WO2022227683A1 - 显示面板及其制备方法 - Google Patents

显示面板及其制备方法 Download PDF

Info

Publication number
WO2022227683A1
WO2022227683A1 PCT/CN2021/143787 CN2021143787W WO2022227683A1 WO 2022227683 A1 WO2022227683 A1 WO 2022227683A1 CN 2021143787 W CN2021143787 W CN 2021143787W WO 2022227683 A1 WO2022227683 A1 WO 2022227683A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting unit
display panel
transparent conductive
Prior art date
Application number
PCT/CN2021/143787
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/263,723 priority Critical patent/US20240130154A1/en
Publication of WO2022227683A1 publication Critical patent/WO2022227683A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a manufacturing method thereof.
  • the electroluminescent diode device needs to inject electrons and holes when it works, and the quantum dot light-emitting diode device includes a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer and an anode.
  • the quantum dot light-emitting layer is sandwiched between the electron transport layer and the hole transport layer.
  • the electrons and holes pass through the electron transport layer respectively.
  • the hole transport layer enters the quantum dot light-emitting layer, and electrons and holes combine to emit light in the quantum dot light-emitting layer.
  • quantum dot light-emitting diode devices emit light of a desired color, such as yellow light, violet light or white light, by mixing at least two materials of red, green and blue quantum dot materials in different proportions.
  • the QD white light devices fabricated in this way still have serious defects, for example, the electrons and holes required for the hybrid quantum dot light-emitting layer cannot be provided only by the electron transport layer and the hole transport layer, i.e., the electron transport layer and the hole The electron concentration and hole concentration generated by the transport layer are low, so that the stability of the quantum dot light emitting diode device is poor, and the performance of the quantum dot light emitting diode device is affected.
  • Embodiments of the present application provide a display panel and a manufacturing method thereof, so as to solve the problem of low electron and hole concentrations in the prior art.
  • Embodiments of the present application provide a display panel, which includes:
  • the material of the first transparent conductive layer is an n-type semiconductor material, and the first transparent conductive layer is disposed on the first light-emitting unit;
  • a second light-emitting unit the second light-emitting unit includes a first hole injection layer, and the first hole injection layer is disposed on a side of the first transparent conductive layer away from the first light-emitting unit.
  • the material of the first transparent conductive layer is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide, and zinc manganese oxide.
  • the thickness of the first transparent conductive layer is 50 nanometers to 1000 nanometers.
  • the first light-emitting unit includes a first electron transport layer, and the first transparent conductive layer is disposed on the first electron transport layer.
  • the second light-emitting unit further includes a second electron transport layer, and the second electron transport layer is disposed on a part of the first hole injection layer far from the first electron transport layer. side.
  • the display panel further includes a second transparent conductive layer, the material of the second transparent conductive layer is an n-type semiconductor material, and the second transparent conductive layer is disposed on the second electron
  • the transport layer is on the side away from the first electron transport layer.
  • the material of the second transparent conductive layer is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide, and zinc manganese oxide.
  • the thickness of the second transparent conductive layer is 50 nanometers to 1000 nanometers.
  • the display panel further includes a third light-emitting unit, and the third light-emitting unit is disposed on a side of the second transparent conductive layer away from the first electron transport layer.
  • the third light-emitting unit includes a second hole injection layer, and the second hole injection layer is disposed on a part of the second transparent conductive layer away from the first electron transport layer. side.
  • the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit are selected from red light-emitting units, green light-emitting units, and blue light-emitting units, and the first light-emitting unit ,
  • the light-emitting colors of the second light-emitting unit and the third light-emitting unit are different from each other.
  • the first light-emitting unit further includes an additional hole layer, a first hole transport layer and a first light-emitting layer that are stacked in sequence, and the first electron transport layer is disposed on the first light-emitting layer .
  • the second light-emitting unit further includes a second hole transport layer and a second light-emitting layer, a first hole injection layer, a second hole transport layer, a second light-emitting layer and a second light-emitting layer. electron transport layer.
  • the third light-emitting unit further includes a third hole transport layer, a third light-emitting layer and a third electron transport layer that are sequentially stacked on the second hole injection layer.
  • the display panel further includes a first electrode layer and a second electrode layer, the first electrode layer is disposed on a side of the first light-emitting unit away from the second light-emitting unit, The second electrode layer is disposed on a side of the third light-emitting unit away from the first light-emitting unit.
  • materials of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer are a core-shell structure in which a shell layer coats a core layer, and the material of the core layer includes At least one of CdSe, CdZnSe, InP and ZnSe, and the material of the shell layer includes one or a combination of two of CdS and ZnS.
  • the materials of the first hole transport layer, the second hole transport layer and the third hole transport layer include poly(9,9-dioctylfluorene-co -N-(4-butylphenyl)diphenylamine), poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarboxylate azole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, one or more combinations.
  • the materials of the additional hole injection layer, the first hole injection layer and the second hole injection layer are selected from poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate, polyaniline and polythiophene.
  • this embodiment also provides a method for manufacturing a display panel, which includes:
  • the material of the first transparent conductive layer is an n-type semiconductor material
  • a second light-emitting unit is formed on the side of the first transparent conductive layer away from the first light-emitting unit, the second light-emitting unit includes a first hole injection layer, and the first hole injection layer is disposed on the The first transparent conductive layer is away from the side of the first light emitting unit.
  • the embodiment of the present application discloses a display panel and a manufacturing method thereof.
  • the display panel includes a first light-emitting unit, a first transparent conductive layer and a second light-emitting unit, and the first transparent conductive layer is disposed on the first light-emitting unit , the material of the first transparent conductive layer is an n-type semiconductor material, the second light-emitting unit includes a first hole injection layer, and the first hole injection layer is disposed on the first transparent conductive layer away from the one side of the first light-emitting unit.
  • the concentration of holes and electrons of the display panel is increased, thereby improving the display performance of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a display panel and a manufacturing method thereof. Each of them will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the present application provides a display panel 10 .
  • the display panel 10 includes a first light emitting unit 100 , a first transparent conductive layer 200 and a second light emitting unit 300 .
  • the specific description is as follows:
  • the display panel 10 further includes a first electrode layer 400 .
  • the first electrode layer 400 may be a cathode or an anode. In this embodiment, the first electrode layer 400 is an anode.
  • the material of the first electrode layer 400 includes one or a combination of indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the first electrode layer 400 is indium tin oxide.
  • the thickness H 1 of the first electrode layer 400 is 50 nanometers to 1000 nanometers. Specifically, the thickness H 1 of the first electrode layer 400 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. In this embodiment, H 1 of the first electrode layer 400 is 800 nm.
  • the thickness H 1 of the first electrode layer 400 is set to be 50 nanometers to 1000 nanometers, and the first electrode layer 400 with a thickness within this range has a small resistance and a small hindering effect on current, thereby improving the first Conductivity of the electrode layer 400 . If the thickness H 1 of the first electrode layer 400 is set to be less than 50 nanometers, the resistance of the first electrode layer 400 will be too small, causing damage to the display panel 10 ; if the thickness H 1 of the first electrode layer 400 is set to be greater than 1000 nm nanometers make the resistance of the first electrode layer 400 too large, thereby affecting the conductivity of the first electrode layer 400 , so that the display panel 10 cannot display normally.
  • the first light emitting unit 100 is disposed on the first electrode layer 400 .
  • the first light emitting unit 100 includes an additional hole injection layer 110 , a first hole transport layer 120 , a first light emitting layer 130 and a first electron transport layer 140 which are sequentially stacked on the first electrode layer 400 .
  • the material of the additional hole injection layer 110 is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the additional hole injection layer 110 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the thickness W 1 of the additional hole injection layer 110 is 15 nm to 50 nm. Specifically, the thickness W 1 of the additional hole injection layer 110 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness W 1 of the additional hole injection layer 110 is 30 nanometers.
  • the thickness W 1 of the additional hole injection layer 110 is set between 15 nm and 50 nm to ensure the hole injection efficiency of the additional hole injection layer 110, so that the display panel 10 can display normally and avoid the display panel 10's display performance suffers.
  • the material of the first hole transport layer 120 includes poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis (4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4 , 4'-bis(9-carbazole)biphenyl, one or more combinations.
  • the material of the first hole transport layer 120 is 4,4'-bis(9-carbazole)biphenyl in benzene.
  • the thickness D 1 of the first hole transport layer 120 is 15 nm to 40 nm. Specifically, the thickness D 1 of the first hole transport layer 120 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness D 1 of the first hole transport layer 120 is 20 nanometers.
  • the thickness D 1 of the first hole transport layer 120 is set between 15 nanometers and 40 nanometers to ensure the transmission efficiency of holes in the first hole transport layer 120 , thereby ensuring the normal display of the display panel 10 .
  • the first light-emitting layer 130 includes one of a red quantum dot light-emitting layer, a green quantum dot light-emitting layer, and a blue quantum dot light-emitting layer.
  • the first light-emitting layer 130 is a blue quantum dot light-emitting layer, that is, the first light-emitting unit 100 is a blue light-emitting unit.
  • the material of the first light-emitting layer 130 is a core-shell structure in which a shell layer coats the core layer.
  • the band gap of the shell layer is larger than that of the core layer.
  • the material of the first light-emitting layer 130 is a core-shell structure in which the shell layer coats the core layer, and the band gap of the shell layer is larger than that of the core layer, so that the first light-emitting layer 130 expands the range of the photon collection spectrum
  • the influence of the defects of the core layer on the light emission of the first light-emitting layer can be avoided; because the material of the first light-emitting layer 130 is a core-shell structure in which the shell layer covers the shell layer, the thickness of the shell layer can be adjusted to avoid the coupling of the core layer. The characteristics are affected, so that the light-emitting effect of the first light-emitting unit 100 is improved, and the display stability of the display panel 10 is further improved.
  • the core layer material includes at least one of CdSe, CdZnSe, InP, and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe.
  • the shell material is CdS.
  • the particle size of the material of the first light emitting layer 130 is 1 nanometer to 2 nanometers. In this embodiment, the particle size of the material of the first light emitting layer 130 is 2 nanometers.
  • one of CdSe, CdZnSe, InP and ZnSe is used as the core layer material
  • one or both of CdS and ZnS are used as the shell layer material
  • the particle size of the material of the first light-emitting layer 130 is set to is 1 nm to 2 nm, so that the first light emitting layer 130 emits blue light.
  • the photoluminescence wavelength of the material of the first light emitting layer 130 is 465 nm to 480 nm.
  • the thickness T 1 of the first light emitting layer 130 is 10 nm to 40 nm. Specifically, the thickness T1 of the first light-emitting layer 130 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 1 of the first light emitting layer 130 is 20 nanometers.
  • the thickness T 1 of the first light-emitting layer 130 is set to be 10 nanometers to 40 nanometers, so that the first light-emitting layer 130 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the first electron transport layer 140 is Zn 0.95 Mg 0.05 O.
  • the thickness h 1 of the first electron transport layer 140 is 20 nm to 60 nm. Specifically, the thickness h 1 of the first electron transport layer 140 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 1 of the first electron transport layer 140 is 30 nanometers.
  • the thickness h 1 of the first electron transport layer 140 is set to 20 nanometers to 60 nanometers to ensure the electron transport performance of the first electron transport layer 140 , thereby ensuring the normal display of the display panel 10 .
  • the first transparent conductive layer 200 is disposed on the side of the first electron transport layer 140 away from the additional hole injection layer 110 .
  • the material of the first transparent conductive layer 200 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide, and zinc manganese oxide. In this embodiment, the material of the first transparent conductive layer 200 is indium zinc oxide.
  • the thickness R 1 of the first transparent conductive layer 200 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 1 of the first transparent conductive layer 200 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. In this embodiment, the thickness R 1 of the first transparent conductive layer 200 is 100 nanometers.
  • the thickness R 1 of the first transparent conductive layer 200 is set to 50 nanometers to 1000 nanometers, so as to avoid the influence of the subsequent first hole injection layer 310 on the first electron transport layer 140, thereby ensuring the first electron transport.
  • the injection of the layer 140 and the transmission of electrons ensure the normal display of the display panel 10 .
  • the thickness R1 of the first transparent conductive layer 200 is set to be less than 50 nanometers, the first hole injection layer 310 will affect the electron injection and transmission efficiency of the first electron transport layer 140, so that the display panel 10 cannot display normally;
  • the thickness R 1 of the first transparent conductive layer 200 is set to 1000 nanometers, which increases the resistance of the first transparent conductive layer 200 and reduces the conductivity of the first transparent conductive layer 200 , thereby affecting the display performance of the display panel 10 .
  • the second light emitting unit 300 includes a first hole injection layer 310 , a second hole transport layer 320 , a second light emitting layer 330 and a second electron transport layer 340 which are sequentially stacked on the first transparent conductive layer 200 .
  • the material of the first hole injection layer 310 is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the first hole injection layer 310 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the thickness W 2 of the first hole injection layer 310 is 15 nm to 50 nm. Specifically, the thickness W 2 of the first hole injection layer 310 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness W 2 of the first hole injection layer 310 is 30 nanometers.
  • the thickness W 2 of the first hole injection layer 310 is set to 15 nanometers to 50 nanometers to ensure the hole injection efficiency of the first hole injection layer 310 , thereby ensuring the normal display of the display panel 10 .
  • the first electron transport layer 140 , the first transparent conductive layer 200 and the first hole injection layer 310 constitute the first charge layer 500 of the display panel 10 .
  • the first charge layer 500 is used to generate charges.
  • the first charge layer 500 is composed of the first electron transport layer 140, the first transparent conductive layer 200 and the first hole injection layer 310. Because the first transparent conductive layer 200 is an n-type semiconductor, the first hole The injection layer 310 belongs to the p-type, and the contact between the two forms a p-n junction.
  • the first electron transport layer 140 is used for transporting electrons to the first light-emitting layer 130 , that is, the first charge layer 500 can generate enough electrons and holes, thereby avoiding the damage caused by the stacking arrangement of the light-emitting units of the display panel 10
  • the problem of energy transfer further improves the display stability of the display panel 10 .
  • the material of the second hole transport layer 320 is selected from poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′- Bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, One or several combinations of 4,4'-bis(9-carbazole)biphenyl.
  • the material of the second hole transport layer 320 is polyvinylcarbazole.
  • the thickness D 2 of the second hole transport layer 320 is 15 nm to 40 nm.
  • the thickness D 2 of the first hole transport layer 120 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers.
  • the thickness D 2 of the second hole transport layer 320 is 25 nanometers.
  • the thickness D 2 of the second hole transport layer 320 is set to 15 nm to 40 nm to ensure the transport efficiency of holes in the second hole transport layer 320 , thereby ensuring the normal display of the display panel 10 .
  • the second light-emitting layer 330 includes one of a red quantum dot light-emitting layer, a green quantum dot light-emitting layer, and a blue quantum dot light-emitting layer.
  • the second light-emitting layer 330 is a green quantum dot light-emitting layer, that is, the second light-emitting unit 300 is a green light-emitting unit.
  • the material of the second light emitting layer 330 is a core-shell structure in which a shell layer coats the core layer.
  • the core layer material includes one of CdSe, CdZnSe, InP and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is CdZnSe.
  • the shell material is CdS.
  • the particle size of the material of the second light emitting layer 330 is 3 nanometers to 6 nanometers. In this embodiment, the particle size of the material of the second light emitting layer 330 is 5 nanometers.
  • CdSe, CdZnSe, InP and ZnSe are used as core layer materials
  • CdS and ZnS are used as shell layer materials
  • the particle size of the material of the second light-emitting layer 330 is set to 3 nanometers to 6 nanometers, so that the second light-emitting layer The 330 emits green light.
  • the photoluminescence wavelength of the material of the second light-emitting layer 330 is 535 nm to 555 nm.
  • the thickness T 2 of the second light emitting layer 330 is 10 nm to 40 nm. Specifically, the thickness T 2 of the second light-emitting layer 330 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 2 of the second light emitting layer 330 is 15 nanometers.
  • the thickness T 2 of the second light emitting layer 330 is set to be 10 nanometers to 40 nanometers, so that the second light emitting layer 330 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the second electron transport layer 340 is Zn 0.95 Mg 0.05 O.
  • the thickness h 2 of the second electron transport layer 340 is 20 nm to 60 nm. Specifically, the thickness h 2 of the second electron transport layer 340 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 2 of the second electron transport layer 340 is 38 nanometers.
  • the thickness h 2 of the second electron transport layer 340 is set to 20 nm to 60 nm to ensure the electron transport performance of the second electron transport layer 340 , thereby ensuring the normal display of the display panel 10 .
  • the display panel 10 further includes a second transparent conductive layer 600 .
  • the second transparent conductive layer 600 is disposed on the side of the second electron transport layer 340 away from the first electrode layer 400 .
  • the material of the second transparent conductive layer 600 is selected from indium tin oxide, indium zinc oxide, zinc aluminum oxide, indium gallium zinc oxide, zinc oxide and zinc manganese oxide. In this embodiment, the material of the second transparent conductive layer 600 is indium zinc oxide.
  • the thickness R 2 of the second transparent conductive layer 600 is 50 nanometers to 1000 nanometers. Specifically, the thickness R 2 of the second transparent conductive layer 600 may be 50 nanometers, 500 nanometers, 750 nanometers, 900 nanometers, or 1000 nanometers. The thickness R 2 of the second transparent conductive layer 600 is 500 nanometers.
  • the thickness R 2 of the second transparent conductive layer 600 is set to 50 nanometers to 1000 nanometers, so as to avoid the influence of the subsequent second hole injection layer 710 on the second electron transport layer 340 , thereby ensuring the second electron transport.
  • the injection of the layer 340 and the transmission of electrons ensure the normal display of the display panel 10 .
  • the second hole injection layer 710 will affect the electron injection and transmission efficiency of the second electron transport layer 340, so that the display panel 10 cannot display normally;
  • the thickness R 2 of the second transparent conductive layer 600 is set to 1000 nanometers, which increases the resistance of the second transparent conductive layer 600 and reduces the conductivity of the second transparent conductive layer 600 , thereby affecting the display performance of the display panel 10 .
  • the display panel 10 further includes a third light emitting unit 700 .
  • the third light emitting unit 700 is disposed on the second transparent conductive layer 600 .
  • the third light emitting unit 700 includes a second hole injection layer 710 , a third hole transport layer 720 , a third light emitting layer 730 and a third electron transport layer 740 which are sequentially stacked on the second transparent conductive layer 600 .
  • the material of the second hole injection layer 710 is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the second hole injection layer 710 is polythiophene.
  • the thickness W 3 of the second hole injection layer 710 is 15 nm to 50 nm. Specifically, the thickness W3 of the second hole injection layer 710 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 48 nanometers, or 50 nanometers. In this embodiment, the thickness W 3 of the second hole injection layer 710 is 39 nanometers.
  • the thickness W 3 of the second hole injection layer 710 is set to 15 nanometers to 50 nanometers to ensure the hole injection efficiency of the second hole injection layer 710 , thereby ensuring the normal display of the display panel 10 .
  • the second transparent conductive layer 600 by introducing the second transparent conductive layer 600 between the second electron transport layer 340 and the second hole injection layer 710, because the second transparent conductive layer 600 belongs to an n-type semiconductor, the second hole injection layer 710 It belongs to the p-type, and the two contact to form a p-n junction.
  • the conduction band of the first transparent conductive layer 200 is equal to or smaller than the highest occupied molecular orbital (Highest Occupied Molecular, HOMO) energy level of the second hole injection layer 710, when an external When an electric field occurs, electrons and holes are generated at the p-n junction.
  • HOMO highest occupied molecular orbital
  • the electrons are injected into the light-emitting unit through the second transparent conductive layer 600, and the holes are also injected into another light-emitting unit.
  • the second electron transport layer 340 is used to transport electrons to the first light-emitting unit.
  • the second light-emitting layer 330 that is, the second charge layer 800 composed of the second electron transport layer 340, the second hole injection layer 710 and the second transparent conductive layer 600 can generate enough electrons and holes, thereby avoiding the display
  • the light-emitting units of the panel 10 are arranged in layers, which causes the problem of energy transfer, thereby improving the display stability of the display panel 10 .
  • the material of the third hole transport layer 720 includes poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine), poly(N,N′-bis (4-butylphenyl)-N,N'-bis(phenyl)-benzidine), polyvinylcarbazole, 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4 , 4′-bis(9-carbazole)biphenyl, one or more combinations.
  • the material of the third hole transport layer 720 is poly(N,N′-bis(4-butyl) phenyl)-N,N'-bis(phenyl)-benzidine).
  • the thickness D 3 of the third hole transport layer 720 is 15 nm to 40 nm. Specifically, the thickness D3 of the third hole transport layer 720 may be 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness D 3 of the third hole transport layer 720 is 18 nanometers.
  • the thickness D 3 of the third hole transport layer 720 is set to 15 nm to 40 nm to ensure the transport efficiency of holes in the third hole transport layer 720 , thereby ensuring the normal display of the display panel 10 .
  • the third light-emitting layer 730 includes one of a red quantum dot light-emitting layer, a green quantum dot light-emitting layer, and a blue quantum dot light-emitting layer.
  • the third light-emitting layer 730 is a red quantum dot light-emitting layer, that is, the third light-emitting unit 700 is a red light-emitting unit.
  • the material of the third light emitting layer 730 is a core-shell structure in which the core layer is surrounded by a shell layer.
  • the core layer material includes one of CdSe, CdZnSe, InP and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe.
  • the shell materials are CdS and ZnS.
  • the particle size of the material of the third light emitting layer 730 is 7 nanometers to 8 nanometers. In this embodiment, the particle size of the material of the third light emitting layer 730 is 8 nanometers.
  • CdSe, CdZnSe, InP and ZnSe are used as core layer materials
  • CdS and ZnS are used as shell layer materials
  • the particle size of the material of the third light-emitting layer 730 is set to 7 nanometers to 8 nanometers, so that the third light-emitting layer The 730 emits red light.
  • the photoluminescence wavelength of the material of the third light-emitting layer 730 is 615 nm to 625 nm.
  • the thickness T 3 of the third light emitting layer 730 is 10 nm to 40 nm. Specifically, the thickness T3 of the third light-emitting layer 730 may be 10 nanometers, 12 nanometers, 15 nanometers, 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, or 40 nanometers. In this embodiment, the thickness T 3 of the third light emitting layer 730 is 22 nanometers.
  • the thickness T 3 of the third light emitting layer 730 is set to be 10 nanometers to 40 nanometers, so that the third light emitting layer 730 can emit light normally, thereby enabling the display panel 10 to display normally.
  • the material of the third electron transport layer 740 is Zn 0.85 Mg 0.05 Li 0.1 O.
  • the thickness h 3 of the third electron transport layer 740 is 20 nm to 60 nm. Specifically, the thickness h3 of the third electron transport layer 740 may be 20 nanometers, 24 nanometers, 34 nanometers, 38 nanometers, 40 nanometers, 50 nanometers, 54 nanometers, or 60 nanometers. In this embodiment, the thickness h 3 of the third electron transport layer 740 is 54 nanometers.
  • the display panel 10 further includes a second electrode layer 900 .
  • the second electrode layer 900 is disposed on the side of the third electron transport layer 740 away from the first electrode layer 400 .
  • the material of the second electrode layer 900 includes gold, silver, aluminum, alloys thereof, and the like. In this embodiment, the material of the second electrode layer 900 is gold.
  • the thickness H 2 of the second electrode layer 900 is 80 nm to 500 nm. Specifically, the thickness H 2 of the second electrode layer 900 may be 80 nanometers, 120 nanometers, 340 nanometers, 480 nanometers, or 500 nanometers. In this embodiment, the thickness H 2 of the second electrode layer 900 is 100 nanometers. In this embodiment, the thickness H 2 of the second electrode layer 900 is 490 nanometers.
  • the thickness H2 of the second electrode layer 900 is set to 80 nanometers to 500 nanometers, and the second electrode layer 900 with a thickness within this range has a small resistance and a small hindering effect on the current, thereby improving the second electrode layer 900.
  • the electrical conductivity of the electrode layer 900 is reduced, and the light transmittance of the second electrode layer 900 is reduced.
  • the second electrode layer 900 can easily transmit light, thereby affecting the display effect of the display panel 10; if the thickness H2 of the second electrode layer 900 is set to be greater than 500 nm nanometers, the second electrode layer 900 is too thick, and the resistance of the second electrode layer 900 is too large, thereby affecting the conductivity of the second electrode layer 900 and making the display panel 10 unable to display normally.
  • the material of the second electrode layer 900 is metal, the metal cost is high. If the thickness H 2 of the second electrode layer 900 is set to be greater than 500 nanometers, the cost will increase.
  • the present application provides a display panel.
  • the transparent conductive layer is in contact with the hole injection layer of the light-emitting unit to form a p-n junction, thereby improving the efficiency of electrons and holes. concentration, so as to avoid energy transfer in the stacked light-emitting units, thereby improving the display stability of the display panel 10 , thereby improving the display performance of the display panel 10 .
  • FIG. 2 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • the present application also provides a method for manufacturing a display panel, which is specifically described as follows.
  • step B11 before step B11, it further includes:
  • the material of the first electrode layer 400 is sputtered by a sputtering process to form the first electrode layer 400 .
  • the material of the first electrode layer 400 includes one or a combination of indium tin oxide, indium zinc oxide, zinc aluminum oxide, and indium gallium zinc oxide. In this embodiment, the material of the first electrode layer 400 is indium tin oxide.
  • the method further includes:
  • the additional hole injection layer 110 is formed by disposing the material of the additional hole injection layer 110 on the first electrode layer 400 by spin coating, ink jet printing or slit coating.
  • the material of the additional hole injection layer 110 is selected from poly(3,4-ethylenedioxythiophene): polystyrene sulfonate, polyaniline and polythiophene. In this embodiment, the material of the additional hole injection layer 110 is poly(3,4-ethylenedioxythiophene):polystyrene sulfonate.
  • the method further includes:
  • the first hole transport layer 120 is formed by disposing the material of the first hole transport layer 120 on the side of the additional hole injection layer 110 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating.
  • the material of the first light emitting layer 130 is disposed on the side of the first hole transport layer 120 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the first light emitting layer 130 .
  • the material of the first light-emitting layer 130 is a core-shell structure in which a shell layer coats the core layer.
  • the band gap of the shell layer is larger than that of the core layer.
  • the material of the first light-emitting layer 130 is a core-shell structure in which the shell layer coats the core layer, and the band gap of the shell layer is larger than that of the core layer, so that the first light-emitting layer 130 expands the range of the photon collection spectrum
  • the influence of defects of the core layer on the light emission of the first light emitting unit 100 can be avoided, and the coupling characteristics of the core layer can be prevented from being affected by adjusting the thickness of the shell layer, thereby improving the display stability of the display panel 10 .
  • the core layer material includes one of CdSe, CdZnSe, InP and ZnSe.
  • the shell material includes one or a combination of CdS and ZnS.
  • the core layer material is ZnSe.
  • the shell material is CdS.
  • the method further includes:
  • the material of the first electron transport layer 140 is sputtered on the side of the first light emitting layer 130 away from the first electrode layer 400 by a sputtering process to form the first electron transport layer 140 .
  • the additional hole injection layer 110 , the first hole transport layer 120 , the first light emitting layer 130 and the first electron transport layer 140 constitute the first light emitting unit 100 of the display panel 10 .
  • the material of the first transparent conductive layer 200 is sputtered on the side of the first electron transport layer 140 away from the first electrode layer 400 by a sputtering process to form the first transparent conductive layer 200 .
  • step of B13 before the step of B13, it further includes:
  • the material of the first hole injection layer 310 is sputtered on the side of the first transparent conductive layer 200 away from the first electrode layer 400 by a sputtering process to form the first hole injection layer 310 .
  • the first electron transport layer 140 , the first transparent conductive layer 200 and the first hole injection layer 310 are formed by sputtering process as the first charge layer 500 of the stacked light-emitting unit, which can efficiently provide the required electrons and holes, while avoiding the problem of mutual dissolution between the film layers and improving the stability of the device.
  • step B12 after step B12, it further includes:
  • the material of the second hole transport layer 320 is disposed on the side of the first hole injection layer 310 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the second hole transport layer 320 .
  • the method further includes:
  • the material of the second light emitting layer 330 is disposed on the side of the second hole transport layer 320 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the second light emitting layer 330 .
  • the method further includes:
  • the material of the second electron transport layer 340 is sputtered on the side of the second light emitting layer 330 away from the first electrode layer 400 by sputtering to form the second electron transport layer 340 .
  • the first hole injection layer 310 , the second hole transport layer 320 , the second light emitting layer 330 and the second electron transport layer 340 constitute the second light emitting unit 300 of the display panel 10 .
  • the method further includes:
  • the material of the second transparent conductive layer 600 is sputtered on the side of the second electron transport layer 340 away from the first electrode layer 400 to form the second transparent conductive layer 600 .
  • the material of the second hole injection layer 710 is sputtered on the side of the second transparent conductive layer 600 away from the first electrode layer 400 by sputtering to form the second hole injection layer 710 .
  • the second charge layer 800 of the stacked light-emitting unit is composed of the second electron transport layer 340, the second transparent conductive layer 600 and the second hole injection layer 710, and is formed by a sputtering process, so that the second charge
  • the layer 800 can efficiently provide the required electrons and holes, and at the same time, it can avoid the problem of mutual dissolution between the film layers and improve the stability of the device.
  • the method further includes:
  • the material of the third hole transport layer 720 is disposed on the side of the second hole injection layer 710 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the third hole transport layer 720 .
  • the material of the second light emitting unit 300 is disposed on the side of the third hole transport layer 720 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the third light emitting layer 730 .
  • the method further includes:
  • the material of the third electron transport layer 740 is disposed on the side of the third light emitting layer 730 away from the first electrode layer 400 by spin coating, ink jet printing or slit coating to form the third electron transport layer 740 .
  • the method further includes:
  • the material of the second electrode layer 900 is disposed on the side of the third electron transport layer 740 away from the first electrode layer 400 by an evaporation or sputtering process to form the second electrode layer 900 .
  • the present application provides a method for preparing a display panel.
  • the first electron transport layer 140 , the first transparent conductive layer 200 and the first hole injection layer 310 of the first charge layer 500 are formed by a sputtering process, so that the first charge layer 500 is formed by a sputtering process.
  • the required electrons and holes can be efficiently provided, and at the same time, the mutual dissolution problem between the film layers can be avoided, the stability of the device can be improved, and the cost can be reduced.
  • Embodiments of the present application disclose a display panel and a method for manufacturing the same.
  • the display panel includes a first light-emitting unit, a first transparent conductive layer and a second light-emitting unit, the first transparent conductive layer is disposed on the first light-emitting unit, and the second light-emitting unit The unit is disposed on the side of the first transparent conductive layer away from the first light-emitting unit.
  • the present application by arranging the first transparent conductive layer between the first light-emitting unit and the second light-emitting unit, the electron and hole concentrations required by the display panel are increased, thereby improving the display performance of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种显示面板及其制备方法,显示面板包括第一发光单元、第一透明导电层和第二发光单元,第一透明导电层的材料为n型半导体材料,第一透明导电层设置于第一发光单元上,第二发光单元包括第一空穴注入层,第一空穴注入层设置于第一透明导电层远离第一发光单元的一侧。

Description

显示面板及其制备方法
本申请要求申请日为2021年4月27日,申请号为“202110457431.0”,申请名称为“显示面板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其制备方法。
背景技术
电致发光二极管器件工作时需要注入电子和空穴,量子点发光二极管器件包括阴极、电子传输层、量子点发光层、空穴传输层和阳极。在量子点发光二极管器件中,量子点发光层夹在电子传输层和空穴传输层之间,当正向偏压加到量子点发光二极管器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层,电子和空穴在量子点发光层中复合发光。
目前,量子点发光二极管器件是通过红绿蓝三色的量子点材料中的至少两种材料按照不同的比例混合发出所需颜色的光,如,黄光、紫光或白光等。但是,这样制备的量子点白光器件仍存在严重的缺陷,如,仅仅通过电子传输层和空穴传输层无法提供混合量子点发光层所需的电子和空穴,即,电子传输层和空穴传输层产生的电子浓度和空穴浓度低,使得量子点发光二极管器件稳定性差,影响量子点发光二极管器件的性能。
技术问题
本申请实施例提供一种显示面板及其制备方法,以解决现有技术中电子和空穴浓度低的问题。
技术解决方案
本申请实施例提供一种显示面板,其包括:
第一发光单元;
第一透明导电层,所述第一透明导电层的材料为n型半导体材料,所述第一透明导电层设置于所述第一发光单元上;以及
第二发光单元,所述第二发光单元包括第一空穴注入层,所述第一空穴注入层设置于所述第一透明导电层远离所述第一发光单元的一侧。
在本申请的一些实施例中,所述第一透明导电层的材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
在本申请的一些实施例中,所述第一透明导电层的厚度为50纳米-1000纳米。
在本申请的一些实施例中,所述第一发光单元包括第一电子传输层,所述第一透明导电层设置于所述第一电子传输层上。
在本申请的一些实施例中,所述第二发光单元还包括第二电子传输层,所述第二电子传输层设置于所述第一空穴注入层远离所述第一电子传输层的一侧。
在本申请的一些实施例中,所述显示面板还包括第二透明导电层,所述第二透明导电层的材料为n型半导体材料,所述第二透明导电层设置于所述第二电子传输层远离所述第一电子传输层的一侧。
在本申请的一些实施例中,所述第二透明导电层的材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
在本申请的一些实施例中,所述第二透明导电层的厚度为50纳米-1000纳米。
在本申请的一些实施例中,所述显示面板还包括第三发光单元,所述第三发光单元设置于所述第二透明导电层远离所述第一电子传输层的一侧。
在本申请的一些实施例中,所述第三发光单元包括第二空穴注入层,所述第二空穴注入层设置于所述第二透明导电层远离所述第一电子传输层的一侧。
在本申请的一些实施例中,所述第一发光单元、所述第二发光单元和所述第三发光单元选自红色发光单元、绿色发光单元和蓝色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同。
在本申请的一些实施例中,所述第一发光单元还包括依次层叠设置的附加空穴层、第一空穴传输层和第一发光层,第一电子传输层设置于第一发光层上。
在本申请的一些实施例中,所述第二发光单元还包括第二空穴传输层和第二发光层,第一空穴注入层、第二空穴传输层、第二发光层和第二电子传输层。
在本申请的一些实施例中,所述第三发光单元还包括依次层叠设置在第二空穴注入层的第三空穴传输层、第三发光层和第三电子传输层。
在本申请的一些实施例中,所述显示面板还包括第一电极层和第二电极层,所述第一电极层设置于所述第一发光单元远离所述第二发光单元的一侧,所述第二电极层设置于所述第三发光单元远离所述第一发光单元的一侧。
在本申请的一些实施例中,所述第一发光层、所述第二发光层以及所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种,所述壳层的材料包括CdS和ZnS中的一种或两种组合。
在本申请的一些实施例中,所述第一空穴传输层、所述第二空穴传输层以及所述第三空穴传输层的材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。
在本申请的一些实施例中,所述第一电子传输层、所述第二电子传输层以及所述第三电子传输层的材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
在本申请的一些实施例中,所述附加空穴注入层、所述第一空穴注入层以及所述第二空穴注入层的材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
相应的,本实施例还提供一种显示面板的制备方法,其包括:
提供一第一发光单元;
在所述第一发光单元上形成第一透明导电层,所述第一透明导电层的材料为n型半导体材料;以及
在所述第一透明导电层远离所述第一发光单元的一侧形成第二发光单元,所述第二发光单元包括第一空穴注入层,所述第一空穴注入层设置于所述第一透明导电层远离所述第一发光单元的一侧。
有益效果
本申请实施例公开了一种显示面板及其制备方法,显示面板包括第一发光单元、第一透明导电层和第二发光单元,所述第一透明导电层设置于所述第一发光单元上,所述第一透明导电层的材料为n型半导体材料,所述第二发光单元包括第一空穴注入层,所述第一空穴注入层设置于所述第一透明导电层远离所述第一发光单元的一侧。本申请通过在第一发光单元和所述第二发光单元之间设置第一透明导电层,提高了显示面板的空穴和电子浓度,从而提高了显示面板的显示性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的结构示意图。
图2是本申请实施例提供的显示面板的制备方法流程图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种显示面板及其制备方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参阅图1,图1是本申请实施例提供的显示面板的结构示意图。本申请提供一种显示面板10。显示面板10包括第一发光单元100、第一透明导电层200和第二发光单元300。具体描述如下:
在一实施例中,显示面板10还包括第一电极层400。第一电极层400可以为阴极或阳极,在本实施例中,第一电极层400为阳极。
在一实施例中,第一电极层400的材料包括氧化铟锡、氧化铟锌、氧化锌铝和氧化铟镓锌中的一种或几种组合。在本实施例中,第一电极层400的材料为氧化铟锡。
在一实施例中,第一电极层400的厚度H 1为50纳米-1000纳米。具体的,第一电极层400的厚度H 1可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。在本实施例中,第一电极层400的H 1为800纳米。
在本申请中,将第一电极层400的厚度H 1设置为50纳米-1000纳米,厚度在此范围之内的第一电极层400的电阻小,对电流的阻碍作用小,从而提高第一电极层400的导电性能。若将第一电极层400的厚度H 1设置为小于50纳米,使得第一电极层400的电阻过小,造成显示面板10的损伤;若将第一电极层400的厚度H 1设置为大于1000纳米,使得第一电极层400的电阻过大,从而影响第一电极层400的导电性,使得显示面板10无法正常显示。
第一发光单元100设置于第一电极层400上。第一发光单元100包括依次层叠设置于第一电极层400上的附加空穴注入层110、第一空穴传输层120、第一发光层130和第一电子传输层140。
在一实施例中,附加空穴注入层110材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,附加空穴注入层110材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,附加空穴注入层110的厚度W 1为15纳米-50纳米。具体的,附加空穴注入层110的厚度W 1可以为15纳米、20纳米、24纳米、34纳米、38纳米、40纳米、48纳米或50纳米等。在本实施例中,附加空穴注入层110的厚度W 1为30纳米。
在本申请中,将附加空穴注入层110的厚度W 1设置在15纳米-50纳米之间,保证附加空穴注入层110空穴的注入效率,使得显示面板10可以正常显示,避免显示面板10的显示性能受到影响。
在一实施例中,第一空穴传输层120材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第一空穴传输层120材料为4,4′-二(9-咔唑)联苯中。
在一实施例中,第一空穴传输层120厚度D 1为15纳米-40纳米。具体的,第一空穴传输层120厚度D 1可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第一空穴传输层120厚度D 1为20纳米。
在本申请中,将第一空穴传输层120厚度D 1设置在15纳米-40纳米之间,保证空穴在第一空穴传输层120的传输效率,进而保证显示面板10正常显示。
在一实施例中,第一发光层130包括红色量子点发光层、绿色量子点发光层和蓝色量子点发光层中的一种。在本实施例中,第一发光层130为蓝色量子点发光层,即,第一发光单元100为蓝色发光单元。
在一实施例中,第一发光层130材料为壳层包覆核层的核壳结构。壳层的带隙大于核层的带隙。
在本申请中,第一发光层130材料为壳层包覆核层的核壳结构,且,壳层的带隙大于核层的带隙,使得第一发光层130扩展了光子收集光谱的范围的同时,避免核层的缺陷对第一发光层发光的影响;因第一发光层130的材料为壳层包覆壳层的核壳结构,可以通过调节壳层的厚度,避免核层的耦合特性受到影响,进而提高了第一发光单元100的发光效果,进而提高显示面板10显示的稳定性。
在一实施例中,核层材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe。壳层材料为CdS。
在一实施例中,第一发光层130材料的粒径为1纳米-2纳米。在本实施例中,第一发光层130材料的粒径为2纳米。
在本申请中,采用CdSe、CdZnSe、InP和ZnSe中的一种为核层材料,CdS和ZnS中的一种或两种组合为壳层材料,并将第一发光层130材料的粒径设置为1纳米-2纳米,使得第一发光层130发出蓝色光线。
在一实施例中,第一发光层130材料的光致发光波长为465纳米-480纳米。
在一实施例中,第一发光层130的厚度T 1为10纳米-40纳米。具体的,第一发光层130的厚度T 1可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第一发光层130的厚度T 1为20纳米。
在本申请中,将第一发光层130的厚度T 1设置为10纳米-40纳米,使得第一发光层130可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第一电子传输层140材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,第一电子传输层140材料为Zn 0.95Mg 0.05O。
在一实施例中,第一电子传输层140的厚度h 1为20纳米-60纳米。具体的,第一电子传输层140的厚度h 1可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第一电子传输层140的厚度h 1为30纳米。
在本申请中,将第一电子传输层140的厚度h 1设置为20纳米-60纳米,保证第一电子传输层140的电子传输性能,进而保证显示面板10正常显示。
第一透明导电层200设置于第一电子传输层140远离附加空穴注入层110的一侧。
在一实施例中,第一透明导电层200材料选自氧化铟锡、氧化铟锌、氧化锌铝、氧化铟镓锌、氧化锌和氧化锌锰。在本实施例中,第一透明导电层200材料为氧化铟锌。
在一实施例中,第一透明导电层200的厚度R 1为50纳米-1000纳米。具体的,第一透明导电层200的厚度R 1可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。在本实施例中,第一透明导电层200的厚度R 1为100纳米。
在本申请中,将第一透明导电层200的厚度R 1设置为50纳米-1000纳米,避免后续的第一空穴注入层310对第一电子传输层140的影响,进而保证第一电子传输层140的注入以及电子的传输,进而保证显示面板10正常显示。若将第一透明导电层200的厚度R 1设置为小于50纳米,第一空穴注入层310会影响第一电子传输层140的电子注入以及传输效率,使得显示面板10无法正常显示;若将第一透明导电层200的厚度R 1设置为1000纳米,增大了第一透明导电层200的电阻,使得第一透明导电层200的导电性降低,进而影响了显示面板10的显示性能。
第二发光单元300包括依次层叠设置在第一透明导电层200上的第一空穴注入层310、第二空穴传输层320、第二发光层330和第二电子传输层340。
在一实施例中,第一空穴注入层310材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,第一空穴注入层310材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,第一空穴注入层310的厚度W 2为15纳米-50纳米。具体的,第一空穴注入层310的厚度W 2可以为15纳米、20纳米、24纳米、34纳米、38纳米、40纳米、48纳米或50纳米等。在本实施例中,第一空穴注入层310的厚度W 2为30纳米。
在本申请中,将第一空穴注入层310的厚度W 2设置为15纳米-50纳米,保证第一空穴注入层310空穴的注入效率,进而保证显示面板10正常显示。
第一电子传输层140、第一透明导电层200和第一空穴注入层310构成显示面板10的第一电荷层500。第一电荷层500用于产生电荷。
在本申请中,第一电荷层500采用第一电子传输层140、第一透明导电层200和第一空穴注入层310构成,因第一透明导电层200属于n型半导体,第一空穴注入层310属于p型,两者接触形成p-n结,在第一透明导电层200的导带等于或者小于第一空穴注入层310最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第一透明导电层200注入到发光单元,而空穴也注入到另一发光单元,第一电子传输层140用于传输电子至第一发光层130,即,第一电荷层500可以产生足够多的电子和空穴,进而避免因显示面板10的发光单元叠层设置,而造成能量转移的问题,进而提高了显示面板10显示的稳定性。
在一实施例中,第二空穴传输层320材料选自聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第二空穴传输层320材料为聚乙烯咔唑。
在一实施例中,第二空穴传输层320厚度D 2为15纳米-40纳米。具体的,第一空穴传输层120厚度D 2可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第二空穴传输层320厚度D 2为25纳米。
在本申请中,将第二空穴传输层320厚度D 2设置为15纳米-40纳米,保证空穴在第二空穴传输层320的传输效率,进而保证显示面板10正常显示。
在一实施例中,第二发光层330包括红色量子点发光层、绿色量子点发光层和蓝色量子点发光层中的一种。在本实施例中,第二发光层330为绿色量子点发光层,即,第二发光单元300为绿色发光单元。
在一实施例中,第二发光层330材料为壳层包覆核层的核壳结构。核层材料包括CdSe、CdZnSe、InP和ZnSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为CdZnSe。壳层材料为CdS。
在一实施例中,第二发光层330材料的粒径为3纳米-6纳米。在本实施例中,第二发光层330材料的粒径为5纳米。
在本申请中,采用CdSe、CdZnSe、InP和ZnSe为核层材料,CdS和ZnS为壳层材料,并将第二发光层330材料的粒径设置为3纳米-6纳米,使得第二发光层330发出绿色光线。
在一实施例中,第二发光层330材料的光致发光波长为535纳米-555纳米。
在一实施例中,第二发光层330的厚度T 2为10纳米-40纳米。具体的,第二发光层330的厚度T 2可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第二发光层330的厚度T 2为15纳米。
在本申请中,将第二发光层330的厚度T 2设置为10纳米-40纳米,使得第二发光层330可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第二电子传输层340材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,第二电子传输层340材料为Zn 0.95Mg 0.05O。
在一实施例中,第二电子传输层340的厚度h 2为20纳米-60纳米。具体的,第二电子传输层340的厚度h 2可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第二电子传输层340的厚度h 2为38纳米。
在本申请中,将第二电子传输层340的厚度h 2设置为20纳米-60纳米,保证第二电子传输层340的电子传输性能,进而保证显示面板10正常显示。
在一实施例中,显示面板10还包括第二透明导电层600。第二透明导电层600设置于第二电子传输层340远离第一电极层400的一侧。
在一实施例中,第二透明导电层600材料选自氧化铟锡、氧化铟锌、氧化锌铝、氧化铟镓锌、氧化锌和氧化锌锰。在本实施例中,第二透明导电层600材料为铟锌氧化物。
在一实施例中,第二透明导电层600的厚度R 2为50纳米-1000纳米。具体的,第二透明导电层600的厚度R 2可以为50纳米、500纳米、750纳米、900纳米或1000纳米等。第二透明导电层600的厚度R 2为500纳米。
在本申请中,将第二透明导电层600的厚度R 2设置为50纳米-1000纳米,避免后续的第二空穴注入层710对第二电子传输层340的影响,进而保证第二电子传输层340的注入以及电子的传输,进而保证显示面板10正常显示。若将第二透明导电层600的厚度R 2设置为小于50纳米,第二空穴注入层710会影响第二电子传输层340的电子注入以及传输效率,使得显示面板10无法正常显示;若将第二透明导电层600的厚度R 2设置为1000纳米,增大了第二透明导电层600的电阻,使得第二透明导电层600的导电性降低,进而影响了显示面板10的显示性能。
显示面板10还包括第三发光单元700。第三发光单元700设置于第二透明导电层600。第三发光单元700包括依次层叠设置于第二透明导电层600上的第二空穴注入层710、第三空穴传输层720、第三发光层730和第三电子传输层740。
在一实施例中,第二空穴注入层710材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,第二空穴注入层710材料为聚噻吩。
在一实施例中,第二空穴注入层710的厚度W 3为15纳米-50纳米。具体的,第二空穴注入层710的厚度W 3可以为15纳米、20纳米、24纳米、34纳米、38纳米、40纳米、48纳米或50纳米等。在本实施例中,第二空穴注入层710的厚度W 3为39纳米。
在本申请中,将第二空穴注入层710的厚度W 3设置为15纳米-50纳米,保证第二空穴注入层710空穴的注入效率,进而保证显示面板10正常显示。
在本申请中,通过在第二电子传输层340和第二空穴注入层710之间引入第二透明导电层600,因第二透明导电层600属于n型半导体,第二空穴注入层710属于p型,两者接触形成p-n结,在第一透明导电层200的导带等于或者小于第二空穴注入层710最高占据分子轨道(Highest Occupied Molecular,HOMO)能级条件下,当施加外加电场时,在p-n结处产生电子和空穴,电子会通过第二透明导电层600注入到发光单元,而空穴也注入到另一发光单元,第二电子传输层340用于传输电子至第二发光层330,即,采用第二电子传输层340、第二空穴注入层710和第二透明导电层600构成的第二电荷层800可以产生足够多的电子和空穴,进而避免因显示面板10的发光单元叠层设置,而造成能量转移的问题,进而提高了显示面板10显示的稳定性。
在一实施例中,第三空穴传输层720材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。在本实施例中,第三空穴传输层720材料为聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)。
在一实施例中,第三空穴传输层720厚度D 3为15纳米-40纳米。具体的,第三空穴传输层720厚度D 3可以为15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第三空穴传输层720厚度D 3为18纳米。
在本申请中,将第三空穴传输层720厚度D 3设置为15纳米-40纳米,保证空穴在第三空穴传输层720的传输效率,进而保证显示面板10正常显示。
在一实施例中,第三发光层730包括红色量子点发光层、绿色量子点发光层和蓝色量子点发光层中的一种。在本实施例中,第三发光层730为红色量子点发光层,即,第三发光单元700为红色发光单元。
在一实施例中,第三发光层730材料为壳层包覆核层的核壳结构。核层材料包括CdSe、CdZnSe、InP和ZnSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe。壳层材料为CdS和ZnS。
在一实施例中,第三发光层730材料的粒径为7纳米-8纳米。在本实施例中,第三发光层730材料的粒径为8纳米。
在本申请中,采用CdSe、CdZnSe、InP和ZnSe为核层材料,CdS和ZnS为壳层材料,并将第三发光层730材料的粒径设置为7纳米-8纳米,使得第三发光层730发出红色光线。
在一实施例中,第三发光层730材料的光致发光波长为615纳米-625纳米。
在一实施例中,第三发光层730的厚度T 3为10纳米-40纳米。具体的,第三发光层730的厚度T 3可以为10纳米、12纳米、15纳米、20纳米、24纳米、34纳米、38纳米或40纳米等。在本实施例中,第三发光层730的厚度T 3为22纳米。
在本申请中,将第三发光层730的厚度T 3设置为10纳米-40纳米,使得第三发光层730可以正常发光,进而使得显示面板10正常显示。
在一实施例中,第三电子传输层740材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。在本实施例中,第三电子传输层740材料为Zn 0.85Mg 0.05Li 0.1O。
在一实施例中,第三电子传输层740的厚度h 3为20纳米-60纳米。具体的,第三电子传输层740的厚度h 3可以为20纳米、24纳米、34纳米、38纳米、40纳米、50纳米、54纳米或60纳米等。在本实施例中,第三电子传输层740的厚度h 3为54纳米。
在一实施例中,显示面板10还包括第二电极层900。第二电极层900设置于第三电子传输层740远离第一电极层400的一侧。
在一实施例中,第二电极层900的材料包括金、银、铝及其合金等。在本实施例中,第二电极层900材料为金。
在一实施例中,第二电极层900的厚度H 2为80纳米-500纳米。具体的,第二电极层900的厚度H 2可以为80纳米、120纳米、340纳米、480纳米或500纳米等。在本实施例中,第二电极层900的厚度H 2为100纳米。在本实施例中,第二电极层900的厚度H 2为490纳米。
在本申请中,将第二电极层900的厚度H 2设置为80纳米-500纳米,厚度在此范围之内的第二电极层900的电阻小,对电流的阻碍作用小,从而提高第二电极层900的导电性能,并降低第二电极层900的透光性。若将第二电极层900的厚度H 2设置为小于80纳米,使得第二电极层900容易透光,进而影响显示面板10显示效果;若将第二电极层900的厚度H 2设置为大于500纳米,使得第二电极层900过厚,第二电极层900的电阻过大,从而影响第二电极层900的导电性,使得显示面板10无法正常显示。另外,因,第二电极层900的材料为金属,金属成本较高,若将第二电极层900的厚度H 2设置为大于500纳米,造成成本升高。
本申请提供一种显示面板,通过在叠层设置的发光单元之间引入一层透明导电层,使得透明导电层与发光单元的空穴注入层接触形成p-n结,从而提高了电子和空穴的浓度,从而避免叠层发光单元出现能量转移,从而提高显示面板10显示的稳定性,从而提高了显示面板10的显示性能。
请参阅图2,图2是本申请实施例提供的显示面板的制备方法流程图。本申请还提供一种显示面板的制备方法,具体描述如下。
B11、提供一第一发光单元。
在一实施例中,在步骤B11之前,还包括:
采用溅射工艺溅射第一电极层400材料,形成第一电极层400。
在一实施例中,第一电极层400的材料包括氧化铟锡、氧化铟锌、氧化锌铝和氧化铟镓锌中的一种或几种组合。在本实施例中,第一电极层400的材料为氧化铟锡。
在一实施例中,在形成第一电极层400的步骤之后,还包括:
在第一电极层400上采用旋涂、喷墨印刷或狭缝涂布设置附加空穴注入层110材料形成附加空穴注入层110。
在一实施例中,附加空穴注入层110材料选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。在本实施例中,附加空穴注入层110材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐。
在一实施例中,在第一电极层400上形成附加空穴注入层110的步骤之后,还包括:
在附加空穴注入层110远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第一空穴传输层120材料形成第一空穴传输层120。
在第一空穴传输层120远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第一发光层130材料,形成第一发光层130。
在一实施例中,第一发光层130材料为壳层包覆核层的核壳结构。壳层的带隙大于核层的带隙。
在本申请中,第一发光层130材料为壳层包覆核层的核壳结构,且,壳层的带隙大于核层的带隙,使得第一发光层130扩展了光子收集光谱的范围的同时,避免核层的缺陷对第一发光单元100发光的影响,并且,可以通过调节壳层的厚度,避免核层的耦合特性受到影响,进而提高显示面板10显示的稳定性。
在一实施例中,核层材料包括CdSe、CdZnSe、InP和ZnSe中的一种。壳层材料包括CdS和ZnS中的一种或两种组合。在本实施例中,核层材料为ZnSe。壳层材料为CdS。
在一实施例中,在第一空穴传输层120远离第一电极层400的一侧形成第一发光层130的步骤之后,还包括:
采用溅射工艺在第一发光层130上远离第一电极层400的一侧溅射第一电子传输层140材料,形成第一电子传输层140。
附加空穴注入层110、第一空穴传输层120、第一发光层130和第一电子传输层140构成显示面板10的第一发光单元100。
B12、在第一发光单元上形成第一透明导电层。
采用溅射工艺在第一电子传输层140远离第一电极层400的一侧溅射第一透明导电层200材料,形成第一透明导电层200。
B13、在第一透明导电层远离第一发光单元的一侧形成第二发光单元。
在一实施例中,在B13的步骤之前,还包括:
采用溅射工艺在第一透明导电层200远离第一电极层400的一面溅射第一空穴注入层310材料,形成第一空穴注入层310。
在本申请中,采用溅射工艺形成第一电子传输层140、第一透明导电层200和第一空穴注入层310作为叠层发光单元的第一电荷层500,能够高效提供所需要的电子和空穴,同时可以避免膜层之间的互溶问题,提升器件的稳定性。
在一实施例中,在步骤B12之后,还包括:
在第一空穴注入层310远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第二空穴传输层320材料,形成第二空穴传输层320。
在一实施例中,在第一空穴注入层310远离第一电极层400的一侧形成第二空穴传输层320的步骤之后,还包括:
在第二空穴传输层320远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第二发光层330材料,形成第二发光层330。
在一实施例中,在第二空穴传输层320远离第一电极层400的一侧形成第二发光层330的步骤之后,还包括:
在第二发光层330远离第一电极层400的一侧采用溅射工艺溅射第二电子传输层340材料,形成第二电子传输层340。
第一空穴注入层310、第二空穴传输层320、第二发光层330和第二电子传输层340构成显示面板10的第二发光单元300。
在一实施例中,在第二发光层330远离第一电极层400的一侧形成第二电子传输层340的步骤之后,还包括:
在第二电子传输层340远离第一电极层400的一侧溅射第二透明导电层600材料,形成第二透明导电层600。
在第二透明导电层600远离第一电极层400的一侧采用溅射工艺溅射第二空穴注入层710材料,形成第二空穴注入层710。
在本申请中,叠层发光单元的第二电荷层800采用第二电子传输层340、第二透明导电层600和第二空穴注入层710组成,并采用溅射工艺形成,使得第二电荷层800能够高效提供所需要的电子和空穴,同时可以避免膜层之间的互溶问题,提升器件的稳定性。
在一实施例中,在第二透明导电层600远离第一电极层400的一侧形成第二空穴注入层710的步骤之后,还包括:
在第二空穴注入层710远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第三空穴传输层720材料,形成第三空穴传输层720。
在第三空穴传输层720远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第二发光单元300材料,形成第三发光层730。
在一实施例中,在第三空穴传输层720远离第一电极层400的一侧形成第三发光单元的步骤之后,还包括:
在第三发光层730远离第一电极层400的一侧采用旋涂、喷墨印刷或狭缝涂布设置第三电子传输层740材料,形成第三电子传输层740。
在一实施例中,在第三发光层730远离第一电极层400的一侧形成第三电子传输层740的步骤之后,还包括:
在第三电子传输层740远离第一电极层400的一侧采用蒸镀或溅射工艺设置第二电极层900材料,形成第二电极层900。
本申请提供显示面板的制备方法,通过将第一电荷层500的第一电子传输层140、第一透明导电层200和第一空穴注入层310采用溅射工艺形成,使得第一电荷层500能够高效提供所需要的电子和空穴,同时可以避免膜层之间的互溶问题,提升器件的稳定性,并降低成本。
本申请实施例公开了一种显示面板及其制备方法,显示面板包括第一发光单元、第一透明导电层和第二发光单元,第一透明导电层设置于第一发光单元上,第二发光单元设置于第一透明导电层远离第一发光单元的一侧。本申请通过将第一透明导电层设置与第一发光单元和第二发光单元之间,从而提高了显示面板所需的电子和空穴浓度,进而提高了显示面板的显示性能。
以上对本申请实施例所提供的一种显示面板及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其包括:
    第一发光单元;
    第一透明导电层,所述第一透明导电层的材料为n型半导体材料,所述第一透明导电层设置于所述第一发光单元上;以及
    第二发光单元,所述第二发光单元包括第一空穴注入层,所述第一空穴注入层设置于所述第一透明导电层远离所述第一发光单元的一侧。
  2. 根据权利要求1所述的显示面板,其中,所述第一透明导电层的材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
  3. 根据权利要求1所述的显示面板,其中,所述第一透明导电层的厚度为50纳米-1000纳米。
  4. 根据权利要求1所述的显示面板,其中,所述第一发光单元包括第一电子传输层,所述第一透明导电层设置于所述第一电子传输层上。
  5. 根据权利要求4所述的显示面板,其中,所述第二发光单元还包括第二电子传输层,所述第二电子传输层设置于所述第一空穴注入层远离所述第一电子传输层的一侧。
  6. 根据权利要求5所述的显示面板,其中,所述显示面板还包括第二透明导电层,所述第二透明导电层的材料为n型半导体材料,所述第二透明导电层设置于所述第二电子传输层远离所述第一电子传输层的一侧。
  7. 根据权利要求6所述的显示面板,其中,所述第二透明导电层的材料选自氧化铟锡、铟锌氧化物、氧化锌铝、氧化铟镓锌、氧化锌和锌锰氧化物。
  8. 根据权利要求6所述的显示面板,其中,所述第二透明导电层的厚度为50纳米-1000纳米。
  9. 根据权利要求6所述的显示面板,其中,所述显示面板还包括第三发光单元,所述第三发光单元设置于所述第二透明导电层远离所述第一电子传输层的一侧。
  10. 根据权利要求9所述的显示面板,其中,所述第三发光单元包括第二空穴注入层,所述第二空穴注入层设置于所述第二透明导电层远离所述第一电子传输层的一侧。
  11. 根据权利要求10所述的显示面板,其中,所述第一发光单元、所述第二发光单元和所述第三发光单元选自红色发光单元、绿色发光单元和蓝色发光单元,所述第一发光单元、所述第二发光单元和所述第三发光单元的发光颜色各不相同。
  12. 根据权利要求4所述的显示面板,其中,所述第一发光单元还包括依次层叠设置的附加空穴层、第一空穴传输层和第一发光层,第一电子传输层设置于第一发光层上。
  13. 根据权利要求5所述的显示面板,其中,所述第二发光单元还包括第二空穴传输层和第二发光层,第一空穴注入层、第二空穴传输层、第二发光层和第二电子传输层。
  14. 根据权利要求10所述的显示面板,其中,所述第三发光单元还包括依次层叠设置在第二空穴注入层的第三空穴传输层、第三发光层和第三电子传输层。
  15. 根据权利要求14所述的显示面板,其中,所述显示面板还包括第一电极层和第二电极层,所述第一电极层设置于所述第一发光单元远离所述第二发光单元的一侧,所述第二电极层设置于所述第三发光单元远离所述第一发光单元的一侧。
  16. 根据权利要求14所述的显示面板,其中,所述第一发光层、所述第二发光层以及所述第三发光层的材料为壳层包覆核层的核壳结构,所述核层的材料包括CdSe、CdZnSe、InP和ZnSe中的至少一种,所述壳层的材料包括CdS和ZnS中的一种或两种组合。
  17. 根据权利要求14所述的显示面板,其中,所述第一空穴传输层、所述第二空穴传输层以及所述第三空穴传输层的材料包括聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)、聚(N,N′-双(4-丁基苯基)-N,N′-双(苯基)-联苯胺)、聚乙烯咔唑、4,4′,4″-三(咔唑-9-基)三苯胺、4,4′-二(9-咔唑)联苯中的一种或几种组合。
  18. 根据权利要求14所述的显示面板,其中,所述第一电子传输层、所述第二电子传输层以及所述第三电子传输层的材料选自ZnO、Zn xMg yO、Zn m1Al m2O和Zn n1Mg n2Li n3O,其中,x+y=1,m1+m2=1,n1+n2+n3=1。
  19. 根据权利要求14所述的显示面板,其中,所述附加空穴注入层、所述第一空穴注入层以及所述第二空穴注入层的材料独立地选自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐、聚苯胺和聚噻吩。
  20. 一种显示面板的制备方法,其包括:
    提供一第一发光单元;
    在所述第一发光单元上形成第一透明导电层,所述第一透明导电层的材料为n型半导体材料;以及
    在所述第一透明导电层远离所述第一发光单元的一侧形成第二发光单元,所述第二发光单元包括第一空穴注入层,所述第一空穴注入层设置于所述第一透明导电层远离所述第一发光单元的一侧。
PCT/CN2021/143787 2021-04-27 2021-12-31 显示面板及其制备方法 WO2022227683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/263,723 US20240130154A1 (en) 2021-04-27 2021-12-31 Display panel and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110457431.0 2021-04-27
CN202110457431.0A CN115249776A (zh) 2021-04-27 2021-04-27 显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2022227683A1 true WO2022227683A1 (zh) 2022-11-03

Family

ID=83695818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143787 WO2022227683A1 (zh) 2021-04-27 2021-12-31 显示面板及其制备方法

Country Status (3)

Country Link
US (1) US20240130154A1 (zh)
CN (1) CN115249776A (zh)
WO (1) WO2022227683A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045676A (ja) * 2001-07-26 2003-02-14 Junji Kido 有機エレクトロルミネッセント素子
CN101673807A (zh) * 2004-04-28 2010-03-17 株式会社半导体能源研究所 发光元件及其制造方法,以及利用该发光元件的发光器件
CN102456841A (zh) * 2010-10-22 2012-05-16 乐金显示有限公司 有机发光二极管器件
CN103872253A (zh) * 2012-12-18 2014-06-18 乐金显示有限公司 白色有机发光装置
CN105230124A (zh) * 2013-05-17 2016-01-06 松下知识产权经营株式会社 有机电致发光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045676A (ja) * 2001-07-26 2003-02-14 Junji Kido 有機エレクトロルミネッセント素子
CN101673807A (zh) * 2004-04-28 2010-03-17 株式会社半导体能源研究所 发光元件及其制造方法,以及利用该发光元件的发光器件
CN102456841A (zh) * 2010-10-22 2012-05-16 乐金显示有限公司 有机发光二极管器件
CN103872253A (zh) * 2012-12-18 2014-06-18 乐金显示有限公司 白色有机发光装置
CN105230124A (zh) * 2013-05-17 2016-01-06 松下知识产权经营株式会社 有机电致发光元件

Also Published As

Publication number Publication date
US20240130154A1 (en) 2024-04-18
CN115249776A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US9379344B2 (en) Display panel and display device
WO2020140760A1 (zh) 量子点发光二极管器件及其制备方法
US20180286927A1 (en) Series connected quantum dot light-emitting device, panel and display device
WO2020134147A1 (zh) 一种量子点发光二极管
CN110212063B (zh) 发光二极管及显示屏
WO2022227683A1 (zh) 显示面板及其制备方法
CN113130835B (zh) 一种量子点发光二极管及其制备方法
WO2022227684A1 (zh) 显示面板
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
WO2022233145A1 (zh) 一种量子点电致发光器件
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2022143770A1 (zh) 一种显示器件及其制备方法
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023051197A1 (zh) 发光器件及其制备方法、显示装置
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
WO2022143830A1 (zh) 光电器件
WO2022143960A1 (zh) 光电器件
WO2022143831A1 (zh) 光电器件
WO2022143828A1 (zh) 光电器件
WO2022143832A1 (zh) 光电器件
WO2022227675A1 (zh) 显示面板
CN115347127A (zh) 量子点发光器件及其制备方法
CN115835669A (zh) 量子点发光器件及显示装置
WO2023273276A1 (zh) 发光器件及其制备方法
CN114695714A (zh) 一种量子点发光二极管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939142

Country of ref document: EP

Kind code of ref document: A1