WO2013019030A1 - 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자 - Google Patents
양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자 Download PDFInfo
- Publication number
- WO2013019030A1 WO2013019030A1 PCT/KR2012/005997 KR2012005997W WO2013019030A1 WO 2013019030 A1 WO2013019030 A1 WO 2013019030A1 KR 2012005997 W KR2012005997 W KR 2012005997W WO 2013019030 A1 WO2013019030 A1 WO 2013019030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- organic light
- spiro
- emitting device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
- H10K50/131—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/331—Nanoparticles used in non-emissive layers, e.g. in packaging layer
Definitions
- the present invention relates to an organic light emitting device, and more particularly, to an organic light emitting device in which a color conversion polymer layer including a quantum dot is inserted into the device to improve color conversion efficiency.
- OLED organic light emitting diode
- an organic light emitting diode is generally formed in a structure in which an organic thin film having a thickness of 100 to 200 nm is inserted between an anode and a cathode.
- the organic thin film has a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially stacked.
- holes injected from the anode and electrons injected from the cathode recombine in the emission layer to form excitons, and then the energy of the excitons transitions to the ground state.
- the energy emitted in the process is driven by a mechanism that converts it into light.
- the organic light emitting device In the case of the organic light emitting device, light of various colors may be emitted by changing a light emitting material of the light emitting layer or by adding a separate color conversion layer to the outside of the organic light emitting device.
- a method of changing the color of light through the color conversion layer is mainly used to improve the color purity.
- the color conversion layer attached to the outside of the device light generated from the light emitting layer of the device is absorbed by the color conversion layer, and the absorbed light is converted into light of various colors according to the band gap characteristics of the material constituting the color conversion layer. It will emit light.
- Such a color conversion layer is manufactured separately from the manufacturing process of the organic light emitting diode itself, and has an advantage that it can be applied to various light emitting devices because it is attached to the outside of the organic light emitting device.
- the white light can be implemented by changing only the type and structure of the color conversion layer attached to the outside without structural modification of the organic light emitting device.
- An object of the present invention is to provide an organic light emitting device capable of color conversion using a color conversion layer and improved light extraction efficiency.
- one aspect of the present invention is a substrate, an anode layer formed on the substrate, a color conversion polymer layer formed on the anode layer, the color conversion polymer layer comprising a first hole transport material, the color An organic light emitting device is formed on a polymer layer for conversion and includes a spacer layer including a second hole transport material, a light emitting layer formed on the spacer layer, and a cathode layer formed on the light emitting layer.
- the organic light emitting device of the present invention is provided with a color conversion polymer layer including a quantum dot and a hole transport material in the interior of the device, the light path of the light generated in the light emitting layer is simplified to improve the light extraction efficiency, separate color An additional process for manufacturing the conversion layer is unnecessary, which has the effect of simplifying the manufacturing process.
- FIG. 1 is a conceptual diagram showing the structure (A) and the light emission principle (B) of the organic light emitting device according to the prior art.
- FIG. 2 is an exemplary view showing a structure and a color conversion principle of an organic light emitting diode according to an embodiment of the present invention.
- FIG 3 is an exemplary view showing a light emitting aspect of an organic light emitting device without a spacer layer in order to explain the effect of the spacer layer in an embodiment of the present invention.
- a layer is referred to herein as being "on" another layer or substrate, it may be formed directly on the other layer or substrate, or a third layer may be interposed therebetween.
- the directional expression of the upper portion, the upper portion, and the upper surface may be understood as the meaning of the lower portion, the lower portion, the lower surface, and the like.
- the expression of the spatial direction should be understood in the relative direction and not limitedly as it means the absolute direction.
- FIG. 2 is an exemplary view showing a structure and a color conversion principle of an organic light emitting diode according to an embodiment of the present invention.
- the organic light emitting diode of the present invention includes a substrate 10, an anode layer 20, a color conversion polymer layer 30, a spacer layer 40, a light emitting layer 50, and a cathode layer 80. Include. As shown in FIG. 2, the anode layer 20, the color conversion layer 30, the spacer layer 40, the light emitting layer 50, and the cathode layer 80 are sequentially stacked on the substrate 10. do. Holes and electrons injected from the anode layer 20 and the cathode layer 80, respectively, are combined in the emission layer 50 to form excitons, and the light 100 is generated as the energy of the excitons transitions to the ground state.
- the light 100 generated in the light emitting layer 50 is absorbed by the quantum dot 90 included in the polymer layer 30 for color conversion, and the quantum dot 90 absorbing the light 100 is formed according to its own band gap.
- the light 130 of the converted color is emitted by emitting light having a wavelength different from that of the absorbed light 100.
- the substrate 10 serves as a support for the organic light emitting device, and is made of a transparent material.
- the substrate 10 may be used both a flexible material and a hard material, it is more preferably composed of a flexible material.
- the material of the substrate 10 having a transparent and flexible property may be PET, PS, PI, PVC, PVP or PE.
- the anode layer 20 and the cathode layer 80 are electrodes in which holes and electrons are injected, respectively, and are made of a conductive material.
- the material constituting the anode layer 20 may be a metal oxide, and particularly preferably a transparent conductive metal oxide.
- the transparent conductive metal oxide may be ITO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), IGZO (In, Ga-dpoed ZnO), MZO (Mg-doped ZnO), Mo-doped ZnO, Al -doped MgO, Ga-doped MgO, F-doped SnO 2 , Nb-dpoed TiO 2 or CuAlO 2 and the like.
- the material constituting the cathode layer 80 is preferably a metal, and in particular, may be Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd or Pd.
- the emission layer 50 is a layer that provides a band gap of an energy level at which holes injected from the anode layer 20 and electrons injected from the cathode layer 80 recombine to generate excitons.
- the excitons generated in the light emitting layer 50 are stabilized as the energy transitions to the ground state, and the energy difference between the excited state and the ground state of the excitons is emitted as light energy.
- the light emitting layer is Alq 3 , ADN, TBADN, TDAF, MADN, BSBF, TSBF, BDAF, TPB3, BPPF, TPBA, Spiro-Pye, p-Bpye, m-Bpye, DBpenta, DNP, DOPPP, DMPPP, TPyPA, BANE, 4P-NPB, BUBH-3, DBP, BAnFPye, BAnF 6 Pye, Coumarin 6, C545T, DMQA, Ir (ppy) 3 , Ir (ppy) 2 (acac), Ir (mppy) 3 , TTPA, TPA, Zn ( BTZ) 2 , BA-TTB, BA-TAD, BA-NPB, BCzVBi, Perylene, TBPe, BCzVB, DPAVBi, DPAVB, FIrPic, BDAVBi, FIr6, BNP3FL, MDP3FL, N-BDAVBi, fac
- the color conversion polymer layer 30 is a layer that absorbs the light 100 generated in the light emitting layer 50 and converts the wavelength of light while facilitating the transport of holes injected from the anode layer 20. That is, the color conversion polymer layer 30 simultaneously performs hole transport to the light emitting layer 50 and wavelength change of the light 100 generated in the light emitting layer.
- the color conversion polymer layer 30 may include a first hole transport material and a quantum dot 90, and more preferably, may be a mixture of the first hole transport material and a quantum dot.
- the first hole transport material included in the color conversion polymer layer 30 is similar to the anode layer and ionization energy, has high interfacial adhesion, and should not absorb light in the visible region.
- the first hole transport material is a material having a high hole mobility to easily transport holes, and to increase the probability of forming excitons by binding electrons to the light emitting layer.
- the first hole transport material is NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, ⁇ -NPD, Spiro-TAD, BPAPF , NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, ⁇ -TNB, HMTPD, ⁇ , ⁇ -TNB, ⁇ -TNB, ⁇ -NPP, PEDOT: may be organic material such as PSS, PVK, WO 3, NiO 2 , Mo, or MoO 3 .
- the quantum dot 90 included in the color conversion polymer layer 30 absorbs light 100 generated from the light emitting layer 50, and then stabilizes again to have a wavelength corresponding to a band gap inherent in the quantum dot 90. Color conversion is performed by releasing energy. That is, the quantum dot 90 receives light energy from the light emitting layer 50 in a 'radiative energy transfer' manner, and re-emits light energy having a wavelength corresponding to an intrinsic band gap of the quantum dot 90. It is. The quantum dot 90 absorbs light energy generated in the light emitting layer 50, not electrons or holes.
- the quantum dot 90 is MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, Cu 2 O, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al 2 O 3 , Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 , GeO 2 , GeS, GeSe, GeTe, SnO 2 , SnS, SnSe, SnTe, PbO 2 , PbS, PbSe , PbT
- the quantum dot 90 may be any one or more materials of group II-VI, group III-VI, group IV-VI, group III-V, group IV, and mixtures thereof.
- the quantum dot may be formed in a core / shell structure in order to increase luminous efficiency and improve light stability.
- the core / shell structure is CdTe / CdSe, CdSe / ZnTe, CdSe / ZnS, InP / ZnSe, InP / ZnS, InP / ZnTe, CdSe / ZnSe, InP / GaAs, InGaAs / GaAs, PbTe / PbS, CuInS 2 / ZnS, Co / CdSe, Zn / ZnO, Ag / TiO 2 , Ag / SiO 2 , Au / Pb, Au / Pt or Ru / Pt and the like.
- the spacer layer 40 facilitates transport of holes injected from the color conversion polymer layer 30 to the quantum dot 90 included in the color conversion polymer layer 30 from the light emitting layer 50.
- the layer is spaced apart from the light emitting layer 50 and the color conversion polymer layer 30 so as to enable luminescent energy transfer.
- the spacer layer 40 is composed of a second hole transport material, the second hole transport material is NPB, ⁇ -NPB, TPD, Spiro- TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, ⁇ -NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP Organic materials such as Spiro-BPA, TAPC, Spiro-TTB, ⁇ -TNB, HMTPD, ⁇ , ⁇ -TNB, ⁇ -TNB, ⁇ -NPP, PEDOT: PSS, PVK, WO 3, NiO 2 , Mo or MoO 3 Can be.
- the spacer layer 40 preferably has
- the method of transferring energy from the light emitting layer to the quantum dots in the organic light emitting device is largely divided into 'radiative energy transfer' and 'non-radiative energy transfer'.
- the luminescent energy transition is energy transfer in a manner in which light quantum dots absorb light energy generated by recombination of holes and electrons in the light emitting layer to emit light of different wavelengths.
- non-luminescent energy transfer is energy transfer in a manner in which direct movement of electrons or holes, or polarization energy formed by excitons, is transmitted to quantum dots without emitting light.
- the energy transfer method is different.
- the spacer layer 40 is configured to have a thickness of 10 nm or more so that the light emitting layer 50 and the quantum dot 90 are separated from each other by more than 10 nm. In addition, by allowing the light emitting layer 50 and the quantum dot 90 to be further than 10 nm, energy transfer due to non-luminous energy transfer is prevented.
- FIG. 3 is an exemplary view showing a light emitting aspect of an organic light emitting device without a spacer layer in order to explain the effect of the spacer layer.
- the luminescent energy transition and the non-luminescent energy transition occur simultaneously. . That is, energy of excitons generated by recombination of holes and electrons in the light emitting layer 50 is transferred to the quantum dot 95 existing at a distance of less than 10 nm from the light emitting layer 50 by non-luminous energy transfer. 50) and quantum dots 93 which are present at a distance greater than 10 nm are transmitted by luminescent energy transfer.
- the light 150 emitted from the quantum dot 95 when the luminescent energy transition occurs and the light 130 emitted from the quantum dot 93 when the non-luminescent energy transition occurs simultaneously have different wavelengths. Done. When the light of different wavelengths is mixed and emitted, the light generated by the organic light emitting device is degraded.
- the organic light emitting device according to an embodiment of the present invention shown in Figure 2 the light emitting layer 50 and the color conversion polymer layer 30 are spaced apart from each other by a spacer layer 40 in excess of 10nm As spaced apart, non-luminous energy transfer occurring in the organic light emitting diode disclosed in FIG. 3 is prevented by the spacer layer 40. Therefore, the light 100 generated in the light emitting layer 50 is absorbed into the quantum dot 90 by the luminous energy transition, and only the light 130 of the converted wavelength is re-emitted, thereby emitting high purity light.
- the spacer layer 40 may be formed in different thicknesses to increase the color purity of the light 130.
- the distance between the light emitting layer 50 and the quantum dot 90 can be adjusted, and by the distance between the light emitting layer 50 and the quantum dot 90 is adjusted as described above, Reached light 100 may be secondarily filtered.
- the thickness of the spacer layer 40 is adjusted as described above, when the thickness becomes thicker than 100 nm, the light extraction efficiency of the organic light emitting device is lowered, so the thickness of the spacer layer 40 is 100 nm. It is preferable to adjust within.
- the spacer layer 40 is inserted between the light emitting layer 50 and the color conversion polymer layer 30 to separate the distance between the light emitting layer 50 and the quantum dot 90 farther than 10 nm.
- the noise light by the non-luminous energy transfer can be primarily, by adjusting the thickness thereof, the light 100 reaching the quantum dot 90 from the light emitting layer 50 can be filtered secondly.
- the light 130 finally converted and emitted through the two-step filtering through the spacer layer 40 may improve its color purity.
- the organic light emitting diode of the present invention may further include an electron transport layer 60 and an electron injection layer 70 between the light emitting layer 50 and the cathode layer 80.
- the electron transport layer 60 is a layer for stably transporting electrons injected from the cathode layer 80, and is interposed between the light emitting layer 50 and the cathode layer 80.
- the electron transport layer 60 is preferably made of a material having a high electron mobility.
- the electron transport layer 60 is an oxazole-based compound, isoxazole-based compound, triazole-based compound, isothiazole-based compound, oxadiazole-based compound, thiadiazole-based compound, perylene System compounds, aluminum complexes such as Alq3 (tris (8-quinolinolato) -aluminum) BAlq, SAlq, Almq3 or gallium complexes such as Gaq'2OPiv, Gaq'2OAc, 2 (Gaq'2))
- the electron injection layer 70 is a layer that facilitates the injection of electrons from the cathode layer 80, interposed between the electron transport layer 60 and the cathode layer 80.
- the electron injection layer 70 may also be made of a material having a high electron mobility, in particular, the electron injection layer 70 may be LiF, NaCl, CsF, Li 2 O, or BaO.
- An ITO layer was deposited on the PET, followed by UV ozone treatment after washing and drying.
- Prepare a mixed solution of PEDOT: PSS dissolved in water and CdSe / ZnS dissolved in nucleic acid apply it to the ITO layer by spin coating, remove the nucleic acid by heat drying at 60 ° C for 10 minutes, and heat-dry at 10 ° C for 10 minutes.
- the polymer layer for color conversion in which the quantum dots and the hole transporting material were mixed was formed by removing.
- the spacer layer was formed by spin coating PEDOT: PSS once more on the color conversion polymer layer.
- DPVBi, BPhen, Liq and Al were sequentially thermally deposited in a vacuum state on the spacer layer to form a light emitting layer, an electron transport layer, an electron injection layer and a cathode layer, respectively, to complete the device.
- An ITO layer was deposited on the PET, followed by UV ozone treatment after washing and drying.
- a PEDOT: PSS containing no quantum dots was spin coated to form a hole transport material layer.
- the spacer layer was formed by spin coating PEDOT: PSS once more on the hole transport material layer.
- DPVBi, BPhen, Liq and Al were sequentially thermally deposited in a vacuum state on the spacer layer to form a light emitting layer, an electron transport layer, an electron injection layer and a cathode layer, respectively, to complete the device.
- the organic light emitting diode manufactured in ⁇ 1-2> has a peak formed at 460 nm
- the organic light emitting diode manufactured in ⁇ 1-1> has a peak formed at 490 nm, and thus generates light. It was confirmed that the color conversion of.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 유기발광소자에 관한 것으로, 보다 구체적으로는 기판, 상기 기판 상에 형성된 양극층, 상기 양극층 상에 형성되고, 양자점과 제1 정공수송성 물질을 포함하는 색변환용 고분자층, 상기 색변환용 고분자층 상에 형성되고, 제2 정공수송성 물질을 포함하는 스페이서층, 상기 스페이서층 상에 형성된 발광층 및 상기 발광층 상에 형성된 음극층을 포함하는 유기발광소자에 관한 것이다. 본 발명의 유기발광소자는 소자의 내부에 양자점과 정공수송물질을 포함하는 색변환용 고분자층이 구비되어 있는 바, 발광층에서 발생한 빛의 광경로가 단순화되어 광추출 효율이 향상되고, 별도의 색변환층을 제조하기 위한 추가 공정이 불필요하게 되어 제작 공정을 단순화시킬 수 있는 효과가 있다.
Description
본 발명은 유기발광소자에 관한 것으로, 보다 구체적으로는 색변환 효율의 향상을 위하여 소자 내부에 양자점을 포함하는 색변환용 고분자층이 삽입된 유기발광소자에 관한 것이다.
유기발광소자(Organic Light Emitting Eiode. OLED)는 형광성 또는 인광성 유기 화합물 박막에 전압을 인가하면 전자와 정공이 유기막에서 결합하면서 빛을 발생하는 메커니즘을 이용한 능동 발광형 소자이다.
도 1은 종래 기술에 따른 유기발광소자의 구조 및 발광 원리를 도시한 개념도이다. 도 1을 참조하면, 유기발광소자는 일반적으로 양극(anode)과 음극(cathode) 사이에 100 내지 200㎚ 두께의 유기박막이 삽입되어 있는 구조로 형성된다. 그리고, 상기 유기박막은 다시 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층이 순차적으로 적층된 구조를 갖는다. 이러한 유기발광소자는 양극에서 주입된 정공(hole)과 음극에서 주입된 전자(electron)가 발광층에서 재결합하여 여기자(exciton)을 형성한 후, 상기 여기자의 에너지가 바닥 상태(ground state)로 천이되는 과정에서 방출되는 에너지가 빛으로 전환되는 메커니즘으로 구동된다.
유기발광소자의 경우, 발광층의 발광재료를 바꾸거나, 또는 유기발광소자의 외부에 별도의 색변환층을 추가하는 방법을 통하여 다양한 색의 빛을 발광시킬 수 있다. 유기발광재료의 경우, 무기발광재료에 비하여 스펙트럼이 넓어 색순도가 나쁜 단점으로 인해, 색순도의 향상을 위하여 색변환층을 통해 빛의 색을 변화시키는 방법이 주로 이용된다. 소자의 외부에 부착된 색변환층은 소자의 발광층에서 발생된 빛이 색변환층에 흡수되고, 흡수된 빛은 색변환층을 구성하는 물질의 밴드갭 특성에 따라 다양한 색의 빛으로 변환되어 재발광하게 된다. 이러한 색변환층은 유기발광조자 자체의 제작 공정과는 별도로 제조되고, 유기발광소자의 외부에 부착되기 때문에 다양한 발광소자에 적용할 수 있다는 장점이 있다. 또한, 백색 유기발광소자를 제작하는 경우에도, 유기발광소자의 구조적 변형없이 외부에 부착된 색변환층의 종류 및 구조만을 변화시킴으로써 백색광의 구현이 가능하다는 장점이 있다.
그러나, 소자의 외부에 색변환층을 부착하는 경우, 광경로 상에 여러 종류의 계면이 존재하게 되어 광경로가 복잡해짐으로써 광추출 효율이 저하되고, 제조 공정이 복잡해짐으로써 생산단가가 증가하는 문제가 있다. 이러한 광추출 효율의 저하 및 생산단가의 증가에 관한 기술적 한계점은 유기발광소자의 발광 효율 향상을 위해 반드시 해결되어야 하는 문제이나, 현재까지 이를 해결하기 위한 기술이 제시되고 있지 않은 실정이다.
본 발명의 목적은 색변환층을 이용한 색변환이 가능하면서도 광추출 효율이 향상된 유기발광소자를 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 기판, 상기 기판 상에 형성된 양극층, 상기 양극층 상에 형성되고, 양자점과 제1 정공수송성 물질을 포함하는 색변환용 고분자층, 상기 색변환용 고분자층 상에 형성되고, 제2 정공수송성 물질을 포함하는 스페이서층, 상기 스페이서층 상에 형성된 발광층 및 상기 발광층 상에 형성된 음극층을 포함하는 유기발광소자를 제공한다.
본 발명의 유기발광소자는 소자의 내부에 양자점과 정공수송물질을 포함하는 색변환용 고분자층이 구비되어 있는 바, 발광층에서 발생한 빛의 광경로가 단순화되어 광추출 효율이 향상되고, 별도의 색변환층을 제조하기 위한 추가 공정이 불필요하게 되어 제작 공정을 단순화시킬 수 있는 효과가 있다.
다만, 본 발명의 효과들은 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 아니한 또 다른 효과들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 유기발광소자의 구조(A) 및 발광 원리(B)를 도시한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 유기발광소자의 구조 및 색 변환 원리를 도시한 예시도이다.
도 3은 본 발명의 일 실시예에서 스페이서층의 효과를 설명하기 위하여, 스페이서층이 없는 유기발광소자의 발광 양태를 나타낸 예시도이다.
도 4는 본 발명의 실험예에서 양자점 유무에 따른 색변환 효과를 확인한 발광스펙트럼이다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 본 명세서에서 설명되는 실시예들에 한정되지 아니하고, 다른 균등물 또는 대체물을 포함하는 다른 형태로 구체화될 수도 있다.
본 명세서에서 층이 다른 층 또는 기판 "상"에 있다고 언급되는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 층이 개재될 수도 있다. 또한, 본 명세서에서 위쪽, 상(부), 상면 등의 방향적인 표현은 아래쪽, 하(부), 하면 등의 의미로 이해될 수 있다. 즉, 공간적인 방향의 표현은 상대적인 방향으로 이해되어야 하며, 절대적인 방향을 의미하는 것처럼 한정적으로 이해되어서는 안 된다.
또한, 본 명세서에서 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하여 위하여 과장된 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타내며, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 2는 본 발명의 일 실시예에 따른 유기발광소자의 구조 및 색 변환 원리를 도시한 예시도이다.
도 2를 참조하면, 본 발명의 유기발광소자는 기판(10), 양극층(20), 색변환용 고분자층(30), 스페이서층(40), 발광층(50) 및 음극층(80)을 포함한다. 도 2에 도시된 바와 같이, 상기 기판(10) 상에 양극층(20), 색변환층(30), 스페이서층(40), 발광층(50) 및 음극층(80)이 순차적으로 적층되어 형성된다. 상기 양극층(20) 및 음극층(80)에서 각각 주입된 정공과 전자는 발광층(50)에서 결합되어 여기자를 형성하게 되고, 여기자의 에너지가 바닥상태로 천이되면서 빛(100)이 발생한다. 상기 발광층(50)에서 발생한 빛(100)은 색변환용 고분자층(30) 내에 포함된 양자점(90)에 흡수되고, 빛(100)을 흡수한 양자점(90)은 그 고유의 밴드갭에 따라 흡수한 빛(100)의 파장과는 다른 파장의 빛을 발광함으로써 변환된 색의 빛(130)을 발광한다.
상기 기판(10)은 유기발광소자의 지지체가 되는 것으로, 투명한 성질의 소재로 구성된다. 또한, 상기 기판(10)은 유연한 성질의 소재와 경질의 소재가 모두 이용될 수 있으나, 유연한 성질의 소재로 구성되는 것이 더욱 바람직하다. 특히, 투명하고 유연한 성질을 가진 상기 기판(10)의 소재는 PET, PS, PI, PVC, PVP 또는 PE 등일 수 있다.
상기 양극층(20) 및 음극층(80)은 각각 정공 및 전자가 주입되는 전극으로서, 전도성 있는 성질의 소재로 구성된다. 상기 양극층(20)을 구성하는 소재는 금속 산화물일 수 있고, 특히 투명전도성 금속산화물인 것이 바람직하다. 예컨대, 상기 투명전도성 금속산화물은 ITO, AZO(Al-doped ZnO), GZO(Ga-doped ZnO), IGZO(In,Ga-dpoed ZnO), MZO(Mg-doped ZnO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-dpoed TiO2 또는 CuAlO2 등일 수 있다. 상기 음극층(80)을 구성하는 소재는 금속인 것이 바람직하고, 특히, Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd 또는 Pd 등일 수 있다.
상기 발광층(50)은 상기 양극층(20)에서 주입된 정공과 상기 음극층(80)에서 주입된 전자가 재결합하여 여기자를 생성할 수 있는 에너지 준위의 밴드갭을 제공하는 층이다. 상기 발광층(50)에서 생성된 여기자는 바닥 상태(ground state)로 에너지 천이되면서 안정화되고, 여기자의 여기 상태와 바닥 상태의 에너지 차이가 빛 에너지로 방출된다. 상기 발광층은 Alq3, ADN, TBADN, TDAF, MADN, BSBF, TSBF, BDAF, TPB3, BPPF, TPBA, Spiro-Pye, p-Bpye, m-Bpye, DBpenta, DNP, DOPPP, DMPPP, TPyPA, BANE, 4P-NPB, BUBH-3, DBP, BAnFPye, BAnF6Pye, Coumarin 6, C545T, DMQA, Ir(ppy)3, Ir(ppy)2(acac), Ir(mppy)3, TTPA, TPA, Zn(BTZ)2, BA-TTB, BA-TAD, BA-NPB, BCzVBi, Perylene, TBPe, BCzVB, DPAVBi, DPAVB, FIrPic, BDAVBi, FIr6, BNP3FL, MDP3FL, N-BDAVBi, fac-Ir(Pmb)3, mer-Ir(Pmb), Spiro-BDAVBi, DBzA, DSA-Ph, BCzSB, DPASN, Bepp2, FIrN4, DCM, DCM2, DCJT, DCJTB, Eu(dbm)3(Phen), Rubrene, Ir(btp)2(acac), Ir(piq)3, Ir(piq)2(acac), Ir(fliq)2(acac), Ir(flq)2(acac), Ru(dtb-bpy3.2(PF6), Ir(2-phq)3, Ir(2-phq)2(acac), TBRb, Ir(BT)2(acac), Pt(TPBP), N-DPAVBi-CN, Os(fppz)2(PPhMe2)2,Hex-Ir(phq)2acac, Hex-Ir(phq)3, Ir(Mphq)3, Ir(phq)2tpy, Ir(fbi)2acac, Ir(ppy)2Pc, PQ2Ir(dpm), Piq2Ir(dpm), PO-01 또는 DCQTB 등과 같은 저분자 유기발광물질이나, MEH-PPV, BEH-PPV, M3O-PPV, BCHA-PPV, MUEH-PPV, POPT, PCHT, PTOPT, PMOT, PCHMT, PDCHT, PDOPT, CN-PPVs, PPP, LPPP, m-LPPP, PF, FV, PVK, PDHPT, PBPS, PFV 또는 Al-PPV과 같은 고분자 유기발광물질로 구성될 수 있다.
상기 색변환용 고분자층(30)은 양극층(20)에서 주입된 정공의 수송을 용이하게 하면서, 상기 발광층(50)에서 발생하는 빛(100)을 흡수하여 빛의 파장을 변환하는 층이다. 즉, 상기 색변환용 고분자층(30)은 발광층(50)으로의 정공 수송과 발광층에서 발생하는 빛(100)의 파장 변화를 동시에 수행한다. 상기 색변환용 고분자층(30)은 제1 정공수송성 물질과 양자점(90)을 포함하고, 더욱 바람직하게는 제1 정공수송성 물질과 양자점의 혼합물로 구성된다.
상기 색변환용 고분자층(30) 내에 포함된 상기 제1 정공수송성 물질은 양극층과 이온화에너지가 비슷하고, 계면접착력이 높으며, 가시광선 영역의 빛을 흡수하지 않아야 한다. 또한, 상기 제1 정공수송성 물질은 정공이동도가 높아서 정공을 쉽게 운반시킬 수 있고, 전자를 발광층에 속박함으로써 여기자의 형성 확률을 높일 수 있는 물질이 바람직하다. 특히, 상기 제1 정공수송성 물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT: PSS, PVK, WO3, NiO2, Mo 또는 MoO3 등의 유기물일 수 있다.
상기 색변환용 고분자층(30) 내에 포함된 상기 양자점(90)은 발광층(50)에서 발생하는 빛(100)을 흡수한 다음, 다시 안정화되면서 양자점(90) 고유의 밴드갭에 해당하는 파장의 에너지를 재방출함으로써 색변환을 수행한다. 즉, 상기 양자점(90)은 발광층(50)으로부터 '발광성 에너지 전이(radiative energy transfer)'의 방식으로 빛 에너지를 전달받고, 양자점(90)의 고유 밴드갭에 해당하는 파장의 빛 에너지를 재방출하는 것이다. 상기 양자점(90)은 전자나 정공이 아닌, 발광층(50)에서 발생한 빛 에너지를 흡수한다. 상기 양자점(90)은 MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, Cu2O, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, GeO2, GeS, GeSe, GeTe, SnO2, SnS, SnSe, SnTe, PbO2, PbS, PbSe, PbTe, BN, BP, BAs, BSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, Si, Ge 또는 In 등과 같은 물질 또는 이들의 혼합물 중 어느 하나 이상의 물질일 수 있다. 특히, 상기 양자점(90)은 Ⅱ-Ⅵ족, Ⅲ-Ⅵ족, Ⅳ-Ⅵ족, Ⅲ-Ⅴ족, Ⅳ족 물질, 및 이들의 혼합물 중 어느 하나 이상의 물질일 수 있다. 또한, 상기 양자점은 발광효율을 높이고, 광안정성을 향상시키기 위하여, 코어/쉘(core/shell) 구조로 형성될 수 있다. 특히, 상기 코어/쉘 구조는 CdTe/CdSe, CdSe/ZnTe, CdSe/ZnS, InP/ZnSe, InP/ZnS, InP/ZnTe, CdSe/ZnSe, InP/GaAs, InGaAs/GaAs, PbTe/PbS, CuInS2/ZnS, Co/CdSe, Zn/ZnO, Ag/TiO2, Ag/SiO2, Au/Pb, Au/Pt 또는 Ru/Pt 등일 수 있다.
상기 스페이서층(40)은 상기 색변환용 고분자층(30)에서 주입된 정공의 수송을 용이하게 하면서, 상기 발광층(50)으로부터 상기 색변환용 고분자층(30) 내에 포함된 양자점(90)으로 발광성 에너지 전이가 가능하도록 발광층(50)과 색변환용 고분자층(30)을 이격시키기 위한 층이다. 고분자층(30)에서 주입된 정공의 수송을 용이하게 하기 위하여, 상기 스페이서층(40)은 제2 정공수송성 물질로 구성되고, 상기 제2 정공수송물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT:PSS, PVK, WO3, NiO2, Mo 또는 MoO3 등의 유기물일 수 있다. 발광층(50)으로부터 상기 색변환용 고분자층(30) 내에 포함된 양자점(90)으로 발광성 에너지 전이가 가능하도록 하기 위하여, 상기 스페이서층(40)은 두께가 10㎚ 내지 100㎚인 것이 바람직하다.
유기발광소자에서 발광층에서 양자점으로 에너지가 전달되는 방식은 크게 '발광성 에너지 전이(radiative energy transfer)'와 '비발광성 에너지 전이(non-radiative energy transfer)'로 나뉘어진다. 상기에서 설명한 바와 같이, 발광성 에너지 전이는 발광층에서 정공과 전자가 재결합하면서 발생한 빛에너지를 양자점이 흡수하여 다른 파장의 빛을 방출하는 방식의 에너지 전달이다. 반면, 비발광성 에너지 전이는 발광과정 없이 전자나 정공의 직접적인 이동, 또는 여기자에 의해 형성된 분극 에너지가 양자점에 전달되는 방식의 에너지 전달이다. 발광층과 양자점 간의 거리에 따라, 에너지의 전달 방식이 달라지게 된다. 즉, 발광층과 양자점이 10㎚ 이내의 거리에 있게 되면 비발광성 에너지 전이에 의해 에너지가 전달되게 되고, 10㎚ 보다 떨어져 있게 되면 발광성 에너지 전이에 의해 에너지가 전달된다. 상기 스페이서층(40)은 발광층(50)과 양자점(90)을 10㎚ 보다 더 떨어져있도록 하기 위하여 두께가 10㎚ 이상이 되도록 구성된다. 또한, 발광층(50)과 양자점(90)을 10㎚ 보다 더 떨어져있도록 함으로써, 비발광성 에너지 전이에 의한 에너지 전달을 방지한다.
도 3은 스페이서층의 효과를 설명하기 위하여, 스페이서층이 없는 유기발광소자의 발광 양태를 나타낸 예시도이다. 도 3을 참조하면, 상기 스페이서층(40)이 없이, 발광층(50)과 색변환용 고분자층(30)이 바로 맞닿아 접촉하고 있는 경우에는, 발광성 에너지 전이와 비발광성 에너지 전이가 동시에 일어나게 된다. 즉, 발광층(50)에서 정공과 전자가 재결합하여 생성된 여기자의 에너지가, 발광층(50)과 10㎚ 미만의 거리에 존재하는 양자점(95)으로는 비발광성 에너지 전이에 의하여 전달되고, 발광층(50)과 10㎚ 보다 먼 거리에 존재하는 양자점(93)으로는 발광성 에너지 전이에 의하여 전달된다. 상기와 같이, 발광성 에너지 전이가 일어난 경우에 상기 양자점(95)에서 발광되는 빛(150)과, 비발광성 에너지 전이가 동시에 일어나는 경우에 양자점(93)에서 발광되는 빛(130)은 그 파장이 상이하게 된다. 이렇게 서로 다른 파장의 빛이 혼합되어 발광되는 경우, 상기 유기발광소자에서 발생되는 빛은 그 순도가 떨어지게 된다. 반면, 도 2에 도시된 본 발명의 일 실시예에 따른 유기발광소자의 경우, 발광층(50)과 색변환용 고분자층(30)이 스페이서층(40)에 의하여 10㎚를 초과하는 간격으로 서로 이격되어 있는 바, 상기 도 3에 개시된 유기발광소자에서 발생하는 비발광성 에너지 전이는 상기 스페이서층(40)에 의하여 방지된다. 따라서, 발광층(50)에서 발생한 빛(100)이 발광성 에너지 전이에 의하여 양자점(90)으로 흡수되고, 변환된 파장의 빛(130)만이 재방출됨으로써, 높은 순도의 빛을 발광하게 된다.
상기 스페이서층(40)은 빛(130)의 색순도를 높이기 위하여, 그 두께를 달리하여 형성될 수 있다. 상기 스페이서층(40)의 두께를 조절함으로써, 발광층(50)과 양자점(90) 간의 거리가 조절될 수 있고, 상기와 같이 조절되는 발광층(50)과 양자점(90) 간의 거리에 의하여, 양자점에 도달되는 빛(100)이 2차적으로 필터링(filtering)될 수 있다. 다만, 상기와 같이 스페이서층(40)의 두께를 조절하는 경우, 상기 두께가 100㎚ 보다 더 두꺼워지면 유기발광소자의 광추출 효율이 떨어지는 문제가 발생하므로 상기 스페이서층(40)의 두께는 100㎚ 이내에서 조절되는 것이 바람직하다.
즉, 본 발명의 유기발광소자는 발광층(50)과 색변환용 고분자층(30) 사이에 스페이서층(40)을 삽입하여, 발광층(50)과 양자점(90)간의 거리를 10㎚ 보다 멀리 이격시킴으로써 1차적으로 비발광성 에너지 전이에 의한 노이즈 광을 필터링할 수 있고, 그 두께를 조절함으로써 2차적으로 발광층(50)으로부터 양자점(90)에 도달하는 빛(100)을 필터링할 수 있는 것이다. 상기와 같이, 스페이서층(40)을 통한 2단계의 필터링을 통하여 최종적으로 변환되어 발광되는 빛(130)은 그 색순도가 향상될 수 있다.
본 발명의 유기발광소자는 상기 발광층(50)과 음극층(80)의 사이에 전자수송층(60) 및 전자주입층(70)을 추가적으로 포함할 수 있다. 상기 전자수송층(60)은 음극층(80)으로부터 주입된 전자를 안정하게 수송하는 층으로서, 발광층(50)과 음극층(80) 사이에 개재된다. 상기 전자수송층(60)은 전자이동도가 높은 특성의 소재로 이루어지는 것이 바람직하다. 특히, 상기 전자수송층(60)은 옥사졸계 화합물, 이소옥사졸계 화합물, 트리아졸계 화합물, 이소티아졸(isothiazole)계 화합물, 옥사디아졸계 화합물, 티아다아졸(thiadiazole)계 화합물, 페릴렌(perylene)계 화합물, 알루미늄 착물(예: Alq3(트리스(8-퀴놀리놀라토)-알루미늄(tris(8-quinolinolato)-aluminium) BAlq, SAlq, Almq3 또는 갈륨 착물(예: Gaq'2OPiv, Gaq'2OAc, 2(Gaq'2)) 등일 수 있다. 상기 전자주입층(70)은 음극층(80)으로부터 전자의 주입을 용이하게 하는 층으로서, 상기 전자수송층(60)과 음극층(80) 사이에 개재된다. 상기 전자주입층(70) 역시 전자이동도가 높은 특성의 소재로 이루어지는 것이 바람직하다. 특히, 상기 전자주입층(70)은 LiF, NaCl, CsF, Li2O 또는 BaO 등일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의하여 한정되는 것은 아니다.
<실험예 1>
양자점에 의한 색변환 여부 확인
<1-1>
양자점을 포함하는 유기발광소자의 제조
PET 상에 ITO층을 증착하여, 세정 및 건조 후 UV 오존 처리를 하였다. 물에 녹인 PEDOT:PSS와 핵산에 녹인 CdSe/ZnS를 섞은 혼합 용액을 만들어 ITO층에 스핀코팅으로 도포하고, 60℃에서 10분간 열건조하여 핵산을 제거하고, 150℃에서 10분간 열건조하여 물을 제거함으로써 양자점과 정공수송성 물질이 혼합되어 있는 색변환용 고분자층을 형성하였다. 상기 색변환용 고분자층 상에 PEDOT:PSS를 한번 더 스핀코팅하여 스페이서층을 형성하였다. 상기 스페이서층 상에 DPVBi, BPhen, Liq 및 Al을 순차적으로 진공상태에서 열증착하여, 각각 발광층, 전자수송층, 전자주입층 및 음극층을 형성함으로써 소자를 완성하였다.
<1-2>
양자점을 포함하지 않는 유기발광소자의 제조
PET 상에 ITO층을 증착하여, 세정 및 건조 후 UV 오존 처리를 하였다. 상기 ITO층 상에 양자점이 포함되지 않은 PEDOT:PSS를 스핀코팅하여 정공수송성 물질층을 형성하였다. 상기 정공수송성 물질층 상에 PEDOT:PSS를 한번 더 스핀코팅하여 스페이서층을 형성하였다. 상기 스페이서층 상에 DPVBi, BPhen, Liq 및 Al을 순차적으로 진공상태에서 열증착하여, 각각 발광층, 전자수송층, 전자주입층 및 음극층을 형성함으로써 소자를 완성하였다.
<1-3>
EL 측정 및 비교
상기 <1-1> 및 <1-2>에서 제조한 소자의 EL을 측정하였고, 그 결과를 도 4에 도시하였다. 도 4에 나타난 바와 같이, <1-2>에서 제조한 유기발광소자는 460㎚에서 피크가 형성된 반면, <1-1>에서 제조한 유기발광소자는 490㎚에서 피크가 형성되어, 발생하는 빛의 색 변환이 일어남을 확인하였다.
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.
<부호의 설명>
10:기판, 20:양극층
23:정공주입층, 25:정공수송층
30:색변환용 고분자층, 40:스페이서층
50:발광층, 60:전자수송층
70:전자주입층, 80:음극층
90:양자점
93:발광층과 10㎚ 이외의 거리에 존재하는 양자점
95:,발광층과 10㎚ 이내의 거리에 존재하는 양자점
100:발광층에서 여기자에 의해 발생하는 빛
130:발광성 에너지 전이에 의하여 색이 변화된 빛
150:비발광성 에너지 전이에 의하여 발생하는 빛
Claims (9)
- 기판;상기 기판 상에 형성된 양극층;상기 양극층 상에 형성되고, 양자점과 제1 정공수송성 물질을 포함하는 색변환용 고분자층;상기 색변환용 고분자층 상에 형성되고, 제2 정공수송성 물질을 포함하는 스페이서층;상기 스페이서층 상에 형성된 발광층; 및상기 발광층 상에 형성된 음극층을 포함하는 유기발광소자.
- 제1항에 있어서, 상기 양자점은 Ⅱ-Ⅵ족, Ⅲ-Ⅵ족, Ⅳ-Ⅵ족, Ⅲ-Ⅴ족 및 Ⅳ족 물질로 구성되는 군에서 선택되는 어느 하나의 물질인 것을 특징으로 하는 유기발광소자.
- 제1항에 있어서, 상기 양자점은 코어/쉘 구조인 것을 특징으로 하는 유기발광소자.
- 제1항에 있어서, 상기 제1 정공수송성 물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT: PSS, PVK, WO3, NiO2, Mo 및 MoO3으로 구성되는 군에서 선택되는 어느 하나 이상의 물질인 것을 특징으로 하는 유기발광소자.
- 제1항에 있어서, 상기 색변환용 고분자층은 상기 제1 정공수송성 물질과 상기 양자점의 혼합물로 이루어지는 것을 특징으로 하는 유기발광소자.
- 제1항에 있어서, 상기 제2 정공수송성 물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT: PSS, PVK, WO3, NiO2, Mo 및 MoO3으로 구성되는 군에서 선택되는 어느 하나 이상의 물질인 것을 특징으로 하는 유기발광소자.
- 제1항에 있어서, 상기 스페이서층은 두께가 10㎚ 내지 100㎚인 것을 특징으로 하는 유기발광소자.
- 제1항 내지 제 7항 중 어느 한 항에 있어서, 상기 유기발광소자는 상기 발광층과 상기 음극층 사이에 전자수송층을 더 포함하는 것을 특징으로 하는 유기발광소자.
- 제8항에 있어서, 상기 유기발광소자는 상기 전자수송층과 상기 음극층 사이에 전자주입층을 더 포함하는 것을 특징으로 하는 유기발광소자.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110076247A KR101237124B1 (ko) | 2011-07-29 | 2011-07-29 | 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자 |
KR10-2011-0076247 | 2011-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013019030A1 true WO2013019030A1 (ko) | 2013-02-07 |
Family
ID=47629485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/005997 WO2013019030A1 (ko) | 2011-07-29 | 2012-07-27 | 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101237124B1 (ko) |
WO (1) | WO2013019030A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730584A (zh) * | 2013-12-27 | 2014-04-16 | 北京京东方光电科技有限公司 | 一种显示面板及显示装置 |
CN105552244A (zh) * | 2016-02-17 | 2016-05-04 | 京东方科技集团股份有限公司 | 一种发光器件及其制备方法、显示装置 |
WO2022143960A1 (zh) * | 2020-12-31 | 2022-07-07 | Tcl科技集团股份有限公司 | 光电器件 |
WO2022143830A1 (zh) * | 2020-12-31 | 2022-07-07 | Tcl科技集团股份有限公司 | 光电器件 |
WO2022227684A1 (zh) * | 2021-04-27 | 2022-11-03 | Tcl科技集团股份有限公司 | 显示面板 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102234929B1 (ko) | 2014-11-17 | 2021-04-01 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 |
KR102529715B1 (ko) * | 2014-12-26 | 2023-05-09 | 엘지디스플레이 주식회사 | 유기발광다이오드 및 이를 구비한 유기전계발광 표시장치, 그리고 유기발광다이오드의 제조방법 |
KR102357440B1 (ko) | 2015-01-05 | 2022-02-03 | 삼성디스플레이 주식회사 | 유기발광 표시장치 및 그의 제조방법 |
KR101687637B1 (ko) * | 2015-04-13 | 2016-12-29 | 경북대학교 산학협력단 | 단일의 양자점으로 이루어지는 발광층과 컬러변환층을 이용한 백색광 발광소자 |
KR102649562B1 (ko) * | 2016-08-08 | 2024-03-19 | 삼성전자주식회사 | 전자소자 |
EP3537491B1 (en) | 2018-03-09 | 2022-04-13 | Samsung Electronics Co., Ltd. | Quantum dot device and electronic device |
KR102265057B1 (ko) | 2019-07-30 | 2021-06-15 | 공주대학교 산학협력단 | 다중 파장 발광이 가능한 색변환 소재 및 이의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020050014A (ko) * | 2000-12-20 | 2002-06-26 | 김효근 | 백색 발광 장치 및 그 제조방법 |
US6608439B1 (en) * | 1998-09-22 | 2003-08-19 | Emagin Corporation | Inorganic-based color conversion matrix element for organic color display devices and method of fabrication |
KR20080084235A (ko) * | 2007-03-15 | 2008-09-19 | 삼성전자주식회사 | 퀀텀 도트를 이용한 무기 전계발광소자 |
KR20100089606A (ko) * | 2009-02-04 | 2010-08-12 | 한국기계연구원 | 컬러 변환층으로 반도체 나노 양자점을 포함하는 디스플레이소자 |
-
2011
- 2011-07-29 KR KR1020110076247A patent/KR101237124B1/ko not_active IP Right Cessation
-
2012
- 2012-07-27 WO PCT/KR2012/005997 patent/WO2013019030A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608439B1 (en) * | 1998-09-22 | 2003-08-19 | Emagin Corporation | Inorganic-based color conversion matrix element for organic color display devices and method of fabrication |
KR20020050014A (ko) * | 2000-12-20 | 2002-06-26 | 김효근 | 백색 발광 장치 및 그 제조방법 |
KR20080084235A (ko) * | 2007-03-15 | 2008-09-19 | 삼성전자주식회사 | 퀀텀 도트를 이용한 무기 전계발광소자 |
KR20100089606A (ko) * | 2009-02-04 | 2010-08-12 | 한국기계연구원 | 컬러 변환층으로 반도체 나노 양자점을 포함하는 디스플레이소자 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730584A (zh) * | 2013-12-27 | 2014-04-16 | 北京京东方光电科技有限公司 | 一种显示面板及显示装置 |
US9379344B2 (en) | 2013-12-27 | 2016-06-28 | Boe Technology Group Co., Ltd. | Display panel and display device |
CN105552244A (zh) * | 2016-02-17 | 2016-05-04 | 京东方科技集团股份有限公司 | 一种发光器件及其制备方法、显示装置 |
US10225907B2 (en) | 2016-02-17 | 2019-03-05 | Boe Technology Group Co., Ltd. | Light emitting device having at least two quantum dot light emitting layers and fabricating method thereof |
WO2022143960A1 (zh) * | 2020-12-31 | 2022-07-07 | Tcl科技集团股份有限公司 | 光电器件 |
WO2022143830A1 (zh) * | 2020-12-31 | 2022-07-07 | Tcl科技集团股份有限公司 | 光电器件 |
WO2022227684A1 (zh) * | 2021-04-27 | 2022-11-03 | Tcl科技集团股份有限公司 | 显示面板 |
Also Published As
Publication number | Publication date |
---|---|
KR101237124B1 (ko) | 2013-02-25 |
KR20130014251A (ko) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013019030A1 (ko) | 양자점을 포함하는 색변환용 고분자층이 내부에 삽입된 유기발광소자 | |
US11653512B2 (en) | Light-emitting diode and light-emitting device with reduced hole and current leakages | |
US10665805B2 (en) | Light-emitting diode and light-emitting device including the same | |
JP7335710B2 (ja) | 電界発光素子及びこれを含む表示装置 | |
CN105552244B (zh) | 一种发光器件及其制备方法、显示装置 | |
WO2019184413A1 (zh) | 量子点发光二极管、其制备方法及显示器件 | |
KR101240781B1 (ko) | 유기 발광소자 | |
US11228013B2 (en) | Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same | |
CN103165645A (zh) | 显示单元及其制造方法,电子装置,照明单元,和发光器件及其制造方法 | |
US11903307B2 (en) | Organic compound, and light-emitting diode and light-emitting device including the same | |
CN105206715A (zh) | 一种激子限域结构的qled及其制备方法 | |
US10978659B2 (en) | Inorganic illuminant, light-emitting diode and light-emitting device having thereof | |
WO2007102704A1 (en) | Oled and fabricating method of the same | |
CN111269238A (zh) | 有机化合物、具有该化合物的发光二极管和发光装置 | |
KR102583620B1 (ko) | 발광다이오드 및 이를 포함하는 발광장치 | |
US11502267B2 (en) | Inorganic light emitting diode and inorganic light emitting device including the same | |
KR102517276B1 (ko) | 발광다이오드 및 이를 포함하는 발광장치 | |
KR20170112452A (ko) | 유기발광소자 | |
Ju et al. | Quantum dot light-emitting diodes employing phosphorescent organic molecules as double emission layers | |
US11950438B2 (en) | Inorganic light emitting diode and inorganic light emitting device including the same | |
US11495769B2 (en) | Inorganic light emitting diode and inorganic light emitting device including the same | |
KR102687296B1 (ko) | 유기 화합물, 이를 포함하는 발광다이오드 및 발광장치 | |
KR20230157740A (ko) | 열 가교가능한 정공 수송 물질, 이를 포함하는 발광소자 및 이의 제조방법 | |
CN116437711A (zh) | 一种光电器件及其制备方法、及显示装置 | |
KR20230084988A (ko) | 발광 특성이 향상된 발광장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12820216 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12820216 Country of ref document: EP Kind code of ref document: A1 |