  • ceramic hollow fiber inorganic membranes immobilize graphene oxide on the surface of the base membrane by a simple vacuum filtration method.
  • the hollow fiber inorganic membrane covered with carbon material coupled with micro-electric field has high and stable membrane flux and high rejection rate through cathodic protection mechanism, excellent thermal stability and mechanical strength.
  • the base film of the present invention has a wide range of materials, which can be metals, metal oxides or industrial wastes, has a wide range of sources and low cost, and is more suitable for industrial production.
  • the hollow fiber inorganic membrane of the present invention has high flux, high rejection rate, high stability and strong anti-fouling property. Compared with the flat membrane, it has extremely high bulk density and has industrial practicability.
  • the present invention can obtain a preparation method of hollow fiber inorganic membrane.
  • Fig. 1 is the SEM image of the stainless steel-based hollow base membrane prepared in Example 1;
  • Fig. 2 is the energy spectrogram of the stainless steel-based hollow base membrane prepared in Example 1;
  • Fig. 3 is the distribution position diagram of Cr on the stainless steel-based hollow base membrane in Fig. 2;
  • Fig. 4 is the distribution position diagram of Fe on the stainless steel-based hollow base membrane in Fig. 2;
  • Fig. 5 is the distribution position diagram of Ni on the stainless steel-based hollow base membrane in Fig. 2;
  • FIG. 6 is a flow chart of a preparation method of a hollow fiber inorganic membrane of the present invention.
  • Specific embodiment 1 The preparation method of a hollow fiber inorganic membrane in this embodiment is carried out according to the following steps:
  • a method for preparing a hollow fiber inorganic membrane uses the electrical conductivity of the metal membrane to carry out surface modification by electrochemical deposition, and grows a metal organic framework (MOF) on the hollow fiber inorganic conductive membrane to prepare a high Flux, high porosity isoporous inorganic membranes.
  • MOF membranes have excellent ion selectivity, can effectively separate equivalent alkali metal ions, and can control the pore size and the special structure of the pores to provide high membrane flux, eliminating the trade-off between high flux and selectivity of the membrane.
  • the membrane is electrically conductive, and a micro-electric field-assisted molecular dynamics system can be used to achieve higher membrane flux, higher rejection, longer membrane life and excellent anti-fouling performance by coupling the micro-electric field and utilizing electrostatic repulsion and cathodic protection mechanisms. , the trade-off of breakthrough membrane flux and rejection.
  • a method for preparing a hollow fiber inorganic membrane is a combination of membrane technology and advanced oxidation technology (AOPs).
  • AOPs advanced oxidation technology
  • An effective strategy to improve the removal efficiency of organic pollutants during low-pressure membrane filtration is to combine with AOPs.
  • AOPs catalyst as raw material to make hollow fiber inorganic catalytic membrane, combining membrane technology with advanced oxidation technology to achieve good water treatment effect.
  • Natural organic matter (NOM) is ubiquitous in water sources and cannot be completely removed by conventional water treatment processes. As a free radical scavenger, it can consume a large amount of oxidative radicals, and it can also adsorb on the catalyst surface and block the reaction sites.
  • Catalytic oxide membrane can effectively eliminate the adverse effects of NOM on the advanced oxidation process by virtue of its superior separation performance.
  • Catalytic oxide membrane has excellent separation performance and efficient oxidation performance.
  • the separation layer of the anti-pollution conductive catalytic filtering multifunctional hollow fiber membrane in this embodiment can also be made of carbon materials, such as carbon nanotubes and graphene oxide.
  • the base film was prepared by using metal oxides as inorganic raw materials, and the carbon nanotube separation layer was constructed in situ on the surface of the base film by dip coating method and autocatalytic chemical vapor deposition method.
  • the metal oxide base film can provide hydroxyl groups as carbon nanotubes in situ growth active sites of nanocatalysts.
  • ceramic hollow fiber inorganic membranes immobilize graphene oxide on the surface of the base membrane by a simple vacuum filtration method.
  • the hollow fiber inorganic membrane covered with carbon material coupled with micro-electric field has high and stable membrane flux and high rejection rate through cathodic protection mechanism, excellent thermal stability and mechanical strength.
  • the base film in this embodiment has a wide range of materials, which can be metals, metal oxides or industrial wastes, with wide sources and low cost, and is more suitable for industrial production.
  • the hollow fiber inorganic membrane of this embodiment has high flux, high rejection rate, high stability and strong anti-fouling property. Compared with the flat membrane, it has a very high bulk density and has industrial practicability.
  • Embodiment 2 The difference between this embodiment and Embodiment 1 is that the inorganic material is copper, iron, stainless steel, nickel, manganese oxide or iron oxide, the polymer is polyvinylpyrrolidone, and the binder is It is polysulfone or polyethersulfone, the organic solvent is N-methylpyrrolidone or N,N-dimethylacetamide, and the external coagulant organic solvent is ethanol solution.
  • Embodiment 3 The difference between this embodiment and Embodiment 1 or 2 is that the inorganic material is stainless steel, the polymer is polyvinylpyrrolidone, the binder is polyethersulfone, and the organic solvent is N,N-dimethyl
  • the ratio of the mass of stainless steel, the mass of polyvinylpyrrolidone, the mass of polyethersulfone to the volume of N,N-dimethylacetamide was 70 g: 1 g: 5 g: 24 mL, and the green basement membrane was placed in The hollow base membrane was obtained by calcining at 950 °C for 2 h.
  • Embodiment 4 The difference between this embodiment and Embodiments 1 to 3 is that the inorganic material is copper, the polymer is polyvinylpyrrolidone, the binder is polyethersulfone, and the organic solvent is N,N-diol
  • the ratio of the mass of copper, the mass of polyvinylpyrrolidone, the mass of polyethersulfone to the volume of N,N-dimethylacetamide was 71 g: 7 g: 1 g: 21 mL, and the basement membrane was green
  • the hollow base membrane was obtained by calcining at 800 °C for 2 h.
  • Embodiment 5 The difference between this embodiment and Embodiments 1 to 4 is that the inorganic material is titanium dioxide, the polymer is polyvinylpyrrolidone, the binder is polyethersulfone, and the organic solvent is N,N-dioxide
  • the ratio of the mass of titanium dioxide, the mass of polyvinylpyrrolidone, the mass of polyethersulfone to the volume of N,N-dimethylacetamide is 54 g: 5 g: 1 g: 40 mL, and the base film is green
  • the hollow base membrane was obtained by calcining at 850 °C for 2 h.
  • Embodiment 6 The difference between this embodiment and Embodiments 1 to 5 is that when the inorganic material is copper, iron, stainless steel, nickel or chromium, copper in inorganic materials, polymers, binders and organic solvents , the mass fraction of iron, stainless steel or nickel is greater than 70%.
  • Embodiment 7 The difference between this embodiment and Embodiments 1 to 6 is that the pore size of the hollow base membrane is 0.4-1 ⁇ m, the porosity is 60-80%, the inner diameter is 1.2-1.7 ⁇ m, and the outer diameter is 2 ⁇ 3 ⁇ m.
  • Embodiment 8 The difference between this embodiment and Embodiments 1 to 7 is that the electrochemical deposition method is carried out according to the following steps: adding 2-methylimidazole to deionized water, and after mixing evenly, solution A is obtained , the ratio of the mass of the 2-methylimidazole to the volume of the deionized water is 4.105g: 50mL, and the concentration of the 2-methylimidazole is 50mmol; adding the zinc acetate dihydrate into the deionized water, and mixing uniformly, to obtain Solution B, the ratio of the mass of the zinc acetate dihydrate to the volume of deionized water is 0.183g: 10mL, and the concentration of the zinc acetate dihydrate is 0.83mmol; Mix solution A and solution B, stir for 5s to obtain ZIF-8 Precursor solution; the hollow base membrane and graphite paper were added to the ZIF-8 precursor solution, the distance between the hollow base membrane and the graphite paper was kept at 1.5 cm, the graphite paper was used as the anode,
  • Embodiment 9 The difference between this embodiment and Embodiments 1 to 8 is that the sol-gel method is carried out according to the following steps: adding aluminum triethoxide into ultrapure water at 90°C, stirring for 3h, adding 1M The nitric acid solution was refluxed at 90°C for 16 hours to obtain solution C.
  • the volume ratio of the aluminum triethoxide and ultrapure water to the nitric acid solution was 67:250:18; 1M nitric acid solution and polyvinyl alcohol were added to the ultrapure water , heated and stirred to dissolve to obtain sol D, the ratio of the volume of the nitric acid solution and ultrapure water to the mass of polyvinyl alcohol is 5mL: 25mL: 3g; mix solution C and sol D, stir for 1h and filter to obtain boron Boehmite sol, the volume ratio of solution C and sol D is 20:13; the boehmite sol is uniformly coated on the outer surface of the hollow base membrane, dried at 50 °C for 24 hours, and then heated at 0.5 °C/min. The heating rate was increased to 540°C, and calcined at a temperature of 540°C for 4 h to obtain a hollow fiber inorganic membrane.
  • Embodiment 10 The difference between this embodiment and Embodiments 1 to 9 is that the chemical vapor deposition method is carried out according to the following steps: the hollow base membrane is heated at 700 ° C, and the flow rate is 40 mL/min of hydrogen and ethylene. In a mixed gas atmosphere, in-situ reduction was carried out for 70 min, and after the reaction was completed, the hollow fiber inorganic membrane was obtained by cooling to room temperature with hydrogen at a flow rate of 20 mL/min.
  • Embodiment 1 The preparation method of stainless steel hollow fiber inorganic membrane is carried out according to the following steps:
  • the stainless steel powder, polyvinylpyrrolidone (PVP) and polyethersulfone (PES) were added to N,N-dimethylacetamide (DMAC), and the obtained spinning suspension was firstly ground and mixed in a ball mill for 24 hours, and then pumped.
  • PVP polyvinylpyrrolidone
  • PES polyethersulfone
  • Vacuum for 24h to obtain a casting liquid the ratio of the mass of the stainless steel, the mass of polyvinylpyrrolidone, the mass of polyethersulfone to the volume of N,N-dimethylacetamide is 70g:1g:5g:24mL; with tap water As an internal coagulant, spin the casting solution through a spinneret and a syringe pump (outer diameter is 2.5 mm, inner diameter is 1.3 mm), with an air gap of 10 cm, to obtain membrane filaments; then tap water and/or ethanol solution as external coagulation Put the film filaments in an external coagulant, phase inversion at a temperature of 20 ⁇ 0.5 °C for 24 hours, make it completely solidified, take it out and dry for 24 hours to obtain a green base film; put the green base film at 950 °C calcined for 2 hours under temperature conditions to obtain a hollow base membrane, the hollow base membrane has a pore size of 0.4-1 ⁇ m, a porosity of 60-
  • Embodiment 2 The preparation method of copper-based hollow fiber inorganic membrane is carried out according to the following steps:
  • the ratio of the mass of copper, the mass of polyvinylpyrrolidone, the mass of polyethersulfone and the volume of N,N-dimethylacetamide is 71g:7g:1g:21mL; with tap water As an internal coagulant, spin the casting solution through a spinneret and a syringe pump (outer diameter is 2.5 mm, inner diameter is 1.3 mm), with an air gap of 10 cm, to obtain membrane filaments; then tap water and/or ethanol solution as external coagulation Put the membrane filaments in an external coagulant, phase inversion at a temperature of 20 ⁇ 0.5 °C for 24 hours, make it completely solidified, take out and dry for 24 hours to obtain a green base film; put the green base film at 800 °C Calcined under temperature conditions for 2 hours to obtain a hollow base membrane, the hollow base membrane has a pore size of 0.4-1 ⁇ m, a porosity of 60-80%, an inner
  • Embodiment 3 The preparation method of titanium dioxide hollow fiber inorganic membrane is carried out according to the following steps:
  • Titanium dioxide powder, polyvinylpyrrolidone (PVP) and polyethersulfone (PES) were added to N,N-dimethylacetamide (DMAC), and the obtained spinning suspension was first ground and mixed in a ball mill for 24 hours, and then pumped.
  • PVP polyvinylpyrrolidone
  • PES polyethersulfone
  • the ratio of the mass of titanium dioxide, the mass of polyvinylpyrrolidone, the mass of polyethersulfone and the volume of N,N-dimethylacetamide is 54g:5g:1g:40mL; with tap water As an internal coagulant, spin the casting solution through a spinneret and a syringe pump (outer diameter is 2.5 mm, inner diameter is 1.3 mm), with an air gap of 10 cm, to obtain membrane filaments; then tap water and/or ethanol solution as external coagulation Put the film filaments in an external coagulant, phase inversion at a temperature of 20 ⁇ 0.5°C for 24h, make it completely solidified, take out and dry for 24h to obtain a green base film; put the green base film at 850°C Calcined under temperature conditions for 2 hours to obtain a hollow base membrane, the hollow base membrane has a pore size of 0.4-1 ⁇ m, a porosity of 60-80%, an inner diameter
  • the test results show that: The stable operation time of the invention is prolonged by 30-40%; compared with the traditional hollow membrane, the retention rate is increased by 10-25%, so the hollow fiber inorganic membrane of the present invention has the effects of high membrane flux and high rejection rate of the membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种中空纤维无机膜的制备方法,涉及一种中空纤维无机膜的制备方法。本发明的目的是为了解决现有的膜技术不能兼具膜的高膜通量和高截留率的问题。方法:将无机材料、聚合物和粘结剂加入到有机溶剂中,先球磨,再抽真空,得到铸膜液;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝,再以自来水和/或有机溶剂为外部凝结剂,将膜丝置于外部凝结剂中,在19.5~20.5℃的温度条件下相转化,取出后干燥,得到基底膜生坯;将基底膜生坯在800~950℃的温度条件下煅烧,得到中空基底膜,再在中空基底膜的外表面制备分离层,得到中空纤维无机膜。本发明可获得一种中空纤维无机膜的制备方法。

Description

一种中空纤维无机膜的制备方法 技术领域
本发明涉及一种中空纤维无机膜的制备方法。
背景技术
膜分离技术是指通过膜的选择透过性,在一定驱动力(压差力、浓度差、电位差或者温度差)作用下,将不同粒径分子选择性分离的技术。与其他分离法相比,膜分离技术具有能效高、设备简单、灵活性好、占地面积小和易于实现工业应用等方面的优势。膜分离技术操作简单,一般在常温下即可进行,经济性较好;分离过程中耗能较少,不会产生二次污染;适用范围较广,从一般的无机物、有机物到细菌等都可实现分离,还能根据分离的目标,选择膜的孔径,实现选择性分离,回收有用物质;工艺简单,可以较为容易的扩大规模,易于实现工业应用。
各方面性能优良的膜材料,是膜分离技术的关键所在。能用作膜的材料十分普遍,纯天然的和人工合成的有机高分子材料、无机材料都可作为膜基材。理论上来讲,凡能成膜的无机材料和高分子材料均可用于制备膜。有机膜材料具有种类多、造价相对便宜和容易加工等优点,在市场中占据相当大的比重。然而,有机膜有其固有的缺点:热稳定性和耐化学性低,这严重限制了它们在极端条件(例如,更高的温度、更低或更高的酸碱度以及腐蚀性有机化学品)下的操作,且有机膜容易结垢、使用寿命短,限制了有机膜的应用。与有机膜相比,无机膜具有以下技术优势:孔隙率高、分离性好、通量高;更好的热、机械和化学稳定性以及更长的膜寿命;亲水性更好、低压下的高通量且更不容易结垢。尽管无机膜在工业应用和学术研究方面的市场相对较小,但由于无机材料的独特性质,无机膜在水和废水处理方面的应用受到了全球的关注。在不同几何形状的陶瓷膜中,中空纤维膜正吸引着越来越多的关注,因为与平板膜相比,它具有极高的堆积密度,可获得最大的单位体积膜面积。
对高效水分离的需求日益增加,新型材料更易获得,以及对膜结构性质机理的更深入理解,使无机分离膜具有出色的渗透性和选择性成为了可能,刺激了旨在克服渗透性/选择性权衡的大量研究。所有的合成膜都需在渗透性和选择性之间做权衡,此外还面临许多实际挑战,例如膜结垢、降解和材料失效,这些限制了它们的使用。需要研究更优机械性、耐化学性、热稳定性、渗透性和选择性的膜材料,探究膜制备参数与结构性质的关系以及去除污染物的机理。基于合成膜分子水平理论的发展,膜的关键设计标准可概括为:1.合 适尺寸的自由体积元素(或孔),2.窄的自由体积元素(或孔尺寸)分布,3.薄的活性层,4.渗透物和膜之间高度调节的相互作用。
因此,亟需一种简单通用、在低操作压力下即可实现高效水处理的膜技术,但目前这仍然是一项艰巨的挑战。
发明内容
本发明的目的是为了解决现有的膜技术不能兼具膜的高膜通量和高截留率的问题,而提供一种中空纤维无机膜的制备方法。
一种中空纤维无机膜的制备方法,按以下步骤进行:
将无机材料、聚合物和粘结剂加入到有机溶剂中,先球磨18~24h,再抽真空24~48h,得到铸膜液;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝,得到膜丝;再以自来水和/或有机溶剂为外部凝结剂,将膜丝置于外部凝结剂中,在19.5~20.5℃的温度条件下相转化24~48h,取出后干燥24~48h,得到基底膜生坯;将基底膜生坯在800~950℃的温度条件下煅烧1~2h,得到中空基底膜,再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
本发明的有益效果:
1、本发明一种中空纤维无机膜的制备方法,利用金属膜的导电性,通过电化学沉积法进行表面改性,在中空纤维无机导电膜上生长金属有机骨架(MOF),制备得到高通量、高孔隙率的等孔无机膜。MOF膜有优异的离子选择性,可有效分离等价碱金属离子,可调控孔尺寸和孔的特殊结构可提供高膜通量,消除膜的高通量和选择性之间的权衡。膜具有导电性,可用微电场辅助分子动力学系统通过耦合微电场,利用静电排斥和阴极保护机制实现更高的膜通量、更高的截留率、更长的膜寿命和优异的抗污染性能,突破膜通量和截留率的权衡。
2、本发明一种中空纤维无机膜的制备方法,是膜技术与高级氧化技术(AOPs)的结合。在低压膜过滤过程中提高有机污染物去除效率的一个有效策略是与AOPs相结合。以AOPs的催化剂为原料制中空纤维无机催化膜,将膜技术与高级氧化技术结合使用,达到良好的水处理效果。天然有机物(NOM)普遍存在于水源中,无法通过常规水处理工艺完全去除,其作为自由基清除剂,可消耗大量氧化自由基,也可吸附在催化剂表面并阻断反应位点。催化氧化膜可依靠其优越的分离性能有效消除NOM对高级氧化过程的不利影响,催化氧化膜有优异的分离性能和高效的氧化性能。
3、本发明抗污染导电催化过滤多功能中空纤维膜的分离层还可为碳材料,如碳纳米 管、氧化石墨烯。以金属氧化物为无机原料制备基底膜,通过浸涂法和自催化化学气相沉积法在基底膜表面原位构建碳纳米管分离层,金属氧化物基底膜可提供羟基作为碳纳米管原位生长的纳米催化剂的活性位点。或陶瓷中空纤维无机膜通过简单的真空过滤法将氧化石墨烯固定在基底膜表面。碳材料覆盖的中空纤维无机膜耦合微电场通过阴极保护机制有高且稳定的膜通量和高截留率,优异的热稳定性和机械强度。
4、本发明基底膜材料广泛,可为金属、金属氧化物或工业废弃物,来源广泛、成本低廉,以废治废,更适于工业化生产。
5、本发明中空纤维无机膜具有高通量、高截留率、高稳定性和强抗污染性,与平板膜相比,它具有极高的堆积密度,有工业实用性。
本发明可获得一种中空纤维无机膜的制备方法。
附图说明
图1为实施例1制备的不锈钢基中空基底膜的SEM图;
图2为实施例1制备的不锈钢基中空基底膜的能谱图;
图3为图2中的不锈钢基中空基底膜上Cr的分布位置图;
图4为图2中的不锈钢基中空基底膜上Fe的分布位置图;
图5为图2中的不锈钢基中空基底膜上Ni的分布位置图;
图6为本发明一种中空纤维无机膜的制备方法的制备流程图。
具体实施方式
具体实施方式一:本实施方式一种中空纤维无机膜的制备方法,按以下步骤进行:
将无机材料、聚合物和粘结剂加入到有机溶剂中,先球磨18~24h,再抽真空24~48h,得到铸膜液;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝,得到膜丝;再以自来水和/或有机溶剂为外部凝结剂,将膜丝置于外部凝结剂中,在19.5~20.5℃的温度条件下相转化24~48h,取出后干燥24~48h,得到基底膜生坯;将基底膜生坯在800~950℃的温度条件下煅烧1~2h,得到中空基底膜,再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
本实施方式的有益效果:
1、本实施方式一种中空纤维无机膜的制备方法,利用金属膜的导电性,通过电化学沉积法进行表面改性,在中空纤维无机导电膜上生长金属有机骨架(MOF),制备得到高通量、高孔隙率的等孔无机膜。MOF膜有优异的离子选择性,可有效分离等价碱金属离子,可调控孔尺寸和孔的特殊结构可提供高膜通量,消除膜的高通量和选择性之间的权衡。 膜具有导电性,可用微电场辅助分子动力学系统通过耦合微电场,利用静电排斥和阴极保护机制实现更高的膜通量、更高的截留率、更长的膜寿命和优异的抗污染性能,突破膜通量和截留率的权衡。
2、本实施方式一种中空纤维无机膜的制备方法,是膜技术与高级氧化技术(AOPs)的结合。在低压膜过滤过程中提高有机污染物去除效率的一个有效策略是与AOPs相结合。以AOPs的催化剂为原料制中空纤维无机催化膜,将膜技术与高级氧化技术结合使用,达到良好的水处理效果。天然有机物(NOM)普遍存在于水源中,无法通过常规水处理工艺完全去除,其作为自由基清除剂,可消耗大量氧化自由基,也可吸附在催化剂表面并阻断反应位点。催化氧化膜可依靠其优越的分离性能有效消除NOM对高级氧化过程的不利影响,催化氧化膜有优异的分离性能和高效的氧化性能。
3、本实施方式抗污染导电催化过滤多功能中空纤维膜的分离层还可为碳材料,如碳纳米管、氧化石墨烯。以金属氧化物为无机原料制备基底膜,通过浸涂法和自催化化学气相沉积法在基底膜表面原位构建碳纳米管分离层,金属氧化物基底膜可提供羟基作为碳纳米管原位生长的纳米催化剂的活性位点。或陶瓷中空纤维无机膜通过简单的真空过滤法将氧化石墨烯固定在基底膜表面。碳材料覆盖的中空纤维无机膜耦合微电场通过阴极保护机制有高且稳定的膜通量和高截留率,优异的热稳定性和机械强度。
4、本实施方式基底膜材料广泛,可为金属、金属氧化物或工业废弃物,来源广泛、成本低廉,以废治废,更适于工业化生产。
5、本实施方式中空纤维无机膜具有高通量、高截留率、高稳定性和强抗污染性,与平板膜相比,它具有极高的堆积密度,有工业实用性。
具体实施方式二:本实施方式与具体实施方式一不同点是:所述无机材料为铜、铁、不锈钢、镍、氧化锰或氧化铁,所述聚合物为聚乙烯吡咯烷酮,所述粘结剂为聚砜或聚醚砜,所述有机溶剂为N-甲基吡咯烷酮或N,N-二甲基乙酰胺,所述外部凝结剂有机溶剂为乙醇溶液。
其他步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同点是:所述无机材料为不锈钢、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,不锈钢的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为70g:1g:5g:24mL,并且将基底膜生坯在950℃的温度条件下煅烧2h,得到中空基底膜。
其他步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:所述无机材料为铜、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,铜的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为71g:7g:1g:21mL,并且将基底膜生坯在800℃的温度条件下煅烧2h,得到中空基底膜。
其他步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:所述无机材料为二氧化钛、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,二氧化钛的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为54g:5g:1g:40mL,并且将基底膜生坯在850℃的温度条件下煅烧2h,得到中空基底膜。
其他步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:所述无机材料为铜、铁、不锈钢、镍或铬时,无机材料、聚合物、粘结剂和有机溶剂中铜、铁、不锈钢或镍的质量分数大于70%。
其他步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:所述中空基底膜的孔径为0.4~1μm,孔隙率为60~80%,内径为1.2~1.7μm,外径为2~3μm。
其他步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:所述电化学沉积法按以下步骤进行:将2-甲基咪唑加入到去离子水中,混合均匀后,得到溶液A,所述2-甲基咪唑的质量与去离子水的体积的比为4.105g:50mL,2-甲基咪唑的浓度为50mmol;将二水乙酸锌加入到去离子水中,混合均匀后,得到溶液B,所述二水乙酸锌的质量与去离子水的体积的比为0.183g:10mL,二水乙酸锌的浓度为0.83mmol;将溶液A和溶液B混合,搅拌5s,得到ZIF-8前驱体溶液;将中空基底膜和石墨纸加入到ZIF-8前驱体溶液中,保持中空基底膜与石墨纸之间的距离为1.5cm,以石墨纸作为阳极,以中空基底膜作为阴极,在0.13m Acm 2的电流密度下反应30min,反应结束后使用去离子水和甲醇进行冲洗,得到中空纤维无机膜。
其他步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:所述溶胶凝胶法按以下步骤进行:将三乙醇铝加入到90℃的超纯水中,搅拌3h,加入1M硝酸溶液,在 90℃回流16小时,得到溶液C,所述三乙醇铝和超纯水与硝酸溶液的体积比为67:250:18;将1M硝酸溶液和聚乙烯醇加入到超纯水中,加热搅拌至溶解,得到溶胶D,所述硝酸溶液和超纯水的体积与聚乙烯醇的质量的比为5mL:25mL:3g;将溶液C和溶胶D混合,搅拌1h后过滤,得到勃姆石溶胶,所述溶液C与溶胶D的体积比为20:13;将勃姆石溶胶均匀涂布在中空基底膜的外表面上,在50℃下干燥24h,然后以0.5℃/min的加热速率升温至540℃,并在540℃的温度条件下煅烧4h,得到中空纤维无机膜。
其他步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:所述化学气相沉积法按以下步骤进行:将中空基底膜在700℃、流速为40mL/min的氢气和乙烯组成的混合气体气氛下,原位还原70min,反应结束后,再使用流速为20mL/min的氢气冷却至室温,得到中空纤维无机膜。
其他步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例1:不锈钢中空纤维无机膜的制备方法,按以下步骤进行:
将不锈钢粉末、聚乙烯吡咯烷酮(PVP)和聚醚砜(PES)加入到N,N-二甲基乙酰胺(DMAC)中,先将得到的纺丝悬浮液在球磨机中研磨混合24h,再抽真空24h,得到铸膜液,所述不锈钢的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为70g:1g:5g:24mL;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝(外径为2.5mm,内径为1.3mm),气隙10cm,得到膜丝;再以自来水和/或乙醇溶液为外部凝结剂,将膜丝置于外部凝结剂中,在20±0.5℃的温度条件下相转化24h,使其完全凝固,取出后干燥24h,得到基底膜生坯;将基底膜生坯在950℃的温度条件下煅烧2h,得到中空基底膜,所述中空基底膜的孔径为0.4~1μm,孔隙率为60~80%,内径为1.33μm,外径为2μm;再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
实施例2:铜基中空纤维无机膜的制备方法,按以下步骤进行:
将铜粉末、聚乙烯吡咯烷酮(PVP)和聚醚砜(PES)加入到N,N-二甲基乙酰胺(DMAC)中,先将得到的纺丝悬浮液在球磨机中研磨混合24h,再抽真空24h,得到铸膜液,所述铜的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为71g:7g:1g:21mL;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝(外径为2.5mm,内径为1.3mm),气隙10cm,得到膜丝;再以自来水和/或乙醇溶液为外部凝结 剂,将膜丝置于外部凝结剂中,在20±0.5℃的温度条件下相转化24h,使其完全凝固,取出后干燥24h,得到基底膜生坯;将基底膜生坯在800℃的温度条件下煅烧2h,得到中空基底膜,所述中空基底膜的孔径为0.4~1μm,孔隙率为60~80%,内径为1.2~1.7μm,外径为2~2.5μm;再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
实施例3:二氧化钛中空纤维无机膜的制备方法,按以下步骤进行:
将二氧化钛粉末、聚乙烯吡咯烷酮(PVP)和聚醚砜(PES)加入到N,N-二甲基乙酰胺(DMAC)中,先将得到的纺丝悬浮液在球磨机中研磨混合24h,再抽真空24h,得到铸膜液,所述二氧化钛的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为54g:5g:1g:40mL;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝(外径为2.5mm,内径为1.3mm),气隙10cm,得到膜丝;再以自来水和/或乙醇溶液为外部凝结剂,将膜丝置于外部凝结剂中,在20±0.5℃的温度条件下相转化24h,使其完全凝固,取出后干燥24h,得到基底膜生坯;将基底膜生坯在850℃的温度条件下煅烧2h,得到中空基底膜,所述中空基底膜的孔径为0.4~1μm,孔隙率为60~80%,内径为1.2~1.7μm,外径为2~2.5μm;再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
通过对实施例1-3制备得到的中空纤维无机膜进行膜通量和截留率的测试,测试结果表明:本发明制备得到的中空纤维无机膜比传统的中空膜的膜通量大幅提高,膜的稳定运行时间延长30~40%;比传统的中空膜的截留率提高了10~25%,因此本发明的中空纤维无机膜兼具了膜的高膜通量和高截留率的效果。

Claims (10)

  1. 一种中空纤维无机膜的制备方法,其特征在于该制备方法按以下步骤进行:
    将无机材料、聚合物和粘结剂加入到有机溶剂中,先球磨18~24h,再抽真空24~48h,得到铸膜液;以自来水作为内部凝结剂,通过喷丝头和注射泵将铸膜液纺丝,得到膜丝;再以自来水和/或有机溶剂为外部凝结剂,将膜丝置于外部凝结剂中,在19.5~20.5℃的温度条件下相转化24~48h,取出后干燥24~48h,得到基底膜生坯;将基底膜生坯在800~950℃的温度条件下煅烧1~2h,得到中空基底膜,再采用电化学沉积法、溶胶凝胶法或化学气相沉积法在中空基底膜的外表面制备分离层,得到中空纤维无机膜。
  2. 根据权利要求1所述的一种中空纤维无机膜的制备方法,其特征在于所述无机材料为铜、铁、不锈钢、镍、氧化锰或氧化铁,所述聚合物为聚乙烯吡咯烷酮,所述粘结剂为聚砜或聚醚砜,所述有机溶剂为N-甲基吡咯烷酮或N,N-二甲基乙酰胺,所述外部凝结剂有机溶剂为乙醇溶液。
  3. 根据权利要求1或2所述的一种中空纤维无机膜的制备方法,其特征在于所述无机材料为不锈钢、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,不锈钢的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为70g:1g:5g:24mL,并且将基底膜生坯在950℃的温度条件下煅烧2h,得到中空基底膜。
  4. 根据权利要求1或2所述的一种中空纤维无机膜的制备方法,其特征在于所述无机材料为铜、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,铜的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为71g:7g:1g:21mL,并且将基底膜生坯在800℃的温度条件下煅烧2h,得到中空基底膜。
  5. 根据权利要求1或2所述的一种中空纤维无机膜的制备方法,其特征在于所述无机材料为二氧化钛、聚合物为聚乙烯吡咯烷酮、粘结剂为聚醚砜和有机溶剂为N,N-二甲基乙酰胺时,二氧化钛的质量、聚乙烯吡咯烷酮的质量、聚醚砜的质量与N,N-二甲基乙酰胺的体积的比为54g:5g:1g:40mL,并且将基底膜生坯在850℃的温度条件下煅烧2h,得到中空基底膜。
  6. 根据权利要求1或2所述的一种中空纤维无机膜的制备方法,其特征在于所述无机材料为铜、铁、不锈钢、镍或铬时,无机材料、聚合物、粘结剂和有机溶剂中铜、铁、不锈钢或镍的质量分数大于70%。
  7. 根据权利要求1所述的一种中空纤维无机膜的制备方法,其特征在于所述中空基底膜的孔径为0.4~1μm,孔隙率为60~80%,内径为1.2~1.7μm,外径为2~3μm。
  8. 根据权利要求1所述的一种中空纤维无机膜的制备方法,其特征在于所述电化学沉积法按以下步骤进行:将2-甲基咪唑加入到去离子水中,混合均匀后,得到溶液A,所述2-甲基咪唑的质量与去离子水的体积的比为4.105g:50mL,2-甲基咪唑的浓度为50mmol;将二水乙酸锌加入到去离子水中,混合均匀后,得到溶液B,所述二水乙酸锌的质量与去离子水的体积的比为0.183g:10mL,二水乙酸锌的浓度为0.83mmol;将溶液A和溶液B混合,搅拌5s,得到ZIF-8前驱体溶液;将中空基底膜和石墨纸加入到ZIF-8前驱体溶液中,保持中空基底膜与石墨纸之间的距离为1.5cm,以石墨纸作为阳极,以中空基底膜作为阴极,在0.13m Acm 2的电流密度下反应30min,反应结束后使用去离子水和甲醇进行冲洗,得到中空纤维无机膜。
  9. 根据权利要求1所述的一种中空纤维无机膜的制备方法,其特征在于所述溶胶凝胶法按以下步骤进行:将三乙醇铝加入到90℃的超纯水中,搅拌3h,加入1M硝酸溶液,在90℃回流16小时,得到溶液C,所述三乙醇铝和超纯水与硝酸溶液的体积比为67:250:18;将1M硝酸溶液和聚乙烯醇加入到超纯水中,加热搅拌至溶解,得到溶胶D,所述硝酸溶液和超纯水的体积与聚乙烯醇的质量的比为5mL:25mL:3g;将溶液C和溶胶D混合,搅拌1h后过滤,得到勃姆石溶胶,所述溶液C与溶胶D的体积比为20:13;将勃姆石溶胶均匀涂布在中空基底膜的外表面上,在50℃下干燥24h,然后以0.5℃/min的加热速率升温至540℃,并在540℃的温度条件下煅烧4h,得到中空纤维无机膜。
  10. 根据权利要求1所述的一种中空纤维无机膜的制备方法,其特征在于所述化学气相沉积法按以下步骤进行:将中空基底膜在700℃、流速为40mL/min的氢气和乙烯组成的混合气体气氛下,原位还原70min,反应结束后,再使用流速为20mL/min的氢气冷却至室温,得到中空纤维无机膜。
PCT/CN2022/078518 2021-04-25 2022-03-01 一种中空纤维无机膜的制备方法 WO2022227838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/557,121 US20240238733A1 (en) 2021-04-25 2022-03-01 Preparation Method for Hollow Fiber Inorganic Membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110463438.3A CN113058443A (zh) 2021-04-25 2021-04-25 一种中空纤维无机膜的制备方法
CN202110463438.3 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022227838A1 true WO2022227838A1 (zh) 2022-11-03

Family

ID=76568109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078518 WO2022227838A1 (zh) 2021-04-25 2022-03-01 一种中空纤维无机膜的制备方法

Country Status (3)

Country Link
US (1) US20240238733A1 (zh)
CN (1) CN113058443A (zh)
WO (1) WO2022227838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371384A (zh) * 2022-12-28 2023-07-04 北京碧水源膜科技有限公司 钛基锂离子筛粉体的成型方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058443A (zh) * 2021-04-25 2021-07-02 哈尔滨工业大学 一种中空纤维无机膜的制备方法
CN114395777A (zh) * 2022-01-17 2022-04-26 中国科学院上海高等研究院 一种金属自支撑电极、制备方法和应用
CN115414786A (zh) * 2022-08-31 2022-12-02 哈尔滨工业大学水资源国家工程研究中心有限公司 基于原位共铸的抗污染有机-无机复合超滤膜的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708435A (zh) * 2009-11-06 2010-05-19 华东理工大学 一种不对称结构陶瓷中空纤维和管式超滤膜的制备方法
US20100330787A1 (en) * 2006-08-18 2010-12-30 Piero Sferlazzo Apparatus and method for ultra-shallow implantation in a semiconductor device
CN105195030A (zh) * 2015-10-25 2015-12-30 天津工业大学 镍合金中空纤维膜及其制备方法和应用
CN105749763A (zh) * 2014-12-18 2016-07-13 华东理工大学 一种陶瓷中空纤维耐溶剂复合纳滤膜的制备方法
US20170014777A1 (en) * 2014-03-05 2017-01-19 Dalian University Of Technology A method for the high-throughput preparation of carbon nanotube hollow fiber membranes
CN107335340A (zh) * 2017-08-22 2017-11-10 成都新柯力化工科技有限公司 一种用于废润滑油分离的防污陶瓷膜及制备方法
CN111514764A (zh) * 2020-04-09 2020-08-11 大连理工大学 超疏水不锈钢-碳纳米管复合膜的制备及水处理应用
CN112569813A (zh) * 2020-11-19 2021-03-30 厦门大学 一种无机纳米材料增强中空纤维超滤膜的制备方法
CN113058443A (zh) * 2021-04-25 2021-07-02 哈尔滨工业大学 一种中空纤维无机膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636378A (zh) * 2018-05-03 2018-10-12 淮北师范大学 一种有机胺功能化三维有序大孔材料co2吸附剂及其制备方法
CN109126487B (zh) * 2018-09-30 2021-06-22 太原理工大学 一种电化学沉积法制备聚苯胺/聚乙烯胺多层复合膜的方法及该复合膜的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330787A1 (en) * 2006-08-18 2010-12-30 Piero Sferlazzo Apparatus and method for ultra-shallow implantation in a semiconductor device
CN101708435A (zh) * 2009-11-06 2010-05-19 华东理工大学 一种不对称结构陶瓷中空纤维和管式超滤膜的制备方法
US20170014777A1 (en) * 2014-03-05 2017-01-19 Dalian University Of Technology A method for the high-throughput preparation of carbon nanotube hollow fiber membranes
CN105749763A (zh) * 2014-12-18 2016-07-13 华东理工大学 一种陶瓷中空纤维耐溶剂复合纳滤膜的制备方法
CN105195030A (zh) * 2015-10-25 2015-12-30 天津工业大学 镍合金中空纤维膜及其制备方法和应用
CN107335340A (zh) * 2017-08-22 2017-11-10 成都新柯力化工科技有限公司 一种用于废润滑油分离的防污陶瓷膜及制备方法
CN111514764A (zh) * 2020-04-09 2020-08-11 大连理工大学 超疏水不锈钢-碳纳米管复合膜的制备及水处理应用
CN112569813A (zh) * 2020-11-19 2021-03-30 厦门大学 一种无机纳米材料增强中空纤维超滤膜的制备方法
CN113058443A (zh) * 2021-04-25 2021-07-02 哈尔滨工业大学 一种中空纤维无机膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116371384A (zh) * 2022-12-28 2023-07-04 北京碧水源膜科技有限公司 钛基锂离子筛粉体的成型方法
CN116371384B (zh) * 2022-12-28 2024-04-16 北京碧水源膜科技有限公司 钛基锂离子筛粉体的成型方法

Also Published As

Publication number Publication date
US20240238733A1 (en) 2024-07-18
CN113058443A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022227838A1 (zh) 一种中空纤维无机膜的制备方法
CN109019745B (zh) 一种提高多功能杂化膜颗粒负载量的制备方法
Bet-Moushoul et al. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes
Li et al. In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance
Chen et al. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu (OH) 2 nanowires for dye/salt wastewater treatment
Liu et al. Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection
Yuan et al. A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution
Chen et al. Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance
CN109126480B (zh) 一种金属有机框架纳米片改性正渗透膜及其制备方法和应用
Chen et al. Materials and design of photocatalytic membranes
CN110170309B (zh) 一种二维金属有机骨架复合膜材料、制备方法及应用
Jiang et al. Fabrication of anti-fouling and photocleaning PVDF microfiltration membranes embedded with N-TiO2 photocatalysts
WO2021093832A1 (zh) 一种c3n4改性有机膜的制备方法及应用
Huang et al. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling
Banerjee et al. Membrane technology
Gao et al. Preparing hydrophilic and antifouling polyethersulfone membrane with metal-polyphenol networks based on reverse thermally induced phase separation method
CN110124735B (zh) 一种亲水导电性水凝胶阴极催化膜及其制备方法和应用
CN109173731B (zh) 一种冷冻干燥技术制备金属有机骨架@氧化石墨烯杂化膜的方法
CN114016285B (zh) 一种用于海水淡化的功能纳米纤维膜的制备方法
Liu et al. A high-flux polydopamine/reduced graphene oxide/MOF-5 composite membrane via a mussel-inspired method for dye wastewater purification
CN114653210A (zh) 一种基于喷涂法的高通量渗透汽化膜、其制备方法与应用
CN114247305A (zh) 一种二维纳米岛@石墨烯异质结自组装疏水纳滤膜及其制备方法
EP3235559A1 (en) Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor
Xu et al. MOF‐Based Membranes for Remediated Application of Water Pollution
CN109173730B (zh) 一种冷冻干燥技术原位制备MOFs@f-GO杂化膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794318

Country of ref document: EP

Kind code of ref document: A1