WO2022143664A1 - 一种显示器件及其制备方法 - Google Patents

一种显示器件及其制备方法 Download PDF

Info

Publication number
WO2022143664A1
WO2022143664A1 PCT/CN2021/142071 CN2021142071W WO2022143664A1 WO 2022143664 A1 WO2022143664 A1 WO 2022143664A1 CN 2021142071 W CN2021142071 W CN 2021142071W WO 2022143664 A1 WO2022143664 A1 WO 2022143664A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
emitting layer
blue
pixel
dot light
Prior art date
Application number
PCT/CN2021/142071
Other languages
English (en)
French (fr)
Inventor
侯文军
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2022143664A1 publication Critical patent/WO2022143664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the technical field of display devices, and in particular, to a display device and a preparation method thereof.
  • QLEDs quantum dot-based electroluminescent diodes
  • the QLED device needs to inject electrons and holes when it works.
  • the simplest QLED device consists of a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer, and an anode.
  • the quantum dot light-emitting layer is sandwiched between the charge transport layer.
  • a forward bias is applied to both ends of the QLED device, electrons and holes enter the quantum dot light-emitting layer through the electron transport layer and the hole transport layer, respectively.
  • the quantum dot light-emitting layer performs compound light emission.
  • Inkjet printing is an important solution processing technology for realizing RGB three-primary color pixels. Using this technology, the material utilization rate is high, and patterning can be realized without using a mask. At the same time, it has the characteristics of simple process and low cost. , is the most potential color film forming technology for making QLED displays.
  • One of the key factors affecting the yield of display devices prepared by inkjet printing technology is the problem of ink overflow in the pixels printed by inkjet printing. It will lead to quenching of the emission of blue sub-pixels.
  • the present disclosure proposes a display device and a preparation method thereof, aiming at solving the problem that the red ink overflows into the blue sub-pixels when the existing red, green and blue inks are simultaneously printed.
  • a preparation method of a display device includes a plurality of pixels arranged in an array, each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, wherein the preparation method of the display device includes step:
  • a second electrode is formed on the blue quantum dot light-emitting layer to obtain a red sub-pixel, a green sub-pixel and a blue sub-pixel, respectively.
  • the step of forming a blue quantum dot light emitting layer on the red light quantum dot light emitting layer, the green light quantum dot light emitting layer and the first electrode of the blue sub-pixel region specifically includes:
  • a blue-light quantum dot light-emitting layer is coated on the entire surface of the first electron transport layer and the first electrode of the blue-light sub-pixel region.
  • a blue quantum dot light-emitting layer is coated on the entire surface of the red light quantum dot light-emitting layer, the green light quantum dot light-emitting layer and the first electrode in the blue sub-pixel region.
  • the methods for forming the red light quantum dot light-emitting layer, the green light quantum dot light-emitting layer and the blue light quantum dot light-emitting layer are all solution methods.
  • the preparation method of the display device specifically includes the steps:
  • first electrode in the red sub-pixel region, green sub-pixel region, and blue sub-pixel region, and forming a hole injection layer on the first electrode
  • red quantum dot light-emitting layer and a green quantum dot light-emitting layer respectively on the hole transport layer in the red sub-pixel region and on the hole transport layer in the green sub-pixel region;
  • a second electrode is formed on the second electron transport layer to obtain a red sub-pixel, a green sub-pixel and a blue sub-pixel, respectively.
  • a display device comprising a plurality of pixels arranged in an array, each pixel comprising a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, wherein,
  • the red photonic pixel includes a first electrode, a red quantum dot light-emitting layer, a blue quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the green photonic pixel includes a first electrode, a green quantum dot light-emitting layer, a blue quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the blue light sub-pixel includes a first electrode, a blue light quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the first electrodes in the red sub-pixel, the green sub-pixel and the blue sub-pixel are located on the same side of the display device.
  • the red photonic pixel further comprises a first electron transport layer disposed between the red quantum dot light-emitting layer and the blue quantum dot light-emitting layer; and/or
  • the green photonic pixel further includes a first electron transport layer disposed between the green quantum dot light-emitting layer and the blue quantum dot light-emitting layer.
  • the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the red light quantum dot is less than or equal to 0.3eV
  • the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the green light quantum dot is less than or equal to 0.3 eV.
  • the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the first electron transport material is less than or equal to 0.3 eV.
  • the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, wherein,
  • the red photonic pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a red quantum dot light-emitting layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the green photonic pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a green quantum dot light-emitting layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the blue sub-pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the first electrodes in the red sub-pixel, the green sub-pixel and the blue sub-pixel are located on the same side of the display device.
  • the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, wherein,
  • the red photonic pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a red quantum dot light-emitting layer, a first electron transport layer, a blue quantum dot light-emitting layer, a second electron transport layer, and a second electron transport layer. two electrodes;
  • the green photonic pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a green quantum dot light-emitting layer, a first electron transport layer, a blue quantum dot light-emitting layer, a second electron transport layer, and a second electron transport layer. two electrodes;
  • the blue sub-pixel specifically includes a first electrode, a hole injection layer, a hole transport layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the first electrodes in the red sub-pixel, the green sub-pixel and the blue sub-pixel are located on the same side of the display device.
  • the red ink can be avoided when the red, green and blue sub-pixels are printed at the same time.
  • the problem of overflowing into the blue sub-pixel area thereby avoiding the problem of quenching the emission of the blue sub-pixel, and improving the luminous efficiency of the blue sub-pixel, that is, the luminous efficiency of the display device.
  • FIG. 1 is a schematic flowchart of a method for fabricating a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 3 is another schematic flowchart of a method for fabricating a display device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram obtained by step S21 in FIG. 3 .
  • FIG. 5 is a schematic structural diagram obtained by step S22 in FIG. 3 .
  • FIG. 6 is a schematic structural diagram obtained by step S23 in FIG. 3 .
  • FIG. 7 is a schematic structural diagram obtained by step S24 in FIG. 3 .
  • FIG. 8 is a schematic structural diagram obtained through step S25 in FIG. 3 .
  • FIG. 9 is a schematic structural diagram obtained by step S26 in FIG. 3 .
  • FIG. 10 is a schematic structural diagram obtained through step S27 in FIG. 3 .
  • FIG. 11 is another schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the present disclosure provides a display device and a preparation method thereof.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • An embodiment of the present disclosure provides a method for manufacturing a display device.
  • the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, as shown in FIG. 1 .
  • the preparation method of the display device comprises the steps:
  • red, green and blue sub-pixels usually except the first electrode and the second electrode are prepared by evaporation process, the remaining functional layers (such as quantum dot light-emitting layer, etc.) are prepared by solution method (such as inkjet printing, spin coating, etc.) ) can be prepared, because the solution method is simple to operate and can be prepared in a large area.
  • solution method such as inkjet printing, spin coating, etc.
  • the red quantum dot light-emitting layer and the green quantum dot light-emitting layer are first formed, and then the blue quantum dot light-emitting layer is coated on the entire surface of the red, green and blue sub-pixel area (inkjet printing, spin coating, etc. can be used) , it can avoid the problem that the red ink overflows into the blue sub-pixel area when the red, green and blue sub-pixels are printed at the same time, thereby avoiding the problem of quenching the light emission of the blue sub-pixel, and improving the luminous efficiency of the blue sub-pixel, that is, improving the display.
  • the luminous efficiency of the device is the reason for the red, green and blue sub-pixel area
  • the blue quantum dot light-emitting layer in the red and green sub-pixels can function as an electron transport layer, which is beneficial to adjust the injection balance of electrons and holes and improve the luminous efficiency of the display device.
  • the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the red light quantum dot is less than or equal to 0.3 eV, and the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the green light quantum dot less than or equal to 0.3eV.
  • the conductive energy level difference between blue quantum dots and red and green quantum dots is small, which is conducive to the smooth injection of charges into the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, ensuring that the red photonic pixels and the green photonic pixels emit normally.
  • the step of forming a blue quantum dot light emitting layer on the red light quantum dot light emitting layer, the green light quantum dot light emitting layer and the first electrode of the blue sub-pixel region specifically includes:
  • a blue-light quantum dot light-emitting layer is coated on the entire surface of the first electron transport layer and the first electrode of the blue-light sub-pixel region.
  • the first electron transport layer can isolate the blue light quantum dot light emitting layer from the red and green quantum dot light emitting layer.
  • the role of the dot light-emitting layer can effectively avoid re-dissolving the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer that have been formed when the same solvent is used to prepare the blue light quantum dot light-emitting layer, so as to ensure the red light quantum dot light-emitting layer and the green light quantum dot.
  • the film-forming quality of the light-emitting layer improves the performance of the display device.
  • the difference between the conduction band energy level of the blue quantum dot and the conduction band energy level of the first electron transport material is less than or equal to 0.3 eV.
  • the conductive energy level difference between the blue light quantum dot and the first electron transport material is small, which is conducive to the smooth injection of electrons into the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, so as to ensure the normal light emission of the red photonic pixel and the green photonic pixel.
  • each sub-pixel has various forms, and each sub-pixel is divided into a positive structure and an inversion structure.
  • the sub-pixel is a positive structure. type structure; when the first electrode is a cathode and the cathode is located on the substrate, the sub-pixel is an inversion structure.
  • a display device having a structure as shown in FIG. 2 will be taken as an example, and a manufacturing method of the display device will be described in detail.
  • An embodiment of the present disclosure provides a method for fabricating a display device.
  • the display device includes a plurality of pixels arranged in an array, and each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, as shown in FIG. 3 .
  • the preparation method of the display device comprises the steps:
  • the substrate is divided into red, green and blue sub-pixel regions.
  • the material of the pixel defining layer and its preparation are in the prior art, and details are not repeated here.
  • the preparation method of the first electrode and the second electrode may be an evaporation method, a sputtering method, or the like.
  • the preparation method of each of the above functional layers can be a solution method, such as spin coating, printing, blade coating, dip-pulling, soaking, spraying, roll coating, casting, slot coating or strip coating, etc.
  • the red quantum dot light-emitting layer and the green quantum dot light-emitting layer are first formed, and then the blue quantum dot light-emitting layer is coated on the entire surface of the red, green and blue sub-pixel area (inkjet printing, spin coating, etc. can be used) , it can avoid the problem that the red ink overflows into the blue sub-pixel area when the red, green and blue sub-pixels are printed at the same time, thereby avoiding the problem of quenching the light emission of the blue sub-pixel, and improving the luminous efficiency of the blue sub-pixel, that is, improving the display.
  • the luminous efficiency of the device is the reason for the red, green and blue sub-pixel area
  • the first electron transport layer can play the role of isolating the blue light quantum dot light emitting layer and the red and green quantum dot light emitting layer. It can effectively avoid re-dissolving the red quantum dot emitting layer and the green quantum dot emitting layer that have been formed when the same solvent is used to prepare the blue quantum dot emitting layer, so as to ensure the red quantum dot emitting layer and the green quantum dot emitting layer.
  • the quality of film formation improves the performance of display devices.
  • the blue quantum dot light-emitting layer in the red and green sub-pixels can act as an electron transport layer, thereby reducing the electron transport rate, which is beneficial to adjust the injection balance of electrons and holes, and improve the luminous efficiency of the display device.
  • the blue quantum dot light-emitting layers in the introduced red photonic pixels and green photonic pixels have little influence on the injection and transmission of electrons.
  • the electron injection and transmission efficiency is much greater than the hole injection and transmission efficiency, so the electrons can still be smoothly injected into the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, thus ensuring the electron and hole.
  • the recombination area is in the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, thereby ensuring that the red and green sub-pixels emit light normally.
  • An embodiment of the present disclosure provides a display device, comprising a plurality of pixels arranged in an array, each pixel comprising a red photo-pixel, a green photo-pixel, and a blue-light sub-pixel arranged in an array, wherein,
  • the red photonic pixel includes a first electrode, a red quantum dot light-emitting layer, a blue quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the green photonic pixel includes a first electrode, a green quantum dot light-emitting layer, a blue quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the blue light sub-pixel includes a first electrode, a blue light quantum dot light-emitting layer and a second electrode that are stacked in sequence;
  • the first electrodes in the red sub-pixel, the green sub-pixel and the blue sub-pixel are located on the same side of the display device.
  • the display device includes several pixels, each pixel includes three sub-pixels, and the three sub-pixels are: red sub-pixel (R sub-pixel), green sub-pixel (G sub-pixel), and blue sub-pixel (B sub-pixel) pixel), based on the three primary colors of R, G, and B, to achieve full-color display of the display device.
  • R sub-pixel red sub-pixel
  • G sub-pixel green sub-pixel
  • B sub-pixel blue sub-pixel
  • the red quantum dot light-emitting layer and the green quantum dot light-emitting layer are prepared simultaneously, and the blue quantum dot light-emitting layers in the R, G, and B sub-pixel regions are prepared simultaneously.
  • the green quantum dot light-emitting layer and the blue quantum dot light-emitting layer are prepared step by step, which can avoid the problem of the red ink overflowing into the blue ink when the red, green and blue quantum dot inks are printed at the same time, thereby avoiding the quenching of the blue light sub-pixel emission. Therefore, the luminous efficiency of the blue sub-pixels is improved, that is, the luminous efficiency of the display device is improved.
  • the blue quantum dot light-emitting layer in the red and green sub-pixels can function as an electron transport layer, which is beneficial to adjust the transport balance of electrons and holes and improve the luminous efficiency of the display device.
  • the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the red light quantum dot is less than or equal to 0.3 eV, and the difference between the conduction band energy level of the blue light quantum dot and the conduction band energy level of the green light quantum dot less than or equal to 0.3eV.
  • the conductive energy level difference between blue quantum dots and red and green quantum dots is small, which is conducive to the smooth injection of charges into the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, ensuring that the red photonic pixels and the green photonic pixels emit normally.
  • the red photonic pixel further comprises a first electron transport layer disposed between the red quantum dot light-emitting layer and the blue quantum dot light-emitting layer; and/or
  • the green photonic pixel further includes a first electron transport layer disposed between the green quantum dot light-emitting layer and the blue quantum dot light-emitting layer.
  • the first electron transport layer can isolate the blue light quantum dot light emitting layer from the red and green quantum dot light emitting layer.
  • the role of the dot light-emitting layer can effectively avoid re-dissolving the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer that have been formed when the same solvent is used to prepare the blue light quantum dot light-emitting layer, so as to ensure the red light quantum dot light-emitting layer and the green light quantum dot.
  • the film-forming quality of the light-emitting layer improves the performance of the display device.
  • the difference between the conduction band energy level of the blue quantum dot and the conduction band energy level of the first electron transport material is less than or equal to 0.3 eV.
  • the conductive energy level difference between the blue light quantum dot and the first electron transport material is small, which is conducive to the smooth injection of electrons into the red light quantum dot light-emitting layer and the green light quantum dot light-emitting layer, so as to ensure the normal light emission of the red photonic pixel and the green photonic pixel.
  • each sub-pixel has a variety of forms, and each sub-pixel is divided into a positive structure and an inversion structure.
  • the sub-pixel is a positive structure;
  • the electrode is a cathode, and the cathode is located on the substrate, the sub-pixel has an inversion structure.
  • the display device includes a plurality of pixels arranged in an array. As shown in FIG. 11 , each pixel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel arranged in an array, wherein,
  • the red photonic pixel includes a first electrode, a hole injection layer, a hole transport layer, a red quantum dot light-emitting layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the green photonic pixel includes a first electrode, a hole injection layer, a hole transport layer, a green quantum dot light-emitting layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the blue sub-pixel includes a first electrode, a hole injection layer, a hole transport layer, a blue quantum dot light-emitting layer, a second electron transport layer and a second electrode that are stacked in sequence;
  • the first electrodes in the red sub-pixel, the green sub-pixel and the blue sub-pixel are located on the same side of the display device.
  • the emission wavelength of red quantum dots is 610-625 nm, and/or the emission wavelength of green quantum dots is 525-550 nm, and/or the emission wavelength of blue quantum dots is 450-480 nm.
  • the thicknesses of the red quantum dot light-emitting layer, the green quantum dot light-emitting layer, and the blue quantum dot light-emitting layer are all 5 nm-100 nm.
  • the red light quantum dots, green light quantum dots and blue light quantum dots can be independently selected from one or more of binary phase, ternary phase, quaternary phase quantum dots, etc.; wherein binary phase Phase quantum dots include one or more of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, HgS, etc., and ternary phase quantum dots include one or more of ZnCdS, CuInS, ZnCdSe, ZnSeS, ZnCdTe, PbSeS, etc.
  • the quaternary phase quantum dots include one or more of ZnCdS/ZnSe, CuInS/ZnS, ZnCdSe/ZnS, CuInSeS, ZnCdTe/ZnS, PbSeS/ZnS and the like.
  • the quantum dots can be cadmium-containing or cadmium-free.
  • the quantum dot light-emitting layer of the material has the characteristics of wide and continuous distribution of excitation spectrum and high stability of emission spectrum.
  • the material of the first electrode can be selected from one of conductive transparent oxides such as ITO, IZO, AZO, IGZO, etc., or can be selected from metals such as Ag, Au, Al, Mg:Ag, etc. One of the metal alloys.
  • the material of the hole injection layer may be selected from, but not limited to, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS), CuPc , P3HT, transition metal oxide, transition metal chalcogenide one or two or more.
  • the transition metal oxide includes one or two or more of NiO x , MoO x , WO x , CrO x , and CuO.
  • the metal chalcogenide compound includes one or two or more of MoS x , MoSex , WS x , WSex , and CuS.
  • the thickness of the hole injection layer is about 10 nm-60 nm.
  • the material of the hole transport layer can be selected from materials with good hole transport properties, such as, but not limited to, poly(9,9-dioctylfluorene-CO-N-(4) -butylphenyl)diphenylamine)(TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly-TPD), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), NPB, NiO One or more of , MoO 3 , etc.
  • the thickness of the hole transport layer is about 10 nm-50 nm.
  • the materials of the first electron transport layer and the second electron transport layer can be independently selected from electron transport materials conventional in the art, including but not limited to ZnO, MZO (magnesium zinc oxide), One of AMO (aluminum zinc oxide), MLZO (magnesium lithium zinc oxide), TiO 2 , CsF, LiF, CsCO 3 and Alq 3 or a mixture of any combination thereof.
  • the thickness of the first electron transport layer is about 10 nm-100 nm. In one embodiment, the thickness of the second electron transport layer is about 10 nm-100 nm.
  • the cathode may be selected from one of aluminum (Al) electrodes, silver (Ag) electrodes, and gold (Au) electrodes, etc., and may also be selected from nano-aluminum wires, nano-silver wires, and nano-gold one of the lines, etc.
  • Al aluminum
  • Au gold
  • the above-mentioned materials have relatively low resistance, so that carriers can be injected smoothly.
  • the thickness of the cathode is about 5 nm-40 nm. In one embodiment, when the cathode is a total reflection electrode, the thickness of the cathode is about 80 nm-150 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开公开一种显示器件及其制备方法。所述显示器件的制备方法包括步骤:将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极;在所述红光子像素区域的第一电极上和所述绿光子像素区域的第一电极上分别形成红光量子点发光层和绿光量子点发光层;在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层;在所述蓝光量子点发光层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。本公开上述方法避免红绿蓝三种子像素在同时打印时红色墨水溢流到蓝色子像素区域内的问题,从而避免蓝光子像素发光淬灭的问题。

Description

一种显示器件及其制备方法
优先权
本公开要求于申请日为2020年12月31日提交中国专利局、申请号为“202011644853.0”、申请名称为“一种显示器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示器件技术领域,尤其涉及一种显示器件及其制备方法。
背景技术
由于量子点独特的光电性质,例如发光波长随尺寸和成分连续可调、发光光谱窄、荧光效率高、稳定性好等,基于量子点的电致发光二极管(QLED)在显示领域得到广泛的关注和研究。此外,QLED显示还具有可视角大、对比度高、响应速度快、可柔性等诸多LCD所无法实现的优势,因而有望成为下一代的显示技术。
QLED器件工作时需要注入电子和空穴,最简单的QLED器件由阴极、电子传输层、量子点发光层、空穴传输层和阳极组成。在QLED器件中,量子点发光层夹在电荷传输层中间,当正向偏压加到QLED器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层,在量子点发光层进行复合发光。
喷墨打印(inkjet printing)是一种重要的实现RGB三原色像素的溶液加工技术,采用该技术的材料利用率高,且无需使用掩膜板可实现图案化,同时具有工艺简单、成本低廉的特点,是制作QLED显示屏最具潜力的彩色化成膜技术。影响喷墨印刷技术制备显示器件良率的关键因素之一是喷墨打印到像素内的墨水溢流问题,例如同时打印红绿蓝三种墨水时,红色墨水溢流到蓝色子像素内就会导致蓝色子像素的发光淬灭。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开提出了一种显示器件及其制备方法,旨在解决现有同时打印红绿蓝三种墨水时,红色墨水溢流到蓝色子像素内的问题。
本公开的技术方案如下:
一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,所述显示器件的制备方法包括步骤:
将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;
在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极;
在所述红光子像素区域的第一电极上和所述绿光子像素区域的第一电极上分别形成红光量子点发光层和绿光量子点发光层;
在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层;
在所述蓝光量子点发光层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。
可选地,所述在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层的步骤,具体包括:
在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层;
在所述第一电子传输层上和蓝光子像素区域的第一电极上整面涂布蓝光量子点发光层。
可选地,在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上整面涂布蓝光量子点发光层。
可选地,形成红光量子点发光层、绿光量子点发光层和蓝光量子点发光层的方法均为溶液法。
可选地,所述显示器件的制备方法具体包括步骤:
将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;
在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极,在所述第一电极上形成空穴注入层;
在所述空穴注入层上形成空穴传输层;
在所述红光子像素区域的空穴传输层上和所述绿光子像素区域的空穴传输层上分别形成红光量子点发光层和绿光量子点发光层;
在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层;
在所述第一电子传输层上和蓝光子像素区域的空穴传输层上整面涂布蓝光量子点发光层;
在所述蓝光量子点发光层上形成第二电子传输层;
在所述第二电子传输层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。
一种显示器件,包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
所述红光子像素包括依次层叠设置的第一电极、红光量子点发光层、蓝光量子点发光层和第二电极;
所述绿光子像素包括依次层叠设置的第一电极、绿光量子点发光层、蓝光量子点发光层和第二电极;
所述蓝光子像素包括依次层叠设置的第一电极、蓝光量子点发光层和第二电极;
其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
可选地,所述红光子像素还包括设置于所述红光量子点发光层和蓝光量子点发光层之间的第一电子传输层;和/或
所述绿光子像素还包括设置于所述绿光量子点发光层和蓝光量子点发光层之间的第一电子传输层。
可选地,蓝光量子点的导带能级与红光量子点的导带能级之差小于等于0.3eV,蓝光量子点的导带能级与绿光量子点的导带能级之差小于等于0.3eV。
可选地,蓝光量子点的导带能级与第一电子传输材料的导带能级之差小于等于0.3eV。
可选地,显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
所述红光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、红光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
所述绿光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、绿光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
所述蓝光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、蓝光量子点发光层、第二电子传输层和第二电极;
其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
可选地,显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
所述红光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、红光量子点发光层、第一电子传输层、蓝光量子点发光层、第二电子传输层和第二电极;
所述绿光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、绿光量子点发光层、第一电子传输层、蓝光量子点发光层、第二电子传输层和第二电极;
所述蓝光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、蓝光量子点发光层、第二电子传输层和第二电极;
其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
有益效果:本公开通过先形成红光量子点发光层和绿光量子点发光层,然后在三个子像素区域内整面形成蓝光量子点发光层,可以避免红绿蓝三种子像素在同时打印时红色墨水溢流到蓝色子像素区域内的问题,从而避免蓝光子像素发光淬灭的问题,提高蓝光子像素的发光效率,也即提高了显示器件的发光效率。
附图说明
图1为本公开实施例提供的一种显示器件的制备方法的流程示意图。
图2为本公开实施例提供的一种显示器件的结构示意图。
图3为本公开实施例提供的一种显示器件的制备方法的另一流程示意图。
图4为图3中经步骤S21得到的结构示意图。
图5为图3中经步骤S22得到的结构示意图。
图6为图3中经步骤S23得到的结构示意图。
图7为图3中经步骤S24得到的结构示意图。
图8为图3中经步骤S25得到的结构示意图。
图9为图3中经步骤S26得到的结构示意图。
图10为图3中经步骤S27得到的结构示意图。
图11为本公开实施例提供的一种显示器件的另一结构示意图。
具体实施方式
本公开提供一种显示器件及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开实施例提供一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,如图1所示,所述显示器件的制备方法包括步骤:
S10、将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;
S11、在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极;
S12、在所述红光子像素区域的第一电极上和所述绿光子像素区域的第一电极上分别形成红光量子点发光层和绿光量子点发光层;
S13、在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层;
S14、在所述蓝光量子点发光层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。
关于红绿蓝子像素的制备,通常除第一电极和第二电极采用蒸镀工艺制备得到之外,其余功能层(如量子点发光层等)通过溶液法(如喷墨打印、旋涂等)制备得到,因为溶液法操作简单,可以大面积制备。但是同时喷墨打印红绿蓝三种墨水时,由于表面张力,红色墨水容易溢流到蓝光子像素区域内,导致蓝光子像素发生发光淬灭的问题。
本实施例中,通过先形成红光量子点发光层和绿光量子点发光层,然后在红绿蓝子像素区域内整面涂布(可以采用喷墨打印、旋涂等方法)蓝光量子点发光层,可以避免红绿蓝三种子像素在同时打印时红色墨水溢流到蓝色子像素区域内的问题,从而避免蓝光子像素发光淬灭的问题,提高蓝光子像素的发光效率,即提高了显示器件的发光效率。且当第二电极为阴极时,红绿子像素中的蓝光量子点发光层可以起到充当电子传输层的作用,从而有利于调节电子与空穴的注入平衡,提高显示器件的发光效率。
在一种实施方式中,蓝光量子点的导带能级与红光量子点的导带能级之差小于等于0.3eV,蓝光量子点的导带能级与绿光量子点的导带能级之差小于等于0.3eV。蓝光量子点与红光和绿光量子点之间的导电能级相差较少,有利于电荷顺利注入到红光量子点发光层和绿光量子点发光层,确保红光子像素和绿光子像素正常发光。
在一种实施方式中,所述在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层的步骤,具体包括:
在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层;
在所述第一电子传输层上和蓝光子像素区域的第一电极上整面涂布蓝光量子点发光层。
本实施例中,通过在红绿量子点发光层与蓝光量子点发光层之间增设一层第一电子传输层,所述第一电子传输层可以起到隔绝蓝光量子点发光层和红绿量子点发光层的作用,有效避免在采用相同溶剂制备蓝光量子点发光层时,对已经成膜的红光量子点发光层和绿光量子点发光层再次溶解,从而确保红光量子点发光层和绿光量子点发光层的成膜质量,提高显示器件的性能。
在一种实施方式中,蓝光量子点的导带能级与第一电子传输材料的导带能级之差小于等于0.3eV。蓝光量子点与第一电子传输材料之间的导电能级相差较少,有利于电子顺利注入到红光量子点发光层和绿光量子点发光层,确保红光子像素和绿光子像素正常发光。
首先需说明的是,本实施例中,每个子像素有多种形式,且每个子像素分正型结构和反型结构,当第一电极为阳极,且阳极位于基板上时,子像素为正型结构;当第一电极为阴极,且阴极位于基板上时,子像素为反型结构。
本实施例将主要以如图2所示结构的显示器件为例,对该显示器件的制备方法进行详细介绍。本公开实施例提供一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,如图3所示,所述显示器件的制备方法包括步骤:
S20、将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;
S21、在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极(即阳极),在所述第一电极上形成空穴注入层,见图4所示;
S22、在所述空穴注入层上形成空穴传输层,见图5所示;
S23、在所述红光子像素区域的空穴传输层上和所述绿光子像素区域的空穴传输层上分别形成红光量子点发光层(即红色发光层)和绿光量子点发光层(即绿色发光层),见图6所示;
S24、在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层,见图7所示;
S25、在所述第一电子传输层上和蓝光子像素区域的空穴传输层上整面涂布蓝光量子点发光层(即蓝色发光层),见图8所示;
S26、在所述蓝光量子点发光层上形成第二电子传输层,见图9所示;
S27、在所述第二电子传输层上形成第二电极(即阴极),见图10所示,分别得到红光子像素、绿光子像素和蓝光子像素。
需说明的是,通过在基板上制备坝状的像素界定层的方法,将基板划分成红绿蓝子 像素区域。关于像素界定层的材料及其制备为现有技术,在此不再赘述。图10所示的显示器件中的像素界定层除去后,即对应得到图2所示的显示器件。
在一种实施方式中,所述第一电极和第二电极的制备方法可以为蒸镀法或溅射法等。
在一种实施方式中,上述各功能层(如空穴注入层、空穴传输层、红绿蓝光量子点发光层、第一电子传输层、第二电子传输层等)的制备方法可以为溶液法,如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等。
本实施例中,通过先形成红光量子点发光层和绿光量子点发光层,然后在红绿蓝子像素区域内整面涂布(可以采用喷墨打印、旋涂等方法)蓝光量子点发光层,可以避免红绿蓝三种子像素在同时打印时红色墨水溢流到蓝色子像素区域内的问题,从而避免蓝光子像素发光淬灭的问题,提高蓝光子像素的发光效率,即提高了显示器件的发光效率。
另外,通过在红绿量子点发光层与蓝光量子点发光层之间增设一层第一电子传输层,所述第一电子传输层可以起到隔绝蓝光量子点发光层和红绿量子点发光层的作用,有效避免在采用相同溶剂制备蓝光量子点发光层时,对已经成膜的红光量子点发光层和绿光量子点发光层再次溶解,从而确保红光量子点发光层和绿光量子点发光层的成膜质量,提高显示器件的性能。
此外,红绿子像素中的蓝光量子点发光层可以起到充当电子传输层的作用,从而可以减小电子传输速率,有利于调节电子与空穴的注入平衡,提高显示器件的发光效率。
需说明的是,由于蓝光量子点与第一电子传输材料之间的导电能级相差较少,引入的红光子像素和绿光子像素中蓝光量子点发光层对电子的注入与传输影响较小,而红光子像素和绿光子像素中,电子注入与传输效率远大于空穴注入与传输效率,因此电子仍能够顺利注入到红光量子点发光层和绿光量子点发光层,从而确保了电子与空穴的复合区在红光量子点发光层和绿光量子点发光层,进而确保红绿子像素正常发光。
本公开实施例提供一种显示器件,包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
所述红光子像素包括依次层叠设置的第一电极、红光量子点发光层、蓝光量子点发 光层和第二电极;
所述绿光子像素包括依次层叠设置的第一电极、绿光量子点发光层、蓝光量子点发光层和第二电极;
所述蓝光子像素包括依次层叠设置的第一电极、蓝光量子点发光层和第二电极;
其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
本实施例中,显示器件包括若干像素,每个像素包括三个子像素,所述三个子像素为:红光子像素(R子像素)、绿光子像素(G子像素)和蓝光子像素(B子像素),基于R、G、B三原色光,实现显示器件全彩显示。其中阵列排列的R、G、B三个子像素,每个子像素通过独立驱动点亮,每个子像素由驱动电路独立驱动发光。
本实施例R、G、B子像素中,其中红光量子点发光层和绿光量子点发光层同步制备得到,R、G、B子像素区域内的蓝光量子点发光层同步制备得到,将红、绿光量子点发光层与蓝光量子点发光层分步制备,从而可以避免红绿蓝三种量子点墨水在同时打印时红色墨水溢流到蓝色墨水中的问题,进而避免蓝光子像素发光淬灭的问题,提高蓝光子像素的发光效率,即提高了显示器件的发光效率。且当第二电极为阴极时,红绿子像素中的蓝光量子点发光层可以起到充当电子传输层的作用,从而有利于调节电子与空穴的传输平衡,提高显示器件的发光效率。
在一种实施方式中,蓝光量子点的导带能级与红光量子点的导带能级之差小于等于0.3eV,蓝光量子点的导带能级与绿光量子点的导带能级之差小于等于0.3eV。蓝光量子点与红光和绿光量子点之间的导电能级相差较少,有利于电荷顺利注入到红光量子点发光层和绿光量子点发光层,确保红光子像素和绿光子像素正常发光。
在一种实施方式中,所述红光子像素还包括设置于所述红光量子点发光层和蓝光量子点发光层之间的第一电子传输层;和/或
所述绿光子像素还包括设置于所述绿光量子点发光层和蓝光量子点发光层之间的第一电子传输层。
本实施例中,通过在红绿量子点发光层与蓝光量子点发光层之间增设一层第一电子 传输层,所述第一电子传输层可以起到隔绝蓝光量子点发光层和红绿量子点发光层的作用,有效避免在采用相同溶剂制备蓝光量子点发光层时,对已经成膜的红光量子点发光层和绿光量子点发光层再次溶解,从而确保红光量子点发光层和绿光量子点发光层的成膜质量,提高显示器件的性能。
在一种实施方式中,蓝光量子点的导带能级与第一电子传输材料的导带能级之差小于等于0.3eV。蓝光量子点与第一电子传输材料之间的导电能级相差较少,有利于电子顺利注入到红光量子点发光层和绿光量子点发光层,确保红光子像素和绿光子像素正常发光。
本实施例中,每个子像素有多种形式,且每个子像素分正型结构和反型结构,当第一电极为阳极,且阳极位于基板上时,子像素为正型结构;当第一电极为阴极,且阴极位于基板上时,子像素为反型结构。下面以图11所示的结构为例,对显示器件进行详细介绍。
在一种实施方式中,所述显示器件包括呈阵列排列的若干像素,如图11所示,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
所述红光子像素包括依次层叠设置的第一电极、空穴注入层、空穴传输层、红光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
所述绿光子像素包括依次层叠设置的第一电极、空穴注入层、空穴传输层、绿光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
所述蓝光子像素包括依次层叠设置的第一电极、空穴注入层、空穴传输层、蓝光量子点发光层、第二电子传输层和第二电极;
其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
在一种实施方式中,红光量子点的发光波长为610-625nm,和/或绿光量子点的发光波长为525-550nm,和/或蓝光量子点的发光波长为450-480nm。
在一种实施方式中,所述红光量子点发光层、绿光量子点发光层、蓝光量子点发光层的厚度均为5nm-100nm。
在一种实施方式中,所述红光量子点、绿光量子点和蓝光量子点可以独立地选自二元相、三元相、四元相量子点等中的一种或多种;其中二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种,三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种,四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。该量子点可以为含镉或者不含镉。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。
在一种实施方式中,所述第一电极的材料可以选自ITO、IZO、AZO、IGZO等导电透明氧化物中的一种,也可以选自Ag、Au、Al、Mg:Ag等金属以及金属合金中的一种。
在一种实施方式中,所述空穴注入层的材料可以选自但不限于:聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)、CuPc、P3HT、过渡金属氧化物、过渡金属硫系化合物中的一种或两种或多种。其中,所述过渡金属氧化物包括NiO x、MoO x、WO x、CrO x、CuO中的一种或两种或多种。所述金属硫系化合物包括MoS x、MoSe x、WS x、WSe x、CuS中的一种或两种或多种。在一种实施方式中,所述空穴注入层的厚度约为10nm-60nm。
在一种实施方式中,所述空穴传输层的材料可以选自具有良好空穴传输性能的材料,例如可以包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、NPB、NiO、MoO 3等中的一种或多种。在一种实施方式中,所述空穴传输层的厚度约为10nm-50nm。
在一种实施方式中,所述第一电子传输层和所述第二电子传输层的材料可独立地选自本领域常规的电子传输材料,包括但不限于ZnO、MZO(镁锌氧)、AMO(铝锌氧)、MLZO(镁锂锌氧)、TiO 2、CsF、LiF、CsCO 3和Alq3中的一种或者为其任意组合的混合物。在一种实施方式中,所述第一电子传输层的厚度约为10nm-100nm。在一种实施方式中,所述第二电子传输层的厚度约为10nm-100nm。
在一种实施方式中,所述阴极可选自铝(Al)电极、银(Ag)电极和金(Au)电极等中的 一种,还可选自纳米铝线、纳米银线和纳米金线等中的一种。上述材料具有较小的电阻,使得载流子能顺利的注入。在一种实施方式中,所述阴极为透射电极时,所述阴极的厚度约为5nm-40nm。在一种实施方式中,所述阴极为全反射电极时,所述阴极的厚度约为80nm-150nm。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (17)

  1. 一种显示器件的制备方法,所述显示器件包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,所述显示器件的制备方法包括步骤:
    将基板划分成红光子像素区域、绿光子像素区域、蓝光子像素区域;
    在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极;
    在所述红光子像素区域的第一电极上和所述绿光子像素区域的第一电极上分别形成红光量子点发光层和绿光量子点发光层;
    在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层;
    在所述蓝光量子点发光层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。
  2. 根据权利要求1所述的显示器件的制备方法,其中,所述在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上形成蓝光量子点发光层的步骤,具体包括:
    在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层;
    在所述第一电子传输层上和蓝光子像素区域的第一电极上整面涂布蓝光量子点发光层。
  3. 根据权利要求1所述的显示器件的制备方法,其中,在所述红光量子点发光层、绿光量子点发光层和蓝光子像素区域的第一电极上整面涂布蓝光量子点发光层。
  4. 根据权利要求1所述的显示器件的制备方法,其中,所述显示器件的制备方法具体包括步骤:
    在所述红光子像素区域、绿光子像素区域、蓝光子像素区域内形成第一电极,在所述第一电极上形成空穴注入层;
    在所述空穴注入层上形成空穴传输层;
    在所述红光子像素区域的空穴传输层上和所述绿光子像素区域的空穴传输层上分别形成红光量子点发光层和绿光量子点发光层;
    在所述红光量子点发光层、绿光量子点发光层上形成第一电子传输层;
    在所述第一电子传输层上和蓝光子像素区域的空穴传输层上整面涂布蓝光量子点发光层;
    在所述蓝光量子点发光层上形成第二电子传输层;
    在所述第二电子传输层上形成第二电极,分别得到红光子像素、绿光子像素和蓝光子像素。
  5. 一种显示器件,包括呈阵列排列的若干像素,每个像素包括呈阵列排列的红光子像素、绿光子像素、蓝光子像素,其中,
    所述红光子像素包括依次层叠设置的第一电极、红光量子点发光层、蓝光量子点发光层和第二电极;
    所述绿光子像素包括依次层叠设置的第一电极、绿光量子点发光层、蓝光量子点发光层和第二电极;
    所述蓝光子像素包括依次层叠设置的第一电极、蓝光量子点发光层和第二电极;
    其中,所述红光子像素、绿光子像素和蓝光子像素中的第一电极位于显示器件的同一侧。
  6. 根据权利要求5所述的显示器件,其中,所述红光子像素还包括设置于所述红光量子点发光层和蓝光量子点发光层之间的第一电子传输层;和/或
    所述绿光子像素还包括设置于所述绿光量子点发光层和蓝光量子点发光层之间的第一电子传输层。
  7. 根据权利要求5所述的显示器件,其中,蓝光量子点的导带能级与红光量子点的导带能级之差小于等于0.3eV,蓝光量子点的导带能级与绿光量子点的导带能级之差小于等于0.3eV。
  8. 根据权利要求6所述的显示器件,其中,蓝光量子点的导带能级与第一电子传输材料的导带能级之差小于等于0.3eV。
  9. 根据权利要求5所述的显示器件,其中,
    所述红光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、红 光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
    所述绿光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、绿光量子点发光层、蓝光量子点发光层、第二电子传输层和第二电极;
    所述蓝光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、蓝光量子点发光层、第二电子传输层和第二电极。
  10. 根据权利要求5所述的显示器件,其中,
    所述红光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、红光量子点发光层、第一电子传输层、蓝光量子点发光层、第二电子传输层和第二电极;
    所述绿光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、绿光量子点发光层、第一电子传输层、蓝光量子点发光层、第二电子传输层和第二电极;
    所述蓝光子像素具体包括依次层叠设置的第一电极、空穴注入层、空穴传输层、蓝光量子点发光层、第二电子传输层和第二电极。
  11. 根据权利要求10所述的显示器件,其中,所述红光量子点发光层的厚度为5nm-100nm。
  12. 根据权利要求10所述的显示器件,其中,所述绿光量子点发光层的厚度为5nm-100nm。
  13. 根据权利要求10所述的显示器件,其中,所述蓝光量子点发光层的厚度为5nm-100nm。
  14. 据权利要求10所述的显示器件,其中,所述红光量子点、绿光量子点和蓝光量子点独立地选自二元相、三元相、四元相量子点等中的一种或多种。
  15. 据权利要求14所述的显示器件,其中,所述二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种。
  16. 据权利要求14所述的显示器件,其中,所述三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种。
  17. 据权利要求14所述的显示器件,其中,所述四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。
PCT/CN2021/142071 2020-12-31 2021-12-28 一种显示器件及其制备方法 WO2022143664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011644853.0 2020-12-31
CN202011644853.0A CN114695751A (zh) 2020-12-31 2020-12-31 一种显示器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022143664A1 true WO2022143664A1 (zh) 2022-07-07

Family

ID=82136165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142071 WO2022143664A1 (zh) 2020-12-31 2021-12-28 一种显示器件及其制备方法

Country Status (2)

Country Link
CN (1) CN114695751A (zh)
WO (1) WO2022143664A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207075A (zh) * 2006-12-20 2008-06-25 Lg.菲利浦Lcd株式会社 有机电致发光器件及其制造方法
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法
CN106611826A (zh) * 2016-12-27 2017-05-03 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN110310973A (zh) * 2018-03-27 2019-10-08 夏普株式会社 用于高分辨率发光装置的结构
WO2021152790A1 (ja) * 2020-01-30 2021-08-05 シャープ株式会社 表示装置、および表示装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207075A (zh) * 2006-12-20 2008-06-25 Lg.菲利浦Lcd株式会社 有机电致发光器件及其制造方法
CN105932166A (zh) * 2016-05-03 2016-09-07 深圳市华星光电技术有限公司 自发光型显示装置及其制作方法
CN106611826A (zh) * 2016-12-27 2017-05-03 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN110310973A (zh) * 2018-03-27 2019-10-08 夏普株式会社 用于高分辨率发光装置的结构
WO2021152790A1 (ja) * 2020-01-30 2021-08-05 シャープ株式会社 表示装置、および表示装置の製造方法

Also Published As

Publication number Publication date
CN114695751A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US9379344B2 (en) Display panel and display device
CN106981504B (zh) 一种显示面板及显示装置
WO2020030042A1 (zh) Oled显示基板及其制作方法、显示装置
US20190296264A1 (en) Quantum dot based pixel assembly
CN111697156A (zh) 有机发光装置
CN110048024B (zh) 显示基板及其制造方法、显示装置
CN112331785B (zh) 发光器件及其制作方法
CN112909193A (zh) 有机发光器件、显示装置以及制作方法
WO2022143664A1 (zh) 一种显示器件及其制备方法
CN112331790A (zh) 发光器件及其制备方法和显示装置
JP2006202685A (ja) 自発光表示装置
US11716863B2 (en) Hybrid display architecture
US20220416192A1 (en) Display panel and manufacturing method thereof, and display device
WO2022143770A1 (zh) 一种显示器件及其制备方法
TWI501439B (zh) 影像顯示系統
KR100864758B1 (ko) 풀 컬러 유기 전기 발광 소자
CN114695689A (zh) 显示器件
WO2022143765A1 (zh) 一种显示器件及其像素点亮控制方法
WO2020016998A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
CN111146347A (zh) 电致发光器件及其制备方法
CN214588903U (zh) 一种oled显示器件
WO2022233145A1 (zh) 一种量子点电致发光器件
WO2021249162A1 (zh) 显示器件及其制备方法
US20230147514A1 (en) Light-emitting element, and display device
US20230354628A1 (en) Organic light-emitting display panel and organic light-emitting display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914398

Country of ref document: EP

Kind code of ref document: A1