WO2022224889A1 - 半導体素子の製造方法及び縦型mosfet素子 - Google Patents

半導体素子の製造方法及び縦型mosfet素子 Download PDF

Info

Publication number
WO2022224889A1
WO2022224889A1 PCT/JP2022/017701 JP2022017701W WO2022224889A1 WO 2022224889 A1 WO2022224889 A1 WO 2022224889A1 JP 2022017701 W JP2022017701 W JP 2022017701W WO 2022224889 A1 WO2022224889 A1 WO 2022224889A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal layer
thin film
layer
manufacturing
Prior art date
Application number
PCT/JP2022/017701
Other languages
English (en)
French (fr)
Inventor
光治 加藤
兆 嶋田
諭史 安松
孝幸 古澤
幹土 砂入
Original Assignee
有限会社Mtec
アスカコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Mtec, アスカコーポレーション株式会社 filed Critical 有限会社Mtec
Publication of WO2022224889A1 publication Critical patent/WO2022224889A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device and a MOSFET device. More particularly, the present invention relates to a method for manufacturing a semiconductor device and a vertical MOSFET device, which thins a Si substrate on which a semiconductor device is formed and prevents the warpage thereof.
  • the Si semiconductor element is preferably formed as a chip size package.
  • a thin metal layer is formed on the back surface of the vertical element, and a through electrode is formed.
  • Some are said to have a rolling structure. In this structure, it is important to minimize resistance loss in the drain section, and for that purpose, it is important to reduce the thickness of the Si layer.
  • FIG. 9A shows an example of the structure of a conventional vertical MOSFET chip size package.
  • a vertical MOSFET element 300 is provided with a source electrode 301 and a gate electrode 302 on the element main surface of a Si substrate 310 serving as a base of the element, and a drain 303 on the back side of the Si substrate 310 .
  • a metal layer 320 is formed on the rear surface of the element.
  • the drain 303 reaches the drain electrode 304 on the main surface of the element through the metal layer 320, and the structure is such that the source electrode 301, the gate electrode 302 and the drain electrode 304 are present on the main surface of the element.
  • current i flows from drain electrode 304 through metal layer 320 to source electrode 301 .
  • the impedance from the drain electrode to the source electrode which is an important characteristic of the MOSFET element, consists of the bulk resistance r1 from the drain electrode to the drain metal on the backside, the resistance r2 on the backside metal part, and the drift from the drain 303 to the MOS gate part. It is the sum of resistance r3 and channel resistance r4 (not shown).
  • the bulk resistance r1 depends on the thickness of the Si substrate 310. FIG.
  • the back surface metal part resistance r2 can be ignored if the thickness of the metal layer 320 is above a certain value.
  • the drift resistance r3 from the drain 303 to the MOS gate portion depends on the impurity concentration of the Si layer and the thickness of the Si substrate 310, which are determined by the device withstand voltage of the drift portion.
  • the channel resistance r4 is a value determined by the withstand voltage of the MOSFET.
  • FIG. 2(b) shows an example in which a vertical MOSFET element 300 in a chip-size package is mounted on a printed circuit board 200 by face-down technology. In such an element structure, of the total resistance value r1+r2+r3+r4 from the drain electrode 304 to the source electrode 301, the structural elements are r1 and r3. Thinning is important.
  • Patent Document 1 A method of using a metal for the base portion of a thin Si semiconductor element is known (see, for example, Patent Document 1).
  • molybdenum which has a high melting point, is used as a metal, and they are bonded together at a high temperature of 1000° C., and bonding is performed by interdiffusion of molybdenum and Si at the interface.
  • a method of metallizing the bonding surface of the Si substrate using high-melting-point solder and bonding it to the copper substrate at about 400° C. is also conceivable. Soldering the Si substrate and the copper substrate requires soldering using a high-melting-point solder having a higher temperature.
  • the practical temperature of the element mounted face down is generally ⁇ Since the temperature is about 40° C. to +85° C., stress is generated due to the difference between the temperature at the time of bonding and the temperature in the actual state, and warping occurs.
  • connection life of the connection interface and the life of the element it is not preferable for the connection life of the connection interface and the life of the element that a large stress is generated at the joint interface.
  • the thinner the Si layer the greater the internal stress generated at the bonding interface, and the greater the influence on the elements formed on the Si surface.
  • FIG. 10 is a diagram showing the relationship between the thickness D of the Si substrate and the series resistance (r1+r3) of the MOSFET element.
  • the value of the resistance component (r1+r3) is expressed as a relative value with 1 being 1 when the thickness of the Si substrate is 100 ⁇ m.
  • the series resistance component (r1+r3) of the MOSFET element is reduced in proportion, and favorable characteristics can be obtained.
  • FIG. 11 shows the result of simulating the relationship between the thickness D of the Si substrate and the degree d of warpage of the substrate.
  • the planar size of the device is 3 mm ⁇ 6 mm, and the basic device structure has a Si substrate with a thickness of 100 ⁇ m and a back metal layer with a thickness of 10 ⁇ m.
  • the metal layer on the back surface is formed by silver plating, and the thicker the metal layer, the more the stress causes the Si substrate to warp.
  • the thickness of the silver plating is set to 10 ⁇ m in the element structure of FIG.
  • the figure shows the degree of warpage d of the Si substrate when the thickness D of the Si substrate is varied from 100 ⁇ m to 10 ⁇ m. When the thickness D of the Si substrate is 100 ⁇ m, the magnitude of the warpage d is about 10 ⁇ m.
  • the degree of warpage becomes significant. Warpage causes a problem that the MOSFET element of the chip size package cannot be mounted face down, so it is important to reduce the warpage.
  • the thickness of the plating which is the metal layer on the back surface
  • warping will increase due to the stress of the deposited metal layer.
  • the warp of the element increases due to the temperature rise, resulting in a situation in which mounting is impossible. Therefore, it is necessary to reduce the warp of the element before face-down mounting, and to provide an element structure that does not increase the warp due to temperature rise even if the warp is small.
  • the present invention provides a method for manufacturing a semiconductor element and a vertical MOSFET in which the electrical resistance between electrodes is reduced by thinning a Si substrate on which a semiconductor element is formed, and warping of the thinned Si layer is prevented.
  • the object is to provide an element.
  • the point of focus for solving the above problems is to use a support substrate as a base by bonding a support substrate instead of a conventional structure in which a Si semiconductor substrate is used as a base and a metal layer is attached to the back surface of the substrate. , to convert to a structure in which a Si semiconductor layer accompanies a metal layer sandwiched therebetween. That is, by using the support substrate as a base, the structure is such that warping does not occur even if the Si semiconductor layer is thin (for example, about 10 ⁇ m) and the metal layer is thin (for example, about 20 ⁇ m).
  • the difference in thermal expansion coefficient between the Si semiconductor layer and the support substrate is small.
  • a temporary substrate is attached after the semiconductor element is formed, and the Si semiconductor layer is polished to the limit where the element function can be created. and forming a metal layer on the back surface of the thin Si semiconductor layer, and then bonding the metal layer and the support substrate.
  • the present invention is as follows. 1. a first bonding step of bonding the main surface side of the Si substrate having the constituent elements of the semiconductor element formed on the surface layer and the temporary substrate; A Si thin film is formed by removing the back side of the Si substrate leaving at least a thickness corresponding to the depth of the surface layer portion, thereby forming a Si thin film in which the constituent elements of the semiconductor element are formed on the main surface side. a chemical process; a metal layer forming step of forming a metal layer on the back side of the Si thin film by metal plating; a second bonding step of bonding a support substrate onto the metal layer formed on the back side of the Si thin film; a peeling step of removing the temporary substrate; A method of manufacturing a semiconductor device, comprising: 2.
  • a barrier metal layer forming step of forming a barrier metal layer made of a barrier metal on the back surface of the Si thin film includes forming the metal layer on the barrier metal layer in 1. above.
  • the support substrate is made of any one of resin, metal, glass, and Si. or 2. 3.
  • the metal layer and the support substrate are bonded using a conductive adhesive or a non-conductive resin adhesive. to 3.
  • the metal layer is formed by silver plating or copper plating. to 4.
  • the semiconductor element is a MOSFET with a vertical structure, and a source electrode, a gate electrode, and a drain electrode are formed on the main surface of the Si substrate. to 5.
  • a method for manufacturing a semiconductor device according to any one of the above. 7 The semiconductor element is a MOSFET of vertical structure, and at least a source electrode and a gate electrode are formed on the main surface of the Si substrate, and a drain electrode is formed on the back surface of the Si substrate. to 5.
  • the semiconductor element is a MOSFET with a vertical structure, and at least two independent source electrodes and gate electrodes are formed on the main surface of the Si substrate. to 5.
  • the thickness of the Si thin film is 50 ⁇ m or less. to 8.
  • a method for manufacturing a semiconductor device according to any one of the above. 10. a Si thin film having at least a source electrode and a gate electrode formed on its main surface, and a source portion and a gate portion formed on a surface layer portion on the main surface side; a metal layer formed sandwiching a barrier metal layer made of a barrier metal on the back surface of the Si thin film; a support substrate bonded onto the metal layer; with A vertical MOSFET device, wherein the support substrate is a substrate for supporting the device. 11. 10. A source electrode, a gate electrode and a drain electrode are formed on the main surface of the Si thin film. A vertical MOSFET device as described. 12. 10. 10.
  • At least two independent source electrodes and gate electrodes are formed on the main surface of the Si thin film, and a drain electrode is formed on the back surface of the Si thin film.
  • the support substrate is made of any one of resin, metal, glass and Si. 12.
  • the Si thin film has a thickness of 50 ⁇ m or less. to 13.
  • the back surface of the Si thin film, the metal layer, and the support substrate are bonded so that the stress generated at the bonding interface is extremely small, the quality of the bonding interface can be improved, and the occurrence of warping can be suppressed.
  • the vertical MOSFET element of the present invention includes a Si thin film having at least a source electrode and a gate electrode formed on its main surface, and a source portion and a gate portion formed on a surface layer portion on the main surface side, and the Si thin film and a support substrate bonded onto the metal layer, wherein the support substrate is a base for supporting the element. Also, the support substrate suppresses the occurrence of warping, and a vertical MOSFET element suitable for face-down mounting can be constructed.
  • FIG. 1 is a cross-sectional view showing the structure of a vertical MOSFET device manufactured by the method for manufacturing a semiconductor device according to the embodiment;
  • FIG. It is a sectional view for explaining the 1st jointing process in a manufacturing method of a semiconductor device.
  • FIG. 4 is a cross-sectional view for explaining a Si thinning step in the method of manufacturing a semiconductor device;
  • FIG. 4 is a cross-sectional view for explaining an example (1) of a second bonding step in the method of manufacturing a semiconductor device;
  • FIG. 4 is a cross-sectional view for explaining an example (1) of a peeling step in the method of manufacturing a semiconductor device;
  • FIG. 10 is a cross-sectional view for explaining an example (2) of the second bonding step in the method of manufacturing a semiconductor device;
  • FIG. 10 is a cross-sectional view for explaining an example (2) of a peeling step in the method of manufacturing a semiconductor device;
  • FIG. 4 is a cross-sectional view for explaining face-down mounting of a MOSFET element of a chip size package manufactured by the method of manufacturing a semiconductor element according to the embodiment; It is a cross-sectional view showing an example of the structure of a conventional vertical MOSFET element and face-down mounting.
  • 2 is a graph showing the relationship between the resistance component (r1+r3) of a conventional vertical MOSFET element and the thickness of the Si substrate; 4 is a graph showing the relationship between the magnitude of warpage of a conventional chip-size MOSFET element and the thickness of the Si substrate.
  • a first bonding is performed to bond a temporary substrate (6) to a main surface (11) side of a Si substrate (100) on which components of a semiconductor device are formed on the surface layer. and removing the back surface side (92) of the Si substrate (100) leaving at least a thickness corresponding to the depth of the surface layer portion, so that the components of the semiconductor element are formed on the main surface (11) side thereof.
  • the depth of the surface layer portion is set according to the impurity concentration of the impurity layer forming the semiconductor element, the required withstand voltage, and the like.
  • the depth of the depletion layer due to the impurity layer is about 10 ⁇ m.
  • the thickness of the Si thin film (10) is 10 to 50 ⁇ m, preferably 10 to 20 ⁇ m.
  • the thickness of the metal plating layer 13 on the back surface is approximately 20 ⁇ m or more, and the thickness of the support substrate (20) may be appropriately set according to the strength of the material and the thickness of the Si thin film (10).
  • a substrate it can be about 200 ⁇ m.
  • a MOSFET device is used as an example of a semiconductor device, but the semiconductor device is not limited to this.
  • the semiconductor device may be, for example, a vertical MOSFET device (50).
  • a Si thin film (10) having at least a source electrode (1) and a gate electrode (2) formed on its main surface (11) and having a source portion and a gate portion formed on a surface layer portion on the main surface (11) side; , a metal layer (13) formed on the rear surface (12) of the Si thin film (10) with a barrier metal layer (8) made of a barrier metal interposed therebetween, and a metal layer (13) bonded to the rear surface (14) of the metal layer (13). and a support substrate (20) that supports the element (see FIG. 1(a)).
  • the thickness of the Si thin film (10) can be reduced to a thickness that corresponds to the depth of the surface layer and ensures a required withstand voltage (for example, 50 ⁇ m or less).
  • a source electrode (1) and a gate electrode (2) as well as a drain electrode (4) can be provided on the main surface (11) of the Si thin film (10).
  • the material of the support substrate (20) is not particularly limited, and for example, a substrate made of resin, metal, glass, Si, or the like can be used. Further, the support substrate (20) may be a multi-layer substrate in which the base (202) is an adhesive tape (see FIG. 1(c)).
  • the semiconductor element can be configured to have at least two independent source electrodes and gate electrodes on the main surface (11) of the Si thin film (10) (see FIG. 1(b)).
  • the vertical MOSFET element (51) of this example one source electrode (1a) and gate electrode (2a) and another source electrode (1b) and gate electrode are provided on the main surface (11) of the Si thin film (10). (2b) are formed independently of each other, and a source portion and a gate portion are formed in each surface layer portion.
  • FIG. 1 shows an example of the structure of N-channel vertical MOSFET devices 50, 51, 52 in a chip size package manufactured by the manufacturing method described above.
  • the Si thin film 10 is formed with a source portion, a gate portion, and a drift (N ⁇ ) layer, which are components of a MOSFET composed of an N + layer, a P layer, and the like.
  • the vertical MOSFET elements 50, 51, and 52 are composed of a Si thin film 10 with a minimum thickness (for example, about 10 ⁇ m) that can ensure the withstand voltage of the element and exhibit its function, and a metal plating on the back surface 12 side of the Si thin film 10. and a support substrate 20 having a thickness necessary for mounting as a substrate.
  • the support substrate 20 is a substrate in which at least the surface layer portion (first support layer 201) bonded to the metal layer 13 is made of any one of resin, metal, glass, Si, etc., and its base (second support layer 202 ) may be used as an adhesive tape.
  • a vertical MOSFET element 50 shown in FIG. 1A has a source electrode 1 and a gate electrode 2 formed on a main surface 11 of a Si thin film 10, and a drain 3 is a gate portion on the back surface 12 side of the Si thin film 10. in the area facing the A support substrate 20 is bonded to the rear surface 12 of the Si thin film 10 .
  • the drain 3 reaches the drain electrode 4 formed on the main surface 11 of the Si thin film 10 through the metal layer 13, and the source electrode 1, the gate electrode 2, and the drain electrode 4 are present on the main surface 11 of the Si thin film 10. .
  • a silver plating layer is used as the metal layer 13
  • the impedance from the drain electrode to the source electrode which is an important characteristic of the MOSFET, is the bulk resistance r1 from the drain electrode 4 to the metal layer 13 joined to the back surface, the resistance r2 of the metal layer 13, and the resistance r2 from the drain 3. It is the sum of the drift resistance r3 reaching the MOS gate and the channel resistance r4 (not shown).
  • the bulk resistance r1 depends on the thickness of the Si thin film 10 and can be minimized by reducing the thickness of the Si thin film 10 to a minimum. Since the resistance r2 of the metal layer 13 is small, it can be ignored.
  • the drift resistance r3 from the drain 3 to the MOS gate portion depends on the impurity concentration of the Si thin film 10, which is determined by the device breakdown voltage of the drift portion, and the thickness of the Si thin film 10. can be minimized.
  • the channel resistance r4 is a value determined by the withstand voltage of the MOSFET. Thus, by thinning the thickness of the Si thin film 10 to a value determined by the device breakdown voltage, it is possible to minimize r1+r2+r3+r4.
  • An N-channel vertical MOSFET element 51 shown in FIG. 1B is an example in which two MOSFETs having a common drain and independent sources and gates are formed. Two MOSFET components (source portion, gate portion, and drift (N ⁇ ) layer formed of N + layer and P layer) are formed independently.
  • the vertical MOSFET element 51 includes a Si thin film 10 having a minimum thickness (for example, about 10 ⁇ m) that can ensure the withstand voltage of the MOSFET element and exhibit its function, a metal layer 13 formed on the back drain portion, and a base. It is a multi-layer element structure in which a support substrate 20 having a thickness necessary for mounting is joined as a substrate.
  • the vertical MOSFET element 51 has source electrodes (1a, 1b) and gate electrodes (2a, 2b) formed on the main surface 11 of the Si thin film 10, and the drain 3 is located on the back surface 12 side of the Si thin film 10, and It is in the part opposite to the part.
  • a metal layer 13 is formed on the rear surface 12 of the Si thin film 10 by metal plating.
  • the drains (3a, 3b) are at a common potential through the metal layer 13.
  • FIG. The structure is such that two independent source electrodes (1a, 1b) and gate electrodes (2a, 2b) are present on the main surface 11 of the Si thin film 10 .
  • a support substrate 20 is bonded onto the metal layer 13 .
  • FIG. 1(b) shows an example of two sources with a common drain and independent gates. Structure. Also, when the drain is used as floating, one source and one gate are one terminal, and another source and another gate are the other terminal. As a result, it becomes a structure suitable for an element used for a power supply.
  • the support substrate 20 is composed of a first support layer 201 bonded to the metal layer 13 and a second support layer 202 underlying it.
  • a substrate made of resin, metal, glass, Si, or the like can be used as the first support layer 201 .
  • An adhesive tape can be used as the second support layer 202 .
  • the underlying adhesive tape can be used to support the wafer and handle it until it is divided into individual MOSFET devices.
  • a MOSFET device in which a metal layer is formed on the back surface of a Si thin film can be manufactured by using a supporting substrate as a base instead of a Si substrate or a metal layer as a base for supporting the device structure. With this structure, even if the thickness of the Si thin film is reduced, warping is greatly suppressed.
  • the Si thin film 10 has a thickness of about 10 ⁇ m, and when a substrate made of copper is used as the support substrate 20, the thickness of the support substrate 20 is about 200 ⁇ m. is.
  • each manufacturing process is performed in a wafer state, each figure shows a cross section of a portion corresponding to one vertical MOSFET element 50 .
  • the support substrate 20 is composed of a single layer, as described above, the support substrate 20 is composed of a surface layer portion (first support layer 201) and a base portion (second support layer 202). may be The manufacturing process is the same for the vertical MOSFET device 51 as well.
  • the first bonding step is a step of bonding the main surface 11 side of the Si substrate 100 on which the components of the semiconductor element are formed on the surface layer and the temporary substrate 6 .
  • Components of a semiconductor element include an impurity layer, an oxide film layer, a conductor layer (electrode), and the like, which constitute the semiconductor element.
  • FIG. 2 shows a state in which a semiconductor element is formed on the main surface 11 side surface and surface layer portion of the Si substrate 100, and the main surface 11 side and the temporary substrate 6 are bonded in the first bonding step. ing.
  • a source electrode 1 a gate oxide film layer, a gate electrode 2, and a drain electrode 4 are provided on the main surface 11 of an N-type Si substrate 100.
  • impurity layers (N + layer, P layer) forming a source portion are formed on the surface layer portion thereof.
  • the temporary substrate 6 for example, a transparent glass substrate can be used.
  • the principal surface 11 side of the Si substrate 100 and the temporary substrate 6 can be bonded together by applying UV exfoliation resin, which is exfoliated by ultraviolet light, as a bonding material to the bonding surface.
  • the flatness of bonding is required in order to polish the Si substrate 100 thinly in a later process, and the flatness can be ensured by applying pressure while maintaining parallelism after applying the UV peeling resin.
  • the temporary substrate 6 it is possible to use an adhesive resin tape. Due to the rigidity of the resin tape, the Si substrate 100 can be thinly polished in the subsequent Si thinning step.
  • FIG. 3A shows a state in which a Si thin film 10 having the Si substrate 100 as a base material is formed by removing the back side 92 of the Si substrate 100 bonded to the temporary substrate 6 by the Si thinning step. represent.
  • the method for removing the back side of the Si substrate 100 is not particularly limited.
  • the thickness can be reduced to about 10 ⁇ m by grinding and polishing the back side of the Si substrate 100 using the temporary substrate 6 as a support. The portion of the Si substrate 100 left in this manner on the main surface 11 side and having a constant thickness becomes the Si thin film 10 .
  • the barrier metal layer forming step is a step of forming a barrier metal layer 8 made of a barrier metal on the back surface 12 of the Si thin film 10 after performing the Si thinning step.
  • the metal layer forming step is a step of forming the metal layer 13 on the rear surface 12 side of the Si thin film 10 by metal plating.
  • metal layer 13 is formed on barrier metal layer 8 . That is, the metal layer 13 is formed on the back surface 12 side of the Si thin film 10 with the barrier metal layer 8 interposed therebetween.
  • the metal layer 13 can be deposited at high speed by electroplating.
  • the thickness of the metal layer 13 should be about 20 ⁇ m because the electrical resistance in the planar direction should be smaller than the drift resistance of the MOSFET.
  • the metal layer forming step when the metal layer 13 is formed by silver plating, in order to prevent silver from diffusing into the Si layer (Si thin film 10), as shown in FIG. It is preferable to form the barrier metal layer 8 in advance. Ni, Ta, or the like can be used as the barrier metal, and a barrier metal layer 8 having a thickness of about several tens of nanometers can be formed on the rear surface 12 of the Si thin film 10 by sputtering or the like.
  • the second bonding step is a step of bonding the support substrate 20 onto the back surface 14 of the metal layer 13 formed on the back surface 12 side of the Si thin film 10 .
  • a metal substrate, a resin substrate, a glass substrate, or a Si substrate having a thickness of about 0.2 mm can be used as the support substrate 20 .
  • FIG. 4A shows a state in which the metal layer 13 on the back side of the Si thin film 10 and the supporting substrate 20 are bonded in the second bonding step.
  • the material of the support substrate 20 is not particularly limited, and for example, inexpensive copper substrates, resin substrates, glass substrates, Si substrates, etc. can be used.
  • the support substrate 20 may have a two-layer structure in which these are used as the first support layer 201 and a second support layer 202 made of an adhesive tape or the like is bonded as a base (see FIG. 1(c)).
  • the bonding material between the support substrate 20 and the metal layer 13 may be a conductive adhesive such as silver paste or a non-conductive adhesive such as a resin adhesive.
  • the peeling step is a step of removing the temporary substrate 6 .
  • the temporary substrate 6 made of transparent glass and the main surface 11 side of the Si thin film 10 are bonded with a UV peeling resin, the bonding interface can be separated by irradiating ultraviolet rays from the glass substrate side.
  • a thin Si thin film 10 on which a semiconductor element is formed a metal layer 13 formed on the back surface of the Si thin film 10 with a barrier metal layer 8 made of a barrier metal interposed therebetween, and a metal layer. 13 and a support substrate 20 bonded to the substrate 13, a multi-layer element structure is formed.
  • the transparent glass substrate, which is the temporary substrate 6, can be reused.
  • FIG. 5(a) shows a state in which the temporary substrate 6 bonded to the principal surface 11 side of the Si thin film 10 is removed after the second bonding step.
  • a vertical MOSFET element 50 is formed in which the support substrate 20 is used as a base and the Si thin film 10 having the MOSFET formed thereon is bonded to the base via the metal layer 13 .
  • 4B shows a vertical MOSFET element 50 in which a barrier metal layer 8 is provided between the Si thin film 10 and the metal layer 13.
  • the support substrate 20 is composed of a single layer of metal or the like. and layer 202 .
  • an adhesive tape is used as the second support layer 202, after the temporary substrate 6 is peeled off, the Si thin film 10 in the wafer state is separated into individual elements (scribe cut), and then the bonding substrate 20 is separated into individual elements (scribe cut). It can serve as a base tape when cutting). After the Si semiconductor elements are individually separated and picked up for each element, the underlying adhesive tape becomes unnecessary.
  • FIGS. 6 and 7 show the second bonding step in the case where the support substrate 20 is composed of a first support layer 201 made of metal or the like and a second support layer 202 serving as its underlying layer.
  • the second support layer 202 is attached to the back surface of the first support layer 201
  • the first support layer 201 is attached to the metal layer 13 .
  • an adhesive tape in which an adhesive is applied to a base material made of resin can be used.
  • Other manufacturing steps are the same as the manufacturing steps described with reference to FIGS.
  • the adhesive tape (second support layer 202) can support and fix semiconductor elements formed in a wafer state when the semiconductor elements are separated into individual chips.
  • the vertical structure MOSFET element 52 constructed in this manner is separated into individual chips and then peeled off the adhesive tape (202), so that it has the same structure as the vertical structure MOSFET elements 50 and 51 (see FIG. 1). .
  • FIG. 8 shows an example of mounting a vertical MOSFET element 50 as a chip size package face down on a printed circuit board 200 .
  • a copper substrate is used as the support substrate 20, and its thickness is 200 ⁇ m.
  • the thickness of the Si thin film 10 on which the MOSFET is formed is 10 ⁇ m.
  • the thickness of the metal layer 13 formed by metal plating is 20 ⁇ m. Since the Si thin film 10 is bonded to the support substrate 20, it does not warp and can be stably soldered even in face-down mounting.
  • Chip-size packages have come to be adopted along with the progress in high-density mounting technology for semiconductors.
  • a multi-layer element structure using a supporting substrate as a base is effective for a chip size package, instead of a conventional element structure using a Si substrate as a base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本発明は、半導体素子が形成されているSi基板を薄化すると共にその反りを防止する半導体素子の製造方法及び縦型MOSFET素子を提供する。半導体素子の製造方法は、表層部に半導体素子の構成要素が形成されているSi基板の主面11側と仮基板6とを接合する第1接合工程と、前記表層部の深さに対応する厚さを残してSi基板の裏面側を除去することにより、その主面11側に半導体素子の構成要素が形成されているSi薄膜10を形成するSi薄膜化工程と、Si薄膜の裏面側に金属メッキにより金属層13を形成する金属層形成工程と、Si薄膜の裏面側に形成された金属層の上に支持基板20を接合する第2接合工程と、仮基板を除去する剥離工程と、を含む。

Description

半導体素子の製造方法及び縦型MOSFET素子
 本発明は、半導体素子の製造方法及びMOSFET素子に関する。詳しくは、半導体素子が形成されているSi基板を薄化すると共にその反りを防止する半導体素子の製造方法及び縦型MOSFET素子に関する。
 シリコン(Si)半導体素子の実装の小型化が進んでいる。小型化のためには、Si半導体素子はチップサイズパッケージとして形成されることが好ましい。例えば、縦型構造のMOSFET素子のチップサイズパッケージには、縦型素子の裏面に薄い金属層を形成し、貫通電極を形成することにより、縦型素子の裏面にあるドレイン電極を主面にもってくる構造とされているものがある。この構造においてはドレイン部の抵抗損失の最小化が重要であり、そのためには、Si層の厚さを薄くすることが重要となる。
 図9(a)は、従来の縦型MOSFET素子のチップサイズパッケージの構造の例を示している。縦型MOSFET素子300は、素子の基体となるSi基板310の素子主面にソース電極301、ゲート電極302が設けられており、ドレイン303はSi基板310の裏面側にある。素子裏面には金属層320が形成されている。ドレイン303は金属層320を通じて素子主面のドレイン電極304に至り、ソース電極301、ゲート電極302及びドレイン電極304が素子主面に存在する構造とされている。NチャンネルMOSFETにおいて、電流iはドレイン電極304から金属層320を介してソース電極301に流れる。MOSFET素子の重要な特性であるドレイン電極からソース電極に至るインピーダンスは、ドレイン電極から裏面のドレイン金属に至るバルク部抵抗r1と、裏面金属部の抵抗r2と、ドレイン303からMOSゲート部に至るドリフト抵抗r3と、チャンネル抵抗r4(図示せず)の総和である。バルク部抵抗r1はSi基板310の厚さに依存する。裏面金属部抵抗r2は金属層320の厚さが一定以上あれば無視できる。ドレイン303からMOSゲート部に至るドリフト抵抗r3は、ドリフト部の素子耐圧で定まるSi層の不純物濃度とSi基板310の厚さに依存する。チャンネル抵抗r4はMOSFETの耐圧等で定まる値である。同図(b)は、チップサイズパッケージの縦型MOSFET素子300がフェースダウン技術でプリント基板200に実装されている例を示している。
 このような素子構造において、ドレイン電極304からソース電極301に至る抵抗値の総和であるr1+r2+r3+r4のうち、構造的な要素はr1とr3であり、これを低減するにはSi基板310の厚さを薄くすることが重要となる。
 しかし、Si基板の厚さを薄くすると、Si基板の強度が低下して反りが大きくなってしまう。一方、裏面の金属層であるメッキの厚さを厚くすると、成膜金属層の応力のために反りが大きくなってしまう。薄いSi半導体素子の基体部に金属を用いる方法が知られている(例えば、特許文献1を参照。)。特許文献1では、金属に高融点のモリブデンを用いて1000℃という高温で貼り合わせ、界面のモリブデンとSiの相互拡散により接合が行われている。この他、高融点半田を用いてSi基板の貼り合せ面をメタライズし、銅基板と400℃程度で接合する方法も考えられるが、フェースダウンボンディングは220℃程度の半田付けで行われるために、Si基板と銅基板の半田付けは一層温度が高い高融点半田を用いた半田付けを要する。しかし、モリブデン基板とSi基板とを1000℃で接合するにしても、銅基板とSi基板とを400℃で接合するにしても、フェースダウン実装される素子の実用温度は、一般的には-40℃~+85℃程度であるため、接合時の温度と実用状態における温度の差により応力が発生し、反りが発生してしまう。また、接合界面で大きな応力が発生することは、接続界面の接続寿命や素子寿命のためには好ましくない。特にSi層を薄くすればするほど張り合わせ界面にて発生する内部応力は大きくなり、Si表面に形成された素子に対する影響は大きくなる。
特開平4-42971号公報
 MOSFET素子に必要な耐電圧とSi基板の厚さとは比例の関係にある。すなわち高い耐電圧が求められる場合には、Si基板の厚さを厚くする必要がある。また耐電圧が低い場合には、Si基板の厚さは薄い方が諸特性のためには良い。近年携帯機器の進化に伴って、20Vという低い耐電圧の素子の需要が高まってきており、耐電圧20Vの場合、Si基板の厚さは10μm程度と薄くすることが好ましい。
 前記のとおり、例えばMOSFET素子では抵抗損失を低減するためにSi基板の厚さを薄くすることが重要である。しかし、Si基板の厚さを薄くしようとすると、Si基板の強度が低下して反りが大きくなってしまう。
 図10は、Si基板の厚さDとMOSFET素子の直列抵抗分(r1+r3)の値との関係を表した図である。抵抗分(r1+r3)の値は、Si基板の厚さが100μmの場合を1として相対値で表している。Si基板の厚さが100μmから10μmに薄くなるのに比例してMOSFET素子の直列抵抗成分(r1+r3)は小さくなり、好ましい特性を得ることができる。
 また、図11は、Si基板の厚さDと基板の反りの大きさdとの関係をシミュレーションした結果を示している。素子の平面サイズは3mm×6mmであり、基本となる素子構造は、Si基板の厚さが100μmであり、裏面の金属層の厚さは10μmである。裏面の金属層は銀メッキにより形成されており、その厚さが厚くなればなるほど応力によりSi基板に反りを発生させ、また裏面電極の抵抗成分からみると10μm以上は不要であるため、本例の素子構造においては銀メッキの厚さを10μmとしている。そして同図では、Si基板の厚さDを100μmから10μmまで変化させた場合のSi基板の反りの大きさdを示している。Si基板の厚さDが100μmの場合、反りの大きさdは10μm程度であるが、Si基板の厚さDを10μmとした場合には、Si基板の強度が低下して反りdが100μm程度まで大きくなる。特にSi基板の厚さが50μm以下になると、反りの大きさは顕著になる。反りの発生によりチップサイズパッケージのMOSFET素子がフェースダウン実装できなくなる問題が生じるため、反りを低減することが重要である。
 また、裏面の金属層であるメッキの厚さを厚くすると、成膜金属層の応力のために反りが大きくなってしまう。更に、チップサイズパッケージのフェースダウン実装においては、温度上昇により素子の反りが大きくなり実装できないという事態にも至る。したがって、フェースダウン実装する前に素子の反りを少なくすること、反りが小さくても温度上昇により反りがより大きくならないような素子構造とすることが必要である。
 本発明は、半導体素子が形成されているSi基板を薄化することにより電極間の電気抵抗が低減され、且つ薄化されたSi層の反りが防止される半導体素子の製造方法及び縦型MOSFET素子を提供することを目的とする。
 上記のような課題を解決するための着眼点は、Si半導体基板を基体として、その裏面に金属層が付帯されている従来の構造ではなく、支持基板を接合することにより、支持基板を基体として、金属層を挟んでSi半導体層が付帯する構造に転換することである。すなわち支持基板を基体とすることにより、Si半導体層が薄く(例えば10μm程度)、金属層が薄く(例えば20μm程度に)なっても反りが発生しない構造とすることである。
 また、Si半導体層と支持基板との接合界面に生じる応力を小さくするために、Si半導体層と支持基板との熱膨張係数差は小さいことが好ましい。それにより接合界面において発生する応力は、実用温度では殆ど発生せず、素子寿命や界面接合寿命に対して良好な効果を生む。
 更に、半導体素子が形成されるSi半導体層の厚さを最小限とするために、半導体素子の形成後に仮基板を貼り合わせ、素子機能を創出することができる極限までSi半導体層を薄く研磨し、その薄いSi半導体層の裏面に金属層を製膜して、その後に金属層と支持基板とを接合することにある。
 本発明は、以下の通りである。
 1.表層部に半導体素子の構成要素が形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、
 少なくとも前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することにより、その主面側に前記半導体素子の構成要素が形成されているSi薄膜を形成するSi薄膜化工程と、
 前記Si薄膜の裏面側に金属メッキにより金属層を形成する金属層形成工程と、
 前記Si薄膜の裏面側に形成された前記金属層の上に支持基板を接合する第2接合工程と、
 前記仮基板を除去する剥離工程と、
 を含むことを特徴とする半導体素子の製造方法。
 2.前記Si薄膜化工程を行った後、前記Si薄膜の前記裏面にバリアメタルからなるバリアメタル層を形成するバリアメタル層形成工程を含み、
 前記金属層形成工程は、バリアメタル層の上に前記金属層を形成する前記1.記載の半導体素子の製造方法。
 3.前記支持基板は、樹脂、金属、ガラス及びSiのうちのいずれかからなる前記1.又は2.に記載の半導体素子の製造方法。
 4.前記金属層と前記支持基板とは、導電性接着剤又は非導電性樹脂接着剤を用いて接合される前記1.乃至3.のいずれかに記載の半導体素子の製造方法。
 5.前記金属層は、銀メッキ又は銅メッキにより形成される前記1.乃至4.のいずれかに記載の半導体素子の製造方法。
 6.前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面にソース電極、ゲート電極、及びドレイン電極が形成されている前記1.乃至5.のいずれかに記載の半導体素子の製造方法。
 7.前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面に少なくともソース電極及びゲート電極が形成され、裏面にドレイン電極が形成されている前記1.乃至5.のいずれかに記載の半導体素子の製造方法。
 8.前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面に少なくとも二つの独立したソース電極及びゲート電極が形成されている前記1.乃至5.のいずれかに記載の半導体素子の製造方法。
 9.前記Si薄膜の厚さは50μm以下である前記1.乃至8.のいずれかに記載の半導体素子の製造方法。
 10.その主面に少なくともソース電極及びゲート電極が形成され、前記主面側の表層部にソース部及びゲート部が形成されているSi薄膜と、
 前記Si薄膜の裏面にバリアメタルからなるバリアメタル層を挟んで形成されている金属層と、
 前記金属層の上に接合されている支持基板と、
 を備え、
 前記支持基板が素子を支持する基体であることを特徴とする縦型MOSFET素子。
 11.前記Si薄膜の前記主面にソース電極、ゲート電極及びドレイン電極が形成されている前記10.記載の縦型MOSFET素子。
 12.前記Si薄膜の前記主面に少なくとも二つの独立したソース電極及びゲート電極が形成され裏面にドレイン電極が形成されている前記10.記載の縦型MOSFET素子。
 13.前記支持基板は、樹脂、金属、ガラス及びSiのうちのいずれかからなる前記10.乃至12.のいずれかに記載の縦型MOSFET素子。
 14.前記Si薄膜の厚さは50μm以下である前記10.乃至13.のいずれかに記載の縦型MOSFET素子。
 本発明の半導体素子の製造方法によれば、表層部に半導体素子の構成要素が形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、少なくとも前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することによりその主面側に前記半導体素子の構成要素が形成されているSi薄膜を形成するSi薄膜化工程とを含むため、仮基板により反りが防止され、半導体素子が形成されているSi基板の表層部の深さに対応して、素子機能を発揮することができる最小限の厚さのSi薄膜を形成することができる。そして、前記Si薄膜の裏面側に金属メッキにより金属層を形成する金属層形成工程と、前記Si薄膜の裏面側に形成された前記金属層の上に支持基板を接合する第2接合工程と、前記仮基板を除去する剥離工程と、を含むため、必要な厚さの金属層を形成した後にSi層と熱膨張係数が近い支持基板を接合することができる。これにより、Si薄膜の裏面と金属層と支持基板との接合界面に生じる応力が極めて小さくなるように接合され、接合界面の品質を向上させることができ、反りの発生を抑制することができる。また、接合界面に生じる応力による半導体素子の劣化を抑制することができる。
 また、本発明の縦型MOSFET素子は、その主面に少なくともソース電極及びゲート電極が形成され、前記主面側の表層部にソース部及びゲート部が形成されているSi薄膜と、前記Si薄膜の裏面にバリアメタルからなるバリアメタル層を挟んで形成されている金属層と、前記金属層の上に接合されている支持基板と、を備え、前記支持基板が素子を支持する基体であるため、支持基板により反りの発生が抑制され、フェースダウン実装に適した縦型構造のMOSFET素子を構成することができる。
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施形態に係る半導体素子の製造方法により製造される縦型MOSFET素子の構造を表す断面図である。 半導体素子の製造方法における第1接合工程を説明するための断面図である。 半導体素子の製造方法におけるSi薄膜化工程を説明するための断面図である。 半導体素子の製造方法における第2接合工程の例(1)を説明するための断面図である。 半導体素子の製造方法における剥離工程の例(1)を説明するための断面図である。 半導体素子の製造方法における第2接合工程の例(2)を説明するための断面図である。 半導体素子の製造方法における剥離工程の例(2)を説明するための断面図である。 実施形態に係る半導体素子の製造方法により製造されたチップサイズパッケージのMOSFET素子のフェースダウン実装を説明するための断面図である。 従来の縦型MOSFET素子の構造とフェースダウン実装の例を示す断面図である。 従来の縦型MOSFET素子の抵抗成分(r1+r3)とSi基板の厚さとの関係を示すグラフである。 従来のチップサイズMOSFET素子の反りの大きさとSi基板の厚さとの関係を示すグラフである。
 ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
 本実施形態に係る半導体素子の製造方法は、表層部に半導体素子の構成要素が形成されているSi基板(100)の主面(11)側と仮基板(6)とを接合する第1接合工程と、少なくとも前記表層部の深さに対応する厚さを残してSi基板(100)の裏面側(92)を除去することにより、その主面(11)側に前記半導体素子の構成要素が形成されているSi薄膜(10)を形成するSi薄膜化工程と、Si薄膜(10)の裏面(12)側に金属メッキにより金属層(13)を形成する金属層形成工程と、Si薄膜(10)の裏面側に形成された金属層(13)の裏面(14)上に支持基板(20)を接合する第2接合工程と、仮基板(6)を除去する剥離工程と、を含むことを特徴とする(図1~5参照)。
 ここで、前記表層部の深さは、半導体素子を構成する不純物層の不純物濃度、求められる耐電圧等に応じて設定される。通常、低耐電圧素子では、不純物層による空乏層の深さは約10μmである。一方、前記のとおり、Si基板の厚さが50μm以下となると反りが顕著に増大する(図11参照)。このため、本実施形態においては、Si薄膜(10)の厚さは10~50μm、好ましくは10~20μmとしている。また、裏面の金属メッキ層13の厚さは概ね20μm以上で、支持基板(20)の厚さは素材の強度とSi薄膜(10)の厚さに応じて適宜設定されればよく、例えば銅基板を用いた場合、200μm程度とすることができる。
 以下の説明及び図においては、半導体素子としてMOSFET素子を例に挙げているが、これに限られるものではない。
 前記半導体素子は、例えば、縦型構造のMOSFET素子(50)とすることができる。その主面(11)に少なくともソース電極(1)及びゲート電極(2)が形成され、前記主面(11)側の表層部にソース部及びゲート部が形成されているSi薄膜(10)と、Si薄膜(10)の裏面(12)にバリアメタルからなるバリアメタル層(8)を挟んで形成されている金属層(13)と、金属層(13)の裏面(14)上に接合されている支持基板(20)と、を備え、支持基板(20)が素子を支持する基体であることを特徴とする(図1(a)参照)。Si薄膜(10)の厚さは、前記表層部の深さに対応し且つ必要な耐電圧が確保される厚さにまで薄くすることができる(例えば、50μm以下。)。
 Si薄膜(10)の主面(11)には、ソース電極(1)及びゲート電極(2)の他、ドレイン電極(4)を設けることができる。
 また、支持基板(20)の素材は特に限定されず、例えば、樹脂、金属、ガラス、Si等のいずれかからなる基板を使用することができる。また、支持基板(20)は、下地(202)が粘着テープである複層基板であってもよい(図1(c)参照)。
 また、前記半導体素子は、Si薄膜(10)の主面(11)に少なくとも二つの独立したソース電極及びゲート電極を備えるように構成することができる(図1(b)参照)。本例の縦型MOSFET素子(51)では、Si薄膜(10)の主面(11)に、1つのソース電極(1a)及びゲート電極(2a)と、別のソース電極(1b)及びゲート電極(2b)が、それぞれ独立して形成されており、それぞれ表層部にはソース部及びゲート部が形成されている。
 図1は、前記製造方法により製造される、チップサイズパッケージのNチャンネル縦型MOSFET素子50、51、52の構造の例を表している。Si薄膜10には、N層、P層等からなるMOSFETの構成要素であるソース部、ゲート部、ドリフト(N)層が形成されている。縦型MOSFET素子50、51、52は、素子の耐電圧を確保して機能を発揮し得る最小限の厚さ(例えば10μm程度)のSi薄膜10と、Si薄膜10の裏面12側に金属メッキにより形成された金属層13と、基体として実装に必要な厚さを有する支持基板20と、を備える複層素子構造である。支持基板20は、少なくとも金属層13と接合される表層部(第1支持層201)が樹脂、金属、ガラス、Si等のうちのいずれかからなる基板であり、その下地(第2支持層202)として粘着テープが用いられてもよい。
 同図(a)に示す縦型MOSFET素子50は、Si薄膜10の主面11上にソース電極1、ゲート電極2、が形成されており、ドレイン3はSi薄膜10の裏面12側のゲート部と対向する部位にある。Si薄膜10の裏面12には支持基板20が接合されている。ドレイン3は金属層13を通じてSi薄膜10の主面11に形成されたドレイン電極4に至り、ソース電極1、ゲート電極2、ドレイン電極4、がSi薄膜10の主面11に存在する構造である。金属層13として銀メッキ層を用いる場合、接合後の銀のSi層への拡散を防止するために、Si薄膜10の裏面12にバリアメタルからなるバリアメタル層8を形成しておくことが好ましい(図示せず)。
 MOSFETの重要な特性であるドレイン電極からソース電極に至るインピーダンスは、ドレイン電極4から裏面に接合されている金属層13に至るバルク部抵抗r1と、金属層13部の抵抗r2と、ドレイン3からMOSゲート部に至るドリフト抵抗r3と、チャンネル抵抗r4(図示せず)の総和である。バルク部抵抗r1はSi薄膜10の厚さに依存し、Si薄膜10の厚さを最小限まで薄くすることにより最小化できる。金属層13の抵抗r2は小さいので無視できる。ドレイン3からMOSゲート部に至るドリフト抵抗r3は、ドリフト部の素子耐圧で定まるSi薄膜10の不純物濃度と、Si薄膜10の厚さに依存するが、Si薄膜10の厚さを薄くすることにより最小化することができる。チャンネル抵抗r4は、MOSFETの耐圧等で定まる値である。このように、Si薄膜10の厚さを素子耐圧で定まる値まで薄くすることにより、r1+r2+r3+r4を最小化することが可能である。
 図1(b)に示すNチャンネル縦型MOSFET素子51は、MOSFETのドレイン部が共通で、ソースとゲートが独立した二つのMOSFETが形成されている例である。MOSFETの構成要素(N層、P層によって形成されているソース部、ゲート部、ドリフト(N)層)が独立に二つ形成されている。縦型MOSFET素子51は、MOSFET素子の耐電圧を確保して機能を発揮し得る最小限の厚さ(例えば10μm程度)のSi薄膜10と、裏面ドレイン部に形成された金属層13と、基体として実装に必要な厚さを有する支持基板20とが接合されている複層素子構造である。縦型MOSFET素子51は、Si薄膜10の主面11上にソース電極(1a、1b)とゲート電極(2a、2b)が形成されており、ドレイン3はSi薄膜10の裏面12側の、ゲート部と対向する部位にある。Si薄膜10の裏面12には金属メッキにより金属層13が形成されている。ドレイン(3a、3b)は金属層13を通じて共通電位となっている。それぞれ独立した2つのソース電極(1a、1b)とゲート電極(2a、2b)が、Si薄膜10の主面11に存在する構造である。金属層13を形成する前に、Si層への金属の拡散を防止するために、Si薄膜10の裏面12にバリアメタルからなるバリアメタル層8を形成しておくことが好ましい(図示せず)。金属層13上には支持基板20が接合されている。
 図1(b)では、ドレインが共通で二つのソース、ゲートが独立の事例を示したが、ドレインを電流源として使用する場合と、ドレインをフローティングで使用する場合の二つの場合に適応する素子構造である。またドレインをフローティングとして使用する場合には、一つのソースと一つのゲートが一方の端子であり、もう一つのソースともう一つのゲートが他方の端子となる双方向素子として、逆流防止機能付きスイッチとして電源に用いられる素子に適した構造となる。
 図1(c)に示す例は、支持基板20が、金属層13と接合される第1支持層201と、その下地となる第2支持層202とから構成されている。第1支持層201としては、樹脂、金属、ガラス又はSi等からなる基板を使用することができる。第2支持層202としては粘着テープを使用することができる。下地の粘着テープは、ウエーハを支持すると共に個々のMOSFET素子に分割するまでのハンドリングに使用することができ、その後剥離すれば、同図(a)、(b)と同様な構造なる。
 Si基板の裏面に金属メッキにより形成された金属層を有し、Si基板が基体の役割を果たすという従来の構造では、Si基板の厚さを薄くすることにより発生する反りが問題であった。本半導体素子の製造方法により、素子構造を支える基体がSi基板或いは金属層ではなく、支持基板を基体として、Si薄膜の裏面に金属層が形成されたMOSFET素子を製造することができる。この構造によって、Si薄膜の厚さを薄くしても反りは大幅に抑制される。
 本例の縦型MOSFET素子(50、51、52)では、Si薄膜10は10μm程度の厚さであり、支持基板20として銅からなる基板を用いた場合、支持基板20の厚さは200μm程度である。
 図2~5を参照しつつ、本実施形態に係る半導体素子の製造方法における製造工程を説明する。各製造工程はウエーハ状態で処理を行うが、各図には1つの縦型MOSEFT素子50に相当する部分の断面を表している。また、支持基板20が単層で構成されている場合を表しているが、前記のとおり、支持基板20は表層部(第1支持層201)と下地部(第2支持層202)とから構成されてもよい。製造工程は、縦型MOSFET素子51の場合も同様である。
 (第1接合工程)
 第1接合工程は、表層部に半導体素子の構成要素が形成されているSi基板100の主面11側と仮基板6とを接合する工程である。半導体素子の構成要素は、半導体素子を構成する不純物層、酸化膜層、導体層(電極)等である。
 図2は、Si基板100の主面11側の表面上及び表層部に半導体素子が形成されており、第1接合工程において、その主面11側と仮基板6とが接合された状態を示している。本例では半導体素子として縦型MOSFETを形成する例を示しており、N型のSi基板100の主面11にソース電極1、ゲート酸化膜層及びゲート電極2、ドレイン電極4が設けられており、その表層部にはソース部を構成する不純物層(N層、P層)が形成されている。
 仮基板6としては、例えば、透明なガラス基板を用いることができる。Si基板100の主面11側と仮基板6とは、その接合面に接合材として紫外光で剥離するUV剥離樹脂を塗布して貼り合わせることができる。後の工程においてSi基板100を薄く研磨するために貼り合わせの平坦度が必要であるが、UV剥離樹脂を塗布後に平行を保って加圧することにより平坦度を確保することができる。
 また、仮基板6として、粘着性を持った樹脂テープを用いることも可能である。樹脂テープの剛性により、続くSi薄膜化工程においてSi基板100を薄く研磨することができる。
 (Si薄膜化工程)
 Si薄膜化工程は、少なくとも前記表層部の深さに対応する厚さを残してSi基板100の裏面側92を除去することにより、その主面11側に前記半導体素子の構成要素が形成されているSi薄膜10を形成する工程である。
 図3(a)は、Si薄膜化工程により、仮基板6と接合されたSi基板100の裏面側92を除去することにより、Si基板100を母材とするSi薄膜10が形成された状態を表している。Si基板100の裏面側を除去する方法は特に問わず、例えば、仮基板6を支持体としてSi基板100の裏面側を研削、研磨することにより、厚さを10μm程度にすることができる。このように残されたSi基板100の主面11側の一定の厚さの部分がSi薄膜10となる。
 (バリアメタル層形成工程)
 バリアメタル層形成工程は、Si薄膜化工程を行った後、Si薄膜10の裏面12にバリアメタルからなるバリアメタル層8を形成する工程である。
 (金属層形成工程)
 金属層形成工程は、Si薄膜10の裏面12側に金属メッキにより金属層13を形成する工程である。Si薄膜10の裏面12上にバリアメタル層8が形成されている場合には、金属層13はバリアメタル層8の上に形成される。即ち金属層13は、Si薄膜10の裏面12側にバリアメタル層8を挟んで形成される。
 金属層13は電気メッキにより高速に成膜することができる。面方向の電気抵抗がMOSFETのドリフト抵抗と比べて小さくなればよいので、金属層13の厚さは20μm程度あればよい。
 金属層形成工程において、銀メッキにより金属層13を形成する場合、Si層(Si薄膜10)への銀の拡散を防止するため、図3(b)に示すように、Si薄膜10の裏面12にバリアメタル層8を形成しておくことが好ましい。バリアメタルとしてNi、Ta等を使用することができ、Si薄膜10の裏面12にスパッタ等により厚さ数10nm程度のバリアメタル層8を形成することができる。
 (第2接合工程)
 第2接合工程は、Si薄膜10の裏面12側に形成された金属層13の裏面14上に支持基板20を接合する工程である。支持基板20は、厚さ約0.2mm程度の金属基板、樹脂基板、ガラス基板、又はSi基板を用いることができる。
 図4(a)は、第2接合工程において、Si薄膜10の裏面側の金属層13と支持基板20とが接合された状態を表している。支持基板20の素材は特に問わず、例えば、安価な銅基板、樹脂基板、ガラス基板、Si基板等を使用することができる。また、それらを第1支持層201とし、下地として粘着テープ等からなる第2支持層202を接合した2層構造の支持基板20としてもよい(図1(c)参照)。
 支持基板20と金属層13との接合材料は、銀ペーストのような導電性の接着剤であっても、樹脂接着剤のように非導電性の接着剤であってもよい。
 (剥離工程)
 剥離工程は、仮基板6を除去する工程である。
 透明ガラスからなる仮基板6とSi薄膜10の主面11側がUV剥離樹脂で接合されている場合、その接合界面を、ガラス基板側から紫外線を照射することにより分離させることができる。仮基板6を除去することにより、半導体素子が形成されている薄いSi薄膜10と、Si薄膜10の裏面にバリアメタルからなるバリアメタル層8を挟んで形成されている金属層13と、金属層13上に接合されている支持基板20と、によって構成される複層素子構造となる。仮基板6である透明ガラス基板は再利用が可能である。
 また、仮基板6として粘着性を持った樹脂テープを用いた場合には、樹脂テープの端面からピーリングして剥離することができ、樹脂テープは使い捨てとすることができる。
 図5(a)は、前記第2接合工程の後、Si薄膜10の主面11側に接合されていた仮基板6を剥離した状態を示している。これにより、支持基板20を基体として、その基体上に金属層13を介してMOSFETが形成されたSi薄膜10が接合されている縦型MOSFET素子50が形成される。同図(b)は、Si薄膜10と金属層13との間にバリアメタル層8が設けられている縦型MOSFET素子50を示している。
 図2~5においては、支持基板20が金属等の単層で構成されている例を示したが、支持基板20は、金属等からなる第1支持層201と、粘着テープからなる第2支持層202とから構成されてもよい。第2支持層202として粘着テープを用いれば、仮基板6を剥離した後、ウエーハ状態のSi薄膜10を個別の素子毎に分離(スクライブカット)し、その後接合基板20を素子毎に分離(スクライブカット)する時の下地テープの機能を果たすことができる。Si半導体素子を個別に分離し、素子毎にピックアップした後に下地の粘着テープは不要となる。
 図6、7は、支持基板20が金属等からなる第1支持層201と、その下地となる第2支持層202とから構成される場合の第2接合工程を示している。第2支持層202は第1支持層201の裏面に貼り合わされており、第1支持層201が金属層13に貼り合わされる。第2支持層202として、樹脂からなる基材に粘着剤が塗布された粘着テープを使用することができる。その他の製造工程は、図2~5により説明した製造工程と同様である。
 この粘着テープ(第2支持層202)により、ウエーハ状態で形成された半導体素子を個別のチップに分離する際に半導体素子を支持固定することができる。このように構成された縦型構造MOSFET素子52は、各々のチップに分離した後に粘着テープ(202)を剥離すれば、縦型構造MOSFET素子50、51と同様の構造となる(図1参照)。
 以上のように製造されたMOSFET素子50、51、52は、フェースダウンによりプリント基板に実装するのに好適である。
 図8は、チップサイズパッケージとした縦型MOSFET素子50を、プリント基板200にフェースダウン実装する例を表している。本例では支持基板20として銅基板を使用しており、その厚さは200μmとしている。またMOSFETが形成されているSi薄膜10の厚さは10μmである。金属メッキにより成膜された金属層13の厚さは20μmである。Si薄膜10は支持基板20と接合されているため反りはなく、フェースダウン実装においても安定的に半田付けが可能である。
 Si基板を基体として裏面の金属層をメッキにより成膜している従来例においては、Si基板の厚さを薄くすると反りが増大してしまう(図11参照)のに対し、厚い支持基板を基体としてSi薄膜が接合されているため、反りを大幅に減らすことができる。
 尚、本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。
 半導体の高密度実装技術の進展とともにチップサイズパッケージが採用されるようになってきた。本発明により、これまでのSi基板を素子の基体とする素子構造ではなく、支持基板を基体とする複層素子構造がチップサイズパッケージのために有効となる。
 1、1a、1b;ソース電極、2、2a、2b;ゲート電極、3;ドレイン、4;ドレイン電極、
 6;仮基板、8;バリアメタル層、10;Si薄膜、13;金属層、20;支持基板、201;第1支持層、202;第2支持層、50、51、52;半導体素子(縦型MOSFET素子)、100;Si基板、400;プリント基板。

Claims (14)

  1.  表層部に半導体素子の構成要素が形成されているSi基板の主面側と仮基板とを接合する第1接合工程と、
     少なくとも前記表層部の深さに対応する厚さを残して前記Si基板の裏面側を除去することにより、その主面側に前記半導体素子の構成要素が形成されているSi薄膜を形成するSi薄膜化工程と、
     前記Si薄膜の裏面側に金属メッキにより金属層を形成する金属層形成工程と、
     前記Si薄膜の裏面側に形成された前記金属層の上に支持基板を接合する第2接合工程と、
     前記仮基板を除去する剥離工程と、
     を含むことを特徴とする半導体素子の製造方法。
  2.  前記Si薄膜化工程を行った後、前記Si薄膜の前記裏面にバリアメタルからなるバリアメタル層を形成するバリアメタル層形成工程を含み、
     前記金属層形成工程は、バリアメタル層の上に前記金属層を形成する請求項1記載の半導体素子の製造方法。
  3.  前記支持基板は、樹脂、金属、ガラス及びSiのうちのいずれかからなる請求項1又は2に記載の半導体素子の製造方法。
  4.  前記金属層と前記支持基板とは、導電性接着剤又は非導電性樹脂接着剤を用いて接合される請求項1乃至3のいずれかに記載の半導体素子の製造方法。
  5.  前記金属層は、銀メッキ又は銅メッキにより形成される請求項1乃至4のいずれかに記載の半導体素子の製造方法。
  6.  前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面にソース電極、ゲート電極、及びドレイン電極が形成されている請求項1乃至5のいずれかに記載の半導体素子の製造方法。
  7.  前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面に少なくともソース電極及びゲート電極が形成され、裏面にドレイン電極が形成されている請求項1乃至5のいずれかに記載の半導体素子の製造方法。
  8.  前記半導体素子は縦型構造のMOSFETであり、前記Si基板の前記主面に少なくとも二つの独立したソース電極及びゲート電極が形成されている請求項1乃至5のいずれかに記載の半導体素子の製造方法。
  9.  前記Si薄膜の厚さは50μm以下である請求項1乃至8のいずれかに記載の半導体素子の製造方法。
  10.  その主面に少なくともソース電極及びゲート電極が形成され、前記主面側の表層部にソース部及びゲート部が形成されているSi薄膜と、
     前記Si薄膜の裏面にバリアメタルからなるバリアメタル層を挟んで形成されている金属層と、
     前記金属層の上に接合されている支持基板と、
     を備え、
     前記支持基板が素子を支持する基体であることを特徴とする縦型MOSFET素子。
  11.  前記Si薄膜の前記主面にソース電極、ゲート電極及びドレイン電極が形成されている請求項10記載の縦型MOSFET素子。
  12.  前記Si薄膜の前記主面に少なくとも二つの独立したソース電極及びゲート電極が形成され裏面にドレイン電極が形成されている請求項10記載の縦型MOSFET素子。
  13.  前記支持基板は、樹脂、金属、ガラス及びSiのうちのいずれかからなる請求項10乃至12のいずれかに記載の縦型MOSFET素子。
  14.  前記Si薄膜の厚さは50μm以下である請求項10乃至13のいずれかに記載の縦型MOSFET素子。
PCT/JP2022/017701 2021-04-22 2022-04-13 半導体素子の製造方法及び縦型mosfet素子 WO2022224889A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-072913 2021-04-22
JP2021072913A JP2022167237A (ja) 2021-04-22 2021-04-22 半導体素子の製造方法及び縦型mosfet素子

Publications (1)

Publication Number Publication Date
WO2022224889A1 true WO2022224889A1 (ja) 2022-10-27

Family

ID=83722971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017701 WO2022224889A1 (ja) 2021-04-22 2022-04-13 半導体素子の製造方法及び縦型mosfet素子

Country Status (2)

Country Link
JP (1) JP2022167237A (ja)
WO (1) WO2022224889A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142272A (ja) * 2005-11-21 2007-06-07 Sanyo Electric Co Ltd 半導体装置
JP2007317839A (ja) * 2006-05-25 2007-12-06 Sanyo Electric Co Ltd 半導体装置およびその製造方法
WO2011024440A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 窒化物半導体装置
JP2012109580A (ja) * 2003-12-30 2012-06-07 Fairchild Semiconductor Corp パワー半導体デバイスおよびその製造方法
JP2014110362A (ja) * 2012-12-04 2014-06-12 Mitsubishi Electric Corp 炭化珪素半導体装置及びその製造方法
JP2017143214A (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 半導体装置の製造方法
WO2018123799A1 (ja) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 半導体装置
JP2019012756A (ja) * 2017-06-29 2019-01-24 株式会社テンシックス 半導体素子基板の製造方法
JP2020102507A (ja) * 2018-12-21 2020-07-02 国立大学法人 東京大学 分離可能な基板接合体を製造する方法、接合された基板、SiCデバイス及びGaNデバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109580A (ja) * 2003-12-30 2012-06-07 Fairchild Semiconductor Corp パワー半導体デバイスおよびその製造方法
JP2007142272A (ja) * 2005-11-21 2007-06-07 Sanyo Electric Co Ltd 半導体装置
JP2007317839A (ja) * 2006-05-25 2007-12-06 Sanyo Electric Co Ltd 半導体装置およびその製造方法
WO2011024440A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 窒化物半導体装置
JP2014110362A (ja) * 2012-12-04 2014-06-12 Mitsubishi Electric Corp 炭化珪素半導体装置及びその製造方法
JP2017143214A (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 半導体装置の製造方法
WO2018123799A1 (ja) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 半導体装置
JP2019012756A (ja) * 2017-06-29 2019-01-24 株式会社テンシックス 半導体素子基板の製造方法
JP2020102507A (ja) * 2018-12-21 2020-07-02 国立大学法人 東京大学 分離可能な基板接合体を製造する方法、接合された基板、SiCデバイス及びGaNデバイス

Also Published As

Publication number Publication date
JP2022167237A (ja) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110114888B (zh) 半导体装置
US8907407B2 (en) Semiconductor device covered by front electrode layer and back electrode layer
KR101031983B1 (ko) 반도체 장치 및 이의 제조 방법
JP2007019412A (ja) 半導体装置およびその製造方法
JP5075890B2 (ja) 半導体装置及び半導体装置の製造方法
US11270922B2 (en) Radio-frequency module
JP2018049938A (ja) 半導体装置
JP2005019830A (ja) 半導体装置の製造方法
TW519727B (en) Semiconductor wafer, semiconductor device and manufacturing method therefor
US7045831B2 (en) Semiconductor device
WO2022114171A1 (ja) 半導体素子の製造方法及び縦型mosfet素子
JP3013786B2 (ja) 半導体装置の製造方法
WO2022224889A1 (ja) 半導体素子の製造方法及び縦型mosfet素子
US11387373B2 (en) Low drain-source on resistance semiconductor component and method of fabrication
JP2011049337A (ja) 半導体装置の製造方法
JP2004158739A (ja) 樹脂封止型半導体装置およびその製造方法
JP6989632B2 (ja) 半導体装置
US20220238425A1 (en) Semiconductor package structure
WO2024157764A1 (ja) 半導体装置
US11552014B2 (en) Semiconductor package structure and method of making the same
WO2022210680A1 (ja) パワー半導体及びその製造方法
US20240088339A1 (en) Semiconductor device and method for manufacturing same
WO2021085181A1 (ja) 積層基板、電子部品モジュール、および、積層基板の製造方法
JP2009038140A (ja) 半導体装置およびその製造方法
JPH11251512A (ja) 半導体チップの積層方法およびこれを用いた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791663

Country of ref document: EP

Kind code of ref document: A1