WO2022143765A1 - 一种显示器件及其像素点亮控制方法 - Google Patents

一种显示器件及其像素点亮控制方法 Download PDF

Info

Publication number
WO2022143765A1
WO2022143765A1 PCT/CN2021/142445 CN2021142445W WO2022143765A1 WO 2022143765 A1 WO2022143765 A1 WO 2022143765A1 CN 2021142445 W CN2021142445 W CN 2021142445W WO 2022143765 A1 WO2022143765 A1 WO 2022143765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
blue
sub
light
display device
Prior art date
Application number
PCT/CN2021/142445
Other languages
English (en)
French (fr)
Inventor
侯文军
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US18/260,159 priority Critical patent/US20240013710A1/en
Publication of WO2022143765A1 publication Critical patent/WO2022143765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present disclosure relates to the technical field of display devices, and in particular, to a display device and a pixel lighting control method thereof.
  • QLEDs quantum dot-based electroluminescent diodes
  • the QLED device needs to inject electrons and holes when it works.
  • the simplest QLED device consists of a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer, and an anode.
  • the quantum dot light-emitting layer is sandwiched between the charge transport layer.
  • a forward bias is applied to both ends of the QLED device, electrons and holes enter the quantum dot light-emitting layer through the electron transport layer and the hole transport layer, respectively.
  • the quantum dot light-emitting layer performs compound light emission.
  • quantum dot materials have been developed by leaps and bounds, and the external quantum efficiency of red, green and blue QLED devices has been greatly improved, especially in CdSe-based devices.
  • the improved efficiency of QLED devices highlights its future prospects. So far, the quantum efficiencies of red and green quantum dot devices are both greater than 20%, and the device lifetime has reached the same level as red and green OLED devices, reaching the level of commercial application.
  • blue quantum dot devices compared with blue OLED devices, blue quantum dot devices have a large gap in terms of device efficiency and device life, especially blue quantum dot devices are difficult to achieve high efficiency and long life at the same time.
  • the purpose of the present disclosure is to provide a display device and a pixel lighting control method thereof, aiming at solving the problem that it is difficult to achieve high efficiency and long life at the same time in the existing blue-light quantum dot devices.
  • a display device comprising a plurality of pixels arranged in an array, wherein each pixel comprises a red sub-pixel, a green sub-pixel, a first blue sub-pixel and a second blue sub-pixel arranged in an array;
  • the display device further includes: a start-up module, the start-up module is configured to start the first blue light sub-pixel to emit light when the target blue light brightness is greater than the preset blue light brightness value, and when the target blue light brightness is less than the preset blue light brightness value, The second blue sub-pixel is activated to emit light.
  • a start-up module is configured to start the first blue light sub-pixel to emit light when the target blue light brightness is greater than the preset blue light brightness value, and when the target blue light brightness is less than the preset blue light brightness value, The second blue sub-pixel is activated to emit light.
  • the current efficiency of the first blue sub-pixel is ⁇ 8cd/A, and/or the ratio of the current efficiency of the first blue sub-pixel to the current efficiency of the second blue sub-pixel is ⁇ 1.5;
  • the lifetime of the second blue sub-pixel is ⁇ 200h@1000nits, and/or the ratio of the lifetime of the second blue sub-pixel to the lifetime of the first blue sub-pixel is ⁇ 1.5.
  • the ratio of the current efficiency of the first blue sub-pixel to the current efficiency of the second blue sub-pixel is greater than or equal to 1.5 and less than 3;
  • the ratio of the lifetime of the second blue sub-pixel to the lifetime of the first blue sub-pixel is greater than or equal to 1.5 and less than 3.
  • the display device further includes:
  • a comparison module which is used for comparing the required blue light brightness with a preset blue light brightness value
  • a control module configured to control the first blue light sub-pixel or the second blue sub-pixel to emit light according to the comparison result.
  • control module is a data selector.
  • the red photonic pixel specifically includes a first anode, a first hole injection layer, a first hole transport layer, a red quantum dot light-emitting layer, a first electron transport layer, a first cathode and a a light extraction layer;
  • the green photonic pixel specifically includes a second anode, a second hole injection layer, a second hole transport layer, a green quantum dot light-emitting layer, a second electron transport layer, a second cathode and a second light extraction layer that are stacked in sequence. ;
  • the first blue sub-pixel specifically includes a third anode, a third hole injection layer, a third hole transport layer, a first blue quantum dot light-emitting layer, a third electron transport layer, a third cathode, and a third electron transport layer, which are sequentially stacked.
  • the second blue sub-pixel specifically includes a fourth anode, a fourth hole injection layer, a fourth hole transport layer, a second blue quantum dot light-emitting layer, a fourth electron transport layer, a fourth cathode, and a fourth electron transport layer, which are sequentially stacked.
  • Four light extraction layers a fourth anode, a fourth hole injection layer, a fourth hole transport layer, a second blue quantum dot light-emitting layer, a fourth electron transport layer, a fourth cathode, and a fourth electron transport layer, which are sequentially stacked.
  • the emission wavelength of the red quantum dots is 610-625 nm, and/or the emission wavelength of the green quantum dots is 525-550 nm, and/or the emission wavelength of the first blue quantum dots is 450-480 nm, and/or the second The emission wavelength of blue quantum dots is 450-480nm.
  • a pixel lighting control method for a display device wherein the display device includes a plurality of pixels arranged in an array, and each pixel includes a red photonic pixel, a green photonic pixel, a first blue light sub-pixel and a second blue light sub-pixel arranged in an array. sub-pixel, the control method includes:
  • the first blue light sub-pixel or the second blue sub-pixel is controlled to emit light according to the target blue light brightness and the preset blue light brightness value.
  • the step of controlling the first blue light sub-pixel or the second blue light sub-pixel to emit light according to the target blue light brightness and the preset blue light brightness value includes:
  • the second blue light sub-pixel is activated to emit light.
  • the current efficiency of the first blue sub-pixel is ⁇ 8cd/A, and/or the ratio of the current efficiency of the first blue sub-pixel to the current efficiency of the second blue sub-pixel is greater than or equal to 1.5 and less than 3;
  • the lifetime of the second blue sub-pixel is ⁇ 200h@1000nits, and/or the ratio of the lifetime of the second blue sub-pixel to the lifetime of the first blue sub-pixel is greater than or equal to 1.5 and less than 3.
  • the present disclosure provides a full-color display device, in which the first blue light sub-pixel is a high-efficiency blue-light quantum dot device, which lights up when high brightness is required; the second blue sub-pixel is a long-life blue light sub-pixel A blue-light quantum dot device that lights up when low brightness is required.
  • the first blue light sub-pixel is a high-efficiency blue-light quantum dot device, which lights up when high brightness is required
  • the second blue sub-pixel is a long-life blue light sub-pixel
  • a blue-light quantum dot device that lights up when low brightness is required.
  • FIG. 1 is a schematic diagram of a data selector connected to B1 and B2 sub-pixels, respectively, according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a method for fabricating a display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram obtained by step S11 in FIG. 3 .
  • FIG. 5 is a schematic structural diagram obtained through step S12 in FIG. 3 .
  • FIG. 6 is a schematic structural diagram obtained by step S13 in FIG. 3 .
  • FIG. 7 is a schematic structural diagram obtained by step S14 in FIG. 3 .
  • FIG. 8 is a schematic structural diagram obtained by step S15 in FIG. 3 .
  • FIG. 9 is a schematic structural diagram obtained by step S16 in FIG. 3 .
  • the present disclosure provides a display device and a pixel lighting control method thereof.
  • a display device and a pixel lighting control method thereof.
  • the present disclosure will be further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • an embodiment of the present disclosure provides a display device including a plurality of pixels arranged in an array, wherein each pixel includes a red sub-pixel, a green sub-pixel, a first blue sub-pixel and a second blue sub-pixel arranged in an array ;
  • the display device further includes: a start-up module, the start-up module is configured to start the first blue light sub-pixel to emit light when the target blue light brightness is greater than the preset blue light brightness value, and when the target blue light brightness is less than the preset blue light brightness value, The second blue sub-pixel is activated to emit light.
  • a start-up module is configured to start the first blue light sub-pixel to emit light when the target blue light brightness is greater than the preset blue light brightness value, and when the target blue light brightness is less than the preset blue light brightness value, The second blue sub-pixel is activated to emit light.
  • the first blue sub-pixel has high luminous efficiency
  • the second blue sub-pixel has a long lifetime.
  • the required blue light brightness that is, the target blue light brightness
  • the first blue light sub-pixel is activated to emit light; on the contrary, when the required blue light brightness is less than the preset blue light brightness value, the second blue light sub-pixel is activated Pixels glow.
  • the preset blue light brightness value refers to 70%-90% of the highest blue light brightness value of the product. For example, when the display device is applied to a TV, and the normal brightness of the TV product is 100 nits, the range of the preset blue light brightness value is 70-90 nits.
  • the display device includes several pixels, each pixel includes four sub-pixels, and the four sub-pixels include a red sub-pixel (R sub-pixel), a green sub-pixel (G sub-pixel), and a first blue sub-pixel (B1 subpixel) and a second blue subpixel (B2 subpixel).
  • each pixel is composed of an R sub-pixel, a G sub-pixel, a B1 sub-pixel and a B2 sub-pixel, and based on the three primary colors of R, G, and B, a full-color display of the device is realized.
  • the four sub-pixels R, G, B1, and B2 are arranged in an array, and each sub-pixel is independently driven to light up, and each sub-pixel is independently driven to emit light by a driving circuit.
  • the R, G, B1, and B2 sub-pixels are all electroluminescent devices based on quantum dots, wherein the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required; the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required
  • the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the B1 sub-pixel is a high-efficiency blue-light quantum dot device.
  • the current efficiency (denoted as CE B1 ) of the first blue sub-pixel is ⁇ 8cd/A, that is, CE B1 ⁇ 8cd/A.
  • the ratio of the current efficiency of the first blue sub-pixel to the current efficiency of the second blue sub-pixel is ⁇ 1.5, that is, CE B1 /CE B2 ⁇ 1.5. In one embodiment, 3>CE B1 /CE B2 > 1.5.
  • the B2 sub-pixel is a long-life blue-light quantum dot device.
  • the lifetime of the second blue sub-pixel (denoted as LT B2 ) is ⁇ 200h@1000nits, that is, LT B2 ⁇ 200h @1000nits.
  • the ratio of the lifetime of the second blue sub-pixel to the lifetime of the first blue sub-pixel (denoted as LT B1 ) is greater than or equal to 1.5, that is, LT B2 /LT B1 ⁇ 1.5. In one embodiment, 3>LT B2 /LT B1 ⁇ 1.5.
  • quantum dot devices there have been many optimizations of materials and structures for quantum dot devices, including the selection of core/shell quantum dot materials and the alloying of interfaces to reduce surface defects and suppress Auger processes, and the design of surface ligands. And optimize the design of the charge transport layer, etc., to improve its luminous efficiency and prolong life. Therefore, by optimizing the material or structure of the quantum dot device, a first blue sub-pixel with high luminous efficiency can be obtained, and a second blue sub-pixel with a long lifetime can also be obtained.
  • the display device further includes:
  • the comparison module is used to compare the target blue light brightness with the preset blue light brightness value
  • a control module configured to control the first blue light sub-pixel or the second blue sub-pixel to emit light according to the comparison result.
  • the control module controls the first blue light sub-pixel to emit light; on the contrary, when the comparison shows that the required blue light brightness is less than the preset blue light brightness value, the control module controls the second blue sub-pixel to emit light.
  • the control module is a data selector (English: multiplexer, MUX for short), or a multiplexer.
  • the data selector is a device that can select one signal from a plurality of analog or digital input signals for output.
  • the data selector used in this embodiment is the simplest 2-to-1 data selector, and its function is similar to a bidirectional selector switch.
  • the data selector is connected to the B1 and B2 sub-pixels respectively, as shown in FIG. 1 . When working, the B1 or B2 sub-pixels are selectively turned on according to the brightness requirements. There is no need to add other structural units, only a data selector needs to be integrated between the conventional chip and the driving circuit of the display panel.
  • the red photonic pixel includes a first anode, a red quantum dot light-emitting layer, and a first cathode that are stacked in sequence; further, the red photonic pixel specifically includes a first anode, a first anode, a a hole injection layer, a first hole transport layer, a red quantum dot emission layer, a first electron transport layer, a first cathode and a first light extraction layer;
  • the green photonic pixel includes a second anode, a green quantum dot light-emitting layer, and a second cathode that are stacked in sequence; further, the green photonic pixel specifically includes a second anode, a second hole injection layer, and a second anode that are stacked in sequence. Two hole transport layers, a green quantum dot light-emitting layer, a second electron transport layer, a second cathode and a second light extraction layer;
  • the first blue light sub-pixel includes a third anode, a first blue quantum dot light-emitting layer and a third cathode that are stacked in sequence; further, the first blue sub-pixel specifically includes a third anode, a third anode that are stacked in sequence a hole injection layer, a third hole transport layer, a first blue quantum dot light-emitting layer, a third electron transport layer, a third cathode and a third light extraction layer;
  • the second blue light sub-pixel includes a fourth anode, a second blue quantum dot light-emitting layer and a fourth cathode arranged in sequence; further, the second blue sub-pixel specifically includes a fourth anode, a fourth A hole injection layer, a fourth hole transport layer, a second blue quantum dot light emitting layer, a fourth electron transport layer, a fourth cathode and a fourth light extraction layer.
  • each sub-pixel has multiple forms, and each sub-pixel is divided into a positive structure and an inversion structure.
  • the sub-pixel When the anode is located on the substrate, the sub-pixel has a positive structure; when the cathode is located on the substrate, the sub-pixel has a positive structure.
  • the inversion structure this embodiment will mainly take the structure shown in FIG. 2 as an example for detailed description.
  • the display device of this embodiment includes a plurality of pixels arranged in an array, and each pixel is composed of a red sub-pixel, a green sub-pixel, a first blue sub-pixel and a second blue sub-pixel;
  • the red photonic pixel includes an anode (Anode), a hole injection layer (HIL), a hole transport layer (HTL), a red quantum dot emission layer (EML, red QD), an electron transport layer (ETL), Cathode (Cathode) and light extraction layer (CPL);
  • Anode anode
  • HIL hole injection layer
  • HTL hole transport layer
  • EML red quantum dot emission layer
  • ETL electron transport layer
  • Cathode Cathode
  • CPL light extraction layer
  • the green photonic pixel specifically includes an anode (Anode), a hole injection layer (HIL), a hole transport layer (HTL), a green quantum dot light-emitting layer (EML, green QD), and an electron transport layer (ETL) that are stacked in sequence. , cathode (Cathode) and light extraction layer (CPL);
  • the first blue sub-pixel specifically includes an anode (Anode), a hole injection layer (HIL), a hole transport layer (HTL), a first blue quantum dot light-emitting layer (EML, blue QD1), an electron Transport layer (ETL), cathode (Cathode) and light extraction layer (CPL);
  • Anode anode
  • HIL hole injection layer
  • HTL hole transport layer
  • EML first blue quantum dot light-emitting layer
  • ETL electron Transport layer
  • Cathode cathode
  • CPL light extraction layer
  • the second blue sub-pixel specifically includes an anode (Anode), a hole injection layer (HIL), a hole transport layer (HTL), a second blue quantum dot light-emitting layer (EML, blue QD2), an electron Transport Layer (ETL), Cathode (Cathode) and Light Extraction Layer (CPL).
  • Anode anode
  • HIL hole injection layer
  • HTL hole transport layer
  • EML second blue quantum dot light-emitting layer
  • ETL electron Transport Layer
  • Cathode Cathode
  • CPL Light Extraction Layer
  • the anode is a total reflection electrode
  • the cathode is a transmissive electrode
  • the light emitted by the display device is emitted from the cathode
  • a light extraction layer is arranged on the cathode to increase the light extraction efficiency, thereby improving the luminous efficiency of the device.
  • the anode can also be a transmissive electrode
  • the cathode can be a total reflection electrode.
  • the light emitted by the display device is emitted from the anode, and a light extraction layer is arranged on the anode to increase the light extraction efficiency, thereby improving the luminous efficiency of the device.
  • the emission wavelength of red quantum dots is 610-625 nm, and/or the emission wavelength of green quantum dots is 525-550 nm, and/or the emission wavelength of blue quantum dots is 450-480 nm.
  • the thicknesses of the red quantum dot emitting layer, the green quantum dot emitting layer, the first blue quantum dot emitting layer and the second blue quantum dot emitting layer are all 5 nm-50 nm.
  • the red light quantum dots, green light quantum dots, first blue light quantum dots and second blue light quantum dots may be independently selected from one of binary phase, ternary phase, quaternary phase quantum dots, etc.
  • binary phase quantum dots include one or more of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, HgS, etc.
  • ternary phase quantum dots include ZnCdS, CuInS, ZnCdSe, ZnSeS, One or more of ZnCdTe, PbSeS, etc.
  • quaternary phase quantum dots include one or more of ZnCdS/ZnSe, CuInS/ZnS, ZnCdSe/ZnS, CuInSeS, ZnCdTe/ZnS, PbSeS/ZnS, etc.
  • the quantum dots can be cadmium-containing or cadmium-free.
  • the anode is a total reflection electrode
  • the material of the total reflection electrode may be selected from one of metals such as Al, Ag, Mo, and their alloy materials, but is not limited thereto.
  • ITO electrodes transparent electrodes
  • the thickness of the total reflection electrode is greater than or equal to 80 nm, such as 80 nm-120 nm. In one embodiment, the thickness of the ITO electrode is 10 nm-20 nm.
  • the material of the hole injection layer may be selected from, but not limited to, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS), CuPc , P3HT, transition metal oxide, transition metal chalcogenide one or two or more.
  • the transition metal oxide includes one or two or more of NiO x , MoO x , WO x , CrO x , and CuO.
  • the metal chalcogenide compound includes one or two or more of MoS x , MoSex , WS x , WSex , and CuS.
  • the hole injection layer has a thickness of about 10 nm to 40 nm.
  • the material of the hole transport layer can be selected from materials with good hole transport properties, such as, but not limited to, poly(9,9-dioctylfluorene-CO-N-(4) -butylphenyl)diphenylamine)(TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), NPB, NiO One or more of , MoO 3 , etc.
  • the thickness of the hole transport layer is about 10 nm-40 nm.
  • the material of the electron transport layer can be conventional electron transport materials in the art, including but not limited to ZnO, MZO (magnesium zinc oxide), AMO (aluminum zinc oxide), MLZO (magnesium lithium zinc oxide) ), TiO 2 , CsF, LiF, CsCO 3 and Alq 3 or a mixture of any combination thereof.
  • the electron transport layer has a thickness of about 20nm-50nm.
  • the cathode may be selected from one of aluminum (Al) electrodes, silver (Ag) electrodes, and gold (Au) electrodes, etc., and may also be selected from nano-aluminum wires, nano-silver wires, and nano-gold electrodes. one of the lines, etc.
  • Al aluminum
  • Au gold
  • the thickness of the cathode is about 5 nm-40 nm.
  • the material of the light extraction layer can be the same as the material of the hole transport layer, such as CBP, etc.; it can also be the same as the material of the electron transport layer, such as LiF, etc.; it can also be o-phenanthroline and its derivatives, etc.
  • the thickness of the light extraction layer is about 30nm-150nm.
  • An embodiment of the present disclosure provides a method for manufacturing a display device, the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, a first blue sub-pixel and a second blue sub-pixel arranged in an array Sub-pixels, the first blue sub-pixels have high luminous efficiency, and the second blue sub-pixels have long lifetimes.
  • the preparation method of each pixel includes the following steps:
  • HTL hole transport layer
  • ETL electron transport layer
  • CPL light extraction layer
  • the first blue light sub-pixel when the blue light brightness is required to be greater than or equal to the preset blue light brightness value, the first blue light sub-pixel is activated to emit light;
  • the second blue light sub-pixel is activated to emit light.
  • the preset blue light brightness value refers to 70%-90% of the highest blue light brightness value of the product.
  • the range of the preset blue light brightness value is 70-90 nits.
  • the display device includes several pixels, each pixel includes four sub-pixels, and the four sub-pixels include a red sub-pixel (R sub-pixel), a green sub-pixel (G sub-pixel), and a first blue sub-pixel (B1 subpixel) and a second blue subpixel (B2 subpixel).
  • each pixel is composed of an R sub-pixel, a G sub-pixel, a B1 sub-pixel and a B2 sub-pixel, and based on the three primary colors of R, G, and B, a full-color display of the device is realized.
  • the four sub-pixels R, G, B1, and B2 are arranged in an array, and each sub-pixel is independently driven to light up, and each sub-pixel is independently driven to emit light by a driving circuit.
  • the R, G, B1, and B2 sub-pixels are all electroluminescent devices based on quantum dots, wherein the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required; the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required
  • the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the substrate is divided into four sub-pixel regions.
  • the material of the pixel defining layer and its preparation are in the prior art, and details are not repeated here.
  • the above-mentioned methods for preparing the layers may be chemical methods or physical methods, wherein chemical methods include but are not limited to chemical vapor deposition methods, continuous ion layer adsorption and reaction methods, anodic oxidation methods, electrolytic deposition methods, and co-precipitation methods.
  • One or more of; physical methods include but are not limited to solution methods (such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.), deposition method (such as physical vapor deposition method) , element layer deposition method, pulsed laser deposition method, etc.) one or more.
  • solution methods such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.
  • evaporation method such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.
  • deposition method such as physical vapor deposition method) , element layer deposition method, pulsed laser deposition method, etc.
  • An embodiment of the present disclosure provides a pixel lighting control method for a display device, wherein the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, and a first blue sub-pixel arranged in an array.
  • the control method includes:
  • the first blue light sub-pixel or the second blue sub-pixel is controlled to emit light according to the target blue light brightness and the preset blue light brightness value.
  • the step of controlling the first blue light sub-pixel or the second blue light sub-pixel to emit light according to the target blue light brightness and the preset blue light brightness value specifically includes:
  • the second blue light sub-pixel is activated to emit light.
  • the preset blue light brightness value refers to 70%-90% of the highest blue light brightness value of the product.
  • the range of the preset blue light brightness value is 70-90 nits.
  • the R, G, B1, and B2 sub-pixels are all electroluminescent devices based on quantum dots, wherein the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required; the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the B1 sub-pixel is a high-efficiency blue-light quantum dot device that lights up when high brightness is required
  • the B2 sub-pixel is Long-lived blue quantum dot devices that light up when low brightness is required.
  • the B1 sub-pixel is a high-efficiency blue-light quantum dot device.
  • the current efficiency (denoted as CE B1 ) of the first blue sub-pixel is ⁇ 8cd/A, that is, CE B1 ⁇ 8cd/A.
  • the ratio of the current efficiency of the first blue sub-pixel to the current efficiency of the second blue sub-pixel is ⁇ 1.5, that is, CE B1 /CE B2 ⁇ 1.5. In one embodiment, 3>CE B1 /CE B2 > 1.5.
  • the B2 sub-pixel is a long-life blue-light quantum dot device.
  • the lifetime of the second blue sub-pixel (denoted as LT B2 ) is ⁇ 200h@1000nits, that is, LT B2 ⁇ 200h @1000nits.
  • the ratio of the lifetime of the second blue sub-pixel to the lifetime of the first blue sub-pixel (denoted as LT B1 ) is greater than or equal to 1.5, that is, LT B2 /LT B1 ⁇ 1.5. In one embodiment, 3>LT B2 /LT B1 ⁇ 1.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开公开一种显示器件及其像素点亮控制方法。所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素;所述显示器件还包括:启动模块,所述启动模块用于当目标蓝光亮度大于预设蓝光亮度值时,启动所述第一蓝光子像素发光,当目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。本公开通过选择不同特性的蓝光量子点器件,可以在不影响全彩器件显示效果的情况下,实现器件的发光效率和寿命的提升。

Description

一种显示器件及其像素点亮控制方法
优先权
本公开要求于申请日为2020年12月31日提交中国专利局、申请号为“202011639732.7”、申请名称为“一种显示器件及其像素点亮控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示器件技术领域,尤其涉及一种显示器件及其像素点亮控制方法。
背景技术
由于量子点独特的光电性质,例如发光波长随尺寸和成分连续可调、发光光谱窄、荧光效率高、稳定性好等,基于量子点的电致发光二极管(QLED)在显示领域得到广泛的关注和研究。此外,QLED显示还具有可视角大、对比度高、响应速度快、可柔性等诸多LCD所无法实现的优势,因而有望成为下一代的显示技术。
QLED器件工作时需要注入电子和空穴,最简单的QLED器件由阴极、电子传输层、量子点发光层、空穴传输层和阳极组成。在QLED器件中,量子点发光层夹在电荷传输层中间,当正向偏压加到QLED器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层,在量子点发光层进行复合发光。
经过二十多年的发展,量子点材料得到了飞跃发展,红绿蓝QLED器件的外量子效率得到了巨大提升,尤其在以CdSe为主的器件。QLED器件效率的提升突出了其未来的前景。到目前为止,红绿量子点器件量子效率均大于20%,器件寿命已经和红色绿色OLED器件在同一水平,已经达到商业化应用的水平。但是,与蓝色OLED器件相比,蓝色量子点器件无论是器件效率还是器件寿命都有较大差距,尤其是蓝色量子点器件难以同时实现高效率和长寿命。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种显示器件及其像素点亮控制方法,旨在解决现有蓝光量子点器件难以同时实现高效率和长寿命的问题。
本公开的技术方案如下:
一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素;
所述显示器件还包括:启动模块,所述启动模块用于当目标蓝光亮度大于预设蓝光亮度值时,启动所述第一蓝光子像素发光,当目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。
可选地,所述第一蓝光子像素的电流效率为≥8cd/A,和/或,第一蓝光子像素的电流效率与第二蓝光子像素的电流效率的比值≥1.5;
和/或,所述第二蓝光子像素的寿命为≥200h@1000nits,和/或,第二蓝光子像素的寿命与第一蓝光子像素的寿命的比值≥1.5。
可选地,第一蓝光子像素的电流效率与第二蓝光子像素的电流效率的比值大于等于1.5,小于3;
和/或,第二蓝光子像素的寿命与第一蓝光子像素的寿命的比值大于等于1.5,小于3。
可选地,所述显示器件还包括:
比较模块,所述比较模块用于将需要蓝光亮度与预设蓝光亮度值进行比较;
控制模块,所述控制模块用于根据比较结果,控制所述第一蓝光子像素或第二蓝光子像素发光。
可选地,所述控制模块为数据选择器。
可选地,所述红光子像素具体包括依次层叠设置的第一阳极、第一空穴注入层、第一空穴传输层、红光量子点发光层、第一电子传输层、第一阴极和第一光取出层;
所述绿光子像素具体包括依次层叠设置的第二阳极、第二空穴注入层、第二空穴传输层、绿光量子点发光层、第二电子传输层、第二阴极和第二光取出层;
所述第一蓝光子像素具体包括依次层叠设置的第三阳极、第三空穴注入层、第三空穴传输层、第一蓝光量子点发光层、第三电子传输层、第三阴极和第三光取出层;
所述第二蓝光子像素具体包括依次层叠设置的第四阳极、第四空穴注入层、第四空穴传输层、第二蓝光量子点发光层、第四电子传输层、第四阴极和第四光取出层。
可选地,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或第一蓝光量子点的发光波长为450-480nm,和/或第二蓝光量子点的发光波长为450-480nm。
一种显示器件的像素点亮控制方法,其中,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素,所述控制方法包括:
根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光。
可选地,所述根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光的步骤包括:
在目标蓝光亮度大于等于预设蓝光亮度值时,启动所述第一蓝光子像素发光;或者,
在目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。
可选地,所述第一蓝光子像素的电流效率为≥8cd/A,和/或,第一蓝光子像素的电流效率与第二蓝光子像素的电流效率的比值大于等于1.5,小于3;
和/或,所述第二蓝光子像素的寿命为≥200h@1000nits,和/或,第二蓝光子像素的寿命与第一蓝光子像素的寿命的比值大于等于1.5,小于3。
有益效果:本公开提供了一种全彩的显示器件,该器件中,第一蓝光子像素为高效率的蓝光量子点器件,在需要高亮度时点亮;第二蓝光子像素为长寿命的蓝光量子点器件,在需要低亮度时点亮。如此,通过选择不同特性的蓝光量子点器件, 可以在不影响全彩显示器件显示效果的情况下,实现器件兼具高的发光效率和长的寿命。
附图说明
图1为本公开实施例提供的一种数据选择器分别与B1和B2子像素连接的示意图。
图2为本公开实施例提供的一种显示器件的结构示意图。
图3为本公开实施例提供的一种显示器件的制备方法的流程示意图。
图4为图3中经步骤S11得到的结构示意图。
图5为图3中经步骤S12得到的结构示意图。
图6为图3中经步骤S13得到的结构示意图。
图7为图3中经步骤S14得到的结构示意图。
图8为图3中经步骤S15得到的结构示意图。
图9为图3中经步骤S16得到的结构示意图。
具体实施方式
本公开提供一种显示器件及其像素点亮控制方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
现有蓝光量子点要么发光效率高,但是寿命较短,要么寿命长,但是发光效率较低。因此,现有蓝光量子点,无法同时满足对器件效率和寿命的要求。
基于此,本公开实施例提供一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素;
所述显示器件还包括:启动模块,所述启动模块用于当目标蓝光亮度大于预设蓝光亮度值时,启动所述第一蓝光子像素发光,当目标蓝光亮度小于预设蓝光亮度 值时,启动所述第二蓝光子像素发光。
本实施例中,所述第一蓝光子像素具有高的发光效率,所述第二蓝光子像素具有长寿命。当需要蓝光亮度(即目标蓝光亮度)大于等于预设蓝光亮度值时,启动所述第一蓝光子像素发光;反之,当需要蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。需说明的是,所述预设蓝光亮度值指的是产品最高蓝光亮度值的70%-90%。例如,当所述显示器件应用于TV时,TV产品的常规亮度是100nits,则所述预设蓝光亮度值的范围为70-90nits。
本实施例中,显示器件包括若干像素,每个像素包括四个子像素,所述四个子像素包括红光子像素(R子像素)、绿光子像素(G子像素)、第一蓝光子像素(B1子像素)和第二蓝光子像素(B2子像素)。本实施例中,每个像素由R子像素、G子像素、B1子像素和B2子像素构成,基于R、G、B三原色光,实现器件全彩显示。其中阵列排列的R、G、B1、B2四个子像素,每个子像素通过独立驱动点亮,每个子像素由驱动电路独立驱动发光。
本实施例中,R、G、B1、B2子像素均为基于量子点的电致发光器件,其中B1子像素为高效率的蓝光量子点器件,在需要高亮度时点亮;B2子像素为长寿命的蓝光量子点器件,在需要低亮度时点亮。如此,通过选择不同特性的蓝光量子点器件,可以在不影响全彩显示器件显示效果的情况下,实现器件兼具高的发光效率和长的寿命。
本实施例中,B1子像素为高效率的蓝光量子点器件。在一种实施方式中,所述第一蓝光子像素的电流效率(记为C.E. B1)为≥8cd/A,即C.E. B1≥8cd/A。
在一种实施方式中,第一蓝光子像素的电流效率与第二蓝光子像素的电流效率(记为C.E. B2)的比值≥1.5,即C.E. B1/C.E. B2≥1.5。在一种实施方式中,3>C.E. B1/C.E. B2≥1.5。
本实施例中,B2子像素为长寿命的蓝光量子点器件。在一种实施方式中,所述第二蓝光子像素的寿命(记为L.T. B2)为≥200h@1000nits,即L.T. B2≥200h@1000nits。
在一种实施方式中,第二蓝光子像素的寿命与第一蓝光子像素的寿命(记为 L.T. B1)的比值≥1.5,即L.T. B2/L.T. B1≥1.5。在一种实施方式中,3>L.T. B2/L.T. B1≥1.5。
需说明的是,现有已有很多针对量子点器件进行材料和结构的优化,包括核/壳量子点材料的选择和界面的合金化以减少表面缺陷和抑制俄歇过程、表面配体的设计和优化电荷传输层的设计等,以提高其发光效率和延长寿命。因此,通过对量子点器件进行材料或结构的优化,可以获得高发光效率的第一蓝光子像素,也可以获得长寿命的第二蓝光子像素。
在一种实施方式中,所述显示器件还包括:
比较模块,所述比较模块用于将目标蓝光亮度与预设蓝光亮度值进行比较;
控制模块,所述控制模块用于根据比较结果,控制所述第一蓝光子像素或第二蓝光子像素发光。
本实施例中,当比较得出需要蓝光亮度大于等于预设蓝光亮度值时,控制模块控制所述第一蓝光子像素发光;反之,当比较得出需要蓝光亮度小于预设蓝光亮度值时,控制模块控制所述第二蓝光子像素发光。
在一种实施方式中,所述控制模块为数据选择器(英语:multiplexer,简称:MUX),或称多路复用器。所述数据选择器是一种可以从多个模拟或数字输入信号中选择一个信号进行输出的器件。本实施例中使用的数据选择器为最简单的2选1数据选择器,其功能类似于一个双向选择开关,数据选择器分别与B1和B2子像素连接,见图1所示。工作时根据亮度需求选择性的使B1或者B2子像素点亮。无需增加其他结构单元,只需要在常规的芯片和显示面板的驱动电路中间集成一个数据选择器即可。
在一种实施方式中,所述红光子像素包括依次层叠设置的第一阳极、红光量子点发光层和第一阴极;进一步地,所述红光子像素具体包括依次层叠设置的第一阳极、第一空穴注入层、第一空穴传输层、红光量子点发光层、第一电子传输层、第一阴极和第一光取出层;
所述绿光子像素包括依次层叠设置的第二阳极、绿光量子点发光层和第二阴极;进一步地,所述绿光子像素具体包括依次层叠设置的第二阳极、第二空穴注入层、 第二空穴传输层、绿光量子点发光层、第二电子传输层、第二阴极和第二光取出层;
所述第一蓝光子像素包括依次层叠设置的第三阳极、第一蓝光量子点发光层和第三阴极;进一步地,所述第一蓝光子像素具体包括依次层叠设置的第三阳极、第三空穴注入层、第三空穴传输层、第一蓝光量子点发光层、第三电子传输层、第三阴极和第三光取出层;
所述第二蓝光子像素包括依次层叠设置的第四阳极、第二蓝光量子点发光层和第四阴极;进一步地,所述第二蓝光子像素具体包括依次层叠设置的第四阳极、第四空穴注入层、第四空穴传输层、第二蓝光量子点发光层、第四电子传输层、第四阴极和第四光取出层。
本实施例中,每个子像素有多种形式,且每个子像素分正型结构和反型结构,当阳极位于基板上时,子像素为正型结构;当阴极位于基板上时,子像素为反型结构,本实施例将主要以如图2所示的结构为例进行详细介绍。如图2所示,本实施例的显示器件包括呈阵列排列的若干像素,每个像素由红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素构成;
所述红光子像素包括依次层叠设置的阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、红光量子点发光层(EML,红色QD)、电子传输层(ETL)、阴极(Cathode)和光取出层(CPL);
所述绿光子像素具体包括依次层叠设置的阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、绿光量子点发光层(EML,绿色QD)、电子传输层(ETL)、阴极(Cathode)和光取出层(CPL);
所述第一蓝光子像素具体包括依次层叠设置的阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、第一蓝光量子点发光层(EML,蓝色QD1)、电子传输层(ETL)、阴极(Cathode)和光取出层(CPL);
所述第二蓝光子像素具体包括依次层叠设置的阳极(Anode)、空穴注入层(HIL)、空穴传输层(HTL)、第二蓝光量子点发光层(EML,蓝色QD2)、电子传输层(ETL)、阴极(Cathode)和光取出层(CPL)。
本实施例中,阳极为全反射电极,阴极为透射电极,显示器件发出的光从阴极射出,在所述阴极上设置光取出层,可以增加光取出效率,从而提高了器件的发光效率。当然所述阳极也可以为透射电极,阴极为全反射电极,显示器件发出的光从阳极射出,在所述阳极上设置光取出层,可以增加光取出效率,从而提高了器件的发光效率。
在一种实施方式中,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或蓝光量子点的发光波长为450-480nm。
在一种实施方式中,所述红光量子点发光层、绿光量子点发光层、第一蓝光量子点发光层和第二蓝光量子点发光层的厚度均为5nm-50nm。
在一种实施方式中,所述红光量子点、绿光量子点、第一蓝光量子点和第二蓝光量子点可以独立地选自二元相、三元相、四元相量子点等中的一种或多种;其中二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种,三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种,四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。该量子点可以为含镉或者不含镉。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。
在一种实施方式中,所述阳极为全反射电极,所述全反射电极的材料可以选自Al、Ag、Mo等金属及其合金材料中的一种,但不限于此。需说明的是,本公开实施例中,所述全反射电极两侧还可以设置ITO电极(透明电极),如ITO/Ag/ITO,以降低电极的功函数,利于电荷注入。在一种实施方式中,所述全反射电极的厚度大于等于80nm,如80nm-120nm。在一种实施方式中,所述ITO电极的厚度为10nm-20nm。
在一种实施方式中,所述空穴注入层的材料可以选自但不限于:聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)、CuPc、P3HT、过渡金属氧化物、过渡金属硫系化合物中的一种或两种或多种。其中,所述过渡金属氧化物包括NiO x、MoO x、WO x、CrO x、CuO中的一种或两种或多种。所述金属硫系化合物包括MoS x、MoSe x、 WS x、WSe x、CuS中的一种或两种或多种。在一种实施方式中,所述空穴注入层的厚度约为10nm-40nm。
在一种实施方式中,所述空穴传输层的材料可以选自具有良好空穴传输性能的材料,例如可以包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、NPB、NiO、MoO 3等中的一种或多种。在一种实施方式中,所述空穴传输层的厚度约为10nm-40nm。
在一种实施方式中,所述电子传输层的材料可采用本领域常规的电子传输材料,包括但不限于ZnO、MZO(镁锌氧)、AMO(铝锌氧)、MLZO(镁锂锌氧)、TiO 2、CsF、LiF、CsCO 3和Alq3中的一种或者为其任意组合的混合物。在一种实施方式中,所述电子传输层的厚度约为20nm-50nm。
在一种实施方式中,所述阴极可选自铝(Al)电极、银(Ag)电极和金(Au)电极等中的一种,还可选自纳米铝线、纳米银线和纳米金线等中的一种。上述材料具有较小的电阻,使得载流子能顺利的注入。在一种实施方式中,所述阴极的厚度约为5nm-40nm。
在一种实施方式中,所述光取出层的材料可以与空穴传输层的材料相同,如CBP等;也可以与电子传输层的材料相同,如LiF等;还可以为邻菲啰啉及其衍生物等。在一种实施方式中,所述光取出层的厚度约为30nm-150nm。
以图2所示结构的为例,对显示器件的制备方法做介绍。本公开实施例提供一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素,所述第一蓝光子像素具有高的发光效率,所述第二蓝光子像素具有长寿命。结合图3-9所示,每个像素的制备方法包括步骤:
S10、将基板划分成红光子像素区域、绿光子像素区域、第一蓝光子像素区域、第二蓝光子像素区域;
S11、在所述红光子像素区域、绿光子像素区域、第一蓝光子像素区域、第二蓝 光子像素区域内形成阳极(Anode),在所述阳极上形成空穴注入层(HIL);
S12、在所述空穴注入层上形成空穴传输层(HTL);
S13、在所述空穴传输层上分别形成红光量子点发光层(记为R)、绿光量子点发光层(记为G)、第一蓝光量子点发光层(记为B1)和第二蓝光量子点发光层(记为B2);
S14、在所述红光量子点发光层、绿光量子点发光层、第一蓝光量子点发光层和第二蓝光量子点发光层上形成电子传输层(ETL);
S15、在所述电子传输层上形成阴极(Cathode);
S16、在所述阴极上形成光取出层(CPL),分别得到红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素。
本实施例中,当需要蓝光亮度大于等于预设蓝光亮度值时,启动所述第一蓝光子像素发光;
反之,当需要蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。需说明的是,所述预设蓝光亮度值指的是产品最高蓝光亮度值的70%-90%。例如,当所述显示器件应用于TV时,TV产品的常规亮度是100nits,则所述预设蓝光亮度值的范围为70-90nits。
本实施例中,显示器件包括若干像素,每个像素包括四个子像素,所述四个子像素包括红光子像素(R子像素)、绿光子像素(G子像素)、第一蓝光子像素(B1子像素)和第二蓝光子像素(B2子像素)。本实施例中,每个像素由R子像素、G子像素、B1子像素和B2子像素构成,基于R、G、B三原色光,实现器件全彩显示。其中阵列排列的R、G、B1、B2四个子像素,每个子像素通过独立驱动点亮,每个子像素由驱动电路独立驱动发光。
本实施例中,R、G、B1、B2子像素均为基于量子点的电致发光器件,其中B1子像素为高效率的蓝光量子点器件,在需要高亮度时点亮;B2子像素为长寿命的蓝光量子点器件,在需要低亮度时点亮。如此,通过选择不同特性的蓝光量子点器件,可以在不影响全彩显示器件显示效果的情况下,实现器件兼具高的发光效率和长的 寿命。
需说明的是,通过在基板上制备五个坝状的像素界定层的方法,将基板划分成四个子像素区域。关于像素界定层的材料及其制备为现有技术,在此不再赘述。
关于显示器件的更多细节见上文,在此不再赘述。
本公开实施例中,上述各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、元素层沉积法、脉冲激光沉积法等)中的一种或多种。
本公开实施例提供一种显示器件的像素点亮控制方法,其中,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素,所述控制方法包括:
根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光。
本实施例中,所述根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光的步骤,具体包括:
在目标蓝光亮度大于等于预设蓝光亮度值时,启动所述第一蓝光子像素发光;或者,
在目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。
需说明的是,所述预设蓝光亮度值指的是产品最高蓝光亮度值的70%-90%。例如,当所述显示器件应用于TV时,TV产品的常规亮度是100nits,则所述预设蓝光亮度值的范围为70-90nits。
本实施例中,R、G、B1、B2子像素均为基于量子点的电致发光器件,其中B1子像素为高效率的蓝光量子点器件,在需要高亮度时点亮;B2子像素为长寿命的蓝光量子点器件,在需要低亮度时点亮。如此,通过选择不同特性的蓝光量子点器件, 可以在不影响全彩显示器件显示效果的情况下,实现器件兼具高的发光效率和长的寿命。
本实施例中,B1子像素为高效率的蓝光量子点器件。在一种实施方式中,所述第一蓝光子像素的电流效率(记为C.E. B1)为≥8cd/A,即C.E. B1≥8cd/A。
在一种实施方式中,第一蓝光子像素的电流效率与第二蓝光子像素的电流效率(记为C.E. B2)的比值≥1.5,即C.E. B1/C.E. B2≥1.5。在一种实施方式中,3>C.E. B1/C.E. B2≥1.5。
本实施例中,B2子像素为长寿命的蓝光量子点器件。在一种实施方式中,所述第二蓝光子像素的寿命(记为L.T. B2)为≥200h@1000nits,即L.T. B2≥200h@1000nits。
在一种实施方式中,第二蓝光子像素的寿命与第一蓝光子像素的寿命(记为L.T. B1)的比值≥1.5,即L.T. B2/L.T. B1≥1.5。在一种实施方式中,3>L.T. B2/L.T. B1≥1.5。
关于所述显示器件的具体结构、材料选择及其它细节见上文,在此不再赘述。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (22)

  1. 一种显示器件,包括呈阵列排列的若干像素,其中,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像素和第二蓝光子像素;
    所述显示器件还包括:启动模块,所述启动模块用于当目标蓝光亮度大于预设蓝光亮度值时,启动所述第一蓝光子像素发光,当目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。
  2. 根据权利要求1所述的显示器件,其中,所述第一蓝光子像素的电流效率为≥8cd/A。
  3. 根据权利要求1所述的显示器件,其中,所述第一蓝光子像素的电流效率与所述第二蓝光子像素的电流效率的比值≥1.5。
  4. 根据权利要求1所述的显示器件,其中,所述第二蓝光子像素的寿命为≥200h@1000nits。
  5. 根据权利要求1所述的显示器件,其中,所述第二蓝光子像素的寿命与所述第一蓝光子像素的寿命的比值≥1.5。
  6. 根据权利要求3所述的显示器件,其中,所述第一蓝光子像素的电流效率与所述第二蓝光子像素的电流效率的比值大于等于1.5,小于3。
  7. 根据权利要求6所述的显示器件,其中,所述第二蓝光子像素的寿命与所述第一蓝光子像素的寿命的比值大于等于1.5,小于3。
  8. 根据权利要求1所述的显示器件,其中,所述显示器件还包括:
    比较模块,所述比较模块用于将目标蓝光亮度与预设蓝光亮度值进行比较;
    控制模块,所述控制模块用于根据比较结果,控制所述第一蓝光子像素或第二蓝光子像素发光。
  9. 根据权利要求8所述的显示器件,其中,所述控制模块为数据选择器。
  10. 根据权利要求1所述的显示器件,其中,所述红光子像素具体包括依次层叠设置的第一阳极、第一空穴注入层、第一空穴传输层、红光量子点发光层、第一电子传输层、第一阴极和第一光取出层;
    所述绿光子像素具体包括依次层叠设置的第二阳极、第二空穴注入层、第二空 穴传输层、绿光量子点发光层、第二电子传输层、第二阴极和第二光取出层;
    所述第一蓝光子像素具体包括依次层叠设置的第三阳极、第三空穴注入层、第三空穴传输层、第一蓝光量子点发光层、第三电子传输层、第三阴极和第三光取出层;
    所述第二蓝光子像素具体包括依次层叠设置的第四阳极、第四空穴注入层、第四空穴传输层、第二蓝光量子点发光层、第四电子传输层、第四阴极和第四光取出层。
  11. 根据权利要求10所述的显示器件,其中,所述红光量子点发光层的厚度为5nm-50nm;
    或,所述绿光量子点发光层的厚度为5nm-50nm;
    或,所述第一蓝光量子点发光层的厚度为5nm-50nm;
    或,所述第二蓝光量子点发光层的厚度为5nm-50nm。
  12. 根据权利要求10所述的显示器件,其中,所述红光量子点、绿光量子点、第一蓝光量子点和第二蓝光量子点独立地选自二元相、三元相、四元相量子点等中的一种或多种。
  13. 根据权利要求12所述的显示器件,其中,二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种。
  14. 根据权利要求12所述的显示器件,其中,三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种。
  15. 根据权利要求12所述的显示器件,其中,四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。
  16. 根据权利要求1所述的显示器件,其中,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或第一蓝光量子点的发光波长为450-480nm,和/或第二蓝光量子点的发光波长为450-480nm。
  17. 一种显示器件的像素点亮控制方法,其中,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、第一蓝光子像 素和第二蓝光子像素,所述控制方法包括:
    根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光。
  18. 根据权利要求17所述的显示器件的像素点亮控制方法,其中,所述根据目标蓝光亮度与预设蓝光亮度值,控制所述第一蓝光子像素或第二蓝光子像素发光的步骤包括:
    在目标蓝光亮度大于等于预设蓝光亮度值时,启动所述第一蓝光子像素发光;或者,
    在目标蓝光亮度小于预设蓝光亮度值时,启动所述第二蓝光子像素发光。
  19. 根据权利要求17所述的显示器件的像素点亮控制方法,其中,所述第一蓝光子像素的电流效率为≥8cd/A。
  20. 根据权利要求17所述的显示器件的像素点亮控制方法,其中,所述第一蓝光子像素的电流效率与所述第二蓝光子像素的电流效率的比值大于等于1.5,小于3。
  21. 根据权利要求20所述的显示器件的像素点亮控制方法,其中,所述第二蓝光子像素的寿命为≥200h@1000nits。
  22. 根据权利要求20所述的显示器件的像素点亮控制方法,其中,所述第二蓝光子像素的寿命与所述第一蓝光子像素的寿命的比值大于等于1.5,小于3。
PCT/CN2021/142445 2020-12-31 2021-12-29 一种显示器件及其像素点亮控制方法 WO2022143765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/260,159 US20240013710A1 (en) 2020-12-31 2021-12-29 Display device and pixel lighting control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011639732.7 2020-12-31
CN202011639732.7A CN114765201A (zh) 2020-12-31 2020-12-31 一种显示器件及其像素点亮控制方法

Publications (1)

Publication Number Publication Date
WO2022143765A1 true WO2022143765A1 (zh) 2022-07-07

Family

ID=82260249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142445 WO2022143765A1 (zh) 2020-12-31 2021-12-29 一种显示器件及其像素点亮控制方法

Country Status (3)

Country Link
US (1) US20240013710A1 (zh)
CN (1) CN114765201A (zh)
WO (1) WO2022143765A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984487A (zh) * 2010-11-02 2011-03-09 友达光电股份有限公司 主动式矩阵有机发光二极管显示面板的驱动方法
CN104933981A (zh) * 2015-07-10 2015-09-23 深圳市华星光电技术有限公司 像素结构及高亮度广色域长寿命的显示方法
US20160189670A1 (en) * 2014-12-29 2016-06-30 Samsung Display Co., Ltd. Organic light emitting display device
CN108987441A (zh) * 2018-06-29 2018-12-11 云谷(固安)科技有限公司 有机电致发光装置及其显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057944A1 (en) * 2013-10-17 2015-04-23 Nanophotonica, Inc. Quantum dot for emitting light and method for synthesizing same
TWI744296B (zh) * 2016-03-24 2021-11-01 美商陶氏全球科技責任有限公司 光電子裝置及使用方法
JP7144422B2 (ja) * 2017-08-10 2022-09-29 株式会社半導体エネルギー研究所 有機化合物、発光素子、表示装置、電子機器及び照明装置
KR102442210B1 (ko) * 2017-12-21 2022-09-14 삼성디스플레이 주식회사 유기 전계 발광 소자, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 표시장치
KR102552300B1 (ko) * 2018-02-08 2023-07-10 삼성디스플레이 주식회사 표시 장치
CN111886930B (zh) * 2018-03-28 2023-08-15 夏普株式会社 发光装置、光波长转换装置以及显示装置
CN112204002A (zh) * 2018-05-31 2021-01-08 株式会社半导体能源研究所 有机化合物、发光元件、发光装置、电子设备及照明装置
US20230337455A1 (en) * 2019-10-15 2023-10-19 Sharp Kabushiki Kaisha Light-emitting element, light-emitting device, method for manufacturing light-emitting element, and method for driving light-emitting element
US11387423B2 (en) * 2020-03-25 2022-07-12 Henan University Non-blinking quantum dot, preparation method thereof, and quantum dot-based light-emitting diode
KR20220094658A (ko) * 2020-12-29 2022-07-06 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984487A (zh) * 2010-11-02 2011-03-09 友达光电股份有限公司 主动式矩阵有机发光二极管显示面板的驱动方法
US20160189670A1 (en) * 2014-12-29 2016-06-30 Samsung Display Co., Ltd. Organic light emitting display device
CN104933981A (zh) * 2015-07-10 2015-09-23 深圳市华星光电技术有限公司 像素结构及高亮度广色域长寿命的显示方法
CN108987441A (zh) * 2018-06-29 2018-12-11 云谷(固安)科技有限公司 有机电致发光装置及其显示方法

Also Published As

Publication number Publication date
US20240013710A1 (en) 2024-01-11
CN114765201A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
JP4898560B2 (ja) 有機発光装置
CN106981504B (zh) 一种显示面板及显示装置
JP2010114428A (ja) 有機el表示装置
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
TW200526074A (en) Multicolor organic light emitting devices
US20220093899A1 (en) Organic Light Emitting Diode Employing Multi-Refractive Capping Layer For Improving Light Efficiency
CN106856205B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
US20070285001A1 (en) System for displaying images
KR102498648B1 (ko) 유기발광 표시장치
CN101106180B (zh) 影像显示系统
JP5627809B2 (ja) 有機el表示装置
JP2001357975A (ja) 有機el素子
JP2017059537A (ja) 白色発光有機el照明装置
JP2002260858A (ja) 発光素子及びその製造方法
KR101407579B1 (ko) 유기발광소자 및 그 구동방법
WO2022143765A1 (zh) 一种显示器件及其像素点亮控制方法
JP2004031214A (ja) 有機電界発光素子
JP2014225328A (ja) 発光デバイス、表示装置、及び照明装置
JP2006202685A (ja) 自発光表示装置
US20220085336A1 (en) Organic Light Emitting Diode Employing Low-Refractive Capping Layer For Improving Light Efficiency
WO2022143770A1 (zh) 一种显示器件及其制备方法
KR100864758B1 (ko) 풀 컬러 유기 전기 발광 소자
CN114695689A (zh) 显示器件
WO2022143664A1 (zh) 一种显示器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914497

Country of ref document: EP

Kind code of ref document: A1