WO2022143770A1 - 一种显示器件及其制备方法 - Google Patents

一种显示器件及其制备方法 Download PDF

Info

Publication number
WO2022143770A1
WO2022143770A1 PCT/CN2021/142475 CN2021142475W WO2022143770A1 WO 2022143770 A1 WO2022143770 A1 WO 2022143770A1 CN 2021142475 W CN2021142475 W CN 2021142475W WO 2022143770 A1 WO2022143770 A1 WO 2022143770A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
electron transport
sub
anode
Prior art date
Application number
PCT/CN2021/142475
Other languages
English (en)
French (fr)
Inventor
侯文军
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/260,178 priority Critical patent/US20240016018A1/en
Publication of WO2022143770A1 publication Critical patent/WO2022143770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the technical field of display devices, and in particular, to a display device and a preparation method thereof.
  • QLEDs quantum dot-based electroluminescent diodes
  • the QLED device needs to inject electrons and holes when it works.
  • the simplest QLED device consists of a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer, and an anode.
  • the quantum dot light-emitting layer is sandwiched between the charge transport layer.
  • a forward bias is applied to both ends of the QLED device, electrons and holes enter the quantum dot light-emitting layer through the electron transport layer and the hole transport layer, respectively.
  • the quantum dot light-emitting layer performs compound light emission.
  • quantum dot materials have been developed by leaps and bounds, and the external quantum efficiency of red, green and blue QLED devices has been greatly improved, especially in CdSe-based devices.
  • the improved efficiency of QLED devices highlights its future prospects. So far, the quantum efficiencies of red and green quantum dot devices are both greater than 20%, and the device lifetime has reached the same level as red and green OLED devices, reaching the level of commercial application. However, compared with blue OLED devices, blue quantum dot devices have a large gap in terms of device efficiency and device lifetime.
  • the present disclosure proposes a composite device structure with both QLED (Quantum Dot Light Emitting Diode) and OLED (Organic Light Emitting Diode), wherein the red sub-pixel and the green sub-pixel both adopt the QLED structure, and the blue sub-pixel adopts the OLED structure , which can ensure that the red, green and blue sub-pixels can achieve high light-emitting materials and long life.
  • QLED Quantum Dot Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the composite device structure based on QLED and OLED will face the problem of incompatibility of structure and process during the preparation of full-color display device.
  • the electron transport layer prepared by inorganic metal oxide nanoparticles, such as ZnO as the electron transport layer has excellent electron transport properties in QLED devices;
  • the process of preparing electron transport layer with this material is generally solution method, such as Inkjet printing, spin coating, etc.
  • the material of the electron transport layer is usually an organic small molecule material, and the process for preparing the electron transport layer using this material is generally an evaporation method. Therefore, in the preparation of the electron transport layer, the process is incompatible, and the requirements of QLED and OLED cannot be met at the same time.
  • the present disclosure provides a display device, including a plurality of pixels arranged in an array, wherein each pixel includes a red sub-pixel, a green sub-pixel, and a first blue sub-pixel arranged in an array;
  • the red photonic pixel includes a first anode, a first hole function layer, a red quantum dot light-emitting layer, a first transition layer, a first electron transport layer and a first cathode that are stacked in sequence;
  • the green photonic pixel includes a second anode, a second hole function layer, a green quantum dot light-emitting layer, a second transition layer, a second electron transport layer and a second cathode that are stacked in sequence;
  • the first blue sub-pixel includes a third anode, a third hole function layer, a blue organic light-emitting material layer, a third transition layer, a third electron transport layer and a third cathode that are stacked in sequence;
  • the first anode, the second anode and the third anode in the red sub-pixel, the green sub-pixel and the first blue sub-pixel are located on the same side of the display device;
  • the material of the first transition layer, the material of the second transition layer and the material of the third transition layer all include aromatic compounds having a conjugated plane
  • the material and the material of the third electron transport layer both include metal oxides.
  • each pixel further includes a second blue sub-pixel, and the second blue sub-pixel includes a fourth anode, a fourth hole function layer, a blue quantum dot light-emitting layer, a fourth transition layer, a fourth Four electron transport layers and a fourth cathode;
  • the fourth anode in the second blue sub-pixel is located on the same side as the third anode in the first blue sub-pixel;
  • the material of the fourth transition layer includes an aromatic compound having a conjugate plane, and the material of the fourth electron transport layer includes a metal oxide.
  • the aromatic compound with a conjugated plane is selected from 8-hydroxyquinoline aluminum, 1,2,4-triazole derivatives, PBD (phenyl biphenyl oxadiazole), Beq2 (8- One or more of hydroxyquinoline beryllium) and DPVBi (4,4'-bis(2,2-distyryl)-1,1'-biphenyl).
  • the thickness of the first transition layer is 2-20 nm
  • the thickness of the second transition layer is 2-20nm
  • the thickness of the third transition layer is 2-20nm
  • the thickness of the fourth transition layer is 2-20 nm.
  • the thickness of the first electron transport layer is 20-50 nm;
  • the thickness of the second electron transport layer is 20-50nm;
  • the thickness of the third electron transport layer is 20-50nm;
  • the thickness of the fourth electron transport layer is 20-50 nm.
  • the emission wavelength of the red quantum dots is 610-625nm, and/or the emission wavelength of the green quantum dots is 525-550nm, and/or the blue light organic light-emitting material is selected from one of polyfluorene and polyfluorene derivatives or variety.
  • the red photonic pixel further includes a first light extraction layer, and the first light extraction layer is located on a surface of the first cathode away from the first anode;
  • the green photonic pixel further includes a second light extraction layer, and the second light extraction layer is located on the surface of the second cathode on the side away from the second anode;
  • the first blue sub-pixel further includes a third light extraction layer, and the third light extraction layer is located on a surface of the third cathode on a side away from the third anode.
  • a preparation method of a display device the display device comprises a plurality of pixels arranged in an array, wherein each pixel comprises a red photo-pixel, a green photo-pixel and a first blue-light sub-pixel arranged in an array;
  • the preparation method of each pixel includes the steps:
  • the substrate dividing the substrate into a red sub-pixel region, a green sub-pixel region, and a first blue sub-pixel region;
  • a first anode, a second anode and a third anode are respectively formed in the red sub-pixel region, the green sub-pixel region and the first blue sub-pixel region, and the first anode, the second anode and the third anode are respectively formed on the first anode, the second anode and the third anode forming a first hole function layer, a second hole function layer and a third hole function layer;
  • red quantum dot light emitting layer forming a red quantum dot light emitting layer, a green quantum dot light emitting layer and a blue light organic light emitting material layer on the first hole function layer, the second hole function layer and the third hole function layer, respectively;
  • a first transition layer, a second transition layer and a third transition layer are respectively formed on the red quantum dot light-emitting layer, the green quantum dot light-emitting layer and the blue light organic light-emitting material layer, and on the first transition layer and the second transition layer
  • a first electron transport layer, a second electron transport layer and a third electron transport layer are respectively formed on the third transition layer;
  • a first cathode, a second cathode and a third cathode are respectively formed on the first electron transport layer, the second electron transport layer and the third electron transport layer to obtain a red sub-pixel, a green sub-pixel and a first blue sub-pixel respectively ;
  • the material of the first transition layer, the material of the second transition layer and the material of the third transition layer all include aromatic compounds having a conjugated plane
  • the material and the material of the third electron transport layer both include metal oxides.
  • the aromatic compound having a conjugate plane is selected from one or more of 8-hydroxyquinoline aluminum, 1,2,4-triazole derivatives, PBD, Beq2 and DPVBi.
  • a preparation method of a display device the display device comprises a plurality of pixels arranged in an array, wherein each pixel comprises a red photo-pixel, a green photo-pixel, and a first blue-light sub-pixel arranged in an array;
  • the preparation method of each pixel includes the steps:
  • the substrate dividing the substrate into a red sub-pixel region, a green sub-pixel region, and a first blue sub-pixel region;
  • a first cathode, a second cathode and a third cathode are formed in the red sub-pixel region, the green sub-pixel region, and the first blue sub-pixel region, respectively, and on the first cathode, the second cathode and the third cathode, respectively forming a first electron transport layer, a second electron transport layer and a third electron transport layer, and respectively forming a first transition layer and a second transition layer on the first electron transport layer, the second electron transport layer and the third electron transport layer layer and the third transition layer;
  • a first anode, a second anode and a third anode are respectively formed on the first hole function layer, the second hole function layer and the third hole function layer to obtain a red photopixel, a green photopixel and a first blue light sub-pixels;
  • the material of the first transition layer, the material of the second transition layer and the material of the third transition layer all include aromatic compounds having a conjugated plane
  • the material and the material of the third electron transport layer both include metal oxides.
  • the present disclosure provides a full-color display device combining QLED and OLED.
  • the electron transport capacity of the transition layer is higher than that of the metal oxide electron transport layer.
  • the transmission capacity of the material is more than an order of magnitude lower, so the transition layer can play a role in suppressing electron transmission, which is beneficial to adjust the injection and transmission balance of carriers in the R and G sub-pixels, and improve the R and G sub-pixels. performance.
  • the transition layer can isolate the metal oxide electron transport layer from the quantum dot light-emitting layer, thereby effectively suppressing the defect state light emission of the metal oxide.
  • the transition layer can play the role of electron transport, and because the The electron transport layer in the B1 sub-pixel adopts metal oxide, and its electron transport capability is much higher than that of the transition layer, thereby ensuring electron transport.
  • the three sub-pixels R, G, and B1 are finally ensured.
  • the pixel structure and process are the same, which effectively solves the problem of incompatibility of structure and process in the preparation process of existing QLED and OLED.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is another schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a method for fabricating a display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram obtained by step S11 in FIG. 3 .
  • FIG. 5 is a schematic structural diagram obtained through step S12 in FIG. 3 .
  • FIG. 6 is a schematic structural diagram obtained by step S13 in FIG. 3 .
  • FIG. 7 is a schematic structural diagram obtained by step S14 in FIG. 3 .
  • FIG. 8 is a schematic structural diagram obtained by step S15 in FIG. 3 .
  • FIG. 9 is a schematic structural diagram obtained by step S16 in FIG. 3 .
  • FIG. 10 is a schematic structural diagram obtained by step S17 in FIG. 3 .
  • the present disclosure provides a display device and a preparation method thereof.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • each sub-pixel has a variety of forms, and each sub-pixel is divided into a positive structure and an inversion structure.
  • the sub-pixel When the anode is located on the substrate, the sub-pixel has a positive structure; when the cathode is located on the substrate, the sub-pixel has a positive structure;
  • the sub-pixels are of the inversion type, and this embodiment will mainly take the structure shown in FIG. 1 as an example for detailed description.
  • an embodiment of the present disclosure provides a display device, including a plurality of pixels arranged in an array, wherein each pixel includes a red sub-pixel, a green sub-pixel, and a first blue sub-pixel arranged in an array;
  • the red photonic pixel includes a first anode (Anode), a first hole injection layer (HIL), a first hole transport layer (HTL), a red quantum dot light-emitting layer (EML-R, QD), a first transition layer (BL), a first electron transport layer (ETL), a first cathode (Cathode) and a first light extraction layer (CPL, such as NPB);
  • the green photonic pixel includes a second anode (Anode, such as ITO/Ag/ITO), a second hole injection layer (HIL), a second hole transport layer (HTL), and a green quantum dot light-emitting layer ( EML-G, QD), second transition layer (BL), second electron transport layer (ETL), second cathode (Cathode) and second light extraction layer (CPL, such as NPB);
  • the first blue sub-pixel includes a third anode (Anode, such as ITO/Ag/ITO), a third hole injection layer (HIL), a third hole transport layer (HTL), and a blue organic light-emitting material, which are stacked in sequence.
  • layer EML-B, OLED
  • third transition layer BL
  • ETL electron transport layer
  • Cathode third cathode
  • CPL third light extraction layer
  • the first anode, the second anode and the third anode in the red sub-pixel, the green sub-pixel and the first blue sub-pixel are located on the same side of the display device;
  • the material of the first transition layer, the material of the second transition layer and the material of the third transition layer all include aromatic compounds having a conjugated plane
  • the material and the material of the third electron transport layer both include metal oxides.
  • the display device includes several pixels, each pixel includes three sub-pixels, and the three sub-pixels are: a red sub-pixel (R sub-pixel), a green sub-pixel (G sub-pixel), and a first blue sub-pixel ( B1 subpixel).
  • each pixel includes an R sub-pixel, a G sub-pixel, and a B1 sub-pixel, and based on the three primary colors of R, G, and B1, a full-color display of the display device is realized.
  • the three sub-pixels R, G, and B1 are arranged in an array, and each sub-pixel is independently driven to light up, and each sub-pixel is independently driven to emit light by a driving circuit.
  • the R and G sub-pixels are both electroluminescent diodes (ie, QLEDs) based on quantum dot light-emitting materials
  • the B1 sub-pixel is an electroluminescent diode (ie, OLED) based on organic light-emitting materials.
  • the R and G sub-pixels can achieve high luminous efficiency and long life
  • the B1 sub-pixel can also achieve high luminous efficiency and long life.
  • the full-color display is improved as a whole. The luminous efficiency and lifetime of the device.
  • the material of the first transition layer, the material of the second transition layer and the material of the third transition layer are all aromatic compounds with a conjugate plane, and the material has a certain electron transport ability, and its electron transport The ability is more than an order of magnitude lower than that of metal oxide electron transport materials commonly used in quantum dot light-emitting diodes.
  • the aromatic compound having a conjugate plane may be selected from 8-hydroxyquinoline aluminum (AlQ), 1,2,4-triazole derivatives, PBD, TPBI, BPQ, NCB, Beq2 and one or more of DPVBi, etc.
  • the injection and transport efficiency of electrons is usually much greater than that of holes, resulting in unbalanced electron-hole injection and limiting the improvement of device efficiency.
  • a transition layer with a certain electron transport capability is added between the quantum dot light-emitting layer and the metal oxide electron transport layer, because the transition layer has a higher electron transport capability than the metal oxide electron transport layer.
  • the transmission capacity of the transmission material is more than an order of magnitude lower, so the transition layer can play a role in suppressing electron transmission, which is beneficial to adjust the injection and transmission balance of carriers in the R and G sub-pixels, and improve the R and G sub-pixels. performance.
  • the transition layer can isolate the metal oxide electron transport layer from the quantum dot light-emitting layer, thereby effectively suppressing the defect state light emission of the metal oxide.
  • the transition layer can play the role of electron transport, and due to all the
  • the electron transport layer in the B1 sub-pixel adopts metal oxide, and its electron transport capability is much higher than that of the transition layer, thereby ensuring electron transport.
  • the three sub-pixels R, G, and B1 are finally ensured.
  • the pixel structure and process are the same, which effectively solves the problem of incompatibility of structure and process in the preparation process of existing QLED and OLED.
  • the thickness of the first transition layer is 2-20 nm
  • the thickness of the second transition layer is 2-20nm
  • the thickness of the third transition layer is 2-20nm
  • the thickness of the fourth transition layer is 2-20 nm.
  • the carrier balance of the R and G sub-pixels can be further controlled to achieve higher luminous efficiency.
  • the thickness of the first electron transport layer is 20-50 nm
  • the thickness of the second electron transport layer is 20-50nm;
  • the thickness of the third electron transport layer is 20-50nm;
  • the thickness of the fourth electron transport layer is 20-50 nm.
  • each pixel further includes a second blue sub-pixel, and the second blue sub-pixel includes a fourth anode (Anode, such as ITO/Ag/ITO),
  • the fourth anode in the second blue sub-pixel is located on the same side as the third anode in the first blue sub-pixel.
  • the first anode, the second anode, the third anode and the fourth anode are all totally reflective electrodes
  • the first cathode, the second cathode, the third cathode and the fourth cathode are all transmission electrodes.
  • Light is emitted from the first cathode, the second cathode, the third cathode and the fourth cathode, and the first light extraction layer and the second light extraction layer are respectively arranged on the first cathode, the second cathode, the third cathode and the fourth cathode layer, the third light extraction layer and the fourth light extraction layer can increase the light extraction efficiency, thereby improving the luminous efficiency of the device.
  • the first anode, the second anode, the third anode and the fourth anode can also be transmissive electrodes, and the first cathode, the second cathode, the third cathode and the fourth cathode are total reflection electrodes.
  • the first anode, the second anode, the third anode and the fourth anode are emitted, and the first light extraction layer and the second light extraction layer are arranged on the first anode, the second anode, the third anode and the fourth anode , the third light extraction layer and the fourth light extraction layer can increase the light extraction efficiency, thereby improving the luminous efficiency of the device.
  • the material of the first light extraction layer, the material of the second light extraction layer, the material of the third light extraction layer and the material of the fourth light extraction layer may all be the same as the material of the hole transport layer , such as CBP, etc.; it can also be the same as the material of the electron transport layer, such as LiF, etc.; it can also be o-phenanthroline and its derivatives.
  • the thickness of the first light extraction layer is 30nm-150nm
  • the thickness of the second light extraction layer is 30nm-150nm;
  • the thickness of the third light extraction layer is 30nm-150nm
  • the thickness of the fourth light extraction layer is 30nm-150nm.
  • the emission wavelength of red quantum dots is 610-625 nm, and/or the emission wavelength of green quantum dots is 525-550 nm, and/or the emission wavelength of blue quantum dots is 450-480 nm.
  • the thicknesses of the red quantum dot emitting layer, the green quantum dot emitting layer, the first blue quantum dot emitting layer and the second blue quantum dot emitting layer are all 5 nm-100 nm.
  • the red light quantum dots, green light quantum dots and blue light quantum dots can be independently selected from one or more of binary phase, ternary phase, quaternary phase quantum dots, etc.; wherein binary phase Phase quantum dots include one or more of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, HgS, etc., and ternary quantum dots include one or more of ZnCdS, CuInS, ZnCdSe, ZnSeS, ZnCdTe, PbSeS, etc.
  • the quaternary phase quantum dots include one or more of ZnCdS/ZnSe, CuInS/ZnS, ZnCdSe/ZnS, CuInSeS, ZnCdTe/ZnS, PbSeS/ZnS and the like.
  • the quantum dots can be cadmium-containing or cadmium-free.
  • the quantum dot light-emitting layer of the material has the characteristics of wide and continuous distribution of excitation spectrum and high stability of emission spectrum.
  • the blue-light organic light-emitting material may be selected from one or more of polyfluorene, polyfluorene derivatives, and the like.
  • the first anode, the second anode, the third anode and the fourth anode are all total reflection electrodes, and the material of the total reflection electrodes can be selected from metals such as Al, Ag, Mo and their alloys One of the materials, but not limited to this.
  • ITO electrodes transparent electrodes
  • the thickness of the total reflection electrode is greater than or equal to 80 nm, such as 80 nm-120 nm. In one embodiment, the thickness of the ITO electrode is 10 nm-20 nm.
  • the materials of the first hole injection layer, the second hole injection layer, the third hole injection layer, and the fourth hole injection layer can be selected from, but not limited to: poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS), CuPc, P3HT, transition metal oxides, transition metal chalcogenides, one or two or more.
  • the transition metal oxide includes one or two or more of NiO x , MoO x , WO x , CrO x , and CuO.
  • the metal chalcogenide compound includes one or two or more of MoS x , MoSex , WSx , WSex , and CuS.
  • the thickness of the first hole injection layer is about 10nm-40nm;
  • the thickness of the second hole injection layer is about 10nm-40nm;
  • the thickness of the third hole injection layer is about 10nm-40nm;
  • the thickness of the fourth hole injection layer is about 10nm-40nm.
  • the materials of the first hole transport layer, the second hole transport layer, the third hole transport layer, and the fourth hole transport layer can all be selected from materials with good hole transport properties , such as but not limited to poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N) 'Bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), 4,4',4"-tris(carbazol-9-yl)triphenylamine ( One or more of TCTA), 4,4'-bis( 9 -carbazole)biphenyl (CBP), NPB, NiO, MoO3, etc.
  • TFB poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine)
  • PVK
  • the thickness of the first hole transport layer is about 10nm-40nm;
  • the thickness of the second hole transport layer is about 10nm-40nm;
  • the thickness of the third hole transport layer is about 10nm-40nm;
  • the thickness of the fourth hole transport layer is about 10nm-40nm.
  • the material of the first electron transport layer, the material of the second electron transport layer, the material of the third electron transport layer and the material of the fourth electron transport layer can all use conventional electron transport materials in the art , including but not limited to one or any combination of ZnO, MZO (magnesium zinc oxide), AMO (aluminum zinc oxide), MLZO (magnesium lithium zinc oxide), TiO 2 , CsF, LiF, CsCO 3 and Alq 3 mixture.
  • the thickness of the first electron transport layer is 20-50 nm
  • the thickness of the second electron transport layer is 20-50nm;
  • the thickness of the third electron transport layer is 20-50nm;
  • the thickness of the fourth electron transport layer is 20-50 nm.
  • the first cathode, the second cathode, the third cathode and the fourth cathode can all be selected from one of aluminum (Al) electrodes, silver (Ag) electrodes, and gold (Au) electrodes, etc. , and can also be selected from one of nano aluminum wire, nano silver wire and nano gold wire.
  • Al aluminum
  • Au gold
  • the above-mentioned materials have relatively low resistance, so that carriers can be injected smoothly.
  • the thickness of the first cathode is about 5nm-40nm;
  • the thickness of the second cathode is about 5nm-40nm;
  • the thickness of the third cathode is about 5nm-40nm;
  • the thickness of the fourth cathode is about 5nm-40nm.
  • An embodiment of the present disclosure provides a method for manufacturing a display device, the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel and a first blue sub-pixel arranged in an array.
  • the preparation method of each pixel includes the steps:
  • the material of the first transition layer, the material of the second transition layer, the material of the third transition layer and the material of the fourth transition layer all include aromatic compounds having a conjugated plane, and the material of the first electron transport layer
  • the material, the material of the second electron transport layer, the material of the third electron transport layer, and the material of the fourth electron transport layer all include metal oxides.
  • the substrate is divided into R, G, B1, and B2 sub-pixel regions by the method of forming a dam-shaped pixel defining layer on the substrate.
  • the material of the pixel defining layer and its preparation are in the prior art, and details are not repeated here.
  • the R and G sub-pixels are both electroluminescent diodes (ie, QLEDs) based on quantum dot light-emitting materials
  • the B1 sub-pixel is an electroluminescent diode (ie, OLED) based on organic light-emitting materials.
  • the R and G sub-pixels can achieve high luminous efficiency and long life
  • the B1 sub-pixel can also achieve high luminous efficiency and long life.
  • the full-color display is improved as a whole. The luminous efficiency and lifetime of the device.
  • the material of the first transition layer, the material of the second transition layer, the material of the third transition layer, and the material of the fourth transition layer are all aromatic compounds with conjugate planes, and the materials have certain The electron transport capability is more than an order of magnitude lower than that of metal oxide electron transport materials commonly used in quantum dot light-emitting diodes.
  • the aromatic compound having a conjugate plane may be selected from 8-hydroxyquinoline aluminum (AlQ), 1,2,4-triazole derivatives, PBD, TPBI, BPQ, NCB, Beq2 and one or more of DPVBi, etc.
  • the injection and transport efficiency of electrons is usually much greater than that of holes, resulting in unbalanced electron-hole injection and limiting the improvement of device efficiency.
  • a transition layer with a certain electron transport capability is added between the quantum dot light-emitting layer and the metal oxide electron transport layer, because the transition layer has a higher electron transport capability than the metal oxide electron transport layer.
  • the transmission capacity of the transmission material is more than an order of magnitude lower, so the transition layer can play a role in suppressing electron transmission, which is beneficial to adjust the injection and transmission balance of carriers in the R and G sub-pixels, and improve the R and G sub-pixels. performance.
  • the transition layer can isolate the metal oxide electron transport layer from the quantum dot light-emitting layer, thereby effectively suppressing the defect state light emission of the metal oxide.
  • the transition layer can play the role of electron transport, and due to all the
  • the electron transport layer in the B1 sub-pixel adopts metal oxide, and its electron transport capability is much higher than that of the transition layer, thereby ensuring electron transport.
  • the three sub-pixels R, G, and B1 are finally ensured.
  • the pixel structure and process are the same, which effectively solves the problem of incompatibility of structure and process in the preparation process of existing QLED and OLED.
  • the above-mentioned methods for preparing the layers may be chemical methods or physical methods, wherein chemical methods include but are not limited to chemical vapor deposition methods, continuous ion layer adsorption and reaction methods, anodic oxidation methods, electrolytic deposition methods, and co-precipitation methods.
  • One or more of; physical methods include but are not limited to solution methods (such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.), deposition method (such as physical vapor deposition method) , element layer deposition method, pulsed laser deposition method, etc.) one or more.
  • solution methods such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.
  • evaporation method such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.
  • deposition method such as physical vapor deposition method) , element layer deposition method, pulsed laser deposition method, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开公开一种显示器件及其制备方法。显示器件包括红光子像素、绿光子像素、第一蓝光子像素;红光子像素包括依次层叠设置的阳极、空穴功能层、红光量子点发光层、过渡层、电子传输层和阴极;绿光子像素包括依次层叠设置的阳极、空穴功能层、绿光量子点发光层、过渡层、电子传输层和阴极;第一蓝光子像素包括依次层叠设置的阳极、空穴功能层、蓝光有机发光材料层、过渡层、电子传输层和阴极;过渡层的材料包括具有共扼平面的芳香族化合物,电子传输层的材料包括金属氧化物。本公开上述显示器件确保了R、G、B1三个子像素结构和工艺相同,有效解决了现有QLED和OLED制备过程中面临结构和工艺无法兼容的问题。

Description

一种显示器件及其制备方法
优先权
本公开要求于申请日为2020年12月31日提交中国专利局、申请号为“202011645327.6”、申请名称为“一种显示器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示器件技术领域,尤其涉及一种显示器件及其制备方法。
背景技术
由于量子点独特的光电性质,例如发光波长随尺寸和成分连续可调、发光光谱窄、荧光效率高、稳定性好等,基于量子点的电致发光二极管(QLED)在显示领域得到广泛的关注和研究。此外,QLED显示还具有可视角大、对比度高、响应速度快、可柔性等诸多LCD所无法实现的优势,因而有望成为下一代的显示技术。
QLED器件工作时需要注入电子和空穴,最简单的QLED器件由阴极、电子传输层、量子点发光层、空穴传输层和阳极组成。在QLED器件中,量子点发光层夹在电荷传输层中间,当正向偏压加到QLED器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层,在量子点发光层进行复合发光。
经过二十多年的发展,量子点材料得到了飞跃发展,红绿蓝QLED器件的外量子效率得到了巨大提升,尤其在以CdSe为主的器件。QLED器件效率的提升突出了其未来的前景。到目前为止,红绿量子点器件量子效率均大于20%,器件寿命已经和红色绿色OLED器件在同一水平,已经达到商业化应用的水平。但是,与蓝色OLED器件相比,蓝色量子点器件无论是器件效率还是器件寿命都有较大差距。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述发现,本公开提出了一种兼具QLED(量子点发光二极管)和OLED(有机发光二极管)的复合器件结构,其中红光子像素和绿光子像素均采用QLED结构,蓝光子像素采用OLED结构,这样可以确保红、绿、蓝光子像素均可实现高的发光材料和长寿命。
进一步发现,基于QLED和OLED的复合器件结构,在全彩显示器件制备的过程中会面临结构和工艺无法兼容的问题。这是因为QLED器件中只有无机金属氧化物纳米颗粒制备的电子传输层,如ZnO等作为电子传输层,才具有优异的电子传输性能;采用该材料制备电子传输层的工艺一般是溶液法,如喷墨打印,旋涂等。而OLED器件中,电子传输层的材料通常是有机小分子材料,采用该材料制备电子传输层的工艺一般是蒸镀法。因此,在制备电子传输层时工艺上无法兼容,无法同时满足QLED和OLED的需求。
基于此,本公开提供了一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
所述红光子像素包括依次层叠设置的第一阳极、第一空穴功能层、红光量子点发光层、第一过渡层、第一电子传输层和第一阴极;
所述绿光子像素包括依次层叠设置的第二阳极、第二空穴功能层、绿光量子点发光层、第二过渡层、第二电子传输层和第二阴极;
所述第一蓝光子像素包括依次层叠设置的第三阳极、第三空穴功能层、蓝光有机发光材料层、第三过渡层、第三电子传输层和第三阴极;
其中,所述红光子像素、绿光子像素和第一蓝光子像素中的第一阳极、第二阳极和第三阳极位于显示器件的同一侧;
其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
可选地,每个像素还包括第二蓝光子像素,所述第二蓝光子像素包括依次层叠设置 的第四阳极、第四空穴功能层、蓝光量子点发光层、第四过渡层、第四电子传输层和第四阴极;
其中,所述第二蓝光子像素中的第四阳极与第一蓝光子像素中的第三阳极位于同一侧;
所述第四过渡层的材料包括具有共扼平面的芳香族化合物,所述第四电子传输层的材料包括金属氧化物。
可选地,所述具有共扼平面的芳香族化合物选自8-羟基喹啉铝、1,2,4-三唑衍生物、PBD(苯基联苯基呃二唑)、Beq2(8-羟基喹啉铍)和DPVBi(4,4'-二(2,2-二苯乙烯基)-1,1'-联苯)中的一种或多种。
可选地,所述第一过渡层的厚度为2-20nm;
和/或,所述第二过渡层的厚度为2-20nm;
和/或,所述第三过渡层的厚度为2-20nm;
和/或,所述第四过渡层的厚度为2-20nm。
可选地,所述第一电子传输层的厚度为20-50nm;
和/或,所述第二电子传输层的厚度为20-50nm;
和/或,所述第三电子传输层的厚度为20-50nm;
和/或,所述第四电子传输层的厚度为20-50nm。
可选地,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或蓝光有机发光材料选自聚芴和聚芴衍生物中的一种或多种。
可选地,所述红光子像素还包括第一光取出层,所述第一光取出层位于所述第一阴极远离所述第一阳极一侧的表面;
所述绿光子像素还包括第二光取出层,所述第二光取出层位于所述第二阴极远离所述第二阳极一侧的表面;
所述第一蓝光子像素还包括第三光取出层,所述第三光取出层位于所述第三阴极远离所述第三阳极一侧的表面。
一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,其中,每个 像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
每个像素的制备方法包括步骤:
将基板划分成红光子像素区域、绿光子像素区域、第一蓝光子像素区域;
在所述红光子像素区域、绿光子像素区域、第一蓝光子像素区域内分别形成第一阳极、第二阳极和第三阳极,在所述第一阳极、第二阳极和第三阳极上分别形成第一空穴功能层、第二空穴功能层和第三空穴功能层;
在所述第一空穴功能层、第二空穴功能层和第三空穴功能层上分别形成红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层;
在所述红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层上分别形成第一过渡层、第二过渡层和第三过渡层,在所述第一过渡层、第二过渡层和第三过渡层上分别形成第一电子传输层、第二电子传输层和第三电子传输层;
在所述第一电子传输层、第二电子传输层和第三电子传输层上分别形成第一阴极、第二阴极和第三阴极,分别得到红光子像素、绿光子像素和第一蓝光子像素;
其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
可选地,所述具有共扼平面的芳香族化合物选自8-羟基喹啉铝、1,2,4-三唑衍生物、PBD、Beq2和DPVBi中的一种或多种。
一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
每个像素的制备方法包括步骤:
将基板划分成红光子像素区域、绿光子像素区域、第一蓝光子像素区域;
在所述红光子像素区域、绿光子像素区域、第一蓝光子像素区域内分别形成第一阴极、第二阴极和第三阴极,在所述第一阴极、第二阴极和第三阴极上分别形成第一电子传输层、第二电子传输层和第三电子传输层,在所述第一电子传输层、第二电子传输层和第三电子传输层上分别形成第一过渡层、第二过渡层和第三过渡层;
在所述第一过渡层、第二过渡层和第三过渡层上分别形成红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层;
在所述红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层上分别形成第一空穴功能层、第二空穴功能层和第三空穴功能层;
在所述第一空穴功能层、第二空穴功能层和第三空穴功能层上分别形成第一阳极、第二阳极和第三阳极,分别得到红光子像素、绿光子像素和第一蓝光子像素;
其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
有益效果:本公开提供了一种QLED和OLED结合的全彩的显示器件。本公开R、G子像素中,通过在量子点发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,由于所述过渡层电子传输能力比金属氧化物电子传输材料的传输能力低一个量级以上,因此所述过渡层能够起到抑制电子传输的作用,从而有利于调节R、G子像素中载流子的注入与传输平衡,提升R、G子像素的性能。同时,所述过渡层能够将金属氧化物电子传输层与量子点发光层隔离,从而有效抑制金属氧化物的缺陷态发光。本公开B1子像素中,通过在有机材料发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,所述过渡层可以起到电子传输的作用,且由于所述B1子像素中电子传输层采用的是金属氧化物,其电子传输能力远远高于所述过渡层,从而确保了电子的传输。因此,通过在基于量子点的R、G子像素和基于有机发光材料的B1子像素中增设过渡层,且B1子像素中电子传输层采用金属氧化物,最终确保了R、G、B1三个子像素结构和工艺相同,有效解决了现有QLED和OLED制备过程中面临结构和工艺无法兼容的问题。
附图说明
图1为本公开实施例提供的一种显示器件的结构示意图。
图2为本公开实施例提供的一种显示器件的另一结构示意图。
图3为本公开实施例提供的一种显示器件的制备方法的流程示意图。
图4为图3中经步骤S11得到的结构示意图。
图5为图3中经步骤S12得到的结构示意图。
图6为图3中经步骤S13得到的结构示意图。
图7为图3中经步骤S14得到的结构示意图。
图8为图3中经步骤S15得到的结构示意图。
图9为图3中经步骤S16得到的结构示意图。
图10为图3中经步骤S17得到的结构示意图。
具体实施方式
本公开提供一种显示器件及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
首先需说明的是,本实施例中,每个子像素有多种形式,且每个子像素分正型结构和反型结构,当阳极位于基板上时,子像素为正型结构;当阴极位于基板上时,子像素为反型结构,本实施例将主要以如图1所示的结构为例进行详细介绍。
如图1所示,本公开实施例提供一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
所述红光子像素包括依次层叠设置的第一阳极(Anode)、第一空穴注入层(HIL)、第一空穴传输层(HTL)、红光量子点发光层(EML-R,QD)、第一过渡层(BL)、第一电子传输层(ETL)、第一阴极(Cathode)和第一光取出层(CPL,如NPB);
所述绿光子像素包括依次层叠设置的第二阳极(Anode,如ITO/Ag/ITO)、第二空穴注入层(HIL)、第二空穴传输层(HTL)、绿光量子点发光层(EML-G,QD)、第二过渡层(BL)、第二电子传输层(ETL)、第二阴极(Cathode)和第二光取出层(CPL,如NPB);
所述第一蓝光子像素包括依次层叠设置的第三阳极(Anode,如ITO/Ag/ITO)、第三空穴注入层(HIL)、第三空穴传输层(HTL)、蓝光有机发光材料层(EML-B,OLED)、 第三过渡层(BL)、第三电子传输层(ETL)、第三阴极(Cathode)和第三光取出层(CPL,如NPB);
其中,所述红光子像素、绿光子像素和第一蓝光子像素中的第一阳极、第二阳极和第三阳极位于显示器件的同一侧;
其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
本实施例中,显示器件包括若干像素,每个像素包括三个子像素,所述三个子像素为:红光子像素(R子像素)、绿光子像素(G子像素)和第一蓝光子像素(B1子像素)。本实施例中,每个像素包括R子像素、G子像素和B1子像素,基于R、G、B1三原色光,实现显示器件全彩显示。其中阵列排列的R、G、B1三个子像素,每个子像素通过独立驱动点亮,每个子像素由驱动电路独立驱动发光。
本实施例中,R、G子像素均为基于量子点发光材料的电致发光二极管(即QLED),B1子像素为基于有机发光材料的电致发光二极管(即OLED)。这样R、G子像素可以实现高的发光效率和长的寿命,B1子像素也可以实现高的发光效率和长的寿命,通过将红绿QLED和蓝光OLED结合,从整体上提高了全彩显示器件的发光效率和寿命。
本实施例中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均为具有共扼平面的芳香族化合物,该材料具有一定的电子传输能力,其电子传输能力比量子点发光二极管中常用的金属氧化物电子传输材料的传输能力低一个量级以上。在一种实施方式中,所述具有共扼平面的芳香族化合物可以选自8-羟基喹啉铝(AlQ)、1,2,4-三唑衍生物、PBD、TPBI、BPQ、NCB、Beq2和DPVBi等中的一种或多种。
Figure PCTCN2021142475-appb-000001
在现有基于量子点材料的R、G子像素中,通常电子的注入和传输效率远大于空穴的注入和传输效率,造成电子空穴注入不平衡而限制器件效率的提升。本实施例R、G子像素中,通过在量子点发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,由于所述过渡层电子传输能力比金属氧化物电子传输材料的传输能力低一个量级以上,因此所述过渡层能够起到抑制电子传输的作用,从而有利于调节R、G子像素中载流子的注入与传输平衡,提升R、G子像素的性能。同时,所述过渡层能够将金属氧化物电子传输层与量子点发光层隔离,从而有效抑制金属氧化物的缺陷态发光。
本实施例B1子像素中,通过在有机材料发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,所述过渡层可以起到电子传输的作用,且由于所述B1子像素中电子传输层采用的是金属氧化物,其电子传输能力远远高于所述过渡层,从而确保了电子的传输。
因此,通过在基于量子点的R、G子像素和基于有机发光材料的B1子像素中增设过渡层,且B1子像素中电子传输层采用金属氧化物,最终确保了R、G、B1三个子像素结构和工艺相同,有效解决了现有QLED和OLED制备过程中面临结构和工艺无法兼容的问题。
在一种实施方式中,所述第一过渡层的厚度为2-20nm;
和/或,所述第二过渡层的厚度为2-20nm;
和/或,所述第三过渡层的厚度为2-20nm;
和/或,所述第四过渡层的厚度为2-20nm。
在该厚度范围内,可以进一步控制R、G子像素的载流子平衡,实现更高的发光效率。
在一种实施方式中,所述第一电子传输层的厚度为20-50nm;
和/或,所述第二电子传输层的厚度为20-50nm;
和/或,所述第三电子传输层的厚度为20-50nm;
和/或,所述第四电子传输层的厚度为20-50nm。
在一种实施方式中,如图2所示,每个像素还包括第二蓝光子像素,所述第二蓝光子像素包括依次层叠设置的第四阳极(Anode,如ITO/Ag/ITO)、第四空穴注入层(HIL)、第四空穴传输层(HTL)、蓝光量子点发光层(EML-B,QD)、第四过渡层(BL)、第四电子传输层(ETL)、第四阴极(Cathode)和第四光取出层(CPL,如NPB);
其中,所述第二蓝光子像素中的第四阳极与第一蓝光子像素中的第三阳极位于同一侧。
本实施例中,第一阳极、第二阳极、第三阳极和第四阳极均为全反射电极,第一阴极、第二阴极、第三阴极和第四阴极均为透射电极,显示器件发出的光从第一阴极、第二阴极、第三阴极和第四阴极射出,在所述第一阴极、第二阴极、第三阴极和第四阴极上分别设置第一光取出层、第二光取出层、第三光取出层和第四光取出层,可以增加光取出效率,从而提高了器件的发光效率。当然所述第一阳极、第二阳极、第三阳极和第四阳极也可以为透射电极,第一阴极、第二阴极、第三阴极和第四阴极为全反射电极,显示器件发出的光从第一阳极、第二阳极、第三阳极和第四阳极射出,在所述第一阳极、第二阳极、第三阳极和第四阳极上设置所述第一光取出层、第二光取出层、第三光取出层和第四光取出层,可以增加光取出效率,从而提高了器件的发光效率。
在一种实施方式中,所述第一光取出层的材料、第二光取出层的材料、第三光取出层的材料和第四光取出层的材料均可以与空穴传输层的材料相同,如CBP等;也可以 与电子传输层的材料相同,如LiF等;还可以为邻菲啰啉及其衍生物等。
在一种实施方式中,所述第一光取出层的厚度为30nm-150nm;
和/或,所述第二光取出层的厚度为30nm-150nm;
和/或,所述第三光取出层的厚度为30nm-150nm;
和/或,所述第四光取出层的厚度为30nm-150nm。
在一种实施方式中,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或蓝光量子点的发光波长为450-480nm。
在一种实施方式中,所述红光量子点发光层、绿光量子点发光层、第一蓝光量子点发光层和第二蓝光量子点发光层的厚度均为5nm-100nm。
在一种实施方式中,所述红光量子点、绿光量子点和蓝光量子点可以独立地选自二元相、三元相、四元相量子点等中的一种或多种;其中二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种,三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种,四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。该量子点可以为含镉或者不含镉。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。
在一种实施方式中,所述蓝光有机发光材料可以选自聚芴和聚芴衍生物等中的一种或多种。
在一种实施方式中,所述第一阳极、第二阳极、第三阳极和第四阳极均为全反射电极,所述全反射电极的材料可以选自Al、Ag、Mo等金属及其合金材料中的一种,但不限于此。需说明的是,本公开实施例中,所述全反射电极两侧还可以设置ITO电极(透明电极),如ITO/Ag/ITO,以降低电极的功函数,利于电荷注入。在一种实施方式中,所述全反射电极的厚度大于等于80nm,如80nm-120nm。在一种实施方式中,所述ITO电极的厚度为10nm-20nm。
在一种实施方式中,所述第一空穴注入层、第二空穴注入层和第三空穴注入层、第四空穴注入层的材料均可以选自但不限于:聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸) (PEDOT:PSS)、CuPc、P3HT、过渡金属氧化物、过渡金属硫系化合物中的一种或两种或多种。其中,所述过渡金属氧化物包括NiO x、MoO x、WO x、CrO x、CuO中的一种或两种或多种。所述金属硫系化合物包括MoS x、MoSe x、WS x、WSe x、CuS中的一种或两种或多种。
在一种实施方式中,所述第一空穴注入层的厚度约为10nm-40nm;
和/或,所述第二空穴注入层的厚度约为10nm-40nm;
和/或,所述第三空穴注入层的厚度约为10nm-40nm;
和/或,所述第四空穴注入层的厚度约为10nm-40nm。
在一种实施方式中,所述第一空穴传输层、第二空穴传输层和第三空穴传输层、第四空穴传输层的材料均可以选自具有良好空穴传输性能的材料,例如可以包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、NPB、NiO、MoO 3等中的一种或多种。
在一种实施方式中,所述第一空穴传输层的厚度约为10nm-40nm;
和/或,所述第二空穴传输层的厚度约为10nm-40nm;
和/或,所述第三空穴传输层的厚度约为10nm-40nm;
和/或,所述第四空穴传输层的厚度约为10nm-40nm。
在一种实施方式中,所述第一电子传输层的材料、第二电子传输层的材料、第三电子传输层的材料和第四电子传输层的材料均可采用本领域常规的电子传输材料,包括但不限于ZnO、MZO(镁锌氧)、AMO(铝锌氧)、MLZO(镁锂锌氧)、TiO 2、CsF、LiF、CsCO 3和Alq3中的一种或者为其任意组合的混合物。
在一种实施方式中,所述第一电子传输层的厚度为20-50nm;
和/或,所述第二电子传输层的厚度为20-50nm;
和/或,所述第三电子传输层的厚度为20-50nm;
和/或,所述第四电子传输层的厚度为20-50nm。
在一种实施方式中,所述第一阴极、第二阴极、第三阴极和第四阴极均可选自铝(Al) 电极、银(Ag)电极和金(Au)电极等中的一种,还可选自纳米铝线、纳米银线和纳米金线等中的一种。上述材料具有较小的电阻,使得载流子能顺利的注入。
在一种实施方式中,所述第一阴极的厚度约为5nm-40nm;
和/或,所述第二阴极的厚度约为5nm-40nm;
和/或,所述第三阴极的厚度约为5nm-40nm;
和/或,所述第四阴极的厚度约为5nm-40nm。
以图2所示结构的为例,对显示器件的制备方法做介绍。本公开实施例提供一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素和第一蓝光子像素。如图3所示,每个像素的制备方法包括步骤:
S10、将基板划分成红光子像素区域、绿光子像素区域、第二蓝光子像素区域、第一蓝光子像素区域;
S11、在所述红光子像素区域、绿光子像素区域、第二蓝光子像素区域、第一蓝光子像素区域内分别形成第一阳极、第二阳极、第四阳极和第三阳极(Anode),在所述第一阳极、第二阳极、第四阳极和第三阳极上分别形成第一空穴注入层、第二空穴注入层、第四空穴注入层和第三空穴注入层(HIL),见图4所示;
S12、在所述第一空穴注入层、第二空穴注入层、第四空穴注入层和第三空穴注入层上分别形成第一空穴传输层、第二空穴传输层、第四空穴传输层和第三空穴传输层(HTL),见图5所示;
S13、在所述第一空穴传输层、第二空穴传输层、第四空穴传输层和第三空穴传输层上分别形成红光量子点发光层(EML-R,QD)、绿光量子点发光层(EML-G,QD)、蓝光量子点发光层(EML-B,QD)和蓝光有机发光材料层(EML-B,OLED),见图6所示;
S14、在所述红光量子点发光层、绿光量子点发光层、蓝光量子点发光层和蓝光有机发光材料层上分别形成第一过渡层、第二过渡层、第四过渡层和第三过渡层(BL),见图7所示;
S15、在所述第一过渡层、第二过渡层、第四过渡层和第三过渡层上分别形成第一 电子传输层、第二电子传输层、第四电子传输层和第三电子传输层(ETL),见图8所示;
S16、在所述第一电子传输层、第二电子传输层、第四电子传输层和第三电子传输层上分别形成第一阴极、第二阴极、第四阴极和第三阴极(Cathode),见图9所示;
S17、在所述第一阴极、第二阴极、第四阴极和第三阴极上分别形成第一光取出层、第二光取出层、第四光取出层和第三光取出层(CPL),见图10所示,分别得到红光子像素、绿光子像素、第二蓝光子像素和第一蓝光子像素;
其中,所述第一过渡层的材料、第二过渡层的材料、第三过渡层的材料和第四过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料、第三电子传输层的材料和第四电子传输层的材料均包括金属氧化物。
需说明的是,通过在基板上制坝状的像素界定层的方法,将基板划分成R、G、B1、B2子像素区域。关于像素界定层的材料及其制备为现有技术,在此不再赘述。图10所示的显示器件中的像素界定层除去后,即对应得到图2所示的显示器件。
本实施例中,R、G子像素均为基于量子点发光材料的电致发光二极管(即QLED),B1子像素为基于有机发光材料的电致发光二极管(即OLED)。这样R、G子像素可以实现高的发光效率和长的寿命,B1子像素也可以实现高的发光效率和长的寿命,通过将红绿QLED和蓝光OLED结合,从整体上提高了全彩显示器件的发光效率和寿命。
本实施例中,所述第一过渡层的材料、第二过渡层的材料、第三过渡层的材料和第四过渡层的材料均为具有共扼平面的芳香族化合物,该材料具有一定的电子传输能力,其电子传输能力比量子点发光二极管中常用的金属氧化物电子传输材料的传输能力低一个量级以上。在一种实施方式中,所述具有共扼平面的芳香族化合物可以选自8-羟基喹啉铝(AlQ)、1,2,4-三唑衍生物、PBD、TPBI、BPQ、NCB、Beq2和DPVBi等中的一种或多种。
在现有基于量子点材料的R、G子像素中,通常电子的注入和传输效率远大于空穴的注入和传输效率,造成电子空穴注入不平衡而限制器件效率的提升。本实施例R、G子像素中,通过在量子点发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,由于所述过渡层电子传输能力比金属氧化物电子传输材料的传输能力 低一个量级以上,因此所述过渡层能够起到抑制电子传输的作用,从而有利于调节R、G子像素中载流子的注入与传输平衡,提升R、G子像素的性能。同时,所述过渡层能够将金属氧化物电子传输层与量子点发光层隔离,从而有效抑制金属氧化物的缺陷态发光。
本实施例B1子像素中,通过在有机材料发光层与金属氧化物电子传输层之间增设一层具有一定电子传输能力的过渡层,所述过渡层可以起到电子传输的作用,且由于所述B1子像素中电子传输层采用的是金属氧化物,其电子传输能力远远高于所述过渡层,从而确保了电子的传输。
因此,通过在基于量子点的R、G子像素和基于有机发光材料的B1子像素中增设过渡层,且B1子像素中电子传输层采用金属氧化物,最终确保了R、G、B1三个子像素结构和工艺相同,有效解决了现有QLED和OLED制备过程中面临结构和工艺无法兼容的问题。
关于显示器件的更多细节见上文,在此不再赘述。
本公开实施例中,上述各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、元素层沉积法、脉冲激光沉积法等)中的一种或多种。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (24)

  1. 一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
    所述红光子像素包括依次层叠设置的第一阳极、第一空穴功能层、红光量子点发光层、第一过渡层、第一电子传输层和第一阴极;
    所述绿光子像素包括依次层叠设置的第二阳极、第二空穴功能层、绿光量子点发光层、第二过渡层、第二电子传输层和第二阴极;
    所述第一蓝光子像素包括依次层叠设置的第三阳极、第三空穴功能层、蓝光有机发光材料层、第三过渡层、第三电子传输层和第三阴极;
    其中,所述红光子像素、绿光子像素和第一蓝光子像素中的第一阳极、第二阳极和第三阳极位于显示器件的同一侧;
    其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
  2. 根据权利要求1所述的显示器件,其中,每个像素还包括第二蓝光子像素,所述第二蓝光子像素包括依次层叠设置的第四阳极、第四空穴功能层、蓝光量子点发光层、第四过渡层、第四电子传输层和第四阴极;
    其中,所述第二蓝光子像素中的第四阳极与第一蓝光子像素中的第三阳极位于同一侧;
    所述第四过渡层的材料包括具有共扼平面的芳香族化合物,所述第四电子传输层的材料包括金属氧化物。
  3. 根据权利要求1或2所述的显示器件,其中,所述具有共扼平面的芳香族化合物选自8-羟基喹啉铝、1,2,4-三唑衍生物、苯基联苯基呃二唑、8-羟基喹啉铍和4,4'-二(2,2-二苯乙烯基)-1,1'-联苯中的一种或多种。
  4. 根据权利要求1或2所述的显示器件,其中,所述第一过渡层的厚度为2-20nm。
  5. 根据权利要求1或2所述的显示器件,其中,所述第二过渡层的厚度为2-20nm。
  6. 根据权利要求1或2所述的显示器件,其中,所述第三过渡层的厚度为2-20nm。
  7. 根据权利要求1或2所述的显示器件,其中,所述第四过渡层的厚度为2-20nm。
  8. 根据权利要求1或2所述的显示器件,其中,所述第一电子传输层的厚度为20-50nm。
  9. 根据权利要求1或2所述的显示器件,其中,所述第二电子传输层的厚度为20-50nm。
  10. 根据权利要求1或2所述的显示器件,其中,所述第三电子传输层的厚度为20-50nm。
  11. 根据权利要求1或2所述的显示器件,其中,所述第四电子传输层的厚度为20-50nm。
  12. 根据权利要求1所述的显示器件,其中,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或蓝光有机发光材料选自聚芴和聚芴衍生物中的一种或多种。
  13. 根据权利要求1所述的显示器件,其中,所述红光子像素还包括第一光取出层,所述第一光取出层位于所述第一阴极远离所述第一阳极一侧的表面;
    所述绿光子像素还包括第二光取出层,所述第二光取出层位于所述第二阴极远离所述第二阳极一侧的表面;
    所述第一蓝光子像素还包括第三光取出层,所述第三光取出层位于所述第三阴极远离所述第三阳极一侧的表面。
  14. 根据权利要求1所述的显示器件,其中,所述红光量子点发光层的厚度为5nm-100nm。
  15. 根据权利要求1所述的显示器件,其中,所述绿光量子点发光层的厚度为5nm-100nm。
  16. 根据权利要求1所述的显示器件,其中,所述第一蓝光量子点发光层的厚度为5nm-100nm。
  17. 根据权利要求1所述的显示器件,其中,所述第二蓝光量子点发光层的厚度为5nm-100nm。
  18. 根据权利要求12所述的显示器件,其中,所述红光量子点、绿光量子点和蓝光量子点独立地选自二元相、三元相、四元相量子点中的一种或多种。
  19. 根据权利要求18所述的显示器件,其中,所述二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS中的一种或多种。
  20. 根据权利要求18所述的显示器件,其中,所述三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS中的一种或多种。
  21. 根据权利要求18所述的显示器件,其中,所述四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS中的一种或多种。
  22. 一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
    每个像素的制备方法包括步骤:
    将基板划分成红光子像素区域、绿光子像素区域、第一蓝光子像素区域;
    在所述红光子像素区域、绿光子像素区域、第一蓝光子像素区域内分别形成第一阳极、第二阳极和第三阳极,在所述第一阳极、第二阳极和第三阳极上分别形成第一空穴功能层、第二空穴功能层和第三空穴功能层;
    在所述第一空穴功能层、第二空穴功能层和第三空穴功能层上分别形成红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层;
    在所述红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层上分别形成第一过渡层、第二过渡层和第三过渡层,在所述第一过渡层、第二过渡层和第三过渡层上分别形成第一电子传输层、第二电子传输层和第三电子传输层;
    在所述第一电子传输层、第二电子传输层和第三电子传输层上分别形成第一阴极、第二阴极和第三阴极,分别得到红光子像素、绿光子像素和第一蓝光子像素;
    其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
  23. 根据权利要求22所述的显示器件的制备方法,其中,所述具有共扼平面的芳 香族化合物选自8-羟基喹啉铝、1,2,4-三唑衍生物、苯基联苯基呃二唑、8-羟基喹啉铍和4,4'-二(2,2-二苯乙烯基)-1,1'-联苯中的一种或多种。
  24. 一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素;
    每个像素的制备方法包括步骤:
    将基板划分成红光子像素区域、绿光子像素区域、第一蓝光子像素区域;
    在所述红光子像素区域、绿光子像素区域、第一蓝光子像素区域内分别形成第一阴极、第二阴极和第三阴极,在所述第一阴极、第二阴极和第三阴极上分别形成第一电子传输层、第二电子传输层和第三电子传输层,在所述第一电子传输层、第二电子传输层和第三电子传输层上分别形成第一过渡层、第二过渡层和第三过渡层;
    在所述第一过渡层、第二过渡层和第三过渡层上分别形成红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层;
    在所述红光量子点发光层、绿光量子点发光层和蓝光有机发光材料层上分别形成第一空穴功能层、第二空穴功能层和第三空穴功能层;
    在所述第一空穴功能层、第二空穴功能层和第三空穴功能层上分别形成第一阳极、第二阳极和第三阳极,分别得到红光子像素、绿光子像素和第一蓝光子像素;
    其中,所述第一过渡层的材料、第二过渡层的材料和第三过渡层的材料均包括具有共扼平面的芳香族化合物,所述第一电子传输层的材料、第二电子传输层的材料和第三电子传输层的材料均包括金属氧化物。
PCT/CN2021/142475 2020-12-31 2021-12-29 一种显示器件及其制备方法 WO2022143770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/260,178 US20240016018A1 (en) 2020-12-31 2021-12-29 Display device and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011645327.6A CN114695752A (zh) 2020-12-31 2020-12-31 一种显示器件及其制备方法
CN202011645327.6 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022143770A1 true WO2022143770A1 (zh) 2022-07-07

Family

ID=82136213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142475 WO2022143770A1 (zh) 2020-12-31 2021-12-29 一种显示器件及其制备方法

Country Status (3)

Country Link
US (1) US20240016018A1 (zh)
CN (1) CN114695752A (zh)
WO (1) WO2022143770A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299156A (zh) * 2015-05-22 2017-01-04 上海和辉光电有限公司 Oled面板结构及其制作方法
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法
CN106654026A (zh) * 2016-11-22 2017-05-10 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置及照明装置
WO2020041993A1 (zh) * 2018-08-29 2020-03-05 华为技术有限公司 一种采用混合型发光二极管的显示屏幕及其制备方法
CN111883675A (zh) * 2019-09-24 2020-11-03 广东聚华印刷显示技术有限公司 混合型电致发光器件及其制备方法和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299156A (zh) * 2015-05-22 2017-01-04 上海和辉光电有限公司 Oled面板结构及其制作方法
CN106654026A (zh) * 2016-11-22 2017-05-10 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置及照明装置
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法
WO2020041993A1 (zh) * 2018-08-29 2020-03-05 华为技术有限公司 一种采用混合型发光二极管的显示屏幕及其制备方法
CN111883675A (zh) * 2019-09-24 2020-11-03 广东聚华印刷显示技术有限公司 混合型电致发光器件及其制备方法和显示装置

Also Published As

Publication number Publication date
CN114695752A (zh) 2022-07-01
US20240016018A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
Jiang et al. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays
EP2452372B1 (en) Stable and all solution processable quantum dot light-emitting diodes
CN110838550B (zh) 混合型发光二极管及其制备方法
US20120007064A1 (en) Organic electroluminescent device and method for preparing the same
CN106856205B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
US20220093899A1 (en) Organic Light Emitting Diode Employing Multi-Refractive Capping Layer For Improving Light Efficiency
WO2021129183A1 (zh) 发光器件及其制作方法
CN112909193A (zh) 有机发光器件、显示装置以及制作方法
WO2022143770A1 (zh) 一种显示器件及其制备方法
CN111146346A (zh) 顶发光型量子点电致发光二极管及其制备方法
CN113130794B (zh) 一种量子点发光二极管及其制备方法
CN112331787B (zh) 金属四苯基卟啉复合物在电子传输材料中的应用、量子点发光器件及其制备方法和发光装置
US11737343B2 (en) Method of manufacturing perovskite light emitting device by inkjet printing
WO2022143765A1 (zh) 一种显示器件及其像素点亮控制方法
WO2022143664A1 (zh) 一种显示器件及其制备方法
CN114695689A (zh) 显示器件
WO2022233145A1 (zh) 一种量子点电致发光器件
CN113206126A (zh) 显示面板及其制备方法、显示装置
CN111146347A (zh) 电致发光器件及其制备方法
WO2022153384A1 (ja) 発光素子
WO2022143882A1 (zh) 一种量子点发光二极管及其制备方法
WO2023050287A1 (zh) 量子点发光器件及其制备方法、显示装置
WO2022018858A1 (ja) 発光装置
CN115835669A (zh) 量子点发光器件及显示装置
CN115347127A (zh) 量子点发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914502

Country of ref document: EP

Kind code of ref document: A1