WO2022227832A1 - 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用 - Google Patents

一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用 Download PDF

Info

Publication number
WO2022227832A1
WO2022227832A1 PCT/CN2022/077877 CN2022077877W WO2022227832A1 WO 2022227832 A1 WO2022227832 A1 WO 2022227832A1 CN 2022077877 W CN2022077877 W CN 2022077877W WO 2022227832 A1 WO2022227832 A1 WO 2022227832A1
Authority
WO
WIPO (PCT)
Prior art keywords
bentonite
zero
valent iron
sodium
loaded
Prior art date
Application number
PCT/CN2022/077877
Other languages
English (en)
French (fr)
Inventor
虞璐
张腾跃
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2022227832A1 publication Critical patent/WO2022227832A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of environmental pollution restoration and risk management and control, in particular to the preparation of sodium bentonite-loaded zero-valent iron and its application in the treatment of heavy metal-organic compound polluted groundwater.
  • Bentonite has adsorption properties due to its 2:1 interlayer structure dominated by montmorillonite, as well as abundant storage and low price. It is often used as a groundwater pollution barrier material. In order to improve the pollution barrier performance and environmental compatibility of bentonite, it is the direction and strategy of site application to modify or modify bentonite in a targeted manner. In recent years, bentonite-supported zero-valent iron materials have become a research hotspot in the control of heavy metal-organic pollutants composite pollution due to their strong reducibility, surface activity, adsorption, unique layered structure and good mechanical properties. , it also has broad application prospects in the real field environment.
  • Chinese patent CN 111346591 A discloses an iron-based-bentonite/carbon composite porous material. This method uses bentonite as the porous skeleton, iron powder and carbon as fillers on the inner and outer surfaces of the pores to prepare a composite porous material for the treatment of chromium-containing wastewater and chromium-contaminated groundwater remediation. This method only involves a single pollutant, chromium, and we do not know its treatment effect on other heavy metal pollution and organic pollutants.
  • Chinese patent CN 111233071 A discloses a composite modified bentonite and activated carbon-loaded nano-zero-valent iron penetration barrier.
  • the method uses the modified bentonite filler unit as the first reaction zone, and the activated carbon-loaded nano-zero-valent iron as the second reaction zone , respectively, to purify organic pollutants and heavy metals.
  • the method sets up multiple reaction chambers, has complicated technical process and numerous construction steps, and has certain problems in terms of technical economy and site applicability.
  • the purpose of the present invention is to provide a preparation method of sodium bentonite loaded with zero-valent iron which has both repairing and blocking functions, utilizes the strong reducibility and surface activity of zero-valent iron, improves the pollution resistance and control performance of sodium bentonite, and prepares the The sodium-based bentonite-loaded zero-valent iron composite material is used in the treatment of composite polluted groundwater.
  • the present invention adopts the following technical solutions:
  • the natural bentonite is fully sodiumized, then mixed with iron salts in a certain proportion, placed in a three-necked flask, continuously stirred for a certain period of time, and then anhydrous ethanol is added, and the stirring is continued until uniform; the pH value of the solution is adjusted to 11 with sodium hydroxide , add a certain amount of sodium borohydride to the three-necked flask, and continue to stir, during which nitrogen gas is continuously introduced to ensure that the solution is in an anaerobic state, so that sodium borohydride and iron salts can fully react and be loaded on bentonite; centrifuge to separate the supernatant liquid , the remaining solid was washed three times with pure water and three times with absolute ethanol; the obtained solid was freeze-dried to obtain a composite material - sodium bentonite loaded with zerovalent iron.
  • the above-mentioned natural bentonite sufficient sodiumization method is: the natural bentonite is crossed with a 100 mesh sieve, 1 mol/L NaCl solution is added, fully stirred for 2 hours and left standstill for 12 hours, poured to remove the supernatant, then 1 mol/L NaCl solution was added, and the above was repeated. Step 5 times to obtain sodium bentonite;
  • iron salt is: FeCl 2 or FeSO 4 ;
  • the above-mentioned iron salt and sodium bentonite are fully mixed in the ratio of 0.2:1-0.5:1, if the organic pollutant concentration is high, the relative ratio of the iron salt can be increased; the stirring time is more than 12 hours;
  • the above-mentioned sodium hydroxide adjusts pH and can be replaced with alkaline solutions such as potassium hydroxide;
  • sodium borohydride solution concentration is: 0.05mol/L-0.1mol/L;
  • the zero-valent iron is evenly distributed on the inner and outer surfaces of the bentonite porous skeleton, and the structure ensures that the zero-valent iron and the bentonite are fully contacted and dispersed uniformly; Valence iron is not easy to be oxidized, and can give full play to its role in reducing pollutants; in addition, the interlayer structure of sodium bentonite is stable, which is conducive to the diffusion of pollutants in the water phase and increases the reaction rate.
  • the composite material has a controllable structure, good environmental compatibility, and high water phase stability, and can simultaneously play the role of adsorption, reduction, complexation, and co-precipitation, and achieve the effect of inhibiting and controlling heavy metals and organic pollutants.
  • the sodium bentonite-loaded zero-valent iron material utilizes bentonite that is affordable, environmentally friendly, has advantages such as good dispersibility, adsorption and low permeability in water, and then reduces the zero-valent iron.
  • the zero-valent iron is evenly distributed on the inner and outer surfaces of the bentonite skeleton, which solves the problem that the zero-valent iron cannot fully play its role in removing pollutants due to its shortcomings such as easy agglomeration and easy oxidation.
  • the ability of bentonite to remove pollutants can be described as complementary advantages.
  • the composite material has a simple preparation process, a single filler, and strong site adaptability. It has broad application prospects in the field of groundwater composite pollution control.
  • Figure 1 shows the preparation method of sodium bentonite loaded with zero-valent iron and its treatment of compound polluted groundwater.
  • the present embodiment provides a preparation method of sodium bentonite-loaded zero-valent iron and an application for treating compound polluted groundwater. The specific steps are:
  • the prepared sodium bentonite-loaded zero-valent iron material was applied to the removal of groundwater lead, pentachlorophenol and other composite pollution.
  • the specific methods are as follows: First, build a model box with a length, width and height of 40cm*18cm*12cm, in the center The prepared bentonite-zero-valent iron composite material was used to build a barrier wall with a length, width and height of 4cm*18cm*12cm in the area. Second, one side of the barrier wall was injected with 100mg/L lead, 0.20mmol/L pentachlorophenol, etc.
  • the present embodiment provides a preparation method of sodium bentonite-loaded zero-valent iron and an application for treating compound polluted groundwater. The specific steps are:
  • the prepared sodium bentonite-loaded zero-valent iron material was applied to the removal of groundwater lead, pentachlorophenol and other composite pollution.
  • the specific methods are as follows: First, build a model box with a length, width and height of 40cm*18cm*12cm, in the center The bentonite-zero-valent iron composite material prepared above was used to build a barrier wall with a length, width and height of 4cm*18cm*12cm respectively in the area; secondly, one side of the barrier wall was injected with compound polluted groundwater solution containing lead, pentachlorophenol, etc.; It is to measure the concentration of 100mg/L lead and 0.20mmol/L pentachlorophenol in the filtrate on the other side of the barrier wall; finally, calculate the zero valence of sodium bentonite load by the concentration difference of lead and pentachlorophenol on the left and right sides. Iron removal rate of contaminants in groundwater.
  • the present embodiment provides a preparation method of sodium bentonite-loaded zero-valent iron and an application for treating compound polluted groundwater. The specific steps are:
  • the prepared sodium bentonite-loaded zero-valent iron material was applied to the removal of groundwater lead, pentachlorophenol and other composite pollution.
  • the specific methods are as follows: First, build a model box with a length, width and height of 40cm*18cm*12cm, in the center The bentonite-zero valent iron composite material prepared above was used to build a barrier wall with a length, width and height of 4cm*18cm*12cm respectively in the area. The third is to measure the concentration of lead and pentachlorophenol in the filtrate on the other side of the barrier wall; finally, the zero valence of sodium bentonite is calculated by the difference between the concentrations of lead and pentachlorophenol on the left and right sides. Iron removal rate of contaminants in groundwater.
  • the present embodiment provides a preparation method of sodium bentonite-loaded zero-valent iron and an application for treating compound polluted groundwater. The specific steps are:
  • the prepared sodium bentonite-loaded zero-valent iron material was applied to the removal of groundwater lead, pentachlorophenol and other composite pollution.
  • the specific methods are as follows: First, build a model box with a length, width and height of 40cm*18cm*12cm, in the center In the area, the bentonite-zero valent iron composite material prepared above is used to construct the barrier wall with a length, width and height of 4cm*18cm*12cm respectively; The third is to measure the concentration of lead and pentachlorophenol in the filtrate on the other side of the barrier wall; finally, the zero valence of sodium bentonite is calculated by the difference between the concentrations of lead and pentachlorophenol on the left and right sides. Iron removal rate of contaminants in groundwater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种钠基膨润土负载零价铁的制备方法,先在pH值为3的条件下将天然膨润土充分钠化,然后钠基膨润土与铁盐按照一定比例混合均匀,置于三颈烧瓶中;用氢氧化钠碱液调节pH值至11,向三颈烧瓶中滴加过量的硼氢化钠溶液,持续搅拌,反应过程持续通入氮气以保证瓶内处于无氧状态;硼氢化钠滴加完毕后继续搅拌,使其与铁盐充分反应,并负载于膨润土;离心分离并除去上清液,剩余的固体用纯水和无水乙醇各洗三遍,冷冻干燥后获得零价铁钠基膨润土。还公开了一种钠基膨润土负载零价铁的应用。该钠基膨润土负载零价铁材料对复合污染地下水中铅和五氯酚的去除率最高可达98.0%和96.1%,为解决地下水复合污染问题提供现实可行的方法。

Description

一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用 技术领域
本发明涉及环境污染修复与风险管控领域,具体涉及钠基膨润土负载零价铁的制备及其在处理重金属-有机物复合污染地下水的应用。
背景技术
随着大量“散乱污”拆解企业的关停,典型遗留场地存在的重金属、有机物复合污染问题增加了当地土壤-水环境的治理难度。面对污染场地重修复、轻防控的现状,采取“预防为主、防治结合”的风险管理策略,形成土壤-水环境协同处置技术体系,是一种必然趋势。污染阻控技术由于其成本低、风险控制好等特点,在污染场地风险控制中应用比较广泛。它通过切断污染物迁移途径,从而在短时间内实现对多种污染物同时实施阻隔的目标。
膨润土因其蒙脱石为主的2:1型层间结构而具有吸附性,以及储存量丰富、价格低等,常用作地下水污染阻隔材料。为提升膨润土的污染阻隔性能和环境兼容性,针对性地对膨润土进行改性或修饰,是场地应用的方向和策略。近年来,膨润土负载零价铁材料由于其较强的还原性、表面活性、吸附性以及独特的层状结构和较好的机械性能,在重金属-有机污染物复合污染阻控方面是研究的热点,在真实场地环境中也有广阔的应用前景。
中国专利CN 111346591 A公开了一种铁基-膨润土/碳复合多孔材料,该方法以膨润土为多孔骨架,铁粉和碳作为孔内外表面的填充物,制备复合多孔材料,用于含铬废水处理和铬污染地下水修复。该方法只涉及单一污染物铬,我们不明确其对其他重金属污染,以及有机污染物的处理效果。中国专利CN 111233071 A公开了一种复合式改性膨润土和活性炭负载纳米零价铁渗透阻隔墙,该方法以改性膨润土填料单元为第一反应区,活性炭负载纳米零价铁为第二反应区,分别对有机污染物、重金属进行净化处理。该方法设置多个反应室,技术工艺复杂,施工步骤繁多,在技术经济性、场地适用性方面存在一定问题。
拆解产业遗留场地存在重金属、有机污染物复合污染问题,这严重影响当地生态环境,当这些污染在短时间内无法彻底修复时,它们会直接或间接威胁居民的身体健康。因此,研发场地适用且环保经济的污染阻控技术方法,对于拆解场地环境治理具有重要的现实意义和实践价值。
发明内容
本发明的目的是提供兼具修复与阻隔功能的一种钠基膨润土负载零价铁的制备方法,利用零价铁强还原性和表面活性,提升钠基膨润土的污染阻控性能,制备形成的钠基膨润土负载零价铁复合材料应用于复合污染地下水的治理工作。
为实现以上目的,本发明采用以下技术方案:
本发明将天然膨润土充分钠化,然后与铁盐按照一定比例混合,放置于三颈烧瓶,持续搅拌一定时间,再加入无水乙醇,继续搅拌至均匀;用氢氧化钠调节溶液pH值至11,向三颈烧瓶加入一定量的硼氢化钠,持续搅拌,期间不断通入氮气以保证溶液处于无氧状态,使硼氢化钠与铁盐充分反应,并负载于膨润土;离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;将获得的固体冷冻干燥后制得复合材料——钠基膨润土负载零价铁。
上述的天然膨润土充分钠化方法为:天然膨润土过100目筛,加入1mol/L NaCl溶液,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述步骤5次,以获得钠基膨润土;
上述的铁盐为:FeCl 2或FeSO 4
上述的铁盐和钠基膨润土以0.2:1-0.5:1的比例充分混合,若有机污染物浓度高,可以增加铁盐的相对比例;搅拌时间为12小时以上;
上述的氢氧化钠调节pH可以用氢氧化钾等碱性溶液代替;
上述的硼氢化钠溶液浓度为:0.05mol/L-0.1mol/L;
上述的硼氢化钠摩尔质量至少为铁盐的3倍;
上述的硼氢化钠滴加过程持续15-30分钟,滴加完毕后继续搅拌反 应时间为30-60分钟;
本发明提供的零价铁改性膨润土材料,零价铁均匀地分布在膨润土多孔骨架的内外表面,该结构保证零价铁与膨润土充分接触且分散均匀;另一方面,多孔骨架保护孔内零价铁不易被氧化,可充分发挥其还原污染物的作用;再者,钠基膨润土层间结构稳定,利于水相中污染物的扩散,增加反应速率。综上,该复合材料结构可控,环境兼容性好,水相稳定性高,能够同时发挥吸附、还原、络合、共沉淀作用,实现阻控重金属、有机污染物的作用。
与现有技术相比,本发明提供的钠基膨润土负载零价铁材料利用膨润土价格实惠,环境友好,水中具有良好的分散性、吸附性和低渗透性等优势,再将零价铁还原性和表面活性强的优势相结合,使零价铁均匀分布在膨润土骨架的内外表面,解决零价铁因为易团聚、易氧化等缺点而不能充分发挥其去除污染物作用的问题,同时增强钠基膨润土对污染物的去除能力,可谓优势互补,该复合材料制备工艺简单、填料单一、场地适应性强,在地下水复合污染阻控领域有广阔的应用前景。
附图说明
图1是钠基膨润土负载零价铁的制备方法及其处理复合污染地下水。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,本领域其他技术人员可以对本发明作出各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
本实施例提供一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用,其具体步骤为:
(1)将天然膨润土过100目筛,加入1mol/L NaCl溶液,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述 步骤5次,充分钠化后获得钠基膨润土;
(2)钠基膨润土与硫酸亚铁按照质量比2:1的比例混合,放置于三颈烧瓶,以200rpm速度持续搅拌12小时,再加入无水乙醇,继续搅拌3小时,使溶液均匀;
(3)取适量纯水,用NaOH调节溶液pH值至11,加入一定量的NaBH 4,配制0.05mol/L的硼氢化钠溶液;
(4)将(3)硼氢化钠溶液以每秒1-2滴加至(2)混合溶液中,滴加过程持续30分钟,过程中持续通入氮气以保证溶液处于无氧状态,溶液滴加完毕后继续搅拌反应时间为60分钟,使硼氢化钠与硫酸亚铁充分反应,并负载于膨润土;硼氢化钠摩尔数为铁盐摩尔数的3倍;
(5)将(4)离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;
(6)将(5)获得的固体冷冻干燥后制得钠基膨润土负载零价铁。
将制备好的钠基膨润土负载零价铁材料应用于地下水铅、五氯酚等复合污染的去除,具体方法如下:一是搭建长、宽、高为40cm*18cm*12cm的模型箱,在中央区域用制备完成的膨润土-零价铁复合材料构筑长、宽、高分别为4cm*18cm*12cm的阻隔墙;二是阻隔墙一侧注入含有100mg/L铅、0.20mmol/L五氯酚等复合污染地下水溶液;三是测定阻隔墙另一侧滤出液污染物铅、五氯酚的浓度;最后,通过左右两侧污染物铅、五氯酚的浓度差计算钠基膨润土负载零价铁对地下水中污染物的去除率。
结果表明钠基膨润土负载零价铁(土铁比为2:1)对地下水中铅、五氯酚的去除率分别为98.0%、96.1%。
实施例2
本实施例提供一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用,其具体步骤为:
(1)将天然膨润土过100目筛,加入1mol/L NaCl溶液,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述 步骤5次,充分钠化后获得钠基膨润土;
(2)钠基膨润土与硫酸亚铁按照质量比3:1的比例混合,放置于三颈烧瓶,以200rpm速度持续搅拌12小时,再加入无水乙醇,继续搅拌3小时,使溶液均匀;
(3)取适量纯水,用NaOH调节溶液pH值至11,加入一定量的NaBH 4,配制0.05mol/L的硼氢化钠溶液;
(4)将(3)硼氢化钠溶液以每秒1-2滴滴加至(2)混合溶液中,滴加过程持续30分钟,过程中持续通入氮气以保证溶液处于无氧状态,溶液滴加完毕后继续搅拌反应时间为60分钟,使硼氢化钠与硫酸亚铁充分反应,并负载于膨润土;硼氢化钠摩尔数为铁盐摩尔数的3倍;
(5)将(4)离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;
(6)将(5)获得的固体冷冻干燥后制得钠基膨润土负载零价铁。
将制备好的钠基膨润土负载零价铁材料应用于地下水铅、五氯酚等复合污染的去除,具体方法如下:一是搭建长、宽、高为40cm*18cm*12cm的模型箱,在中央区域用以上制备而成的膨润土-零价铁复合材料构筑长、宽、高分别为4cm*18cm*12cm阻隔墙;二是阻隔墙一侧注入含有铅、五氯酚等复合污染地下水溶液;三是测定阻隔墙另一侧滤出液污染物100mg/L铅、0.20mmol/L五氯酚的浓度;最后,通过左右两侧污染物铅、五氯酚的浓度差计算钠基膨润土负载零价铁对地下水中污染物的去除率。
结果表明钠基膨润土负载零价铁(土铁比为3:1)对地下水中铅、五氯酚的去除率分别为95.2%、92.0%。
实施例3
本实施例提供一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用,其具体步骤为:
(1)将天然膨润土过100目筛,加入1mol/L NaCl溶液,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述 步骤5次,充分钠化后获得钠基膨润土;
(2)钠基膨润土与硫酸亚铁按照质量比4:1的比例混合,放置于三颈烧瓶,以200rpm速度持续搅拌12小时,再加入无水乙醇,继续搅拌3小时,使溶液均匀;
(3)取适量纯水,用NaOH调节溶液pH值至11,加入一定量的NaBH 4,配制0.05mol/L的硼氢化钠溶液;
(4)将(3)硼氢化钠溶液以每秒1-2滴滴加至(2)混合溶液中,滴加过程持续30分钟,过程中持续通入氮气以保证溶液处于无氧状态,溶液滴加完毕后继续搅拌反应时间为60分钟,使硼氢化钠与硫酸亚铁充分反应,并负载于膨润土;硼氢化钠摩尔数为铁盐摩尔数的3倍;
(5)将(4)离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;
(6)将(5)获得的固体冷冻干燥后制得钠基膨润土负载零价铁。
将制备好的钠基膨润土负载零价铁材料应用于地下水铅、五氯酚等复合污染的去除,具体方法如下:一是搭建长、宽、高为40cm*18cm*12cm的模型箱,在中央区域用以上制备而成的膨润土-零价铁复合材料构筑长、宽、高分别为4cm*18cm*12cm阻隔墙;二是阻隔墙一侧注入含有100mg/L铅、0.20mmol/L五氯酚等复合污染地下水溶液;三是测定阻隔墙另一侧滤出液污染物铅、五氯酚的浓度;最后,通过左右两侧污染物铅、五氯酚的浓度差计算钠基膨润土负载零价铁对地下水中污染物的去除率。
结果表明钠基膨润土负载零价铁(土铁比为4:1)对地下水中铅、五氯酚的去除率分别为85.0%、83.6%。
实施例4
本实施例提供一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用,其具体步骤为:
(1)将天然膨润土过100目筛,加入1mol/L NaCl溶液,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述 步骤5次,充分钠化后获得钠基膨润土;
(2)钠基膨润土与硫酸亚铁按照质量比5:1的比例混合,放置于三颈烧瓶,以200rpm速度持续搅拌12小时,再加入无水乙醇,继续搅拌3小时,使溶液均匀;
(3)取适量纯水,用NaOH调节溶液pH值至11,加入一定量的NaBH 4,配制0.05mol/L的硼氢化钠溶液;
(4)将(3)硼氢化钠溶液以每秒1-2滴滴加至(2)混合溶液中,滴加过程持续30分钟,过程中持续通入氮气以保证溶液处于无氧状态,溶液滴加完毕后继续搅拌反应时间为60分钟,使硼氢化钠与硫酸亚铁充分反应,并负载于膨润土;硼氢化钠摩尔数为铁盐摩尔数的3倍;
(5)将(4)离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;
(6)将(5)获得的固体冷冻干燥后制得钠基膨润土负载零价铁。
将制备好的钠基膨润土负载零价铁材料应用于地下水铅、五氯酚等复合污染的去除,具体方法如下:一是搭建长、宽、高为40cm*18cm*12cm的模型箱,在中央区域用以上制备而成的膨润土-零价铁复合材料长、宽、高分别为4cm*18cm*12cm构筑阻隔墙;二是阻隔墙一侧注入含有100mg/L铅、0.20mmol/L五氯酚等复合污染地下水溶液;三是测定阻隔墙另一侧滤出液污染物铅、五氯酚的浓度;最后,通过左右两侧污染物铅、五氯酚的浓度差计算钠基膨润土负载零价铁对地下水中污染物的去除率。
结果表明钠基膨润土负载零价铁(土铁比为5:1)对地下水中铅、五氯酚的去除率分别为78.2%、71%。

Claims (8)

  1. 一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的方法包括如下步骤:
    (1)取纯水,用HCl调节pH值至3,将天然膨润土钠化后,与铁盐按照膨润土和铁盐的质量比为以1:0.2-1:0.5的例混合,放置于三颈烧瓶内,搅拌,再加入无水乙醇,继续搅拌至均匀;
    (2)取适量纯水,用无机强碱调节溶液pH值至11,加入一定量的NaBH 4,配制NaBH 4溶液;NaBH 4溶液浓度在0.05mol/L-0.1mol/L;
    (3)向三颈烧瓶均匀滴加配制好的NaBH 4溶液,NaBH 4摩尔数至少为铁盐的3倍;持续搅拌,过程中持续通入氮气以保证溶液处于无氧状态,使NaBH 4与铁盐反应30-60分钟,并负载于膨润土,离心分离出上清液,剩下的固体用纯水洗三遍,再用无水乙醇洗三遍;
    (4)将步骤(3)获得的固体冷冻干燥后制得负载零价铁的钠基膨润土。
  2. 根据权利要求1所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的步骤(1)中,天然膨润土钠化是指:钙基膨润土过100目筛,加入1mol/L NaCl溶液浸没钙基膨润土,充分搅拌2小时并静置12小时,倾倒除去上清液,再加入1mol/L NaCl溶液,重复上述步骤5次以上,以获得钠基膨润土。
  3. 根据权利要求1所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的步骤(1)中,铁盐与膨润土混合液持续搅拌时间为12小时以上。
  4. 根据权利要求1所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的步骤(1)中,加入无水乙醇继续搅拌3小时。
  5. 根据权利要求1所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的步骤(2)中,无机强碱采用NaOH或KOH。
  6. 根据权利要求1所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的步骤(3)中,NaBH 4滴加过程持续15-30分钟。
  7. 根据权利要求1至6任一所述的一种钠基膨润土负载零价铁的制备方法,其特征在于,所述的方法制得的零价铁粒径是纳米级或微米级。
  8. 应用权利要求1所述的钠基膨润土负载零价铁的应用,钠基膨润土负载零价铁这一种复合材料按照一定比例添加到未污染土壤中形成阻隔墙,复合材料添加比例为阻隔墙总质量的5%-10%;中钠基膨润土与零价铁的质量比为38:7—95:7。
PCT/CN2022/077877 2021-04-27 2022-02-25 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用 WO2022227832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110462547.3A CN113233570A (zh) 2021-04-27 2021-04-27 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用
CN202110462547.3 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022227832A1 true WO2022227832A1 (zh) 2022-11-03

Family

ID=77129505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077877 WO2022227832A1 (zh) 2021-04-27 2022-02-25 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用

Country Status (2)

Country Link
CN (1) CN113233570A (zh)
WO (1) WO2022227832A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233570A (zh) * 2021-04-27 2021-08-10 北京工业大学 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用
CN113814266A (zh) * 2021-09-13 2021-12-21 生态环境部华南环境科学研究所 基于垂直阻隔的再生铝堆点土壤污染风险管控方法
CN114950344A (zh) * 2022-03-30 2022-08-30 湖南工业大学 一种吸附材料及其制备方法和应用
CN115448320B (zh) * 2022-08-31 2024-01-23 合肥工业大学 提升竖向隔离屏障防污性能的改性钙基膨润土的制备方法
CN115672260B (zh) * 2022-09-02 2024-05-28 北京工业大学 一种吸附材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290099A (zh) * 2014-11-07 2016-02-03 上海市环境科学研究院 一种氯代有机污染土壤修复药剂的制备方法及使用方法
CN107486136A (zh) * 2017-09-04 2017-12-19 绍兴文理学院 一种修复环境水体中镍和氯代有机物复合污染的方法
CN109909279A (zh) * 2019-03-14 2019-06-21 中国地质大学(北京) 一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂及方法
CN113233570A (zh) * 2021-04-27 2021-08-10 北京工业大学 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736446B (zh) * 2014-01-24 2016-04-13 太原理工大学 一种磁响应性膨润土水处理剂的制备方法
CN103785855B (zh) * 2014-02-10 2015-09-02 上海市环境科学研究院 一种多组分有机改性的膨润土嵌载纳米零价铁的制备方法
CN106800939A (zh) * 2016-12-26 2017-06-06 四川省有色冶金研究院有限公司 用于治理土壤重金属复合污染的修复剂及其制备方法
US11491522B2 (en) * 2019-02-18 2022-11-08 Tersus Environmental Llc Zero-valent metal suspension in non-aqueous phase for water remediation
CN111233071A (zh) * 2020-01-20 2020-06-05 中新曜昂环境修复(江苏)有限公司 复合式prb及处理地下水中重金属和有机污染物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290099A (zh) * 2014-11-07 2016-02-03 上海市环境科学研究院 一种氯代有机污染土壤修复药剂的制备方法及使用方法
CN107486136A (zh) * 2017-09-04 2017-12-19 绍兴文理学院 一种修复环境水体中镍和氯代有机物复合污染的方法
CN109909279A (zh) * 2019-03-14 2019-06-21 中国地质大学(北京) 一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂及方法
CN113233570A (zh) * 2021-04-27 2021-08-10 北京工业大学 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZHANFENG: "Study on the Synergetic Removal of Heavy Metal Pollutants by Zero Valent Iron/Pyrite", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 September 2019 (2019-09-15), XP055980467 *

Also Published As

Publication number Publication date
CN113233570A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022227832A1 (zh) 一种钠基膨润土负载零价铁的制备方法与处理复合污染地下水的应用
Du et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions
Liao et al. Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanisms
Zhang et al. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal
Wang et al. Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution
CN109317091B (zh) 一种改性海泡石重金属吸附材料及制备方法
CN111718719B (zh) 一种硫化纳米零价铁-酸活化蒙脱石复合材料及其制备方法与应用
CN106334518B (zh) 一种可回收的磁性磷吸附剂及其制备方法
CN111804930B (zh) 一种纳米零价铁锰双金属及其制备方法和应用
Liu et al. Research progress in the environmental application of magnesium hydroxide nanomaterials
CN106423051A (zh) 一种磁性活化水热生物炭微球的制备方法与应用
CN101314496A (zh) 改性膨润土负载纳米铁水处理剂及其制备方法
CN104961223B (zh) 一种以负载型纳米零价铁为填料的可渗透反应墙及应用
CN106268644A (zh) 一种高效水净化材料及其制备方法与应用
Zeng et al. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review
CN110054370B (zh) 一种河道底泥固化稳定修复药剂及其制备方法
CN110451597A (zh) 一种纳米零价铁@分子筛复合材料及其制备方法与用途
CN102690012A (zh) 一种解决亚硝酸盐积累的地下水硝酸盐污染生物修复方法
CN105148835B (zh) 颗粒型13x分子筛/凹凸棒土负载纳米铁‑镍材料及其制备方法
Mao et al. Simultaneous removal of arsenite and cadmium by a manganese-crosslinking sodium alginate modified biochar and zerovalent iron composite from aqueous solutions
CN107253753A (zh) 一种造纸厂污水沉淀剂及其制备方法
CN114890528B (zh) 一种生物炭负载铁基纳米改性材料及其制备方法和应用
Li et al. Metal-organic frameworks (MOFs) as efficient catalysts for electro-Fenton (EF) reactions: Current progress and prospects
Mo et al. To enhance the Cd2+ adsorption capacity on coconut shell-derived biochar by chitosan modifying: Performance and mechanism
CN1321086C (zh) 一种改性膨润土除铬剂及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794312

Country of ref document: EP

Kind code of ref document: A1