WO2022227684A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2022227684A1
WO2022227684A1 PCT/CN2021/143934 CN2021143934W WO2022227684A1 WO 2022227684 A1 WO2022227684 A1 WO 2022227684A1 CN 2021143934 W CN2021143934 W CN 2021143934W WO 2022227684 A1 WO2022227684 A1 WO 2022227684A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting unit
display panel
nanometers
Prior art date
Application number
PCT/CN2021/143934
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/263,180 priority Critical patent/US20240099047A1/en
Publication of WO2022227684A1 publication Critical patent/WO2022227684A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel.
  • white light emitting diode devices achieve the purpose of emitting white light by mixing red, green and blue materials in different proportions.
  • the red, green and blue three-color materials can be used as effective exciton radiation recombination centers after being solution-processed, spin-coated or ink-jet printed and integrated into light-emitting diode devices.
  • the white light emitting diode device needs to inject electrons and holes when it works.
  • the simplest white light emitting diode device consists of a cathode, an electron transport layer, a light emitting layer, a hole transport layer and an anode.
  • the light emitting layer is arranged between the electron transport layer and the hole transport layer.
  • a forward bias is applied to both ends of the light emitting diode device, the electrons and holes pass through the electron transport layer and the hole transport layer, respectively. Entering the light-emitting layer, electrons and holes recombine and emit light in the light-emitting layer.
  • the current white light emitting diode device still has the problem of low color rendering index, which makes the color reduction degree low. Therefore, there is an urgent need for a white light emitting diode device with a high color rendering index.
  • Embodiments of the present application provide a display panel to solve the problem of low color rendering index of a white light display panel.
  • Embodiments of the present application provide a display panel, which includes:
  • a light-emitting structure the light-emitting structure is disposed on the first electrode layer, the light-emitting structure includes a first light-emitting unit, a second light-emitting unit and a third light-emitting unit that are stacked in sequence, the first light-emitting unit, the The second light-emitting unit and the third light-emitting unit are independently selected from the red light-emitting unit, the green light-emitting unit and the blue light-emitting unit.
  • the colors are different, wherein the light-emitting structure is provided with a light conversion layer, and the light conversion layer is provided on the side of the green light-emitting unit and/or the blue light-emitting unit close to the light-emitting surface of the light-emitting structure , the light conversion layer is doped with red photoluminescent particles; and
  • a second electrode layer, the second electrode layer is disposed on the side of the light emitting structure away from the first electrode layer.
  • the red photoluminescent particles are configured to receive light emitted by the green light-emitting unit and/or the blue light-emitting unit and emit red light, and the light-emitting structure emits white light.
  • the red photoluminescent particles are selected from CdSe-based quantum dot materials, CdZnSe-based quantum dot materials, InP-based quantum dot materials, and ZnSe-based quantum dot materials.
  • the doping concentration of the red photoluminescent particles in the light conversion layer is 10%-35%.
  • the first light-emitting unit includes a first light-emitting layer, a first electron transport layer and a first hole transport layer, the light conversion layer, the first hole transport layer, the The first light-emitting layer and the first electron transport layer are sequentially stacked on the first electrode layer.
  • the light conversion layer material is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline, and polythiophene.
  • the first light-emitting unit includes a first hole injection layer, a first light-emitting layer and a first electron transport layer, the first hole injection layer, the light conversion layer, the The first light-emitting layer and the first electron transport layer are sequentially stacked on the first electrode layer.
  • the light conversion layer material is selected from poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N' -Bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine and 4,4'-bis(9-carbazole)biphenyl.
  • the first light emitting unit includes a first hole injection layer, a first hole transport layer and a first light emitting layer, the first hole injection layer, the first hole The transmission layer, the first light emitting layer and the light conversion layer are sequentially stacked on the first electrode layer.
  • the light conversion layer is disposed between the first light emitting unit and the second light emitting unit or between the second light emitting unit and the third light emitting unit.
  • the light conversion layer material is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide, and zinc manganese oxide.
  • the second light-emitting unit includes a second hole injection layer, a second hole transport layer, a second light-emitting layer and a second electron transport layer that are stacked in sequence;
  • the third light-emitting layer The unit includes a third hole injection layer, a third hole transport layer, a third light emitting layer and a third electron transport layer arranged in sequence;
  • the display panel also includes a The first transparent conductive layer between the light emitting units and/or the second transparent conductive layer disposed between the second light emitting unit and the third light emitting unit.
  • materials of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer are a core-shell structure in which a shell layer coats a core layer, and the material of the core layer includes At least one of CdSe, CdZnSe, InP and ZnSe, and the material of the shell layer includes one or a combination of two of CdS and ZnS.
  • the materials of the first transparent conductive layer and the second transparent electrode layer are both selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide and Zinc manganese oxide.
  • the thicknesses of the first transparent conductive layer and the second transparent electrode layer are both 50 nanometers to 1000 nanometers.
  • the materials of the second hole transport layer and the third hole transport layer both include poly(9,9-dioctylfluorene-co-N-(4-butyl) phenyl) diphenylamine), poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4 "-Tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, one or more combinations.
  • the materials of the second hole injection layer and the third hole injection layer are both selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, Polyaniline and polythiophene.
  • the thicknesses of the second hole injection layer and the third hole injection layer are both 15 nanometers to 50 nanometers.
  • An embodiment of the present application discloses a display panel, which includes a first electrode layer, a light-emitting structure, and a second electrode layer.
  • the light-emitting structure is arranged on the first electrode layer, and the light-emitting structure includes a first light-emitting unit, a second light-emitting unit and a third light-emitting unit that are stacked in sequence, and the first light-emitting unit, the second light-emitting unit and the third light-emitting unit are independent respectively.
  • the light-emitting unit is selected from the red light-emitting unit, the green light-emitting unit and the blue light-emitting unit, the light-emitting colors of the first light-emitting unit, the second light-emitting unit and the third light-emitting unit are different, wherein the light-emitting structure is provided with a light conversion layer, and the light conversion layer is provided with On the side of the green light-emitting unit and/or the blue light-emitting unit close to the light-emitting surface of the light-emitting structure, the light conversion layer is doped with red photoluminescent particles, and the light-emitting structure emits white light; the second electrode layer is disposed on the light-emitting structure the side away from the first electrode layer.
  • the color rendering index of the white light display panel is improved, thereby improving the performance of the white light display panel.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third structure of a display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth structure of a display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a display panel. Each of them will be described in detail below.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • the present application provides a display panel 10 .
  • the display panel 10 includes a first electrode layer 100 , a light emitting structure 200 and a second electrode layer 300 .
  • the display panel 10 further includes a substrate 400 .
  • the substrate 400 may be a rigid substrate or a flexible substrate.
  • the flexible substrate may be a polyimide substrate.
  • the rigid substrate may be a glass substrate.
  • the first electrode layer 100 is disposed on the substrate 400 .
  • the first electrode layer 100 is an anode or a cathode. In this embodiment, the first electrode layer 100 is an anode.
  • the material of the first electrode layer 100 includes one or a combination of indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the first electrode layer 100 is indium tin oxide.
  • the thickness H 1 of the first electrode layer 100 is 50 nanometers to 1000 nanometers. Specifically, the thickness H 1 of the first electrode layer 100 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. In this embodiment, the thickness H 1 of the first electrode layer 100 is 600 nanometers.
  • the thickness H 1 of the first electrode layer 100 is set to 50 nanometers to 1000 nanometers.
  • the first electrode layer 100 with a thickness within this range has a small resistance and a small hindering effect on current, thereby improving the first electrode layer 100 .
  • Conductivity of an electrode layer 100 If the thickness H1 of the first electrode layer 100 is set to be less than 50 nanometers, the resistance of the first electrode layer 100 is too small, causing damage to the display panel 10; if the thickness H1 of the first electrode layer 100 is set to be greater than 1000 nm Nanometers make the resistance of the first electrode layer 100 too large, thereby affecting the conductivity of the first electrode layer 100 , so that the display panel 10 cannot display normally.
  • the light emitting structure 200 is disposed on a side of the first electrode layer 100 away from the substrate 400 .
  • the light-emitting structure 200 includes a first light-emitting unit 210, a second light-emitting unit 220 and a third light-emitting unit 230 that are stacked in sequence, wherein the first light-emitting unit 210, the second light-emitting unit 220 and the third light-emitting unit 230 are independently selected from red Light emitting unit, green light emitting unit and blue light emitting unit.
  • the light-emitting colors of the first light-emitting unit 210 , the second light-emitting unit 220 and the third light-emitting unit 230 are different from each other.
  • the light emitting structure 200 is provided with a light conversion layer 240 .
  • the light conversion layer 240 is disposed on the side of the green light emitting unit and/or the blue light emitting unit close to the light emitting surface of the light emitting structure.
  • the light conversion layer 240 is doped with red photoluminescent particles 241 .
  • the first light emitting unit 210 includes a first hole transport layer 211 , a first light emitting layer 212 and a first electron transport layer 213 .
  • the light conversion layer 240 , the first hole transport layer 211 , the first light emitting layer 212 and the first electron transport layer 213 are sequentially stacked on the first electrode layer 100 .
  • the light conversion layer 240 is doped with red photoluminescent particles 241, and the red photoluminescent particles 241 are used to receive the light emitted by the green light-emitting unit and/or the blue light-emitting unit and emit red light, so that The light conversion layer 240 has a light conversion effect, and the light emitting structure 200 emits white light, which improves the low color rendering index of the display panel 10 and improves the performance of the display panel 10; between the first electrode layer 100 and the first hole transport layer 211
  • the light conversion layer 240 is arranged so that the light conversion layer 240 can be used as the first hole injection layer of the first light emitting unit 210, and the first electrode layer 100 is similar to the light conversion layer 240 due to factors such as energy level, mobility and optics of the first electrode layer 100.
  • the first hole injection layer is doped with red photoluminescent particles 241, so that the first hole injection layer has both the light conversion effect and the function of the hole injection layer, and there is no need to design another light conversion layer 240, which reduces the display panel.
  • the light conversion layer 240 is arranged on the first electrode layer 100, that is, the red photoluminescent particles 241 are doped on the first electrode layer 100 near the light-emitting side to inject holes into the first electrode layer 100.
  • the thickness W1 of the light conversion layer 240 has a large selection space, thereby improving the conversion effect of the light conversion layer 240, and further improving the color rendering index of the display panel.
  • the color rendering index refers to the effect of the light source to be measured on the color appearance of the object compared with the standard light source, that is, the fidelity of the color. The higher the color rendering index, the closer the color of the object is to the true color of the object under the light source.
  • the light conversion layer 240 material includes poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline, and polythiophene.
  • the material of the first hole injection layer is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the red photoluminescent particles 241 have a core-shell structure in which a shell layer coats a core layer.
  • the core layer material is selected from CdSe-based quantum dot materials, CdZnSe-based quantum dot materials, InP-based quantum dot materials and ZnSe-based quantum dot materials, and the shell layer material is selected from CdS and ZnS.
  • the core layer is an InP-based quantum dot material
  • the shell layers are CdS and ZnS.
  • the red photoluminescent particles 241 adopt a core-shell structure in which a shell layer coats the core layer. Since the band gap of the shell layer is larger than that of the core layer, the light conversion layer 240 expands the range of the photon collection spectrum. At the same time, the influence of defects of the core layer on the light emission of the light conversion layer 240 can be avoided, and the coupling characteristics of the core layer can be prevented from being affected by adjusting the thickness of the shell layer, thereby improving the display stability of the display panel 10 .
  • the material of the core layer is selected from CdSe-based quantum dot materials, CdZnSe-based quantum dot materials, InP-based quantum dot materials and ZnSe-based quantum dot materials
  • the material of the shell layer is selected from CdS and ZnS
  • the red The particle size of the photoluminescent particles 241 is set to be 7 nm to 8 nm. In this embodiment, the particle size of the material of the light conversion layer 240 is 8 nanometers, so that the red photoluminescent particles emit red light.
  • the photoluminescence wavelength of the material of the light conversion layer 240 is 600 nanometers to 630 nanometers.
  • the half width of the photoluminescence of the red photoluminescent particles 241 is 40 nanometers to 90 nanometers.
  • the half-peak width of the photoluminescence of the red photoluminescent particles 241 may be 40 nanometers, 50 nanometers, 60 nanometers, 75 nanometers, 80 nanometers, or 90 nanometers.
  • Half-peak width refers to the peak width at half of the chromatographic peak height, that is, a straight line parallel to the peak bottom is drawn through the midpoint of the peak height, and the distance between the two points where this straight line intersects both sides of the peak.
  • a spectrum with continuous spectrum and wide half-peak width is selected, that is, the half-peak width of the photoluminescence of the red photoluminescent particles 241 is 40 nanometers to 90 nanometers, thereby improving the display of the white light display panel 10 .
  • color index which in turn improves the performance of the display panel.
  • the mechanism of photoluminescence is that the quantum dots are irradiated by external light, so that the quantum dots obtain energy and generate excitation leading to luminescence.
  • the doping concentration of the red photoluminescent particles 241 in the light conversion layer 240 is 10%-35%. Specifically, the doping concentration of the red photoluminescent particles 241 may be 10%, 12%, 14%, 25%, 30%, or 35%. In this embodiment, the doping concentration of the red photoluminescent particles 241 is 28%.
  • the doping concentration of the red photoluminescent particles 241 in the light conversion layer 240 is set to 10%-35%, so as to improve the color rendering index of the display panel 10 . If the doping concentration of the red photoluminescent particles 241 in the light conversion layer 240 is set to be less than 10%, the light conversion layer 240 needs to be thick enough to ensure the color rendering index of the display panel 10 and make the film thickness of the device increase, which is not conducive to realizing a thin and light design.
  • the doping concentration of the red photoluminescent particles 241 in the light conversion layer 240 is set to be greater than 35%, due to the high concentration of the red photoluminescent particles 241, the red photoluminescent particles 241 are separated from the organic substances therein, which affects the The color rendering index of the display panel 10 is shown.
  • the thickness W 1 of the light conversion layer 240 is 50 nanometers to 500 nanometers. Specifically, the thickness W 1 of the light conversion layer 240 may be 50 nanometers, 80 nanometers, 160 nanometers, 240 nanometers, 300 nanometers, 400 nanometers, 480 nanometers, or 500 nanometers. In this embodiment, the thickness W 1 of the light conversion layer 240 is 200 nanometers.
  • the thickness W 1 of the light conversion layer 240 is set to 50 nanometers to 500 nanometers, which improves the light conversion effect of the light conversion layer 240 . If the thickness W 1 of the light conversion layer 240 is set to be less than 50 nanometers, the light conversion efficiency of the light conversion layer 240 will be reduced, and the color rendering index of the display panel 10 will be affected. If the thickness W 1 of the light conversion layer 240 is set to be greater than 500 nanometers, the conversion ratio of light other than red to red will be high, which is not conducive to the display panel 10 to emit white light.
  • the material of the first hole transport layer 211 includes poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis (4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4 , 4'-bis(9-carbazole)biphenyl, one or more combinations.
  • the material of the first hole transport layer 211 is 4,4'-bis(9-carbazole)biphenyl in benzene.
  • the thickness D 1 of the first hole transport layer 211 is 15 nm to 40 nm. Specifically, the thickness D 1 of the first hole transport layer 211 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness D 1 of the first hole transport layer 211 is 20 nanometers.
  • the thickness D 1 of the first hole transport layer 211 is set between 15 nanometers and 40 nanometers to ensure the transmission efficiency of holes in the first hole transport layer 211 , thereby ensuring the normal display of the display panel 10 .
  • the first light emitting layer 212 is disposed on the side of the first hole transport layer 211 away from the first electrode layer 100 .
  • the first light-emitting layer 212 includes one of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the first light emitting layer 212 is a blue light emitting layer, that is, the first light emitting unit 210 is a blue light emitting unit.
  • the material of the first light-emitting layer 212 is a core-shell structure in which the core layer is surrounded by a shell layer.
  • the band gap of the shell layer is larger than that of the core layer.
  • the core layer material includes at least one of CdSe, CdZnSe, InP, and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe, and the shell layer material is CdS.
  • the particle size of the material of the first light-emitting layer 212 is 1 nanometer to 2 nanometers. In this embodiment, the particle size of the material of the first light-emitting layer 212 is 2 nanometers.
  • CdSe, CdZnSe, InP and ZnSe are used as core layer materials
  • CdS and ZnS are used as shell layer materials
  • the particle size of the material of the first light-emitting layer 212 is set to 1 nanometer to 2 nanometers, so that the first light-emitting layer 212 emits blue light.
  • the photoluminescence wavelength of the material of the first light-emitting layer 212 is 465 nm to 480 nm.
  • the thickness T 1 of the first light emitting layer 212 is 10 nm to 40 nm. Specifically, the thickness T1 of the first light-emitting layer 212 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 1 of the first light-emitting layer 212 is 20 nanometers.
  • the thickness T 1 of the first light emitting layer 212 is set to be 10 nm to 40 nm, so that the first light emitting layer 212 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the first electron transport layer 213 is Zn 0.95 Mg 0.05 O.
  • the thickness h 1 of the first electron transport layer 213 is 20 nm to 60 nm. Specifically, the thickness h 1 of the first electron transport layer 213 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 1 of the first electron transport layer 213 is 30 nanometers.
  • the thickness h 1 of the first electron transport layer 213 is set to 20 nanometers to 60 nanometers to ensure the electron transport performance of the first electron transport layer 213 , thereby ensuring the normal display of the display panel 10 .
  • the display panel 10 includes the first transparent conductive layer 500 .
  • the first transparent conductive layer 500 is disposed on the side of the first electron transport layer 213 away from the first electrode layer 100 .
  • the material of the first transparent conductive layer 500 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide and zinc manganese oxide. In this embodiment, the material of the first transparent conductive layer 500 is indium zinc oxide.
  • the thickness R 1 of the first transparent conductive layer 500 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 1 of the first transparent conductive layer 500 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. In this embodiment, the thickness R 1 of the first transparent conductive layer 500 is 100 nanometers.
  • the thickness R 1 of the first transparent conductive layer 500 is set to 50 nanometers to 1000 nanometers, so as to avoid the influence of the subsequent second hole injection layer 221 on the first electron transport layer 213 , thereby ensuring the first electron transport.
  • the injection of the layer 213 and the transmission of electrons ensure the normal display of the display panel 10 .
  • the second hole injection layer 221 will affect the electron injection and transmission efficiency of the first electron transport layer 213, which is not conducive to the normal display of the display panel 10; Setting the thickness R 1 of the first transparent conductive layer 500 to 1000 nanometers increases the resistance of the first transparent conductive layer 500 and reduces the conductivity of the first transparent conductive layer 500 , thereby affecting the display performance of the display panel 10 .
  • the second light emitting unit 220 includes a second hole injection layer 221 , a second hole transport layer 222 , a second light emitting layer 223 and a second electron transport layer 224 which are sequentially stacked on the first transparent conductive layer 500 .
  • the material of the second hole injection layer 221 is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the second hole injection layer 221 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the thickness W 2 of the second hole injection layer 221 is 15 nm to 50 nm. Specifically, the thickness W 2 of the second hole injection layer 221 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness W 2 of the second hole injection layer 221 is 25 nanometers.
  • the thickness W 2 of the second hole injection layer 221 is set to 15 nanometers to 50 nanometers to ensure the hole injection efficiency of the second hole injection layer 221 , thereby ensuring the normal display of the display panel 10 .
  • the first electron transport layer 213 , the first transparent conductive layer 500 and the second hole injection layer 221 constitute the first charge layer 600 of the light emitting structure 200 .
  • the first charge layer 600 is used to provide holes and electrons required by the light emitting structure 200 .
  • the first charge layer 600 is composed of the first electron transport layer 213, the first transparent conductive layer 500 and the second hole injection layer 221. Because the first transparent conductive layer 500 is an n-type semiconductor, the second empty The hole injection layer 221 belongs to the p-type, and the contact between the two forms a p-n junction.
  • the first charge layer 600 can generate enough electrons and holes, thereby avoiding the problem of energy transfer caused by the stacked arrangement of the light-emitting units of the display panel 10, avoiding the problem of uneven display of the display panel 10, and further The stability of the display panel 10 is improved.
  • the light conversion layer 240 is doped with red photoluminescent particles 241, so that the light conversion layer 240 serves as the hole injection layer of the first light emitting unit 210 and has a light conversion effect, thereby improving the white light
  • the color rendering index of the display panel 10 further improves the performance of the white light display panel.
  • the material of the second hole transport layer 222 is poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis( 4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4, One or several combinations of 4'-bis(9-carbazole)biphenyl.
  • the material of the second hole transport layer 222 is polyvinylcarbazole.
  • the thickness D 2 of the second hole transport layer 222 is 15 nm to 40 nm. Specifically, the thickness D 2 of the second hole transport layer 222 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness D 2 of the second hole transport layer 222 is 25 nanometers.
  • the thickness D 2 of the second hole transport layer 222 is set to 15 nm to 40 nm to ensure the hole transport efficiency in the second hole transport layer 222 , thereby ensuring the normal display of the display panel 10 .
  • the second light-emitting layer 223 includes one of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the second light-emitting layer 223 is a green light-emitting layer, that is, the second light-emitting unit 220 is a green light-emitting unit.
  • the material of the second light-emitting layer 223 is a core-shell structure in which a shell layer coats the core layer.
  • the core layer material includes one of CdSe, CdZnSe, InP and ZnSe, and the shell layer material includes one or a combination of two of CdS and ZnS.
  • the core layer material is CdZnSe
  • the shell layer material is CdS.
  • the particle size of the material of the second light emitting layer 223 is 3 nanometers to 6 nanometers. In this embodiment, the particle size of the material of the second light emitting layer 223 is 5 nanometers.
  • CdSe, CdZnSe, InP and ZnSe are used as core layer materials
  • CdS and ZnS are used as shell layer materials
  • the particle size of the material of the second light-emitting layer 223 is set to 3 nanometers to 6 nanometers, so that the second light-emitting layer 223 is Layer 223 emits green light.
  • the photoluminescence wavelength of the material of the second light-emitting layer 223 is 535 nm to 555 nm.
  • the thickness T 2 of the second light emitting layer 223 is 10 nm to 40 nm. Specifically, the thickness T 2 of the second light-emitting layer 223 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 2 of the second light emitting layer 223 is 15 nanometers.
  • the thickness T 2 of the second light-emitting layer 223 is set to be 10 nm to 40 nm, so that the second light-emitting layer 223 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the second electron transport layer 224 may be Zn 0.98 Al 0.02 O, Zn 0.9 Mg 0.05 Li 0.05 O, Zn 0.9 Mg 0.1 O, Zn 0.88 Mg 0.12 O, or the like. In this embodiment, the material of the second electron transport layer 224 is Zn 0.95 Mg 0.05 O.
  • the thickness h 2 of the second electron transport layer 224 is 20 nm to 60 nm. Specifically, the thickness h 2 of the second electron transport layer 224 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 2 of the second electron transport layer 224 is 38 nanometers.
  • the thickness h 2 of the second electron transport layer 224 is set to 20 nanometers to 60 nanometers to ensure the electron transport performance of the second electron transport layer 224 , thereby ensuring the normal display of the display panel 10 .
  • the display panel 10 further includes a second transparent conductive layer 700 .
  • the second transparent conductive layer 700 is disposed on the second electron transport layer 224 .
  • the material of the second transparent conductive layer 700 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide and zinc manganese oxide. In this embodiment, the material of the second transparent conductive layer 700 is indium zinc oxide.
  • the thickness R 2 of the second transparent conductive layer 700 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 2 of the second transparent conductive layer 700 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. The thickness R 2 of the second transparent conductive layer 700 is 500 nanometers.
  • the thickness R 2 of the second transparent conductive layer 700 is set to 50 nanometers to 1000 nanometers to avoid the influence of the subsequent third hole injection layer 231 on the second electron transport layer 224, thereby ensuring that the second electron
  • the injection of the transmission layer 224 and the transmission of electrons further ensure the normal display of the display panel 10 .
  • the third hole injection layer 231 will affect the electron injection and transmission efficiency of the second electron transport layer 224, which is not conducive to the normal display of the display panel 10; Setting the thickness R 2 of the second transparent conductive layer 700 to 1000 nanometers increases the resistance of the second transparent conductive layer 700 and reduces the conductivity of the second transparent conductive layer 700 , thereby affecting the display performance of the display panel 10 .
  • the third light emitting unit 230 includes a third hole injection layer 231 , a third hole transport layer 232 , a third light emitting layer 233 and a third electron transport layer 234 which are sequentially stacked on the second transparent conductive layer 700 .
  • the material of the third hole injection layer 231 is selected from poly-3,4-ethylenedioxythiophene: polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the third hole injection layer 231 is polythiophene.
  • the thickness W 3 of the third hole injection layer 231 is 15 nm to 50 nm. Specifically, the thickness W 3 of the third hole injection layer 231 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness W 3 of the third hole injection layer 231 is 39 nanometers.
  • the thickness W 3 of the third hole injection layer 231 is set to 15 nanometers to 50 nanometers to ensure the hole injection efficiency of the third hole injection layer 231 , thereby ensuring the normal display of the display panel 10 .
  • the second electron transport layer 224 , the second transparent conductive layer 700 and the third hole injection layer 231 constitute the second charge layer 800 of the light emitting structure 200 .
  • the second charge layer 800 is used to provide holes and electrons required by the light emitting structure 200 .
  • the second charge layer 800 is composed of the second electron transport layer 224, the second transparent conductive layer 700 and the third hole injection layer 231. Because the second transparent conductive layer 700 is an n-type semiconductor, the third empty The hole injection layer 231 belongs to the p-type, and the contact between the two forms a p-n junction.
  • the second charge layer 800 can generate enough electrons and holes, thereby avoiding the problem of energy transfer caused by the stacked arrangement of the light-emitting units of the display panel 10, avoiding the problem of uneven display of the display panel 10, and further The stability of the display panel 10 is improved.
  • the material of the third hole transport layer 232 includes poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis(N,N′-bis) (4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4 , 4′-bis(9-carbazole)biphenyl, one or more combinations.
  • the material of the third hole transport layer 232 is poly(N,N′-bis(4-butyl) phenyl)-N,N'-bis(phenyl)-benzidine).
  • the thickness D 3 of the third hole transport layer 232 is 15 nm to 40 nm. Specifically, the thickness D 3 of the third hole transport layer 232 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness D3 of the third hole transport layer 232 is 18 nanometers.
  • the thickness D 3 of the third hole transport layer 232 is set to 15 nm to 40 nm to ensure the transport efficiency of holes in the third hole transport layer 232 , thereby ensuring the normal display of the display panel 10 .
  • the third light-emitting layer 233 includes one of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the third light-emitting layer 233 is a red light-emitting layer, that is, the third light-emitting unit 230 is a red light-emitting unit.
  • the material of the third light-emitting layer 233 is a core-shell structure in which the core layer is surrounded by a shell layer.
  • the core layer material includes one of CdSe, CdZnSe, InP and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe, and the shell layer materials are CdS and ZnS.
  • the particle size of the material of the third light emitting layer 233 is 7 nanometers to 8 nanometers. In this embodiment, the particle size of the material of the third light-emitting layer 233 is 8 nanometers.
  • CdSe, CdZnSe, InP and ZnSe are used as core layer materials
  • CdS and ZnS are used as shell layer materials
  • the particle size of the material of the third light-emitting layer 233 is set to 7 nanometers to 8 nanometers, so that the third light-emitting layer Layer 233 emits red light.
  • the photoluminescence wavelength of the material of the third light-emitting layer 233 is 615 nm to 625 nm.
  • the thickness T 3 of the third light emitting layer 233 is 10 nm to 40 nm. Specifically, the thickness T3 of the third light-emitting layer 233 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T3 of the third light-emitting layer 233 is 22 nanometers.
  • the thickness T 3 of the third light emitting layer 233 is set to be 10 nm to 40 nm, so that the third light emitting layer 233 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the third electron transport layer 234 is Zn 0.85 Mg 0.05 Li 0.1 O.
  • the thickness h 3 of the third electron transport layer 234 is 20 nm to 60 nm. Specifically, the thickness h 3 of the third electron transport layer 234 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 3 of the third electron transport layer 234 is 54 nanometers.
  • the display panel 10 further includes a second electrode layer 300 .
  • the second electrode layer 300 is disposed on the side of the third electron transport layer 234 away from the first electrode layer 100 .
  • the material of the second electrode layer 300 includes gold, silver, aluminum, alloys thereof, and the like. In this embodiment, the material of the second electrode layer 300 is gold.
  • the thickness H 2 of the second electrode layer 300 is 80 nanometers to 500 nanometers. Specifically, the thickness H 2 of the second electrode layer 300 may be 80 nanometers, 120 nanometers, 340 nanometers, 480 nanometers, or 500 nanometers. In this embodiment, the thickness H 2 of the second electrode layer 300 is 100 nanometers. In this embodiment, the thickness H 2 of the second electrode layer 300 is 490 nanometers.
  • the second electrode layer 300 is an anode or a cathode. In this embodiment, the second electrode layer 300 is a cathode.
  • the present application provides a display panel, by arranging a light conversion layer doped with red photoluminescent particles between a first electrode layer and a first hole transport layer, that is, between the first electrode layer and the first hole transport layer
  • the first hole injection layer doped with red photoluminescent particles is arranged between the layers, so that the first hole injection layer does not affect its own performance and has a light conversion effect, thereby improving the color rendering index of the white light display panel. Thereby, the performance of the white light display panel is improved.
  • FIG. 2 is a schematic diagram of a second structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the second structure and the first structure is:
  • the light conversion layer 240 is disposed between the first hole injection layer 211 a and the first light emitting layer 212 .
  • the material of the light conversion layer 240 is selected from poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis(4) -butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4 One or several combinations of '-bis(9-carbazole)biphenyl.
  • the material of the light conversion layer 240 is 4,4'-bis(9-carbazole)biphenyl.
  • the light conversion layer 240 is disposed between the first hole injection layer 211a and the first light emitting layer 212, so that the light conversion layer 240 can be used as the first hole transport layer of the first light emitting unit 210, and the The red photoluminescent particles are doped in the first hole transport layer, so that the first hole transport layer has the performance of the hole transport layer, and at the same time has a light conversion effect, which avoids the red light being absorbed by other light rays.
  • the problem of the low color rendering index of the display panel 10 increases the color rendering index of the display panel 10 , thereby improving the display performance of the display panel 10 .
  • FIG. 3 is a schematic diagram of a third structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the third structure and the first structure is:
  • the light conversion layer 240 is disposed between the first light emitting layer 212 and the first transparent conductive layer 500 .
  • the material of the light conversion layer is Zn 0.92 Mg 0.08 O.
  • the light conversion layer 240 is disposed between the first light emitting layer 212 and the first transparent conductive layer 500, so that the light conversion layer 240 can be used as the first electron transport layer of the first light emitting unit 210, and the red
  • the photoluminescent particles are doped in the first hole injection layer 211a, and the red photoluminescent particles are doped in the first electron transport layer, so that the first electron transport layer has the properties of the electron transport layer, and has light
  • the conversion effect avoids the problem of low color rendering index of the display panel 10 due to the absorption of red light by other light rays, improves the color rendering index of the display panel 10 , and further improves the display performance of the display panel 10 .
  • FIG. 4 is a schematic diagram of a fourth structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the fourth structure and the first structure is:
  • the light conversion layer 240 is disposed between the first electron transport layer 213 and the second hole injection layer 221 or between the second electron transport layer 224 and the third hole injection layer 231 .
  • the material of the light conversion layer 240 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide, and zinc manganese oxide.
  • the light conversion layer 240 is disposed between the first electron transport layer 213 and the second hole injection layer 221 or between the second electron transport layer 224 and the third hole injection layer 231, so that the light conversion layer 240 can be used as the first transparent conductive layer or the second transparent conductive layer of the light emitting structure 200, and red photoluminescent particles are doped in the first transparent conductive layer or the second transparent conductive layer, so that the first transparent conductive layer or the second transparent conductive layer is doped with red photoluminescent particles.
  • the transparent conductive layer has the performance of the transparent conductive layer and also has a light conversion effect, which avoids the problem of low color rendering index of the display panel 10 caused by the absorption of red light by other light rays, and improves the color rendering index of the display panel 10. In turn, the display performance of the display panel 10 is improved.
  • the red photoluminescent particles 241 may also be doped into the film layers in the second light-emitting unit 220 and the third light-emitting unit 230 to form the light conversion layer 240 .
  • the second hole injection layer 221 , the second electron transport layer 224 or the third hole injection layer 231 etc., and the light conversion layer 240 is disposed on the green light emitting layer and/or the blue light emitting layer close to the light emitting surface of the light emitting structure 200 on the side.
  • the film layers of the first light-emitting unit 210 , the second light-emitting unit 220 and the third light-emitting unit 230 except the first light-emitting layer 212 , the second light-emitting layer 223 and the third light-emitting layer 233 are all doped There are a small amount of red photoluminescent particles 241 , and the light conversion layer 240 is disposed on the side of the green light emitting layer and/or the blue light emitting layer close to the light emitting surface of the light emitting structure 200 .
  • the display panel 10 of the present application may be a white light quantum dot light emitting diode display panel or a white light organic light emitting diode display panel.
  • the display panel 10 of the present application may be a photoluminescence display panel or an electroluminescence display panel.
  • An embodiment of the present application discloses a display panel, which includes a first electrode layer, a light-emitting structure, and a second electrode layer.
  • the light-emitting structure is arranged on the first electrode layer, and the light-emitting structure includes a first light-emitting unit, a second light-emitting unit and a third light-emitting unit that are stacked in sequence, and the first light-emitting unit, the second light-emitting unit and the third light-emitting unit are independently selected from The red light-emitting unit, the green light-emitting unit and the blue light-emitting unit, the first light-emitting unit, the second light-emitting unit and the third light-emitting unit have different light-emitting colors, wherein the light-emitting structure is provided with a light conversion layer, and the light conversion layer is doped There are red light-emitting particles, the light conversion layer is disposed on the side of the green light-emitting unit and/or the blue light
  • a display panel provided by the embodiments of the present application has been introduced in detail above, and the principles and implementations of the present application are described with specific examples. Its core idea; at the same time, for those skilled in the art, according to the idea of the application, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as a limitation to the application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种显示面板,显示面板包括发光结构。发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,且分别独立选自红色发光单元、绿色发光单元和蓝色发光单元,发光结构的光转换层设置于绿色发光单元和/或蓝色发光单元靠近发光结构的出光面的一侧上,光转换层中掺杂有红色光致发光颗粒。

Description

显示面板
本申请要求申请日为2021年4月27日,申请号为“202110457262.0”,申请名称为“显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板。
背景技术
随着发光二极管技术的快速发展以及发光二极管光效的逐步提高,发光二极管的应用将越来越广泛。目前,白光发光二极管器件是通过将红绿蓝三色材料按照不同的比例混合达到发白光的目的。红绿蓝三色材料经过溶液加工、旋涂或喷墨印刷成膜后集成到发光二极管器件中可以作为有效的激子辐射复合中心。
白光发光二极管器件工作时需要注入电子和空穴,最简单的白光发光二极管器件由阴极、电子传输层、发光层、空穴传输层和阳极组成。在白光发光二极管器件中,发光层设置在电子传输层和空穴传输层之间,当正向偏压加到发光二极管器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入发光层,电子和空穴在发光层中复合发光。
但是,目前的白光发光二极管器件还存在显色指数低的问题,进而使得颜色的还原度低。因此,急需一种具有高显色指数的白光发光二极管器件。
技术问题
本申请实施例提供一种显示面板,以解决白光显示面板显色指数低的问题。
技术解决方案
本申请实施例提供一种显示面板,其包括:
第一电极层;
发光结构,所述发光结构设置于所述第一电极层上,所述发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元分别独立选自红色发光单元、绿色发光单元和蓝色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同,其中,所述发光结构设置有光转换层,所述光转换层设置于所述绿色发光单元和/或所述蓝色发光单元靠近所述发光结构的出光面的一侧上,所述光转换层中掺杂有红色光致发光颗粒;以及
第二电极层,所述第二电极层设置于所述发光结构远离所述第一电极层的一侧。
在本申请的一些实施例中,所述红色光致发光颗粒用于接收绿色发光单元和/或蓝色发光单元发射的光并发射红光,所述发光结构发出白光。
在本申请的一些实施例中,所述红色光致发光颗粒选自CdSe基量子点材料、CdZnSe基量子点材料、InP基量子点材料和ZnSe基量子点材料。
在本申请的一些实施例中,所述光转换层中红色光致发光颗粒的掺杂浓度为10%-35%。
在本申请的一些实施例中,所述第一发光单元包括第一发光层、第一电子传输层和第一空穴传输层,所述光转换层、所述第一空穴传输层、所述第一发光层和所述第一电子传输层依次层叠设置于所述第一电极层上。
在本申请的一些实施例中,所述光转换层材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
在本申请的一些实施例中,所述第一发光单元包括第一空穴注入层、第一发光层和第一电子传输层,所述第一空穴注入层、所述光转换层、所述第一发光层和所述第一电子传输层依次层叠设置于所述第一电极层上。
在本申请的一些实施例中,所述光转换层材料选自聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺和4,4′-二(9-咔唑)联苯。
在本申请的一些实施例中,所述第一发光单元包括第一空穴注入层、第一空穴传输层和第一发光层,所述第一空穴注入层、所述第一空穴传输层、所述第一发光层和所述光转换层依次层叠设置于所述第一电极层上。
在本申请的一些实施例中,所述光转换层材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
在本申请的一些实施例中,所述光转换层设置于所述第一发光单元和所述第二发光单元之间或所述第二发光单元和所述第三发光单元之间。可选的,在本申请的一些实施例中,所述光转换层材料选自氧化铟锡、氧化铟锌、氧化锌铝、氧化铟镓锌、氧化锌和氧化锌锰。
在本申请的一些实施例中,所述第二发光单元包括依次层叠设置的第二空穴注入层、第二空穴传输层、第二发光层和第二电子传输层;所述第三发光单元包括依次层叠设置的第三空穴注入层、第三空穴传输层、第三发光层和第三电子传输层;所述显示面板还包括设置于所述第一发光单元和所述第二发光单元之间的第一透明导电层和/或设置于所述第二发光单元和所述第三发光单元之间的第二透明导电层。
在本申请的一些实施例中,所述第一发光层、所述第二发光层以及所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种,所述壳层的材料包括CdS和ZnS中的一种或两种组合。
在本申请的一些实施例中,所述第一透明导电层以及所述第二透明电极层的材料均选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
在本申请的一些实施例中,所述第一透明导电层以及所述第二透明电极层的厚度均为50纳米-1000纳米。
在本申请的一些实施例中,所述第二电子传输层以及所述第三电子传输层的材料均选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
在本申请的一些实施例中,所述第二空穴传输层以及所述第三空穴传输层的材料均包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。
在本申请的一些实施例中,所述第二空穴注入层以及所述第三空穴注入层的材料均选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
在本申请的一些实施例中,所述第二空穴注入层以及所述第三空穴注入层的厚度均为15纳米-50纳米。
有益效果
本申请实施例公开了一种显示面板,显示面板包括第一电极层、发光结构和第二电极层。发光结构设置于所述第一电极层上,发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,第一发光单元、第二发光单元和第三发光单元分别独立选自红色发光单元、绿色发光单元和蓝色发光单元,第一发光单元、第二发光单元和第三发光单元的发光颜色各不相同,其中,发光结构设置有光转换层,光转换层设置于绿色发光单元和/或蓝色发光单元靠近发光结构的出光面的一侧上,光转换层中掺杂有红色光致发光颗粒,发光结构发出白光;第二电极层设置于所述发光结构远离所述第一电极层的一侧。在本申请中,通过在发光结构中设置光转换层,提高了白光显示面板的显色指数,进而提高了白光显示面板的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的第一种结构示意图。
图2是本申请实施例提供的显示面板的第二种结构示意图。
图3是本申请实施例提供的显示面板的第三种结构示意图。
图4是本申请实施例提供的显示面板的第四种结构示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种显示面板。以下分别进行详细说明。
请参阅图1,图1是本申请实施例提供的显示面板的第一种结构示意图。本申请提供一种显示面板10。显示面板10包括第一电极层100、发光结构200和第二电极层300。
在一实施例中,所述显示面板10还包括基板400。基板400可以为刚性基板或柔性基板。柔性基板可以为聚酰亚胺基板。刚性基板可以为玻璃基板。
第一电极层100设置于基板400上。
在一实施例中,第一电极层100为阳极或阴极。在本实施例中,第一电极层100为阳极。
在一实施例中,第一电极层100材料包括氧化铟锡、铟锌氧化物、氧化锌铝和氧化铟镓锌中的一种或几种组合。在本实施例中,第一电极层100材料为氧化铟锡。
在一实施例中,第一电极层100的厚度H 1为50纳米-1000纳米。具体的,第一电极层100的厚度H 1可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。在本实施例中,第一电极层100的厚度H 1为600纳米。
在本实施例中,将第一电极层100的厚度H 1设置为50纳米-1000纳米,厚度在此范围之内的第一电极层100的电阻小,对电流的阻碍作用小,从而提高第一电极层100的导电性能。若将第一电极层100的厚度H 1设置为小于50纳米,使得第一电极层100的电阻过小,造成显示面板10的损伤;若将第一电极层100的厚度H 1设置为大于1000纳米,使得第一电极层100的电阻过大,从而影响第一电极层100的导电性,使得显示面板10无法正常显示。
发光结构200设置于第一电极层100远离基板400的一侧。发光结构200包括依次层叠设置的第一发光单元210、第二发光单元220和第三发光单元230,其中,第一发光单元210、第二发光单元220和第三发光单元230分别独立选自红色发光单元、绿色发光单元和蓝色发光单元。第一发光单元210、第二发光单元220和第三发光单元230的发光颜色各不相同。发光结构200设置有光转换层240。光转换层240设置于绿色发光单元和/或蓝色发光单元靠近发光结构的出光面的一侧上。光转换层240中掺杂有红色光致发光颗粒241。
第一发光单元210包括第一空穴传输层211、第一发光层212和第一电子传输层213。光转换层240、第一空穴传输层211、第一发光层212和第一电子传输层213依次层叠设置于第一电极层100上。
在本实施例中,在光转换层240中掺杂有红色光致发光颗粒241,红色光致发光颗粒241用于接收绿色发光单元和/或蓝色发光单元发射的光并发射红光,使得光转换层240具有光转换效果,发光结构200发出白光,改善显示面板10显色指数低的问题,提高了显示面板10的性能;在第一电极层100和第一空穴传输层211之间设置光转换层240,使得光转换层240可以作为第一发光单元210的第一空穴注入层的同时,因第一电极层100的能级、迁移率和光学等因素与光转换层240相近,进一步提高了光转换层240的转换效果,提高了显示面板10的显色指数,进而提高了显示面板10的性能;在光转换层240中掺杂有红色光致发光颗粒241,即,在第一空穴注入层中掺杂红色光致发光颗粒241,使得第一空穴注入层同时具有光转换效果和空穴注入层的作用,无需另设计一层光转换层240,降低了显示面板10的厚度,进而实现轻薄化设计;将光转换层240设置在第一电极层100上,即,将红色光致发光颗粒241掺杂在靠近出光侧的第一电极层100上的空穴注入层中,以形成光转换层240,使得光转换层240的厚度W 1选择空间大,进而提高了光转换层240的转换效果,进而提高了显示面板的显色指数。
显色指数是指待测光源与标准光源相比较,待测光源对物体颜色外貌所产生的效果,即,颜色的逼真程度。显色指数越高表明在光源下物体颜色越接近物体的真实颜色。
在一实施例中,光转换层240材料包括聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,第一空穴注入层材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,红色光致发光颗粒241为壳层包覆核层的核壳结构。核层材料选自CdSe基量子点材料、CdZnSe基量子点材料、InP基量子点材料和ZnSe基量子点材料,壳层材料选自CdS和ZnS。在本实施例中,核层为InP基量子点材料,壳层为CdS和ZnS。
在本实施例中,将红色光致发光颗粒241采用壳层包覆核层的核壳结构,因壳层的带隙大于核层的带隙,使得光转换层240扩展了光子收集光谱的范围的同时,避免核层的缺陷对光转换层240发光的影响,并且,可以通过调节壳层的厚度,避免核层的耦合特性受到影响,进而提高显示面板10显示的稳定性。
在一实施例中,核层的材料选自CdSe基量子点材料、CdZnSe基量子点材料、InP基量子点材料和ZnSe基量子点材料,壳层的材料选自CdS和ZnS,且,将红色光致发光颗粒241的粒径设置为7纳米-8纳米。在本实施例中,光转换层240材料的粒径为8纳米,使得红色光致发光颗粒发出红色光线。
在一实施例中,光转换层240材料的光致发光波长为600纳米-630纳米。
在一实施例中,红色光致发光颗粒241的光致发光的半峰宽为40纳米-90纳米。具体的,红色光致发光颗粒241的光致发光的半峰宽可以为40纳米、50纳米、60纳米、75纳米、80纳米或90纳米等。
半峰宽指色谱峰高一半处的峰宽度,即通过峰高的中点作平行于峰底的直线,此直线与峰两侧相交两点之间的距离。
在一实施例中,选择光谱连续且半峰宽较宽的光谱,即,红色光致发光颗粒241的光致发光的半峰宽为40纳米-90纳米,从而提高了白光显示面板10的显色指数,进而提高了显示面板的性能。
光致发光机理是量子点受到外界光线的照射,从而量子点获得能量,产生激发导致发光。
在一实施例中,光转换层240中的红色光致发光颗粒241的掺杂浓度为10%-35%。具体的,红色光致发光颗粒241的掺杂浓度可以为10%、12%、14%、25%、30%或35%等。在本实施例中,红色光致发光颗粒241的掺杂浓度为28%。
在本实施例中,将光转换层240中的红色光致发光颗粒241的掺杂浓度设置为10%-35%,提高显示面板10的显色指数。若将光转换层240中的红色光致发光颗粒241的掺杂浓度设置为小于10%,需要将光转换层240设置的足够厚,才能保证显示面板10显色指数,使得器件的膜层厚度增大,不利于实现轻薄化设计。若将光转换层240中的红色光致发光颗粒241的掺杂浓度设置为大于35%,因红色光致发光颗粒241浓度大,使得红色光致发光颗粒241与其中的有机物发生相分离,影响了显示面板10的显色指数。
相分离是指:当温度、压强等外界条件变化时,多组元体系有时会分离成具有不同组分和结构的几个相。在一实施例中,光转换层240的厚度W 1为50纳米-500纳米。具体的,光转换层240的厚度W 1可以为50纳米、80纳米、160纳米、240纳米、300纳米、400纳米、480纳米或500纳米等。在本实施例中,光转换层240的厚度W 1为200纳米。
在一实施例中,将光转换层240的厚度W 1设置为50纳米-500纳米,提高了光转换层240光转换效果。若将光转换层240的厚度W 1设置为小于50纳米,会使得光转换层240的光转换效率降低,影响显示面板10的显色指数。若将光转换层240的厚度W 1设置为大于500纳米,会使红色以外的光线转换成红色的比例偏高,不利于显示面板10发出白光。
在一实施例中,第一空穴传输层211材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第一空穴传输层211材料为4,4′-二(9-咔唑)联苯中。
在一实施例中,第一空穴传输层211的厚度D 1为15纳米-40纳米。具体的,第一空穴传输层211的厚度D 1可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第一空穴传输层211的厚度D 1为20纳米。
在本实施例中,将第一空穴传输层211厚度D 1设置在15纳米-40纳米之间,保证空穴在第一空穴传输层211的传输效率,进而保证显示面板10正常显示。
第一发光层212设置于第一空穴传输层211远离第一电极层100的一侧。
在一实施例中,第一发光层212包括红色发光层、绿色发光层和蓝色发光层中的一种。在本实施例中,第一发光层212为蓝色发光层,即,第一发光单元210为蓝色发光单元。
在一实施例中,第一发光层212材料为壳层包覆核层的核壳结构。壳层的带隙大于核层的带隙。
在一实施例中,核层材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe,壳层材料为CdS。
在一实施例中,第一发光层212材料的粒径为1纳米-2纳米。在本实施例中,第一发光层212材料的粒径为2纳米。
在本申请中,采用CdSe、CdZnSe、InP和ZnSe为核层材料,CdS和ZnS为壳层材料,且将第一发光层212材料的粒径设置为1纳米-2纳米,使得第一发光层212发出蓝色光线。
在一实施例中,第一发光层212材料的光致发光波长为465纳米-480纳米。
在一实施例中,第一发光层212的厚度T 1为10纳米-40纳米。具体的,第一发光层212的厚度T 1可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第一发光层212的厚度T 1为20纳米。
在本实施例中,将第一发光层212的厚度T 1设置为10纳米-40纳米,使得第一发光层212可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第一电子传输层213材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,第一电子传输层213材料为Zn 0.95Mg 0.05O。
在一实施例中,第一电子传输层213的厚度h 1为20纳米-60纳米。具体的,第一电子传输层213的厚度h 1可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第一电子传输层213的厚度h 1为30纳米。
在本实施例中,将第一电子传输层213的厚度h 1设置为20纳米-60纳米,保证第一电子传输层213的电子传输性能,进而保证显示面板10正常显示。
在一实施例中,显示面板10包括第一透明导电层500。第一透明导电层500设置于第一电子传输层213远离第一电极层100的一侧。
在一实施例中,第一透明导电层500材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。在本实施例中,第一透明导电层500材料为铟锌氧化物。
在一实施例中,第一透明导电层500的厚度R 1为50纳米-1000纳米。具体的,第一透明导电层500的厚度R 1可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。在本实施例中,第一透明导电层500的厚度R 1为100纳米。
在本实施例中,将第一透明导电层500的厚度R 1为50纳米-1000纳米,避免后续的第二空穴注入层221对第一电子传输层213的影响,进而保证第一电子传输层213的注入以及电子的传输,进而保证显示面板10正常显示。若将第一透明导电层500的厚度R 1设置为小于50纳米,第二空穴注入层221会影响第一电子传输层213的电子注入以及传输效率,不利于显示面板10的正常显示;若将第一透明导电层500的厚度R 1设置为1000纳米,增大了第一透明导电层500的电阻,使得第一透明导电层500的导电性降低,进而影响了显示面板10的显示性能。
第二发光单元220包括依次层叠设置在第一透明导电层500上的第二空穴注入层221、第二空穴传输层222、第二发光层223和第二电子传输层224。
在一实施例中,第二空穴注入层221材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,第二空穴注入层221材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,第二空穴注入层221的厚度W 2为15纳米-50纳米。具体的,第二空穴注入层221的厚度W 2可以为15纳米、20纳米、24纳米、34纳米、38纳米、40纳米、48纳米或50纳米等。在本实施例中,第二空穴注入层221的厚度W 2为25纳米。
在本实施例中,将第二空穴注入层221的厚度W 2设置为15纳米-50纳米,保证第二空穴注入层221空穴的注入效率,进而保证显示面板10正常显示。
第一电子传输层213、第一透明导电层500和第二空穴注入层221构成发光结构200的第一电荷层600。第一电荷层600用于提供发光结构200所需的空穴和电子。
在本实施例中,第一电荷层600采用第一电子传输层213、第一透明导电层500和第二空穴注入层221构成,因第一透明导电层500属于n型半导体,第二空穴注入层221属于p型,两者接触形成p-n结,在第一透明导电层500的导带等于或者小于第二空穴注入层221最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第一透明导电层500注入到发光单元,而空穴也注入到另一发光单元,即,第一电荷层600可以产生足够多的电子和空穴,进而避免因显示面板10的发光单元叠层设置,而造成能量转移的问题,避免显示面板10出现显示不均的问题,进而提高了显示面板10的稳定性。
在本实施例中,在光转换层240中掺杂有红色光致发光颗粒241,使得光转换层240作为第一发光单元210的空穴注入层的同时,具有光转换效果,进而提高了白光显示面板10的显色指数,进而提高了白光显示面板的性能。
在一实施例中,第二空穴传输层222材料聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第二空穴传输层222材料为聚乙烯咔唑。
在一实施例中,第二空穴传输层222的厚度D 2为15纳米-40纳米。具体的,第二空穴传输层222的厚度D 2可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第二空穴传输层222厚度D 2为25纳米。
在本实施例中,将第二空穴传输层222厚度D 2设置为15纳米-40纳米,保证空穴在第二空穴传输层222的传输效率,进而保证显示面板10正常显示。
在一实施例中,第二发光层223包括红色发光层、绿色发光层和蓝色发光层中的一种。在本实施例中,第二发光层223为绿色发光层,即,第二发光单元220为绿色发光单元。
在一实施例中,第二发光层223材料为壳层包覆核层的核壳结构。核层材料包括CdSe、CdZnSe、InP和ZnSe中的一种,壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为CdZnSe,壳层材料为CdS。
在一实施例中,第二发光层223材料的粒径为3纳米-6纳米。在本实施例中,第二发光层223材料的粒径为5纳米。
在本实施例中,采用CdSe、CdZnSe、InP和ZnSe为核层材料,CdS和ZnS为壳层材料,并将第二发光层223材料的粒径设置为3纳米-6纳米,使得第二发光层223发出绿色光线。
在一实施例中,第二发光层223材料的光致发光波长为535纳米-555纳米。
在一实施例中,第二发光层223的厚度T 2为10纳米-40纳米。具体的,第二发光层223的厚度T 2可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第二发光层223的厚度T 2为15纳米。
在本实施例中,将第二发光层223的厚度T 2设置为10纳米-40纳米,使得第二发光层223可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第二电子传输层224材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
在一实施例中,第二电子传输层224材料可以为Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O或Zn 0.88Mg 0.12O等。在本实施例中,第二电子传输层224材料为Zn 0.95Mg 0.05O。
在一实施例中,第二电子传输层224的厚度h 2为20纳米-60纳米。具体的,第二电子传输层224的厚度h 2可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第二电子传输层224的厚度h 2为38纳米。
在本实施例中,将第二电子传输层224的厚度h 2设置为20纳米-60纳米,保证第二电子传输层224的电子传输性能,进而保证显示面板10正常显示。
在一实施例中,显示面板10还包括第二透明导电层700。第二透明导电层700设置于第二电子传输层224上。
在一实施例中,第二透明导电层700材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。在本实施例中,第二透明导电层700材料为铟锌氧化物。
在一实施例中,第二透明导电层700的厚度R 2为50纳米-1000纳米。具体的,第二透明导电层700的厚度R 2可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。第二透明导电层700的厚度R 2为500纳米。
在本实施例中,将第二透明导电层700的厚度R 2设置为50纳米-1000纳米,避免后续的第三空穴注入层231对第二电子传输层224的影响,进而保证第二电子传输层224的注入以及电子的传输,进而保证显示面板10正常显示。若将第二透明导电层700的厚度R 2设置为小于50纳米,第三空穴注入层231会影响第二电子传输层224的电子注入以及传输效率,不利于显示面板10的正常显示;若将第二透明导电层700的厚度R 2设置为1000纳米,增大了第二透明导电层700的电阻,使得第二透明导电层700的导电性降低,进而影响了显示面板10的显示性能。
第三发光单元230包括依次层叠设置在第二透明导电层700上的第三空穴注入层231、第三空穴传输层232、第三发光层233和第三电子传输层234。
在一实施例中,第三空穴注入层231材料选自聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,第三空穴注入层231材料为聚噻吩。
在一实施例中,第三空穴注入层231的厚度W 3为15纳米-50纳米。具体的,第三空穴注入层231的厚度W 3可以为15纳米、20纳米、24纳米、34纳米、38纳米、40纳米、48纳米或50纳米等。在本实施例中,第三空穴注入层231的厚度W 3为39纳米。
在本实施例中,将第三空穴注入层231的厚度W 3设置为15纳米-50纳米,保证第三空穴注入层231空穴的注入效率,进而保证显示面板10正常显示。
第二电子传输层224、第二透明导电层700和第三空穴注入层231构成发光结构200的第二电荷层800。第二电荷层800用于提供发光结构200所需的空穴和电子。
在本实施例中,第二电荷层800采用第二电子传输层224、第二透明导电层700和第三空穴注入层231构成,因第二透明导电层700属于n型半导体,第三空穴注入层231属于p型,两者接触形成p-n结,在第二透明导电层700的导带等于或者小于第三空穴注入层231最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第二透明导电层700注入到发光单元,而空穴也注入到另一发光单元,即,第二电荷层800可以产生足够多的电子和空穴,进而避免因显示面板10的发光单元叠层设置,而造成能量转移的问题,避免显示面板10出现显示不均的问题,进而提高了显示面板10的稳定性。
在一实施例中,第三空穴传输层232材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第三空穴传输层232材料为聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)。
在一实施例中,第三空穴传输层232厚度的D 3为15纳米-40纳米。具体的,第三空穴传输层232的厚度D 3可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第三空穴传输层232的厚度D 3为18纳米。
在本实施例中,将第三空穴传输层232厚度D 3设置为15纳米-40纳米,保证空穴在第三空穴传输层232的传输效率,进而保证显示面板10正常显示。
在一实施例中,第三发光层233包括红色发光层、绿色发光层和蓝色发光层中的一种。在本实施例中,第三发光层233为红色发光层,即,第三发光单元230为红色发光单元。
在一实施例中,第三发光层233材料为壳层包覆核层的核壳结构。核层材料包括CdSe、CdZnSe、InP和ZnSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe,壳层材料为CdS和ZnS。
在一实施例中,第三发光层233材料的粒径为7纳米-8纳米。在本实施例中,第三发光层233材料的粒径为8纳米。
在本实施例中,采用CdSe、CdZnSe、InP和ZnSe为核层材料,CdS和ZnS为壳层材料,并将第三发光层233材料的粒径设置为7纳米-8纳米,使得第三发光层233发出红色光线。
在一实施例中,第三发光层233材料的光致发光波长为615纳米-625纳米。
在一实施例中,第三发光层233的厚度T 3为10纳米-40纳米。具体的,第三发光层233的厚度T 3可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第三发光层233的厚度T 3为22纳米。
在本实施例中,将第三发光层233的厚度T 3设置为10纳米-40纳米,使得第三发光层233可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第三电子传输层234材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,第三电子传输层234材料为Zn 0.85Mg 0.05Li 0.1O。
在一实施例中,第三电子传输层234的厚度h 3为20纳米-60纳米。具体的,第三电子传输层234的厚度h 3可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第三电子传输层234的厚度h 3为54纳米。
在一实施例中,显示面板10还包括第二电极层300。第二电极层300设置于第三电子传输层234远离第一电极层100的一侧。
在一实施例中,第二电极层300的材料包括金、银、铝及其合金等。在本实施例中,第二电极层300材料为金。
在一实施例中,第二电极层300的厚度H 2为80纳米-500纳米。具体的,第二电极层300的厚度H 2可以为80纳米、120纳米、340纳米、480纳米或500纳米等。在本实施例中,第二电极层300的厚度H 2为100纳米。在本实施例中,第二电极层300的厚度H 2为490纳米。第二电极层300为阳极或阴极,在本实施例中,第二电极层300为阴极。
本申请提供一种显示面板,通过在第一电极层和第一空穴传输层之间设置掺杂有红色光致发光颗粒的光转换层,即,在第一电极层和第一空穴传输层之间设置掺杂有红色光致发光颗粒的第一空穴注入层,使得第一空穴注入层不影响本身性能的同时,具有光转换效果,从而提高了白光显示面板的显色指数,进而提高了白光显示面板的性能。
请参阅图2,图2是本申请实施例提供的显示面板的第二种结构示意图。需要说明的是,第二种结构和第一种结构的不同之处在于:
光转换层240设置于第一空穴注入层211a和第一发光层212之间。
在一实施例中,光转换层240材料选自聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,光转换层240材料为4,4′-二(9-咔唑)联苯中。
在本实施例中,将光转换层240设置在第一空穴注入层211a和第一发光层212之间,使得光转换层240可以作为第一发光单元210的第一空穴传输层,将红色光致发光颗粒掺杂于第一空穴传输层中,使得第一空穴传输层具有空穴传输层的性能的同时,具有光转换效果,避免了红色光线因被其他光线吸收,而导致显示面板10的显色指数低的问题,提高了显示面板10的显色指数,进而提高了显示面板10的显示性能。
请参阅图3,图3是本申请实施例提供的显示面板的第三种结构示意图。需要说明的是,第三种结构和第一种结构的不同之处在于:
光转换层240设置于第一发光层212和第一透明导电层500之间。
在一实施例中,光转换层材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,光转换层材料为Zn 0.92Mg 0.08O。
在本实施例中,将光转换层240设置在第一发光层212和第一透明导电层500之间,使得光转换层240可以作为第一发光单元210的第一电子传输层,不将红色光致发光颗粒掺杂于第一空穴注入层211a中,而将红色光致发光颗粒掺杂于第一电子传输层中,使得第一电子传输层具有电子传输层的性能的同时,具有光转换效果,避免了红色光线因被其他光线吸收,而导致显示面板10的显色指数低的问题,提高了显示面板10的显色指数,进而提高了显示面板10的显示性能。
请参阅图4,图4是本申请实施例提供的显示面板的第四种结构示意图。需要说明的是,第四种结构和第一种结构的不同之处在于:
将光转换层240设置于第一电子传输层213和第二空穴注入层221之间或第二电子传输层224和第三空穴注入层231之间。
在一实施例中,光转换层240材料选自氧化铟锡、氧化铟锌、氧化锌铝、氧化铟镓锌、氧化锌和氧化锌锰。
在本实施例中,将光转换层240设置在第一电子传输层213和第二空穴注入层221之间或第二电子传输层224和第三空穴注入层231之间,使得光转换层240可以作为发光结构200的第一透明导电层或第二透明导电层,将红色光致发光颗粒掺杂于第一透明导电层或第二透明导电层中,使得第一透明导电层或第二透明导电层具有透明导电层的性能的同时,具有光转换效果,避免了红色光线因被其他光线吸收,而导致显示面板10的显色指数低的问题,提高了显示面板10的显色指数,进而提高了显示面板10的显示性能。
在一实施例中,红色光致发光颗粒241还可以掺杂于第二发光单元220和第三发光单元230中的膜层形成光转换层240。如,第二空穴注入层221、第二电子传输层224或第三空穴注入层231中等,且光转换层240设置于绿色发光层和/或蓝色发光层靠近发光结构200的出光面的一侧上。
在一实施例中,第一发光单元210、第二发光单元220和第三发光单元230中除了第一发光层212、第二发光层223和第三发光层233之外的膜层均掺杂有少量的红色光致发光颗粒241,且光转换层240设置于绿色发光层和/或蓝色发光层靠近发光结构200的出光面的一侧上。
本申请的显示面板10可以为白光量子点发光二极管显示面板或白光有机发光二极管显示面板。
本申请的显示面板10可以为光致发光显示面板或电致发光显示面板。
本申请实施例公开了一种显示面板,显示面板包括第一电极层、发光结构和第二电极层。发光结构设置于第一电极层上,发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,第一发光单元、第二发光单元和第三发光单元分别独立选自红色发光单元、绿色发光单元和蓝色发光单元,第一发光单元、第二发光单元和第三发光单元的发光颜色各不相同,其中,发光结构设置有光转换层,光转换层中掺杂有红色发光颗粒,光转换层设置于绿色发光单元和/或蓝色发光单元靠近发光结构的出光面的一侧上;第二电极层设置于发光结构第一电极层上。在本申请中,通过在发光结构中设置光转换层,提高了白光显示面板的显色指数,进而提高了白光显示面板的性能。
以上对本申请实施例所提供的一种显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其包括:
    第一电极层;
    发光结构,所述发光结构设置于所述第一电极层上,所述发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元分别独立选自红色发光单元、绿色发光单元和蓝色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同,其中,所述发光结构设置有光转换层,所述光转换层设置于所述绿色发光单元和/或所述蓝色发光单元靠近所述发光结构的出光面的一侧上,所述光转换层中掺杂有红色光致发光颗粒;以及
    第二电极层,所述第二电极层设置于所述发光结构远离所述第一电极层的一侧。
  2. 根据权利要求1所述的显示面板,其中,所述红色光致发光颗粒用于接收所述绿色发光单元和/或所述蓝色发光单元发射的光并发射红光,所述发光结构发出白光。
  3. 根据权利要求1所述的显示面板,其中,所述红色光致发光颗粒选自CdSe基量子点材料、CdZnSe基量子点材料、InP基量子点材料和ZnSe基量子点材料。
  4. 根据权利要求1所述的显示面板,其中,所述光转换层中红色光致发光颗粒的掺杂浓度为10%-35%。
  5. 根据权利要求1所述的显示面板,其中,所述第一发光单元包括第一发光层、第一电子传输层和第一空穴传输层,所述光转换层、所述第一空穴传输层、所述第一发光层和所述第一电子传输层依次层叠设置于所述第一电极层上。
  6. 根据权利要求5所述的显示面板,其中,所述光转换层材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
  7. 根据权利要求1所述的显示面板,其中,所述第一发光单元包括第一空穴注入层、第一发光层和第一电子传输层,所述第一空穴注入层、所述光转换层、所述第一发光层和所述第一电子传输层依次层叠设置于所述第一电极层上。
  8. 根据权利要求7所述的显示面板,其中,所述光转换层材料选自聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺和4,4′-二(9-咔唑)联苯。
  9. 根据权利要求1所述的显示面板,其中,所述第一发光单元包括第一空穴注入层、第一空穴传输层和第一发光层,所述第一空穴注入层、所述第一空穴传输层、所述第一发光层和所述光转换层依次层叠设置于所述第一电极层上。
  10. 根据权利要求9所述的显示面板,其中,所述光转换层材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
  11. 根据权利要求1所述的显示面板,其中,所述光转换层设置于所述第一发光单元和所述第二发光单元之间或所述第二发光单元和所述第三发光单元之间。
  12. 根据权利要求11所述的显示面板,其中,所述光转换层材料选自氧化铟锡、氧化铟锌、氧化锌铝、氧化铟镓锌、氧化锌和氧化锌锰。
  13. 根据权利要求12所述的显示面板,其中,所述第二发光单元包括依次层叠设置的第二空穴注入层、第二空穴传输层、第二发光层和第二电子传输层;所述第三发光单元包括依次层叠设置的第三空穴注入层、第三空穴传输层、第三发光层和第三电子传输层;
    所述显示面板还包括设置于所述第一发光单元和所述第二发光单元之间的第一透明导电层和/或设置于所述第二发光单元和所述第三发光单元之间的第二透明导电层。
  14. 根据权利要求13所述的显示面板,其中,所述第一发光层、所述第二发光层以及所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种,所述壳层的材料包括CdS和ZnS中的一种或两种组合。
  15. 根据权利要求13所述的显示面板,其中,所述第一透明导电层选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物;
    所述第二透明导电层选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
  16. 根据权利要求13所述的显示面板,其中,所述第一透明导电层以及所述第二透明电极层的厚度均为50纳米-1000纳米。
  17. 根据权利要求13所述的显示面板,其中,所述第二电子传输层以及所述第三电子传输层的材料均选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
  18. 根据权利要求13所述的显示面板,其中,所述第二空穴传输层的材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合;
    所述第三空穴传输层的材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。
  19. 根据权利要求13所述的显示面板,其中,所述第二空穴注入层以及所述第三空穴注入层的材料独立地选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
  20. 根据权利要求13所述的显示面板,其中,所述第二空穴注入层以及所述第三空穴注入层的厚度均为15纳米-50纳米。
PCT/CN2021/143934 2021-04-27 2021-12-31 显示面板 WO2022227684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/263,180 US20240099047A1 (en) 2021-04-27 2021-12-31 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110457262.0A CN115249727A (zh) 2021-04-27 2021-04-27 显示面板
CN202110457262.0 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022227684A1 true WO2022227684A1 (zh) 2022-11-03

Family

ID=83697590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143934 WO2022227684A1 (zh) 2021-04-27 2021-12-31 显示面板

Country Status (3)

Country Link
US (1) US20240099047A1 (zh)
CN (1) CN115249727A (zh)
WO (1) WO2022227684A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903854A (zh) * 2012-09-27 2013-01-30 电子科技大学 一种白光有机电致发光器件及其制备方法
WO2013019030A1 (ko) * 2011-07-29 2013-02-07 한양대학교 산학협력단 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자
CN103682170A (zh) * 2013-12-25 2014-03-26 电子科技大学 一种具有补色层的有机电致发光器件及其制造方法
CN103875092A (zh) * 2011-10-19 2014-06-18 E.I.内穆尔杜邦公司 用于照明的有机电子装置
CN104576936A (zh) * 2013-10-16 2015-04-29 海洋王照明科技股份有限公司 一种白光有机电致发光装置及其制备方法
CN110120458A (zh) * 2019-05-23 2019-08-13 京东方科技集团股份有限公司 一种电致发光器件和制作方法
CN110291844A (zh) * 2017-02-10 2019-09-27 日商路米欧技术股份有限公司 有机电致发光装置、显示装置和照明装置
WO2021066370A1 (en) * 2019-10-02 2021-04-08 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device having the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019030A1 (ko) * 2011-07-29 2013-02-07 한양대학교 산학협력단 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자
CN103875092A (zh) * 2011-10-19 2014-06-18 E.I.内穆尔杜邦公司 用于照明的有机电子装置
CN102903854A (zh) * 2012-09-27 2013-01-30 电子科技大学 一种白光有机电致发光器件及其制备方法
CN104576936A (zh) * 2013-10-16 2015-04-29 海洋王照明科技股份有限公司 一种白光有机电致发光装置及其制备方法
CN103682170A (zh) * 2013-12-25 2014-03-26 电子科技大学 一种具有补色层的有机电致发光器件及其制造方法
CN110291844A (zh) * 2017-02-10 2019-09-27 日商路米欧技术股份有限公司 有机电致发光装置、显示装置和照明装置
CN110120458A (zh) * 2019-05-23 2019-08-13 京东方科技集团股份有限公司 一种电致发光器件和制作方法
WO2021066370A1 (en) * 2019-10-02 2021-04-08 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device having the same

Also Published As

Publication number Publication date
CN115249727A (zh) 2022-10-28
US20240099047A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
Acharya et al. High efficiency quantum dot light emitting diodes from positive aging
US9379344B2 (en) Display panel and display device
KR101658691B1 (ko) 안정적이고 모든 용액에 처리 가능한 양자점 발광 다이오드
CN111416053B (zh) 一种量子点发光器件及其制备方法、显示面板、显示装置
US20150228850A1 (en) Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode
US20100244062A1 (en) White light emitting element
WO2022227684A1 (zh) 显示面板
CN109166977B (zh) 基于双侧氧化锌和p型有机主体的量子点电致发光器件
WO2022227675A1 (zh) 显示面板
Lee et al. 46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots
JP5118504B2 (ja) 発光素子
WO2022227683A1 (zh) 显示面板及其制备方法
CN109411627A (zh) 一种有机发光二极管
WO2022233145A1 (zh) 一种量子点电致发光器件
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2023056829A1 (zh) 量子点发光层、量子点发光层的制备方法和量子点发光二极管器件
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2022143770A1 (zh) 一种显示器件及其制备方法
WO2022237198A1 (zh) 量子点发光器件及其制备方法
CN116410751A (zh) 量子点、量子点组合物、发光二极管及显示装置
CN117136640A (zh) 发光器件及其制备方法、显示基板
JP5118503B2 (ja) 発光素子
CN116426271A (zh) 量子点、量子点组合物、发光二极管及显示装置
CN116261346A (zh) 电致发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939143

Country of ref document: EP

Kind code of ref document: A1