WO2022227675A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2022227675A1
WO2022227675A1 PCT/CN2021/143270 CN2021143270W WO2022227675A1 WO 2022227675 A1 WO2022227675 A1 WO 2022227675A1 CN 2021143270 W CN2021143270 W CN 2021143270W WO 2022227675 A1 WO2022227675 A1 WO 2022227675A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display panel
nanometers
emitting
Prior art date
Application number
PCT/CN2021/143270
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/263,356 priority Critical patent/US20240304763A1/en
Publication of WO2022227675A1 publication Critical patent/WO2022227675A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel.
  • white light emitting diode devices achieve the purpose of emitting white light by mixing red, green and blue materials in different proportions.
  • the red, green and blue three-color materials can be used as effective exciton radiation recombination centers after being solution-processed, spin-coated or ink-jet printed and integrated into light-emitting diode devices.
  • the white light emitting diode device needs to inject electrons and holes when it works.
  • the simplest white light emitting diode device consists of a cathode, an electron transport layer, a light emitting layer, a hole transport layer and an anode.
  • the white light emitting diode device the light emitting layer is sandwiched between the electron transport layer and the hole transport layer.
  • a forward bias is applied to both ends of the light emitting diode device, the electrons and holes are transported through the electron transport layer and the hole respectively.
  • the layer enters the light-emitting layer, and electrons and holes recombine in the light-emitting layer to emit light.
  • the color rendering index of the white light emitting diode device is low, resulting in a low degree of color reduction. Therefore, a white light emitting diode device with a high color rendering index is urgently needed.
  • Embodiments of the present application provide a display panel to solve the problem of low color rendering index of a white display panel.
  • Embodiments of the present application provide a display panel, including:
  • an array substrate including a light conversion layer for converting other light into red light
  • a light-emitting structure the light-emitting structure is disposed on the array substrate, and the light-emitting structure emits white light.
  • the array substrate further includes a substrate and a transistor layer disposed on the substrate, the light conversion layer is doped with red light-emitting particles, and the light conversion layer is disposed on the substrate. between the transistor layer and the light emitting structure.
  • the doping concentration of the red light-emitting particles in the light conversion layer is 5%-35%.
  • the red light-emitting particles have a structure in which a core layer is covered by a shell layer.
  • the material of the core layer includes at least one of CdSe, CdZnSe, InP and ZnSe.
  • the material of the shell layer includes at least one of CdS and ZnS.
  • the array substrate further includes a substrate, the light emitting structure is disposed on the substrate, and the light conversion layer is disposed on a side of the substrate away from the light emitting structure.
  • the display panel further includes a protective layer, and the protective layer is disposed on a side of the light conversion layer away from the light emitting structure.
  • the thickness of the light conversion layer is 50 nanometers to 3000 nanometers.
  • the particle size of the red light-emitting particles is 7 nanometers to 8 nanometers.
  • the material of the light conversion layer is selected from polyimide, polymethyl methacrylate, silicone resin and epoxy resin.
  • the light-emitting structure includes a first light-emitting unit, a second light-emitting unit, and a third light-emitting unit that are stacked in sequence, the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit
  • the three light-emitting units include a red light-emitting unit, a blue light-emitting unit, and a green light-emitting unit, and the light-emitting colors of the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit are different from each other.
  • the display panel further includes a first transparent conductive layer and a second transparent conductive layer;
  • the light emitting structure further includes a first electrode layer and a second electrode layer;
  • the first light-emitting unit includes a first hole injection layer, a first hole transport layer, a first light-emitting layer and a first electron transport layer stacked on the first electrode layer in sequence;
  • the second light-emitting unit includes a second hole injection layer, a second hole transport layer, a second light-emitting layer and a second electron transport layer stacked on the first transparent conductive layer in sequence;
  • the third light-emitting unit includes a third hole injection layer, a third hole transport layer, a third light-emitting layer and a third electron transport layer stacked on the second transparent conductive layer in sequence;
  • the second electrode layer is disposed on a side of the third electron transport layer away from the substrate.
  • materials of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer are a core-shell structure in which a shell layer coats a core layer, and the material of the core layer includes One of CdZnSe, ZnSe, InP and CdSe.
  • the material of the shell layer includes one or a combination of CdS and ZnS.
  • the materials of the first transport layer, the second electron transport layer and the third electron transport layer include Zn 0.98 Al 0.02 O, Zn 0.9 Mg 0.05 Li 0.05 O, Zn 0.9 Mg 0.1 O and At least one of Zn 0.88 Mg 0.12 O.
  • the display panel further includes a first electrode layer, the transistor layer is disposed on the substrate, the light conversion layer is disposed on the transistor layer, and the first electrode The layer is arranged on the light conversion layer, and the light emitting structure is arranged on the first electrode layer.
  • the display panel further includes an organic planarization layer disposed between the light conversion layer and the first electrode layer.
  • the display panel further includes an organic flat layer and a first electrode layer
  • the light conversion layer is disposed on the protective layer
  • the substrate is disposed on the light conversion layer
  • the transistor layer is arranged on the substrate
  • the organic flat layer is arranged on the transistor layer
  • the first electrode layer is arranged on the organic flat layer
  • the light emitting structure is arranged on the first on the electrode layer.
  • the display panel further includes an organic flat layer and a first electrode layer
  • the light conversion layer is disposed on the protective layer
  • the substrate is disposed on the light conversion layer
  • the transistor layer is arranged on the substrate
  • the organic flat layer is arranged on the transistor layer
  • the first electrode layer is arranged on the organic flat layer
  • the light emitting structure is arranged on the first on the electrode layer.
  • the protective layer includes an organic protective layer and an inorganic protective layer
  • the material of the organic protective layer is selected from polycarbonate, polyimide and polymethyl methacrylate
  • the inorganic protective layer is selected from the group consisting of polycarbonate, polyimide and polymethyl methacrylate.
  • the material of the protective layer is selected from silicon dioxide, silicon nitride, silicon oxynitride and aluminum oxide.
  • An embodiment of the present application discloses a display panel.
  • the display panel includes an array substrate and a light-emitting structure.
  • the array substrate includes a light conversion layer, and the light conversion layer is used to convert other light into red light.
  • the light-emitting structure is disposed on the On the array substrate, the light-emitting structure emits white light.
  • the color rendering index of the display panel is further improved, and the performance of the display panel is further improved.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third structure of a display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth structure of a display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a display panel. Each of them will be described in detail below.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • the present application provides a display panel 10 .
  • the display panel 10 includes an array substrate 100 and a light emitting structure 200 .
  • the array substrate 100 includes a substrate 110 and a transistor layer 120 disposed on the substrate 110 , wherein the array substrate 100 includes a light conversion layer 130 .
  • the light conversion layer 130 is used to convert other light to red light.
  • the light conversion layer 130 is doped with red light-emitting particles 131 .
  • the light conversion layer 130 is disposed on the side of the transistor layer 120 away from the substrate 110 .
  • the substrate 110 may be a rigid substrate or a flexible substrate.
  • the rigid substrate can be a glass substrate.
  • the flexible substrate may be a polyimide substrate.
  • the thickness W 1 of the light conversion layer 130 is 50 nanometers to 3000 nanometers.
  • the thickness W1 of the light conversion layer 130 is 50 nanometers to 3000 nanometers.
  • the thickness W1 of the light conversion layer 130 may be 50 nanometers, 60 nanometers, 200 nanometers, 400 nanometers, 900 nanometers, 1600 nanometers Nano, 1800 nm, 2000 nm, 2200 nm, 2400 nm, 2600 nm or 3000 nm etc.
  • the thickness W 1 of the light conversion layer 130 is 200 nanometers.
  • the thickness W 1 of the light conversion layer 130 is set to 50 nanometers to 3000 nanometers, which improves the light conversion effect of the light conversion layer 130 . If the thickness W 1 of the light conversion layer 130 is set to be less than 50 nanometers, the light conversion efficiency of the light conversion layer 130 will be reduced, and the color rendering index of the display panel 10 will be affected. If the thickness W 1 of the light conversion layer 130 is set to be greater than 3000 nanometers, all light other than red will be converted to red by the layer, so that the display panel 10 cannot emit white light.
  • the material of the light conversion layer 130 is selected from polyimide, polymethyl methacrylate, silicone resin and epoxy resin. In this embodiment, the material of the light conversion layer 130 is polymethyl methacrylate.
  • polyimide, polymethyl methacrylate, silicone resin and epoxy resin are used to form the light conversion layer 130, so that the light conversion layer 130 serves as an organic flat layer of the white display panel 10, and has a flattened
  • the film layer structure in the white display panel 10 can be flattened, and the structure in the white display panel can be prevented from being damaged in the subsequent process or use.
  • the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 is 5%-35%. Specifically, the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 may be 5%, 7%, 10%, 14%, 18%, 20%, 25%, 28%, 30%, 32% or 35% Wait. In this embodiment, the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 is 26%.
  • the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 is set to 5%-35% to improve the color rendering index of the display panel 10 . If the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 is set to be less than 5%, the light conversion layer 130 needs to be thick enough to ensure the color rendering index of the display panel 10 and increase the film thickness of the device , which is not conducive to the realization of thin and light design.
  • the doping concentration of the red light-emitting particles 131 in the light conversion layer 130 is set to be greater than 35%, the color rendering index of the display panel 10 can be ensured because the red light-emitting particles 131 are separated from the organic substances therein due to the high concentration of the red light-emitting particles. .
  • Phase separation means that when the external conditions such as temperature and pressure change, the multi-component system sometimes separates into several phases with different components and structures.
  • the particle size of the red light-emitting particles 131 is 7 nanometers to 8 nanometers. Specifically, the particle size of the red light-emitting particles 131 may be 7 nanometers, 7.2 nanometers, 7.3 nanometers, 7.4 nanometers, 7.5 nanometers, 7.6 nanometers, or 8 nanometers. In this embodiment, the particle size of the red light-emitting particles 131 is 7.5 nanometers.
  • the red light-emitting particles 131 have a core-shell structure in which a shell layer coats a core layer.
  • the band gap of the shell layer is larger than that of the core layer.
  • the material of the core layer is selected from InP, ZnSe, CdSe and CdZnSe.
  • the material of the shell layer is selected from CdS and ZnS.
  • the core layer is InP, and the shell layers are CdS and ZnS.
  • the material of the core layer is selected from InP, CdZnSe, CdSe and ZnSe
  • the material of the shell layer is selected from CdS and ZnS
  • the particle size of the red light-emitting particles 131 is set to 7 nanometers to 8 nanometers, so that red light is emitted The particles emit red light.
  • the red light-emitting particles 131 adopt the structure in which the core layer is covered by the shell layer. Since the band gap of the shell layer is larger than that of the core layer, the light conversion layer 130 expands the range of the photon collection spectrum while avoiding the core layer. Defects of the layers affect the light emission of the light conversion layer 130 , and by adjusting the thickness of the shell layer, the coupling characteristics of the core layer can be prevented from being affected, thereby improving the display stability of the white display panel 10 .
  • the photoluminescence wavelength of the red light-emitting particles 131 is 600 nm to 630 nm.
  • the half width of the photoluminescence of the red light-emitting particles 131 is 40 nanometers to 90 nanometers. Specifically, the half-peak width of the photoluminescence of the red light-emitting particles 131 may be 40 nanometers, 56 nanometers, 68 nanometers, 79 nanometers, 83 nanometers, or 90 nanometers. In this embodiment, the half width of the photoluminescence of the red light-emitting particles 131 is 80 nanometers.
  • Half-peak width refers to the peak width at half of the chromatographic peak height, that is, a straight line parallel to the peak bottom is drawn through the midpoint of the peak height, and the distance between the two points where this straight line intersects both sides of the peak.
  • a spectrum with continuous spectrum and wide half-peak width is selected, that is, the half-peak width of the photoluminescence of the red light-emitting particles 131 is 40 nanometers to 90 nanometers, thereby improving the color rendering index of the white display panel 10, Thereby, the performance of the display panel is improved.
  • the mechanism of photoluminescence is that the quantum dots are irradiated by external light, so that the quantum dots obtain energy and generate excitation leading to luminescence.
  • the light conversion layer 130 is doped with red light-emitting particles 131, and the light conversion layer 130 can be used as an organic flat layer of the array substrate 100, so that the light conversion layer 130 has a flat effect and a light conversion effect.
  • the conversion effect of the light conversion layer 130 is improved, the color rendering index of the white display panel 10 is further improved, and the performance of the white display panel 10 is further improved.
  • the color rendering index refers to the effect of the light source to be measured on the color appearance of the object compared with the standard light source, that is, the fidelity of the color. The higher the color rendering index, the closer the color of the object is to the true color of the object under the light source.
  • the light emitting structure 200 is disposed on the array substrate 100, and the light emitting structure 200 emits white light. Specifically, the light emitting structure 200 is disposed on the side of the light conversion layer 130 away from the substrate 110 .
  • the light emitting structure 200 includes a first electrode layer 210 .
  • the first electrode layer 210 may be an anode or a cathode. In this embodiment, the first electrode layer 210 is an anode.
  • the material of the first electrode layer 210 includes one or a combination of indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the first electrode layer 210 is indium zinc oxide.
  • the thickness H 1 of the first electrode layer 210 is 50 nanometers to 1000 nanometers. Specifically, the thickness H 1 of the first electrode layer 210 may be 50 nanometers, 400 nanometers, 650 nanometers, 800 nanometers, or 1000 nanometers. In this embodiment, the thickness H 1 of the first electrode layer 210 is 500 nanometers.
  • the light emitting structure 200 further includes a first light emitting unit 220 , a second light emitting unit 230 and a third light emitting unit 240 that are stacked in sequence, and the first light emitting unit 220 , the second light emitting unit 230 and the third light emitting unit 240 It includes a green light-emitting unit, a blue light-emitting unit and a red light-emitting unit, and the light-emitting colors of the first light-emitting unit 220 , the second light-emitting unit 230 and the third light-emitting unit 240 are different from each other.
  • the first light emitting unit 220, the second light emitting unit 230 and the third light emitting unit 240 in combination may emit white light.
  • the first light emitting unit 220 includes a first hole injection layer 221 , a first hole transport layer 222 , a first light emitting layer 223 and a first electron transport layer 224 which are sequentially stacked on the first electrode layer 210 .
  • the material of the first hole injection layer 221 includes polyaniline, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and polythiophene. In this embodiment, the material of the first hole injection layer 221 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the thickness Y 1 of the first hole injection layer 221 is 50 nanometers to 500 nanometers. Specifically, the thickness Y 1 of the first hole injection layer 221 may be 50 nanometers, 100 nanometers, 190 nanometers, 280 nanometers, 350 nanometers, 450 nanometers, 490 nanometers, or 500 nanometers. In this embodiment, the thickness Y 1 of the first hole injection layer 221 is 400 nanometers.
  • the material of the first hole transport layer 222 includes 4,4′,4′′-tris(carbazol-9-yl)triphenylamine, poly(N,N′-bis(4-butylphenyl) )-N,N′-bis(phenyl)-benzidine), poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)polyvinylcarbazole and 4, One or more combinations of 4'-bis(9-carbazole)biphenyl.
  • the material of the first hole transport layer 222 is 4,4'-bis(9-carbazole)biphenyl middle.
  • the thickness D 1 of the first hole transport layer 222 is 15 nm to 40 nm. Specifically, the thickness D 1 of the first hole transport layer 222 may be 15 nanometers, 18 nanometers, 30 nanometers, 33 nanometers, 36 nanometers, or 40 nanometers. In this embodiment, the thickness D 1 of the first hole transport layer 222 is 19 nanometers.
  • the first light-emitting layer 223 includes one of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the first light emitting layer 223 is a blue light emitting layer, that is, the first light emitting unit 220 is a blue light emitting unit.
  • the material of the first light-emitting layer 223 is a core-shell structure in which the core layer is surrounded by a shell layer.
  • the band gap of the shell layer is larger than that of the core layer.
  • the core layer material includes one of CdZnSe, ZnSe, InP and CdSe.
  • the shell material includes at least one of ZnS and CdS.
  • the core layer material is ZnSe.
  • the shell material is CdS.
  • the particle size of the material of the first light emitting layer 223 is 1 nanometer to 2 nanometers. In this embodiment, the particle size of the material of the first light-emitting layer 223 is 2 nanometers.
  • ZnSe is used as the core layer material
  • CdS is used as the shell layer material
  • the particle size of the material of the first light emitting layer 223 is set to 1 nm-2 nm, so that the first light emitting layer 223 emits blue light.
  • the photoluminescence wavelength of the first light-emitting layer 223 is 465 nm to 480 nm.
  • the thickness T 1 of the first light emitting layer 223 is 10 nm to 40 nm. Specifically, the thickness T1 of the first light-emitting layer 223 may be 11 nanometers, 12 nanometers, 18 nanometers, 20 nanometers, 28 nanometers, 34 nanometers, 36 nanometers, or 40 nanometers. In this embodiment, the thickness T1 of the first light-emitting layer 223 is 34 nanometers.
  • the material of the first electron transport layer 224 is Zn 0.95 Mg 0.05 O.
  • the material of the first electron transport layer 224 may be Zn 0.98 Al 0.02 O, Zn 0.9 Mg 0.05 Li 0.05 O, Zn 0.9 Mg 0.1 O, Zn 0.88 Mg 0.12 O, or the like.
  • the thickness h 1 of the first electron transport layer 224 is 20 nm to 60 nm. Specifically, the thickness h 1 of the first electron transport layer 224 may be 21 nanometers, 22 nanometers, 30 nanometers, 38 nanometers, 45 nanometers, 48 nanometers, 58 nanometers, or 60 nanometers. In this embodiment, the thickness h 1 of the first electron transport layer 224 is 45 nanometers.
  • the display panel 10 further includes a first transparent conductive layer 300 .
  • the first transparent conductive layer 300 is disposed on the side of the first electron transport layer 224 away from the substrate 110 .
  • the material of the first transparent conductive layer 300 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the first transparent conductive layer 300 is indium gallium zinc oxide.
  • the thickness R 1 of the first transparent conductive layer 300 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 1 of the first transparent conductive layer 300 may be 60 nanometers, 600 nanometers, 800 nanometers, 950 nanometers, or 1000 nanometers. In this embodiment, the thickness R 1 of the first transparent conductive layer 300 is 600 nanometers.
  • the second light emitting unit 230 includes a second hole injection layer 231 , a second hole transport layer 232 , a second light emitting layer 233 and a second electron transport layer 234 which are sequentially stacked on the first transparent conductive layer 300 .
  • the material of the second hole injection layer 231 is selected from polyaniline, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and polythiophene. In this embodiment, the material of the second hole injection layer 231 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the thickness Y 2 of the second hole injection layer 231 is 15 nm to 50 nm. Specifically, the thickness Y 2 of the second hole injection layer 231 may be 15 nanometers, 18 nanometers, 30 nanometers, 36 nanometers, 38 nanometers, 46 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness Y 2 of the second hole injection layer 231 is 48 nanometers.
  • the first electron transport layer 224 , the first transparent conductive layer 300 and the second hole injection layer 231 constitute the first charge layer 400 of the light emitting structure 200 , and the first charge layer 400 is used to provide electrons and holes required by the light emitting structure 200 .
  • the first charge layer 400 is composed of the first electron transport layer 224, the first transparent conductive layer 300 and the second hole injection layer 231. Because the first transparent conductive layer 300 is an n-type semiconductor, the second hole The injection layer 231 belongs to the p-type, and the two are in contact to form a p-n junction.
  • the first charge layer 400 can generate enough electrons and holes, thereby avoiding the problem of energy transfer caused by the arrangement of the light-emitting layers of the display panel 10, thereby avoiding the problem of uneven display of the white display panel 10, Thus, the stability of the white display panel 10 is improved.
  • the material of the second hole transport layer 232 is 4,4′,4′′-tris(carbazol-9-yl)triphenylamine, poly(N,N′-bis(4-butylphenyl) )-N,N′-bis(phenyl)-benzidine), poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)polyvinylcarbazole and 4, One or more combinations of 4'-bis(9-carbazole)biphenyl.
  • the material of the second hole transport layer 232 is polyvinylcarbazole.
  • the thickness D 2 of the second hole transport layer 232 is 15 nm to 40 nm. Specifically, the thickness D 2 of the second hole transport layer 232 may be 15 nanometers, 18 nanometers, 30 nanometers, 33 nanometers, 36 nanometers, or 40 nanometers. In this embodiment, the thickness D 2 of the second hole transport layer 232 is 20 nanometers.
  • the material of the second light-emitting layer 233 is a core-shell structure in which a shell layer coats the core layer.
  • the core layer material includes one of CdZnSe, ZnSe, InP and CdSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is CdZnSe.
  • the shell material is CdS.
  • the second light-emitting layer 233 includes one of a green light-emitting layer, a red light-emitting layer, and a blue light-emitting layer.
  • the second light-emitting layer 233 is a green light-emitting layer, that is, the second light-emitting unit 230 is a green light-emitting unit.
  • the particle size of the material of the second light emitting layer 233 is 3 nanometers to 6 nanometers. In this embodiment, the particle size of the material of the second light-emitting layer 233 is 4 nanometers.
  • the photoluminescence wavelength of the material of the second light-emitting layer 233 is 535 nm to 555 nm.
  • CdZnSe is used as the core layer material
  • CdS is used as the shell layer material
  • the particle size of the material of the second light emitting layer 233 is set to 3 nm-6 nm, so that the second light emitting layer 233 emits green light.
  • the thickness T 2 of the second light emitting layer 233 is 10 nanometers to 40 nanometers. Specifically, the thickness T 2 of the second light-emitting layer 233 may be 10 nanometers, 18 nanometers, 30 nanometers, 36 nanometers, 38 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 2 of the second light emitting layer 233 is 20 nanometers.
  • the material of the second electron transport layer 234 is Zn 0.95 Mg 0.05 O.
  • the material of the second electron transport layer 234 may be Zn 0.98 Al 0.02 O, Zn 0.9 Mg 0.05 Li 0.05 O, Zn 0.9 Mg 0.1 O, Zn 0.88 Mg 0.12 O, or the like.
  • the thickness h 2 of the second electron transport layer 234 is 20 nm to 60 nm. Specifically, the thickness h 2 of the second electron transport layer 234 may be 21 nanometers, 22 nanometers, 30 nanometers, 38 nanometers, 45 nanometers, 48 nanometers, 58 nanometers or 60 nanometers. In this embodiment, the thickness h 2 of the second electron transport layer 234 is 38 nanometers.
  • the display panel 10 further includes a second transparent conductive layer 500 .
  • the second transparent conductive layer 500 is disposed on the side of the second electron transport layer 234 away from the substrate 110 .
  • the material of the second transparent conductive layer 500 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the second transparent conductive layer 500 is indium zinc oxide.
  • the thickness R 2 of the second transparent conductive layer 500 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 2 of the second transparent conductive layer 500 may be 60 nanometers, 600 nanometers, 800 nanometers, 950 nanometers or 1000 nanometers. The thickness R 2 of the second transparent conductive layer 500 is 500 nanometers.
  • the third light emitting unit 240 includes a third hole injection layer 241 , a third hole transport layer 242 , a third light emitting layer 243 and a third electron transport layer 244 which are sequentially stacked on the second transparent conductive layer 500 .
  • the material of the third hole injection layer 241 is selected from polyaniline, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and polythiophene. In this embodiment, the material of the third hole injection layer 241 is polythiophene.
  • the thickness Y 3 of the third hole injection layer 241 is 15 nm to 50 nm. Specifically, the thickness Y 3 of the third hole injection layer 241 may be 15 nanometers, 18 nanometers, 30 nanometers, 36 nanometers, 38 nanometers, 46 nanometers, 48 nanometers or 50 nanometers. In this embodiment, the thickness Y 3 of the third hole injection layer 241 is 45 nanometers.
  • the second electron transport layer 234 , the second transparent conductive layer 500 and the third hole injection layer 241 constitute the second charge layer 600 of the light emitting structure 200 .
  • the second charge layer 600 is used to provide electrons and holes required by the light emitting structure 200 .
  • the second charge layer 600 is composed of the second electron transport layer 234, the second transparent conductive layer 500 and the third hole injection layer 241. Because the second transparent conductive layer 500 is an n-type semiconductor, the third hole The injection layer 241 belongs to the p-type, and the contact between the two forms a p-n junction.
  • the second charge layer 600 can generate enough electrons and holes, thereby avoiding the problem of energy transfer caused by the arrangement of the light-emitting layers of the display panel 10, thereby avoiding the problem of uneven display of the white display panel 10, Thus, the stability of the white display panel 10 is improved.
  • HOMO Occupied Molecular
  • the material of the third hole transport layer 242 includes 4,4′,4′′-tris(carbazol-9-yl)triphenylamine, poly(N,N′-bis(4-butylphenyl) )-N,N′-bis(phenyl)-benzidine), poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)polyvinylcarbazole and 4, One or more combinations of 4′-bis(9-carbazole)biphenyl.
  • the material of the third hole transport layer 242 is poly(N,N′-bis(4-butylbenzene) base)-N,N'-bis(phenyl)-benzidine).
  • the thickness D 3 of the third hole transport layer 242 is 15 nm to 40 nm. Specifically, the thickness D3 of the third hole transport layer 242 may be 15 nanometers, 18 nanometers, 30 nanometers, 33 nanometers, 36 nanometers or 40 nanometers. In this embodiment, the thickness D 3 of the third hole transport layer 242 is 18 nanometers.
  • the material of the third light-emitting layer 243 is a core-shell structure in which the core layer is surrounded by a shell layer.
  • the core layer material includes one of CdZnSe, ZnSe, InP and CdSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe.
  • the shell materials are CdS and ZnS.
  • the third light-emitting layer 243 includes one of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the third light-emitting layer 243 is a red light-emitting layer. That is, the third light-emitting unit 240 is a red light-emitting unit.
  • the blue light emitting unit, the green light emitting unit and the red light emitting unit are stacked to form the light emitting structure 200, so that the display panel 10 emits white light.
  • the particle size of the material of the third light emitting layer 243 is 7 nanometers to 8 nanometers. In this embodiment, the particle size of the material of the third light-emitting layer 243 is 8 nanometers.
  • the photoluminescence wavelength of the material of the third light-emitting layer 243 is 615 nm to 625 nm.
  • the thickness T 3 of the third light emitting layer 243 is 10 nm to 40 nm. Specifically, the thickness T 3 of the third light-emitting layer 243 may be 10 nanometers, 18 nanometers, 30 nanometers, 36 nanometers, 38 nanometers, 46 nanometers or 40 nanometers. In this embodiment, the thickness T3 of the third light emitting layer 243 is 22 nanometers.
  • ZnSe is used as the core layer material
  • CdS and ZnS are used as the shell layer material
  • the particle size of the material of the third light emitting layer 243 is set to 7 nm-8 nm, so that the third light emitting layer 243 emits red light.
  • the material of the third electron transport layer 244 is Zn 0.85 Mg 0.05 Li 0.1 O.
  • the material of the third electron transport layer 244 may be Zn 0.98 Al 0.02 O, Zn 0.9 Mg 0.05 Li 0.05 O, Zn 0.9 Mg 0.1 O, Zn 0.88 Mg 0.12 O, or the like.
  • the thickness h 3 of the third electron transport layer 244 is 20 nm to 60 nm. Specifically, the thickness h 3 of the third electron transport layer 244 may be 21 nanometers, 22 nanometers, 30 nanometers, 38 nanometers, 45 nanometers, 48 nanometers, 58 nanometers or 60 nanometers. In this embodiment, the thickness h 3 of the third electron transport layer 244 is 30 nanometers.
  • the light emitting structure 200 further includes a second electrode layer 250 .
  • the second electrode layer 250 is disposed on the side of the third electron transport layer 244 away from the substrate 110 .
  • the material of the second electrode layer 250 includes gold, silver, aluminum, alloys thereof, and the like. In this embodiment, the material of the second electrode layer 250 is gold.
  • the thickness H 2 of the second electrode layer 250 is 80 nm to 500 nm. Specifically, the thickness H 2 of the second electrode layer 250 may be 90 nanometers, 200 nanometers, 340 nanometers, 460 nanometers or 500 nanometers. In this embodiment, the thickness H 2 of the second electrode layer 250 is 400 nanometers.
  • the second electrode layer 250 is an anode or a cathode. In this embodiment, the second electrode layer 250 is a cathode.
  • the display panel 10 may be a white light quantum dot light emitting diode display panel or a white light organic light emitting diode display panel.
  • the white display panel 10 may be a photoluminescence display panel.
  • the display panel 10 includes an array substrate 100 and a light emitting structure 200.
  • the array substrate 100 includes a substrate 110 and a transistor layer 120 disposed on the substrate 110, wherein the The array substrate 100 includes a light conversion layer 130 , the light conversion layer 130 is doped with red light-emitting particles 131 , the light-emitting structure 200 is disposed on the array substrate 100 , and the light-emitting structure 200 emits white light.
  • the light conversion layer 130 can be used as an organic flat layer of the white display panel 10, and can also be used to convert other light into red light, increasing the The proportion of red light is increased, thereby improving the color rendering index of the white display panel 10 , thereby improving the performance of the white display panel 10 .
  • FIG. 2 is a schematic diagram of a second structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the second structure and the first structure is:
  • the light conversion layer 130 is disposed on the side of the substrate 110 away from the light emitting structure 200 .
  • the material of the light conversion layer 130 is selected from polyimide, polymethyl methacrylate, silicone resin and epoxy resin. In this embodiment, the material of the light conversion layer 130 is polyimide.
  • the display panel 10 further includes an organic planarization layer 140 .
  • the organic flat layer 140 is disposed between the transistor layer 120 and the light emitting structure 200 .
  • the organic flattening layer 140 is used for flattening the film in the transistor layer 120 to prevent the film in the transistor layer 120 from being damaged or damaged in subsequent processes or use, thereby improving the performance of the white display panel 10 .
  • the light conversion layer 130 is disposed on the side of the substrate 110 away from the light emitting structure 200 , so that the light conversion layer 130 can be used as a buffer layer of the display panel 10 and has a light conversion effect, so that the buffer layer has a light conversion effect. Therefore, the film layer in the display panel 10 is protected, the color rendering index of the white display panel 10 is improved, and the performance of the white display panel 10 is further improved.
  • the display panel 10 further includes a protective layer.
  • the protective layer is disposed on a side of the light conversion layer 130 away from the light emitting structure 200 .
  • the protective layer includes an organic protective layer and an inorganic protective layer.
  • the organic protective layer material is selected from polycarbonate, polyimide and polymethyl methacrylate.
  • the inorganic protective layer material is selected from silicon dioxide, silicon nitride, silicon oxynitride and aluminum oxide.
  • a protective layer is provided on the side of the light conversion layer 130 away from the substrate 110 to avoid the influence of the external environment on the light conversion layer 130, such as humidity, oxygen, light or ozone, etc., thereby improving the white display
  • the stability of the color rendering index of the panel 10 further improves the performance of the white display panel 10 .
  • the protective layer may be alternately formed of multiple organic protective layers and multiple inorganic protective layers.
  • the protective layer is composed of a multi-layer organic protective layer and a multi-layer inorganic protective layer to further avoid the influence of the external environment on the light conversion layer 130, thereby improving the stability of the color rendering index of the white display panel 10, thereby improving the Performance of the white display panel 10 .
  • FIG. 3 is a schematic diagram of a third structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the third structure and the first structure is:
  • the light conversion layer 130 is formed by using the red light-emitting particle 131 material.
  • the light conversion layer 130 does not contain materials such as polyimide, polymethyl methacrylate, silicone resin, and epoxy resin.
  • the white display panel 10 further includes an organic planarization layer 140 .
  • the light conversion layer 130 is disposed between the organic flat layer 140 and the first electrode layer 210 , or the light conversion layer 130 is disposed between the transistor layer 120 and the organic flat layer 140 .
  • red light-emitting particles 131 are drawn in the drawings, which are just a simple schematic diagram, but it does not mean that the light conversion layer 130 also contains other materials.
  • the organic planarization layer 140 is selected from polyimide, polymethyl methacrylate, silicone resin and epoxy resin.
  • the thickness W 1 of the light conversion layer 130 is 20 nanometers to 200 nanometers. Specifically, the thickness W 1 of the light conversion layer 130 is 25 nanometers, 50 nanometers, 90 nanometers, 160 nanometers, 180 nanometers, and 190 nanometers.
  • the thickness W 1 of the light conversion layer 130 is set to 20 nm to 200 nm, which improves the conversion efficiency of the light conversion layer 130 and does not affect the display performance of the white display panel 10 . If the thickness W 1 of the light conversion layer 130 is set to be less than 20 nanometers, the light conversion layer 130 is too thin, so that the light conversion efficiency of the light conversion layer 130 is low, which affects the color rendering index of the white display panel 10 . If the thickness W 1 of the light conversion layer 130 is set to be greater than 200 nanometers, the light conversion layer 130 will convert all other light into red light, and thus cannot form white light, thereby affecting the performance of the white display panel 10 .
  • the present application provides a display panel.
  • the light conversion layer 130 is formed by using the red light-emitting particle 131 material, so that the light conversion layer 130 only has the function of light conversion, and another layer of organic flattening layer is provided to make it have the flattening function to flatten the array substrate 100
  • the other structures of the above can improve the light conversion effect of the light conversion layer 130 , thereby improving the color rendering index of the white display panel 10 .
  • FIG. 4 is a schematic diagram of a third structure of a display panel provided by an embodiment of the present application. It should be noted that the difference between the fourth structure and the second structure is:
  • the light conversion layer 130 is formed by using the red light-emitting particle 131 material.
  • the light conversion layer 130 does not contain materials such as polyimide, polymethyl methacrylate, silicone resin, and epoxy resin.
  • the light conversion layer 130 is disposed on the side of the substrate 110 away from the light emitting structure 200 .
  • the light conversion layer 130 is disposed on the side of the substrate 110 away from the light emitting structure 200, and the light conversion layer 130 is only formed by using the red light emitting particles 131, that is, the light conversion layer 130 only has a light conversion function, thereby improving the The color rendering index of the white display panel 10 further improves the display performance of the white display panel 10 .
  • red light-emitting particles 131 are drawn in the drawings, which are just a simple schematic diagram, but it does not mean that the light conversion layer 130 also contains other materials.
  • the thickness W 1 of the light conversion layer 130 is 20 nanometers to 200 nanometers. Specifically, the thickness W 1 of the light conversion layer 130 is 25 nanometers, 50 nanometers, 90 nanometers, 160 nanometers, 180 nanometers, and 190 nanometers.
  • the thickness W 1 of the light conversion layer 130 is set to 20 nm to 200 nm, which improves the conversion efficiency of the light conversion layer 130 and does not affect the display performance of the white display panel 10 . If the thickness W 1 of the light conversion layer 130 is set to be less than 20 nanometers, the light conversion layer 130 is too thin, so that the light conversion efficiency of the light conversion layer 130 is low, which affects the color rendering index of the white display panel 10 . If the thickness W 1 of the light conversion layer 130 is set to be greater than 200 nanometers, the light conversion layer 130 will convert all other light into red light, and thus cannot form white light, thereby affecting the performance of the white display panel 10 .
  • the white display panel 10 further includes an organic planarization layer 140 .
  • the organic flat layer 140 is disposed between the transistor layer 120 and the first electrode layer 210 .
  • the organic flattening layer 140 is used for flattening the film in the transistor layer 120 to prevent the film in the transistor layer 120 from being damaged or damaged in subsequent processes or use, thereby improving the performance of the white display panel 10 .
  • the organic planarization layer 140 is selected from polyimide, polymethyl methacrylate, silicone resin and epoxy resin.
  • the display panel 10 further includes a protective layer.
  • the protective layer is disposed on a side of the light conversion layer 130 away from the light emitting structure 200 .
  • the protective layer includes an organic protective layer and an inorganic protective layer.
  • the organic protective layer material is selected from polycarbonate, polyimide and polymethyl methacrylate.
  • the inorganic protective layer material is selected from silicon dioxide, silicon nitride, silicon oxynitride and aluminum oxide.
  • a protective layer is provided on the side of the light conversion layer 130 away from the substrate 110 to avoid the influence of the external environment on the light conversion layer 130, such as humidity, oxygen, light or ozone, etc., thereby improving the white display
  • the stability of the color rendering index of the panel 10 further improves the performance of the white display panel 10 .
  • the protective layer may be alternately formed of multiple organic protective layers and multiple inorganic protective layers.
  • the protective layer is composed of a multi-layer organic protective layer and a multi-layer inorganic protective layer to further avoid the influence of the external environment on the light conversion layer 130, thereby improving the stability of the color rendering index of the white display panel 10, thereby improving the Performance of the white display panel 10 .
  • the present application provides a display panel.
  • the light conversion layer 130 is formed by using the red light-emitting particle 131 material, so that the light conversion layer 130 only has the function of light conversion, and another layer of organic flattening layer is provided to make it have the flattening function to flatten the array substrate 100
  • the other structures of the above can improve the light conversion effect of the light conversion layer 130 , thereby improving the color rendering index of the white display panel 10 .
  • the embodiment of the present application discloses a display panel 10, the display panel 10 includes an array substrate 100 and a light emitting structure 200, the array substrate 100 includes a light conversion layer 130, the light conversion layer 130 is used to convert other light into red light, and the light emitting structure 200 Disposed on the array substrate 100, the light emitting structure 200 emits white light.
  • the display panel 10 includes an array substrate 100 and a light emitting structure 200
  • the array substrate 100 includes a light conversion layer 130
  • the light conversion layer 130 is used to convert other light into red light
  • the light emitting structure 200 Disposed on the array substrate 100, the light emitting structure 200 emits white light.
  • the color rendering index of the white display panel 10 is improved, and the performance of the white display panel 10 is further improved.
  • a display panel provided by the embodiments of the present application has been introduced in detail above, and the principles and implementations of the present application are described with specific examples. Its core idea; at the same time, for those skilled in the art, according to the idea of the application, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as a limitation to the application. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种显示面板,显示面板包括阵列基板和发光结构,所述阵列基板包括光转换层,所述光转换层用于将其他光线转变红色光线,发光结构设置于所述阵列基板上,所述发光结构发出白光。

Description

显示面板
优先权
本申请要求申请日为2021年4月27日,申请号为“202110457447.1”,申请名称为“显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板。
背景技术
随着发光二极管(Light Emitting Diode,LED)技术的快速发展以及发光二极管光效的逐步提高,发光二极管的应用将越来越广泛。目前,白光发光二极管器件是通过将红绿蓝三色材料按照不同的比例混合达到发白光的目的。红绿蓝三色材料经过溶液加工、旋涂或喷墨印刷成膜后集成到发光二极管器件中可以作为有效的激子辐射复合中心。
白光发光二极管器件工作时需要注入电子和空穴,最简单的白光发光二极管器件由阴极、电子传输层、发光层、空穴传输层和阳极组成。在白光发光二极管器件中,发光层夹设于电子传输层和空穴传输层之间,当正向偏压加到发光二极管器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入发光层,电子和空穴在发光层中复合发光。
但是,目前白光发光二极管器件的显色指数低,使得颜色的还原度低,因此急需一种具有高显色指数的白光发光二极管器件。
技术问题
本申请实施例提供一种显示面板,以解决白色显示面板显色指数低的问题。
技术解决方案
本申请实施例提供一种显示面板,包括:
阵列基板,所述阵列基板包括光转换层,所述光转换层用于将其他光线转变红色光线;以及
发光结构,所述发光结构设置于所述阵列基板上,所述发光结构发出白光。
在本申请的一些实施例中,所述阵列基板还包括衬底和设置于所述衬底上的晶体管层,所述光转换层中掺杂有红色发光颗粒,所述光转换层设置于所述晶体管层与所述发光结构之间。
在本申请的一些实施例中,所述光转换层中红色发光颗粒的掺杂浓度为5%-35%。
在本申请的一些实施例中,所述红色发光颗粒为壳层包覆核层的结构。
在本申请的一些实施例中,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种。
在本申请的一些实施例中,所述壳层的材料包括CdS和ZnS中的至少一种。
在本申请的一些实施例中,所述阵列基板还包括衬底,所述发光结构设置于所述衬底上,所述光转换层设置于所述衬底远离所述发光结构的一侧。
在本申请的一些实施例中,所述显示面板还包括保护层,所述保护层设置于所述光转换层远离所述发光结构的一侧。
在本申请的一些实施例中,所述光转换层的厚度为50纳米-3000纳米。
在本申请的一些实施例中,所述红色发光颗粒的粒径为7纳米-8纳米。
在本申请的一些实施例中,所述光转换层的材料选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。
在本申请的一些实施例中,所述发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元包括红色发光单元、蓝色发光单元和绿色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同。
在本申请的一些实施例中,所述显示面板还包括第一透明导电层以及第二透明导电层;
所述发光结构还包括第一电极层和第二电极层;
所述第一发光单元包括依次层叠设置在所述第一电极层上的第一空穴注入层、第一空穴传输层、第一发光层和第一电子传输层;
所述第二发光单元包括依次层叠设置在所述第一透明导电层上的第二空穴注入层、第二空穴传输层、第二发光层和第二电子传输层;
所述第三发光单元包括依次层叠设置在所述第二透明导电层上的第三空穴注入层、第三空穴传输层、第三发光层和第三电子传输层;
所述第二电极层设置于所述第三电子传输层远离所述衬底的一侧。
在本申请的一些实施例中,所述第一发光层、所述第二发光层和所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdZnSe、ZnSe、InP和CdSe中的一种。所述壳层的材料包括CdS和ZnS中的一种或两种组合。
在本申请的一些实施例中,所述第一传输层、第二电子传输层以及第三电子传输层的材料包括Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O和Zn 0.88Mg 0.12O中的至少一种。
在本申请的一些实施例中,所述显示面板还包括第一电极层,所述晶体管层设置于所述衬底上,所述光转换层设置于所述晶体管层上,所述第一电极层设置于所述光转换层上,所述发光结构设置于所述第一电极层上。
在本申请的一些实施例中,所述显示面板还包括有机平坦层,所述有机平坦层设置于所述光转换层与所述第一电极层之间。
在本申请的一些实施例中,所述显示面板还包括有机平坦层和第一电极层,所述光转换层设置于所述保护层上,所述衬底设置于所述光转换层上,所述晶体管层设置于所述衬底上,所述有机平坦层设置于所述晶体管层上,所述第一电极层设置于所述有机平坦层上,所述发光结构设置于所述第一电极层上。
在本申请的一些实施例中,所述显示面板还包括有机平坦层和第一电极层,所述光转换层设置于所述保护层上,所述衬底设置于所述光转换层上,所述晶体管层设置于所述衬底上,所述有机平坦层设置于所述晶体管层上,所述第一电极层设置于所述有机平坦层上,所述发光结构设置于所述第一电极层上。
在本申请的一些实施例中,所述保护层包括有机保护层和无机保护层,所述有机保护层的材料选自聚碳酸酯、聚酰亚胺和聚甲基丙烯酸甲酯,所述无机保护层的材料选自二氧化硅、氮化硅、氮氧化硅和三氧化二铝。
有益效果
本申请实施例公开了一种显示面板,显示面板包括阵列基板和发光结构,所述阵列基板包括光转换层,所述光转换层用于将其他光线转变红色光线,所述发光结构设置于所述阵列基板上,所述发光结构发出白光。在本申请中,通过设置光转换层,进而提高了显示面板的显色指数,进而提高了显示面板的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的第一种结构示意图。
图2是本申请实施例提供的显示面板的第二种结构示意图。
图3是本申请实施例提供的显示面板的第三种结构示意图。
图4是本申请实施例提供的显示面板的第四种结构示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种显示面板。以下分别进行详细说明。
请参阅图1,图1是本申请实施例提供的显示面板的第一种结构示意图。本申请提供一种显示面板10。显示面板10包括阵列基板100和发光结构200。
阵列基板100包括衬底110和设置在衬底110上的晶体管层120,其中,阵列基板100包括光转换层130。光转换层130用于将其他光线转换红色光线。光转换层130中掺杂有红色发光颗粒131。具体的,光转换层130设置于晶体管层120远离衬底110的一侧。
在一实施例中,衬底110可以为刚性衬底或柔性衬底。刚性衬底可以为玻璃衬底。柔性衬底可以为聚酰亚胺衬底。
在一实施例中,光转换层130的厚度W 1为50纳米-3000纳米。
在一实施例中,光转换层130的厚度W 1为50纳米-3000纳米,具体的,光转换层130的厚度W 1可以为50纳米、60纳米、200纳米、400纳米、900纳米、1600纳米、1800纳米、2000纳米、2200纳米、2400纳米、2600纳米或3000纳米等。在本实施例中,光转换层130的厚度W 1为200纳米。
在本申请中,将光转换层130的厚度W 1设置为50纳米-3000纳米,提高了光转换层130光转换效果。若将光转换层130的厚度W 1设置为小于50纳米,会使得光转换层130的光转换效率降低,影响显示面板10的显色指数。若将光转换层130的厚度W 1设置为大于3000纳米,会把红色以外的光线全部转换层红色,使得显示面板10无法发出白光。
在一实施例中,光转换层130的材料选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。在本实施例中,光转换层130的材料为聚甲基丙烯酸甲酯。
在本申请中,采用聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂形成光转换层130,使得光转换层130作为白色显示面板10的有机平坦层,具有平坦化的作用,可以平坦白色显示面板10中的膜层结构,避免白色显示面板中结构在后续制程或使用中,受到损伤。
在一实施例中,光转换层130中红色发光颗粒131的掺杂浓度为5%-35%。具体的,光转换层130中红色发光颗粒131的掺杂浓度可以为5%、7%、10%、14%、18%、20%、25%、28%、30%、32%或35%等。在本实施例中,光转换层130中红色发光颗粒131的掺杂浓度为26%。
在本申请中,将光转换层130中的红色发光颗粒131的掺杂浓度设置为5%-35%,提高显示面板10的显色指数。若将光转换层130中的红色发光颗粒131的掺杂浓度设置为小于5%,需要将光转换层130设置的足够厚,才能保证显示面板10显色指数,使得器件的膜层厚度增大,不利于实现轻薄化设计。若将光转换层130中的红色发光颗粒131的掺杂浓度设置为大于35%,因红色发光颗粒浓度大,使得红色发光颗粒131与其中的有机物发生相分离,才能保证显示面板10显色指数。
相分离是指:当温度、压强等外界条件变化时,多组元体系有时会分离成具有不同组分和结构的几个相。
在一实施例中,红色发光颗粒131的粒径为7纳米-8纳米。具体的,红色发光颗粒131的粒径可以为7纳米、7.2纳米、7.3纳米、7.4纳米、7.5纳米、7.6纳米或8纳米等。在本实施例中,红色发光颗粒131的粒径为7.5纳米。
在一实施例中,红色发光颗粒131为壳层包覆核层的核壳结构。壳层的带隙大于核层的带隙。
在一实施例中,核层的材料选自InP、ZnSe、CdSe和CdZnSe。壳层的材料选自CdS和ZnS。在本实施例中,核层为InP,壳层为CdS和ZnS。
在本申请中,核层的材料选自InP、CdZnSe、CdSe和ZnSe,壳层的材料选自CdS和ZnS,且,将红色发光颗粒131的粒径设置为7纳米-8纳米,使得红色发光颗粒发出红色光线。
在本申请中,将红色发光颗粒131采用壳层包覆核层的结构,因壳层的带隙大于核层的带隙,使得光转换层130扩展了光子收集光谱的范围的同时,避免核层的缺陷对光转换层130发光的影响,并且,可以通过调节壳层的厚度,避免核层的耦合特性受到影响,进而提高白色显示面板10显示的稳定性。
在一实施例中,红色发光颗粒131的光致发光波长为600纳米-630纳米。
在一实施例中,红色发光颗粒131的光致发光的半峰宽为40纳米-90纳米。具体的,红色发光颗粒131的光致发光的半峰宽可以为40纳米、56纳米、68纳米、79纳米、83纳米或90纳米等。在本实施例中,红色发光颗粒131的光致发光的半峰宽80纳米。
半峰宽指色谱峰高一半处的峰宽度,即通过峰高的中点作平行于峰底的直线,此直线与峰两侧相交两点之间的距离。
在本申请中,选择光谱连续且半峰宽较宽的光谱,即,红色发光颗粒131的光致发光的半峰宽为40纳米-90纳米,从而提高了白色显示面板10的显色指数,进而提高了显示面板的性能。
光致发光机理是量子点受到外界光线的照射,从而量子点获得能量,产生激发导致发光。
在本申请中,在光转换层130中掺杂有红色发光颗粒131,且光转换层130可以作为阵列基板100的有机平坦层,使得光转换层130具有平坦作用的同时,具有光转换效果,进而提高了光转换层130的转换效果,进而提高了白色显示面板10的显色指数,进而提高了白色显示面板10的性能。
显色指数是指待测光源与标准光源相比较,待测光源对物体颜色外貌所产生的效果,即,颜色的逼真程度。显色指数越高表明在光源下物体颜色越接近物体的真实颜色。
发光结构200设置于阵列基板100上,发光结构200发出白光。具体的,发光结构200设置于光转换层130远离衬底110的一侧。
在一实施例中,发光结构200包括第一电极层210。第一电极层210可以为阳极或阴极。在本实施例中,第一电极层210为阳极。
在一实施例中,第一电极层210材料包括铟锡氧化物、铟锌氧化物、锌铝氧化物和铟镓锌氧化物中的一种或几种组合。在本实施例中,第一电极层210材料为铟锌氧化物。
在一实施例中,第一电极层210的厚度H 1为50纳米-1000纳米。具体的,第一电极层210的厚度H 1可以为50纳米、400纳米、650纳米、800纳米或1000纳米等。在本实施例中,第一电极层210的厚度H 1为500纳米。
在一实施例中,发光结构200还包括依次层叠设置的第一发光单元220、第二发光单元230和第三发光单元240,第一发光单元220、第二发光单元230和第三发光单元240包括绿色发光单元、蓝色发光单元和红色发光单元,第一发光单元220、第二发光单元230和第三发光单元240的发光颜色各不相同。
第一发光单元220、第二发光单元230和第三发光单元240组合可以发出白光。
第一发光单元220包括依次层叠设置在第一电极层210的第一空穴注入层221、第一空穴传输层222、第一发光层223和第一电子传输层224。
在一实施例中,第一空穴注入层221材料包括聚苯胺、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐和聚噻吩。在本实施例中,第一空穴注入层221材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,第一空穴注入层221的厚度Y 1为50纳米-500纳米。具体的,第一空穴注入层221的厚度Y 1可以为50纳米、100纳米、190纳米、280纳米、350纳米、450纳米、490纳米或500纳米等。在本实施例中,第一空穴注入层221的厚度Y 1为400纳米。
在一实施例中,第一空穴传输层222材料包括4,4′,4″-三(咔唑-9-基)三苯胺、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)聚乙烯咔唑和4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第一空穴传输层222材料为4,4′-二(9-咔唑)联苯中。
在一实施例中,第一空穴传输层222的厚度D 1为15纳米-40纳米。具体的,第一空穴传输层222的厚度D 1可以为15纳米、18纳米、30纳米、33纳米、36纳米或40纳米等。在本实施例中,第一空穴传输层222的厚度D 1为19纳米。
在一实施例中,第一发光层223包括红色发光层、绿色发光层和蓝色发光层中的一种。在本实施例中,第一发光层223为蓝色发光层,即,第一发光单元220为蓝色发光单元。
在一实施例中,第一发光层223材料为壳层包覆核层的核壳结构。壳层的带隙大于核层的带隙。
在一实施例中,核层材料包括CdZnSe、ZnSe、InP和CdSe中的一种。壳层材料包括ZnS和CdS中的至少一种。在本实施例中,核层材料为ZnSe。壳层材料为CdS。
在一实施例中,第一发光层223材料的粒径为1纳米-2纳米。在本实施例中,第一发光层223材料的粒径为2纳米。
在本申请中,采用ZnSe为核层材料,CdS为壳层材料,并将第一发光层223材料的粒径设置为1纳米-2纳米,使得第一发光层223发出蓝色光线。
在一实施例中,第一发光层223的光致发光波长为465纳米-480纳米。
在一实施例中,第一发光层223的厚度T 1为10纳米-40纳米。具体的,第一发光层223的厚度T 1可以为11纳米、12纳米、18纳米、20纳米、28纳米、34纳米、36纳米或40纳米等。在本实施例中,第一发光层223的厚度T 1为34纳米。
在一实施例中,第一电子传输层224材料选自ZnO、Zn y1Mg y2O、Zn x1Al x2O和Zn a1Mg a2Li a3O,其中,y1+y2=1,x1+x2=1,a1+a2+a3=1。在本实施例中,第一电子传输层224材料为Zn 0.95Mg 0.05O。
在一实施例中,第一电子传输层224材料可以为Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O或Zn 0.88Mg 0.12O等。
在一实施例中,第一电子传输层224的厚度h 1为20纳米-60纳米。具体的,第一电子传输层224的厚度h 1可以为21纳米、22纳米、30纳米、38纳米、45纳米、48纳米、58纳米或60纳米等。在本实施例中,第一电子传输层224的厚度h 1为45纳米。
在一实施例中,显示面板10还包括第一透明导电层300。第一透明导电层300设置于第一电子传输层224远离衬底110的一侧。
在一实施例中,第一透明导电层300材料选自铟锡氧化物、铟锌氧化物、锌铝氧化物和铟镓锌氧化物。在本实施例中,第一透明导电层300材料为铟镓锌氧化物。
在一实施例中,第一透明导电层300的厚度R 1为50纳米-1000纳米。具体的,第一透明导电层300的厚度R 1可以为60纳米、600纳米、800纳米、950纳米或1000纳米等。在本实施例中,第一透明导电层300的厚度R 1为600纳米。
第二发光单元230包括依次层叠设置在第一透明导电层300的第二空穴注入层231、第二空穴传输层232、第二发光层233和第二电子传输层234。
在一实施例中,第二空穴注入层231材料选自聚苯胺、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐和聚噻吩。在本实施例中,第二空穴注入层231材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,第二空穴注入层231的厚度Y 2为15纳米-50纳米。具体的,第二空穴注入层231的厚度Y 2可以为15纳米、18纳米、30纳米、36纳米、38纳米、46纳米、48纳米或50纳米等。在本实施例中,第二空穴注入层231的厚度Y 2为48纳米。
第一电子传输层224、第一透明导电层300和第二空穴注入层231组成发光结构200的第一电荷层400,第一电荷层400用于提供发光结构200所需的电子和空穴。
在本申请中,第一电荷层400采用第一电子传输层224、第一透明导电层300和第二空穴注入层231构成,因第一透明导电层300属于n型半导体,第二空穴注入层231属于p型,两者接触形成p-n结,在第一透明导电层300的导带等于或者小于第二空穴注入层231最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第一透明导电层300注入到发光单元,而空穴也注入到另一发光单元,即,第一电荷层400可以产生足够多的电子和空穴,进而避免因显示面板10的发光层叠层设置,而造成能量转移的问题,进而避免白色显示面板10出现显示不均的问题,进而提高了白色显示面板10的稳定性。
在一实施例中,第二空穴传输层232材料为4,4′,4″-三(咔唑-9-基)三苯胺、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)聚乙烯咔唑和4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第二空穴传输层232材料为聚乙烯咔唑。
在一实施例中,第二空穴传输层232的厚度D 2为15纳米-40纳米。具体的,第二空穴传输层232的厚度D 2可以为15纳米、18纳米、30纳米、33纳米、36纳米或40纳米等。在本实施例中,第二空穴传输层232厚度D 2为20纳米。
在一实施例中,第二发光层233材料为壳层包覆核层的核壳结构。核层材料包括CdZnSe、ZnSe、InP和CdSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为CdZnSe。壳层材料为CdS。
在一实施例中,第二发光层233包括绿色发光层、红色发光层和蓝色发光层中的一种。在本实施例中,第二发光层233为绿色发光层,即,第二发光单元230为绿色发光单元。
在一实施例中,第二发光层233材料的粒径为3纳米-6纳米。在本实施例中,第二发光层233材料的粒径为4纳米。
在一实施例中,第二发光层233材料的光致发光波长为535纳米-555纳米。
在本申请中,采用CdZnSe为核层材料,CdS为壳层材料,并将第二发光层233材料的粒径设置为3纳米-6纳米,使得第二发光层233发出绿色光线。
在一实施例中,第二发光层233的厚度T 2为10纳米-40纳米。具体的,第二发光层233的厚度T 2可以为10纳米、18纳米、30纳米、36纳米、38纳米、38纳米或40纳米等。在本实施例中,第二发光层233的厚度T 2为20纳米。
在一实施例中,第二电子传输层234材料选自ZnO、Zn y1Mg y2O、Zn x1Al x2O和Zn a1Mg a2Li a3O,其中,y1+y2=1,x1+x2=1,a1+a2+a3=1。在本实施例中,第二电子传输层234材料为Zn 0.95Mg 0.05O。
在一实施例中,第二电子传输层234材料可以为Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O或Zn 0.88Mg 0.12O等。
在一实施例中,第二电子传输层234的厚度h 2为20纳米-60纳米。具体的,第二电子传输层234的厚度h 2可以为21纳米、22纳米、30纳米、38纳米、45纳米、48纳米、58纳米或60纳米。在本实施例中,第二电子传输层234的厚度h 2为38纳米。
在一实施例中,显示面板10还包括第二透明导电层500。第二透明导电层500设置在第二电子传输层234远离衬底110的一侧。
在一实施例中,第二透明导电层500材料选自铟锡氧化物、铟锌氧化物、锌铝氧化物和铟镓锌氧化物。在本实施例中,第二透明导电层500材料为铟锌氧化物。
在一实施例中,第二透明导电层500的厚度R 2为50纳米-1000纳米。具体的,第二透明导电层500的厚度R 2可以为60纳米、600纳米、800纳米、950纳米或1000纳米。第二透明导电层500的厚度R 2为500纳米。
第三发光单元240包括依次层叠设置在第二透明导电层500上的第三空穴注入层241、第三空穴传输层242、第三发光层243和第三电子传输层244。
在一实施例中,第三空穴注入层241材料选自聚苯胺、聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐和聚噻吩。在本实施例中,第三空穴注入层241材料为聚噻吩。
在一实施例中,第三空穴注入层241的厚度Y 3为15纳米-50纳米。具体的,第三空穴注入层241的厚度Y 3可以为15纳米、18纳米、30纳米、36纳米、38纳米、46纳米、48纳米或50纳米。在本实施例中,第三空穴注入层241的厚度Y 3为45纳米。
第二电子传输层234、第二透明导电层500和第三空穴注入层241组成发光结构200的第二电荷层600。第二电荷层600用于提供发光结构200所需的电子和空穴。
在本申请中,第二电荷层600采用第二电子传输层234、第二透明导电层500和第三空穴注入层241构成,因第二透明导电层500属于n型半导体,第三空穴注入层241属于p型,两者接触形成p-n结,在第二透明导电层500的导带等于或者小于第三空穴注入层241最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第二透明导电层500注入到发光单元,而空穴也注入到另一发光单元,即,第二电荷层600可以产生足够多的电子和空穴,进而避免因显示面板10的发光层叠层设置,而造成能量转移的问题,进而避免白色显示面板10出现显示不均的问题,进而提高了白色显示面板10的稳定性。
在一实施例中,第三空穴传输层242材料包括4,4′,4″-三(咔唑-9-基)三苯胺、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)聚乙烯咔唑和4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第三空穴传输层242材料为聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)。
在一实施例中,第三空穴传输层242厚度的D 3为15纳米-40纳米。具体的,第三空穴传输层242的厚度D 3可以为15纳米、18纳米、30纳米、33纳米、36纳米或40纳米。在本实施例中,第三空穴传输层242的厚度D 3为18纳米。
在一实施例中,第三发光层243材料为壳层包覆核层的核壳结构。核层材料包括CdZnSe、ZnSe、InP和CdSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe。壳层材料为CdS和ZnS。
在一实施例中,第三发光层243包括红色发光层、绿色发光层和蓝色发光层中的一种。在本实施例中,第三发光层243为红色发光层。即,第三发光单元240为红色发光单元。
在本申请中,将蓝色发光单元、绿色发光单元和红色发光单元堆叠形成发光结构200,从而使得显示面板10发出白光。
在一实施例中,第三发光层243材料的粒径为7纳米-8纳米。在本实施例中,第三发光层243材料的粒径为8纳米。
在一实施例中,第三发光层243材料的光致发光波长为615纳米-625纳米。
在一实施例中,第三发光层243的厚度T 3为10纳米-40纳米。具体的,第三发光层243的厚度T 3可以为10纳米、18纳米、30纳米、36纳米、38纳米、46纳米或40纳米。在本实施例中,第三发光层243的厚度T 3为22纳米。
在本申请中,采用ZnSe为核层材料,CdS和ZnS为壳层材料,并将第三发光层243材料的粒径设置为7纳米-8纳米,使得第三发光层243发出红色光线。
在一实施例中,第三电子传输层244材料选自ZnO、Zn y1Mg y2O、Zn x1Al x2O和Zn a1Mg a2Li a3O,其中,y1+y2=1,x1+x2=1,a1+a2+a3=1。在本实施例中,第三电子传输层244材料为Zn 0.85Mg 0.05Li 0.1O。
在一实施例中,第三电子传输层244材料可以为Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O或Zn 0.88Mg 0.12O等。
在一实施例中,第三电子传输层244的厚度h 3为20纳米-60纳米。具体的,第三电子传输层244的厚度h 3可以为21纳米、22纳米、30纳米、38纳米、45纳米、48纳米、58纳米或60纳米。在本实施例中,第三电子传输层244的厚度h 3为30纳米。
在一实施例中,发光结构200还包括第二电极层250。第二电极层250设置于第三电子传输层244远离衬底110的一侧。
在一实施例中,第二电极层250的材料包括金、银、铝及其合金等。在本实施例中,第二电极层250材料为金。
在一实施例中,第二电极层250的厚度H 2为80纳米-500纳米。具体的,第二电极层250的厚度H 2可以为90纳米、200纳米、340纳米、460纳米或500纳米。在本实施例中,第二电极层250的厚度H 2为400纳米。第二电极层250为阳极或阴极,在本实施例中,第二电极层250为阴极。
在本申请中,显示面板10可以为白光量子点发光二极管显示面板或白光有机发光二极管显示面板。白色显示面板10可以为光致发光显示面板。
本申请实施例公开了一种显示面板,显示面板10包括阵列基板100和发光结构200,所述阵列基板100包括衬底110和设置在所述衬底110上的晶体管层120,其中,所述阵列基板100包括光转换层130,光转换层130中掺杂有红色发光颗粒131,所述发光结构200设置于所述阵列基板100上,所述发光结构200发出白光。在本申请中,通过在光转换层130中掺杂有红色发光颗粒131,使得光转换层130可以作为白色显示面板10的有机平坦层,又可以用于将其他光线转换为红色光线,增加了红色光线比例,进而提高了白色显示面板10的显色指数,进而提高了白色显示面板10的性能。
请参阅图2,图2是本申请实施例提供的显示面板的第二种结构示意图。需要说明的是,第二种结构和第一种结构的不同之处在于:
光转换层130设置于衬底110远离发光结构200的一侧。光转换层130的材料选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。在本实施例中,光转换层130的材料为聚酰亚胺。
在一实施例中,显示面板10还包括有机平坦层140。有机平坦层140设置于晶体管层120和发光结构200之间。有机平坦层140用于平坦晶体管层120中的膜层,避免后续制程或使用中,晶体管层120中的膜层受到损坏或损伤,进而提高了白色显示面板10的性能。
在本申请中,将光转换层130设置在衬底110远离发光结构200的一侧,使得光转换层130可以做显示面板10的缓冲层的同时,具有光转换效果,使得缓冲层具有光转换作用,进而保护显示面板10中的膜层以及提高了白色显示面板10的显色指数,进而提高了白色显示面板10的性能。
在一实施例中,显示面板10还包括保护层。保护层设置于光转换层130远离发光结构200的一侧。
在一实施例中,保护层包括一有机保护层和一无机保护层。有机保护层材料选自聚碳酸酯、聚酰亚胺和聚甲基丙烯酸甲酯。无机保护层材料选自二氧化硅、氮化硅、氮氧化硅和三氧化二铝。
在本申请中,在光转换层130远离衬底110的一侧设置保护层,避免了外部环境对光转换层130的影响,外部环境如湿度、氧气、光照或臭氧等,进而提高了白色显示面板10显色指数的稳定性,进而提高了白色显示面板10的性能。
在一实施例中,保护层可以由多层有机保护层和多层无机保护层交替形成。在申请中,将保护层采用多层有机保护层和多层无机保护层构成,进一步避免外部环境对光转换层130的影响,进而提高了白色显示面板10显色指数的稳定性,进而提高了白色显示面板10的性能。
请参阅图3,图3是本申请实施例提供的显示面板的第三种结构示意图。需要说明的是,第三种结构和第一种结构的不同之处在于:
采用红色发光颗粒131材料形成光转换层130。光转换层130中不含有聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂等材料。白色显示面板10还包括有机平坦层140。光转换层130设置于有机平坦层140和第一电极层210之间,或者,光转换层130设置于晶体管层120和有机平坦层140之间。
需要说明的是,附图中只画出一些红色发光颗粒131,只是简单的示意图,但并不意味着光转换层130还含有其他材料。
在一实施例中,有机平坦层140选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。
在一实施例中,光转换层130的厚度W 1为20纳米-200纳米。具体的,光转换层130的厚度W 1为25纳米、50纳米、90纳米、160纳米、180纳米和190纳米等。
在本申请中,将光转换层130的厚度W 1设置为20纳米-200纳米,提高了光转换层130的转换效率,且不影响白色显示面板10的显示性能。若将光转换层130的厚度W 1设置为小于20纳米,光转换层130因太薄,使得光转换层130的光转换效率低,影响白色显示面板10的显色指数。若将光转换层130的厚度W 1设置为大于200纳米,光转换层130会将其他光线全部转换层红色光线,进而无法形成白色光线,进而影响白色显示面板10的性能。
本申请提供一种显示面板,通过采用红色发光颗粒131材料形成光转换层130,使得光转换层130只具有光转换的作用,另设置一层有机平坦层使其具有平坦化作用平坦阵列基板100的中的其它结构,提高了光转换层130的光转换作用,进而提高了白色显示面板10的显色指数。
请参阅图4,图4是本申请实施例提供的显示面板的第三种结构示意图。需要说明的是,第四种结构和第二种结构的不同之处在于:
采用红色发光颗粒131材料形成光转换层130。光转换层130中不含有聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂等材料。光转换层130设置于衬底110远离发光结构200的一侧。
在本申请中,将光转换层130设置在衬底110远离发光结构200的一侧,光转换层130只采用红色发光颗粒131形成,即使得光转换层130只具有光转换作用,进而提高了白色显示面板10的显色指数,进而提高了白色显示面板10的显示性能。
需要说明的是,附图中只画出一些红色发光颗粒131,只是简单的示意图,但并不意味着光转换层130还含有其他材料。
在一实施例中,光转换层130的厚度W 1为20纳米-200纳米。具体的,光转换层130的厚度W 1为25纳米、50纳米、90纳米、160纳米、180纳米和190纳米等。
在本申请中,将光转换层130的厚度W 1设置为20纳米-200纳米,提高了光转换层130的转换效率,且不影响白色显示面板10的显示性能。若将光转换层130的厚度W 1设置为小于20纳米,光转换层130因太薄,使得光转换层130的光转换效率低,影响白色显示面板10的显色指数。若将光转换层130的厚度W 1设置为大于200纳米,光转换层130会将其他光线全部转换层红色光线,进而无法形成白色光线,进而影响白色显示面板10的性能。
在一实施例中,白色显示面板10还包括有机平坦层140。有机平坦层140设置于晶体管层120和第一电极层210之间。有机平坦层140用于平坦晶体管层120中的膜层,避免后续制程或使用中,晶体管层120中的膜层受到损坏或损伤,进而提高了白色显示面板10的性能。
在一实施例中,有机平坦层140选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。
在一实施例中,显示面板10还包括保护层。保护层设置于光转换层130远离发光结构200的一侧。
在一实施例中,保护层包括一有机保护层和一无机保护层。有机保护层材料选自聚碳酸酯、聚酰亚胺和聚甲基丙烯酸甲酯。无机保护层材料选自二氧化硅、氮化硅、氮氧化硅和三氧化二铝。
在本申请中,在光转换层130远离衬底110的一侧设置保护层,避免了外部环境对光转换层130的影响,外部环境如湿度、氧气、光照或臭氧等,进而提高了白色显示面板10显色指数的稳定性,进而提高了白色显示面板10的性能。
在一实施例中,保护层可以由多层有机保护层和多层无机保护层交替形成。在申请中,将保护层采用多层有机保护层和多层无机保护层构成,进一步避免外部环境对光转换层130的影响,进而提高了白色显示面板10显色指数的稳定性,进而提高了白色显示面板10的性能。
本申请提供一种显示面板,通过采用红色发光颗粒131材料形成光转换层130,使得光转换层130只具有光转换的作用,另设置一层有机平坦层使其具有平坦化作用平坦阵列基板100的中的其它结构,提高了光转换层130的光转换作用,进而提高了白色显示面板10的显色指数。
本申请实施例公开了一种显示面板10,显示面板10包括阵列基板100和发光结构200,阵列基板100包括光转换层130,光转换层130用于将其他光线转换为红色光线,发光结构200设置于阵列基板100上,发光结构200发出白光。在本申请中,通过设置光转换层130,进而提高了白色显示面板10的显色指数,进而提高了白色显示面板10的性能。
以上对本申请实施例所提供的一种显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其包括:
    阵列基板,所述阵列基板包括光转换层,所述光转换层用于将其他光线转变红色光线;以及
    发光结构,所述发光结构设置于所述阵列基板上,所述发光结构发出白光。
  2. 根据权利要求1所述的显示面板,其中,所述阵列基板还包括衬底和设置于所述衬底上的晶体管层,所述光转换层中掺杂有红色发光颗粒,所述光转换层设置于所述晶体管层与所述发光结构之间。
  3. 根据权利要求2所述的显示面板,其中,所述光转换层中红色发光颗粒的掺杂浓度为5%-35%。
  4. 根据权利要求3所述的显示面板,其中,所述红色发光颗粒为壳层包覆核层的结构。
  5. 根据权利要求4所述的显示面板,其中,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种。
  6. 根据权利要求5所述的显示面板,其中,所述壳层的材料包括CdS和ZnS中的至少一种。
  7. 根据权利要求1所述的显示面板,其中,所述阵列基板还包括衬底,所述发光结构设置于所述衬底上,所述光转换层设置于所述衬底远离所述发光结构的一侧。
  8. 根据权利要求7所述的显示面板,其中,所述显示面板还包括保护层,所述保护层设置于所述光转换层远离所述发光结构的一侧。
  9. 根据权利要求1所述的显示面板,其中,所述光转换层的厚度为50纳米-3000纳米。
  10. 根据权利要求2所述的显示面板,其中,所述红色发光颗粒的粒径为7纳米-8纳米。
  11. 根据权利要求2所述的显示面板,其中,所述光转换层的材料选自聚酰亚胺、聚甲基丙烯酸甲酯、有机硅树脂和环氧树脂。
  12. 根据权利要求1所述的显示面板,其中,所述发光结构包括依次层叠设置的第一发光单元、第二发光单元和第三发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元包括红色发光单元、蓝色发光单元和绿色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同。
  13. 根据权利要求12所述的显示面板,其中,所述显示面板还包括第一透明导电层以及第二透明导电层;
    所述发光结构还包括第一电极层和第二电极层;
    所述第一发光单元包括依次层叠设置在所述第一电极层上的第一空穴注入层、第一空穴传输层、第一发光层和第一电子传输层;
    所述第二发光单元包括依次层叠设置在所述第一透明导电层上的第二空穴注入层、第二空穴传输层、第二发光层和第二电子传输层;
    所述第三发光单元包括依次层叠设置在所述第二透明导电层上的第三空穴注入层、第三空穴传输层、第三发光层和第三电子传输层;
    所述第二电极层设置于所述第三电子传输层远离所述衬底的一侧。
  14. 根据权利要求13所述的显示面板,其中,所述第一发光层、所述第二发光层和所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdZnSe、ZnSe、InP和CdSe中的一种。所述壳层的材料包括CdS和ZnS中的一种或两种组合。
  15. 根据权利要求13所述的显示面板,其中,所述第一传输层、第二电子传输层以及第三电子传输层的材料包括Zn 0.98Al 0.02O、Zn 0.9Mg 0.05Li 0.05O、Zn 0.9Mg 0.1O和Zn 0.88Mg 0.12O中的至少一种。
  16. 根据权利要求2所述的显示面板,其中,所述显示面板还包括第一电极层,所述晶体管层设置于所述衬底上,所述光转换层设置于所述晶体管层上,所述第一电极层设置于所述光转换层上,所述发光结构设置于所述第一电极层上。
  17. 根据权利要求16所述的显示面板,其中,所述显示面板还包括有机平坦层,所述有机平坦层设置于所述光转换层与所述第一电极层之间。
  18. 根据权利要求8所述的显示面板,其中,所述显示面板还包括有机平坦层和第一电极层,所述光转换层设置于所述保护层上,所述衬底设置于所述光转换层上,所述晶体管层设置于所述衬底上,所述有机平坦层设置于所述晶体管层上,所述第一电极层设置于所述有机平坦层上,所述发光结构设置于所述第一电极层上。
  19. 根据权利要求8所述的显示面板,其中,所述显示面板还包括有机平坦层和第一电极层,所述光转换层设置于所述保护层上,所述衬底设置于所述光转换层上,所述晶体管层设置于所述衬底上,所述有机平坦层设置于所述晶体管层上,所述第一电极层设置于所述有机平坦层上,所述发光结构设置于所述第一电极层上。
  20. 根据权利要求8所述的显示面板,其中,所述保护层包括有机保护层和无机保护层,所述有机保护层的材料选自聚碳酸酯、聚酰亚胺和聚甲基丙烯酸甲酯,所述无机保护层的材料选自二氧化硅、氮化硅、氮氧化硅和三氧化二铝。
PCT/CN2021/143270 2021-04-27 2021-12-30 显示面板 WO2022227675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/263,356 US20240304763A1 (en) 2021-04-27 2021-12-30 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110457447.1A CN115249697A (zh) 2021-04-27 2021-04-27 显示面板
CN202110457447.1 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022227675A1 true WO2022227675A1 (zh) 2022-11-03

Family

ID=83697160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143270 WO2022227675A1 (zh) 2021-04-27 2021-12-30 显示面板

Country Status (3)

Country Link
US (1) US20240304763A1 (zh)
CN (1) CN115249697A (zh)
WO (1) WO2022227675A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710608A (zh) * 2009-12-01 2010-05-19 中山大学 一种顶发射有机白光器件
CN102197507A (zh) * 2008-10-28 2011-09-21 密执安州立大学董事会 具有单独的红色、绿色和蓝色子元件的堆叠式白色oled
CN102637808A (zh) * 2011-09-30 2012-08-15 深圳市灏天光电有限公司 一种白光led封装结构
CN104576936A (zh) * 2013-10-16 2015-04-29 海洋王照明科技股份有限公司 一种白光有机电致发光装置及其制备方法
CN109545993A (zh) * 2018-11-19 2019-03-29 京东方科技集团股份有限公司 有机发光器件及其制造方法、照明装置
CN110120458A (zh) * 2019-05-23 2019-08-13 京东方科技集团股份有限公司 一种电致发光器件和制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197507A (zh) * 2008-10-28 2011-09-21 密执安州立大学董事会 具有单独的红色、绿色和蓝色子元件的堆叠式白色oled
CN101710608A (zh) * 2009-12-01 2010-05-19 中山大学 一种顶发射有机白光器件
CN102637808A (zh) * 2011-09-30 2012-08-15 深圳市灏天光电有限公司 一种白光led封装结构
CN104576936A (zh) * 2013-10-16 2015-04-29 海洋王照明科技股份有限公司 一种白光有机电致发光装置及其制备方法
CN109545993A (zh) * 2018-11-19 2019-03-29 京东方科技集团股份有限公司 有机发光器件及其制造方法、照明装置
CN110120458A (zh) * 2019-05-23 2019-08-13 京东方科技集团股份有限公司 一种电致发光器件和制作方法

Also Published As

Publication number Publication date
US20240304763A1 (en) 2024-09-12
CN115249697A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US10096744B2 (en) Quantum dot light enhancement substrate and lighting device including same
US9379344B2 (en) Display panel and display device
US12010860B2 (en) Quantum dot LED design based on resonant energy transfer
US7564067B2 (en) Device having spacers
CN111416053B (zh) 一种量子点发光器件及其制备方法、显示面板、显示装置
US20080278063A1 (en) Electroluminescent device having improved power distribution
CN108878667B (zh) 发光器件及其制作方法、电子装置
WO2021184914A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
WO2022205515A1 (zh) Oled 显示面板与显示装置
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
WO2022227675A1 (zh) 显示面板
CN113130794B (zh) 一种量子点发光二极管及其制备方法
WO2022227684A1 (zh) 显示面板
JP5118504B2 (ja) 発光素子
Ayoub et al. Metal oxides in quantum-dot-based LEDs and their applications
WO2022227683A1 (zh) 显示面板及其制备方法
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
CN118102767B (zh) 一种光通信的led半导体装置及其制备方法
WO2024125109A1 (zh) 发光器件及其制备方法、显示装置
US20230096576A1 (en) Quantum dot organic light emitting diode
JP5118503B2 (ja) 発光素子
JP2009200251A (ja) 発光素子およびそれを用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263356

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939134

Country of ref document: EP

Kind code of ref document: A1