WO2022224340A1 - 電力用半導体装置 - Google Patents

電力用半導体装置 Download PDF

Info

Publication number
WO2022224340A1
WO2022224340A1 PCT/JP2021/016000 JP2021016000W WO2022224340A1 WO 2022224340 A1 WO2022224340 A1 WO 2022224340A1 JP 2021016000 W JP2021016000 W JP 2021016000W WO 2022224340 A1 WO2022224340 A1 WO 2022224340A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
temperature sensing
lead frame
sensing diode
semiconductor device
Prior art date
Application number
PCT/JP2021/016000
Other languages
English (en)
French (fr)
Inventor
留依 小西
直樹 吉松
慎太郎 荒木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180097061.2A priority Critical patent/CN117121197A/zh
Priority to JP2023515920A priority patent/JP7422945B2/ja
Priority to PCT/JP2021/016000 priority patent/WO2022224340A1/ja
Priority to US18/549,166 priority patent/US20240162196A1/en
Priority to DE112021007534.9T priority patent/DE112021007534T5/de
Publication of WO2022224340A1 publication Critical patent/WO2022224340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present disclosure relates to a power semiconductor device, and more particularly to a power semiconductor device including a temperature sensing diode.
  • Patent Document 1 discloses a power semiconductor device in which a chip of a temperature sensing diode is mounted together with a lead frame on a surface electrode of a power semiconductor element.
  • the present disclosure has been made to solve the above problems, and aims to improve the reliability of insulation between a lead frame mounted on a surface electrode of a power semiconductor element and a temperature sensing diode. .
  • a power semiconductor device includes a power semiconductor chip that is a chip of a power semiconductor element, and a temperature sensor mounted on a first region on a surface electrode that is one of main electrodes of the power semiconductor chip.
  • a temperature sensing diode chip which is a diode element chip; a lead frame connected to a second region on the surface electrode; and an insulating film provided on a side surface of the lead frame facing the temperature sensing diode chip.
  • the insulating film is provided on the side surface of the lead frame facing the temperature sensing diode chip, the reliability of the insulation between the lead frame and the temperature sensing diode is improved.
  • FIG. 1 is a top view of the power semiconductor device according to Embodiment 1;
  • FIG. 1 is a side view of the power semiconductor device according to Embodiment 1;
  • FIG. 1 is a top view of a main part of a power semiconductor device according to Embodiment 1;
  • FIG. 1 is a cross-sectional view of a main part of a power semiconductor device according to Embodiment 1;
  • FIG. 1 is a top view of a main portion of a power semiconductor device according to Embodiment 1;
  • FIG. FIG. 10 is a top view of a main part of a power semiconductor device according to a second embodiment;
  • FIG. 10 is a top view of a main part of a power semiconductor device according to a second embodiment;
  • FIG. 10 is a top view of a main part of a power semiconductor device according to a second embodiment;
  • FIG. 12 is a top view of the main part of the power semiconductor device according to the third embodiment;
  • FIG. 11 is a top view of a main part of a power semiconductor device according to a fourth embodiment;
  • FIG. 11 is a top view of a main part of a power semiconductor device according to a fourth embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a power semiconductor device according to a fifth embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a power semiconductor device according to a fifth embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a power semiconductor device according to a fifth embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a power semiconductor device according to a sixth embodiment;
  • 1 and 2 are a top view and a side view of power semiconductor device 100 according to the first embodiment. 1 and 2 show through the mold resin 20 covering the surface of the power semiconductor device 100 (only the outline of the mold resin 20 is shown). 3 and 4 are a top view and a cross-sectional view of the main portion (in the vicinity of the power semiconductor chip 1) of the power semiconductor device 100.
  • FIG. 1 and 2 show through the mold resin 20 covering the surface of the power semiconductor device 100 (only the outline of the mold resin 20 is shown).
  • 3 and 4 are a top view and a cross-sectional view of the main portion (in the vicinity of the power semiconductor chip 1) of the power semiconductor device 100.
  • a power semiconductor chip 1 which is a chip of a power semiconductor element, is mounted on a heat spreader 2.
  • a surface electrode 1a which is one of the main electrodes, is formed on the upper surface of a power semiconductor chip 1.
  • a temperature sensing diode which is a chip of a temperature sensing diode element, is formed on the surface electrode 1a.
  • a chip 4 and a lead frame 5 are mounted. As shown in FIG. 2, the lower surfaces of the temperature sensing diode chip 4 and the lead frame 5 are bonded to the upper surface of the surface electrode 1a using a bonding member 6. As shown in FIG.
  • the area where the temperature sensing diode chip 4 is mounted is the first area
  • the area where the lead frame 5 is connected is the second area.
  • the second region is defined outside the surface electrode 1a.
  • the lead frame 5 has an opening in a portion corresponding to the first region, and the temperature sensing diode chip 4 is arranged in the opening of the lead frame 5. ing.
  • the dimensions of this opening are preferably slightly larger (about 0.2 mm to 2 mm) than the external dimensions of the temperature sensing diode chip 4 .
  • the side surface of the lead frame 5 facing the temperature sensing diode chip 4 that is, the side wall of the opening of the lead frame 5 is coated with an insulating film 5a made of, for example, resin.
  • the power semiconductor chip 1 may be any element such as an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), a Schottky barrier diode, or a PN junction diode.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • Schottky barrier diode a Schottky barrier diode
  • PN junction diode PN junction diode.
  • FIG. A collector electrode (not shown) is formed on the lower surface of the power semiconductor chip 1, and the collector electrode is electrically connected through a bonding member 3 to a heat spreader 2 made of conductive metal or the like.
  • the lead frame 7 serving as the emitter terminal of the power semiconductor device 100 is joined to the heat spreader 2 as shown in FIG.
  • a gate pad 1b connected to the gate electrode of the IGBT is further provided on the upper surface of the power semiconductor chip 1.
  • the gate pad 1b is a gate wire 8w which is a wire for applying a gate voltage. It is connected to the gate terminal 8 (FIG. 1) of the power semiconductor device 100 via (for example, an aluminum wire).
  • the temperature sensing diode chip 4 has an anode electrode 4a on the upper surface and a cathode electrode (not shown) on the lower surface.
  • the anode electrode 4a of the temperature sensing diode chip 4 is connected to the anode terminal 9 (FIG. 1) of the power semiconductor device 100 via an anode wire 9w (for example, an aluminum wire) which is a wire for measuring the voltage of the anode electrode.
  • a cathode electrode of the temperature sensing diode chip 4 is connected to the surface electrode 1a of the power semiconductor chip 1 via a joint member 6 .
  • the upper surface of the power semiconductor chip 1 is further provided with a cathode pad 1c electrically connected to the surface electrode 1a.
  • the cathode pad 1c is a wire for measuring the voltage of the cathode electrode. It is connected to the cathode terminal 10 (FIG. 1) of the power semiconductor device 100 via a wire 10w (for example, an aluminum wire).
  • a metal foil 12 is provided on the lower surface of the heat spreader 2 via an insulating sheet 11 to improve the heat dissipation of the heat spreader 2 .
  • the power semiconductor device 100 is configured by sealing the above elements with the mold resin 13 . However, portions of lead frame 5 , lead frame 7 , gate terminal 8 , anode terminal 9 and cathode terminal 10 , and the lower surface of metal foil 12 are exposed from mold resin 13 .
  • the power semiconductor device 100 is formed mainly through the following die bonding process, frame bonding process, wide bonding process, molding process and lead processing process.
  • the power semiconductor chip 1 is mounted on the heat spreader 2 using the bonding member 3 .
  • a structure in which signal terminals such as gate terminal 8, anode terminal 9 and cathode terminal 10 and main terminals such as lead frames 5 and 7 are integrated, and temperature
  • the sense diode chip 4 is bonded to the heat spreader 2 and the power semiconductor chip 1 mounted thereon using a bonding member 6 .
  • the temperature sensing diode chip 4 is positioned so as to fit in the opening of the lead frame 5 .
  • signal terminals (gate terminal 8, anode terminal 9, cathode terminal 10, etc.) and electrodes of the power semiconductor chip 1 and the temperature sensing diode chip 4 (surface electrode 1a, gate pad 1b, cathode pad 1c, anode electrode 4a) are ultrasonically bonded to wires (gate wire 8w, anode wire 9w, cathode wire 10w, etc.).
  • the power semiconductor chip 1, the heat spreader 2, the temperature sensing diode chip 4, the lead frame structure, etc. which have undergone the die bonding process, the frame bonding process, and the wide bonding process, are coated with an insulating sheet 11 having a metal foil 12 together with a metal foil. Set it in the cavity of the mold and set the resin pellet in the pot. Then, after the mold is heated to a high temperature, the molten resin is pushed out from the pot by a plunger, poured into the cavity from the gate of the mold through a runner, and cured at a high temperature to form a mold resin 13. - ⁇
  • the power semiconductor device 100 after the molding step is removed from the mold, the gate is cut, and unnecessary portions such as tie bars and frames are cut from the lead frame structure by pressing, thereby forming the power semiconductor device 100.
  • main terminals leaf frames 7, 8) and signal terminals (gate terminal 8, anode terminal 9, cathode terminal 10). Then, the power semiconductor device 100 is completed by bending the main terminals and the signal terminals into a prescribed shape.
  • the operation of the power semiconductor device 100 will be described.
  • a voltage equal to or higher than a threshold is applied between the gate terminal 8 of the power semiconductor device 100 and the lead frame 7, the voltage is applied between the gate and the emitter of the power semiconductor chip 1, which is an IGBT, and the power semiconductor chip 1 is turned on. is turned on, current flows through lead frame 5 , heat spreader 2 , power semiconductor chip 1 and lead frame 7 .
  • the power semiconductor chip 1 generates heat due to an internal resistance component when current flows.
  • the temperature sensing diode chip 4 measures the temperature of the power semiconductor chip 1 in order to prevent the power semiconductor chip 1 from being destroyed by this heat generation.
  • the temperature of the power semiconductor chip 1 is calculated from the voltage between the anode and cathode of the temperature sensing diode chip 4, that is, the voltage between the anode terminal 9 and cathode terminal 10 of the power semiconductor device 100.
  • the temperature sensing diode Although it is possible to incorporate the temperature sensing diode inside the power semiconductor chip 1, it is preferable to use the temperature sensing diode in a separate chip (temperature sensing diode chip 4) from the power semiconductor chip 1. Since the chip size of 1 can be reduced, for example, when the power semiconductor chip 1 is formed using SiC, which is more expensive than Si, the cost reduction effect is large. Furthermore, by bonding the temperature sensing diode chip 4 to the vicinity of the center of the surface electrode 1a of the power semiconductor chip 1, the temperature sensing diode can be arranged within the operating region of the power semiconductor chip 1, and the temperature of the power semiconductor chip 1 can be detected. can be measured directly.
  • the temperature sensing diode chip 4 when the temperature sensing diode chip 4 is mounted in the central portion of the surface electrode 1a of the power semiconductor chip 1 and the lead frame 5 is joined to the surface electrode 1a, the temperature sensing diode chip 4 and the lead frame 5 are It was not easy to keep the insulation between However, in the power semiconductor device 100 according to the present embodiment, the side surface of the lead frame 5 facing the temperature sensing diode chip 4 is coated with the insulating film 5a. Insulation can be maintained between
  • the lead frame 5 has an opening in the region (first region) where the temperature sensing diode chip 4 is arranged, but the shape of the lead frame 5 is not limited to this.
  • the lead frame 5 may have a U-shaped portion in which a notch (slit) is formed in the area where the temperature sensing diode chip 4 is arranged.
  • the temperature sensing diode chip 4 is arranged at a position surrounded on three sides by the U-shaped portion of the lead frame 5 .
  • the side surface of the lead frame 5 facing the temperature sensing diode chip 4 that is, the side wall of the notch of the U-shaped portion is coated with the insulating film 5a, so that the lead frame 5 and the temperature sensing diode chip 4 are separated from each other. Insulation can be maintained between
  • FIG. 6 shows a configuration example in which the lead frame 5 has an opening in a region (first region) where the temperature sensing diode chip 4 is arranged
  • FIG. This is a configuration example having a U-shaped portion in which a notch (slit) is formed in the region. 6 and 7 are the same except that the shape of the lead frame 5 is different.
  • both the anode electrode 4a and the cathode electrode 4c are provided on the upper surface of the temperature sensing diode chip 4.
  • FIG. The anode electrode 4a is connected to the anode terminal 9 of the power semiconductor device 100 through an anode wire 9w
  • the cathode electrode 4c is connected to the cathode terminal 10 of the power semiconductor device 100 through a cathode wire 10w.
  • the cathode electrode is arranged on the lower surface of the temperature sensing diode chip 4 and is shared with the emitter electrode of the power semiconductor chip 1. , and the potential fluctuation may affect the temperature measurement result.
  • the cathode electrode 4c of the temperature sensing diode chip 4 is provided independently of the emitter electrode of the power semiconductor chip 1, so that the influence of potential fluctuation due to energization of the power semiconductor chip 1 Therefore, the temperature sensing diode chip 4 can measure the temperature of the power semiconductor chip 1 more accurately.
  • FIG. 8 is a top view of a main part (the vicinity of the power semiconductor chip 1) of the power semiconductor device 100 according to the third embodiment.
  • the lead frame 5 has a U-shaped portion in which a notch (slit) is formed in the area where the temperature sensing diode chip 4 is arranged.
  • the cathode electrode of the temperature sensing diode chip 4 is arranged on the bottom surface of the chip and is joined to the surface electrode 1a of the power semiconductor chip 1, and is connected to the emitter electrode of the power semiconductor chip 1. are shared.
  • a cathode pad 1c to which a cathode wire 10w is joined is provided as a third region on a portion of the surface electrode 1a. Therefore, in the surface electrode 1a, the lead frame 5 is bonded between the cathode pad 1c (third region) to which the cathode wire 10w is bonded and the region (first region) to which the temperature sensing diode chip 4 is bonded. There is no intervening region (second region).
  • the potential of the cathode wire 10w is less likely to be affected by potential fluctuations due to energization of the power semiconductor chip 1, and the temperature sensing diode chip 4 can detect the temperature of the power semiconductor chip 1 more accurately as in the second embodiment. can be measured.
  • FIG. 8 shows a configuration example in which the lead frame 5 has a U-shaped portion.
  • both the first region and the third region may be arranged within the opening.
  • FIG. 9 shows a configuration example in which the lead frame 5 has an opening in a region (first region) where the temperature sensing diode chip 4 is arranged
  • FIG. This is a configuration example having a U-shaped portion in which a notch (slit) is formed in the region.
  • 9 and 10 are the same except that the shape of the lead frame 5 is different.
  • the direction in which lead frame 5 extends from surface electrode 1a of power semiconductor chip 1 is such that cathode wire 10w, which is a wire for voltage measurement of the cathode electrode of temperature sensing diode chip 4, extends from cathode pad 1c. Orthogonal to the direction. In this configuration, the cathode wire 10w is less likely to be induced by the magnetic field generated when the power semiconductor chip 1 is switched between on (energization) and off (non-energization). The temperature of chip 1 can be measured more accurately.
  • 11, 12 and 13 are cross-sectional views of the main part (the vicinity of the power semiconductor chip 1) of the power semiconductor device 100 according to the fifth embodiment. 11, 12 and 13 are the same except that the shape of the lead frame 5 is different. Further, these figures show a configuration example in which the lead frame 5 has an opening in a region (first region) where the temperature sensing diode chip 4 is arranged. A configuration having a U-shaped portion in which a notch (slit) is formed in the area where the edge is formed may also be used.
  • lead frame 5 is configured such that the top surface of lead frame 5 is lower than the top surface of temperature sense diode chip 4 at least in the portion facing temperature sense diode chip 4 .
  • FIG. 11 shows an example in which the overall thickness of the lead frame 5 is reduced so that the height of the upper surface of the lead frame 5 is lower than the height of the upper surface of the temperature sensing diode chip 4 .
  • the lead frame 5 can be formed by processing the lead frame 5 using a metal plate (such as a copper plate) thinner than the temperature sensing diode chip 4 .
  • FIG. 12 shows an example in which a step is provided on the top surface of the lead frame 5 so that the portion of the lead frame 5 facing the temperature sensing diode chip 4 is lower than the top surface of the temperature sensing diode chip 4 .
  • the lead frame 5 can be formed by crushing the portion of the lead frame 5 facing the temperature sensing diode chip 4 and making the portion thinner than the temperature sensing diode chip 4 .
  • the upper surface of the portion of the lead frame 5 facing the temperature sensing diode chip 4 is tilted so that the end side of the lead frame 5 is lowered, so that the portion of the lead frame 5 facing the temperature sensing diode chip 4 is tilted. is lower than the height of the top surface of the temperature sensing diode chip 4 .
  • the lead frame 5 can be formed by chamfering a portion of the lead frame 5 facing the temperature sensing diode chip 4 and making the chamfered portion thinner than the temperature sensing diode chip 4 .
  • the lead frame 5 is placed on the surface electrode 1a of the power semiconductor chip 1. At the same time, the process of mounting the temperature sensing diode chip 4 is facilitated. Moreover, when the anode wire 9w is bonded to the anode electrode 4a on the upper surface of the temperature sensing diode chip 4, the bonding tool is prevented from interfering with the lead frame 5. As shown in FIG.
  • FIG. 14 is a cross-sectional view of a main part (in the vicinity of the power semiconductor chip 1) of the power semiconductor device 100 according to the sixth embodiment.
  • FIG. 14 shows a configuration example in which the lead frame 5 has an opening in the region (first region) where the temperature sensing diode chip 4 is arranged.
  • a configuration having a U-shaped portion with a notch (slit) may be used.
  • the lead frame 5 is joined to the surface electrode 1a of the power semiconductor chip 1 using the joining member 6 made of solder. It is bonded to the surface electrode 1a of the power semiconductor chip 1 using an Ag bonding member 14 made of (aG).
  • the Ag bonding member 14 has a lower thermal resistance than solder and less void generation, according to the sixth embodiment, the heat of the power semiconductor chip 1 is efficiently transmitted to the temperature sensing diode chip 4. As a result, the temperature sensing diode chip 4 can measure the temperature of the power semiconductor chip 1 more accurately.
  • 100 power semiconductor device 1 power semiconductor chip, 1a surface electrode, 1b gate pad, 1c cathode pad, 2 heat spreader, 3 joining member, 4 temperature sensing diode chip, 4a anode electrode, 4c cathode electrode, 5 lead frame, 5a insulating film, 6 joining member, 7 lead frame, 8 gate terminal, 8w gate wire, 9 anode terminal, 9w anode wire, 10 cathode terminal, 10w cathode wire, 11 insulating sheet, 12 metal foil, 13 mold resin, 14 Ag joining member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

電力用半導体装置(100)は、電力用半導体素子のチップである電力用半導体チップ(1)と、電力用半導体チップ(1)の主電極の1つである表面電極(1a)上の第1領域に搭載された温度センスダイオード素子のチップである温度センスダイオードチップ(4)と、表面電極(1a)上の第2領域に接続されたリードフレーム(5)とを備える。リードフレーム(5)の温度センスダイオードチップ(4)に対向する側面には、絶縁膜(5a)が設けられている。

Description

電力用半導体装置
 本開示は、電力用半導体装置に関し、特に、温度センスダイオードを備える電力用半導体装置に関するものである。
 例えば、電気自動車や電車などのモータを制御するインバータや電源回生用のコンバータなどに用いられる電力用半導体装置として、電力用半導体素子の温度を測定するための温度センスダイオードを備えるものが知られている。例えば下記の特許文献1には、電力用半導体素子の表面電極上に、リードフレームとともに温度センスダイオードのチップを実装した電力用半導体装置が開示されている。
特開2019-186510号公報
 電力用半導体素子の表面電極上に、リードフレームとともに温度センスダイオードのチップを実装する場合、リードフレームと温度センスダイオードとの間の絶縁の信頼性を確保することが課題となる。
 本開示は以上のような課題を解決するためになされたものであり、電力用半導体素子の表面電極上に実装されるリードフレームと温度センスダイオードとの間の絶縁の信頼性向上を目的とする。
 本開示に係る電力用半導体装置は、電力用半導体素子のチップである電力用半導体チップと、前記電力用半導体チップの主電極の1つである表面電極上の第1領域に搭載された温度センスダイオード素子のチップである温度センスダイオードチップと、前記表面電極上の第2領域に接続されたリードフレームと、前記リードフレームの前記温度センスダイオードチップに対向する側面に設けられた絶縁膜と、を備える。
 本開示によれば、リードフレームの温度センスダイオードチップに対向する側面に絶縁膜が設けられたことで、リードフレームと温度センスダイオードとの間の絶縁の信頼性が向上する。
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る電力用半導体装置の上面図である。 実施の形態1に係る電力用半導体装置の側面図である。 実施の形態1に係る電力用半導体装置の主要部の上面図である。 実施の形態1に係る電力用半導体装置の主要部の断面図である。 実施の形態1に係る電力用半導体装置の主要部の上面図である。 実施の形態2に係る電力用半導体装置の主要部の上面図である。 実施の形態2に係る電力用半導体装置の主要部の上面図である。 実施の形態3に係る電力用半導体装置の主要部の上面図である。 実施の形態4に係る電力用半導体装置の主要部の上面図である。 実施の形態4に係る電力用半導体装置の主要部の上面図である。 実施の形態5に係る電力用半導体装置の主要部の断面図である。 実施の形態5に係る電力用半導体装置の主要部の断面図である。 実施の形態5に係る電力用半導体装置の主要部の断面図である。 実施の形態6に係る電力用半導体装置の主要部の断面図である。
 <実施の形態1>
 図1および図2は、実施の形態1に係る電力用半導体装置100の上面図および側面図である。図1および図2では、電力用半導体装置100の表面を覆うモールド樹脂20を透過して示している(モールド樹脂20はその外形のみが示されている)。また、図3および図4は、電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の上面図および断面図である。
 図1および図2のように、電力用半導体装置100において、電力用半導体素子のチップである電力用半導体チップ1は、ヒートスプレッダ2上に実装されている。すなわち、電力用半導体チップ1の下面は、はんだ等の接合部材3を用いてヒートスプレッダ2の上面に接合されている。
 図3に示すように、電力用半導体チップ1の上面には、主電極の1つである表面電極1aが形成されており、表面電極1a上に、温度センスダイオード素子のチップである温度センスダイオードチップ4と、リードフレーム5とが実装されている。図2に示すように、温度センスダイオードチップ4およびリードフレーム5の下面は、接合部材6を用いて表面電極1aの上面に接合されている。
 表面電極1aにおいて、温度センスダイオードチップ4が搭載される領域を第1領域、リードフレーム5が接続する領域を第2領域とすると、本実施の形態では、第1領域は表面電極1aの中央部に規定され、第2領域は表面電極1aの外側に規定されている。また、図3および図4に示すように、リードフレーム5は、第1領域に対応する部分に開口部を有しており、温度センスダイオードチップ4は、リードフレーム5の開口部内に配設されている。この開口部の寸法は、温度センスダイオードチップ4の外形寸法よりもわずかに(0.2mm~2mm程度)大きいことが好ましい。
 ここで、リードフレーム5の温度センスダイオードチップ4に対向する側面、すなわちリードフレーム5の開口部の側壁は、例えば樹脂などからなる絶縁膜5aでコーティングされている。リードフレーム5の温度センスダイオードチップ4に対向する側面に絶縁膜5aが設けられることで、リードフレーム5と温度センスダイオードチップ4との間の絶縁の信頼性が向上するという効果が得られる。
 電力用半導体チップ1は、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、ショットキーバリアダイオード、PN接合ダイオードなど、任意の素子でよい。ここでは、電力用半導体チップ1がIGBTであるものと仮定する。すなわち、電力用半導体チップ1上面の表面電極1aはエミッタ電極であり、それに接続するリードフレーム5は、電力用半導体装置100のエミッタ端子となる。また、電力用半導体チップ1の下面にはコレクタ電極(不図示)が形成されており、当該コレクタ電極は接合部材3を通して導電性を持つ金属などから成るヒートスプレッダ2と電気的に接続される。そのため、本実施の形態では、図1のように、電力用半導体装置100のエミッタ端子となるリードフレーム7が、ヒートスプレッダ2に接合されている。また、図3のように、電力用半導体チップ1の上面には、さらにIGBTのゲート電極に接続したゲートパッド1bが設けられ、ゲートパッド1bは、ゲート電圧印加用のワイヤであるゲート用ワイヤ8w(例えばアルミワイヤ)を介して電力用半導体装置100のゲート端子8(図1)に接続される。
 また、本実施の形態では、温度センスダイオードチップ4は、上面にアノード電極4a、下面にカソード電極(不図示)を備えている。温度センスダイオードチップ4のアノード電極4aは、アノード電極の電圧測定用のワイヤであるアノード用ワイヤ9w(例えばアルミワイヤ)を介して電力用半導体装置100のアノード端子9(図1)に接続される。温度センスダイオードチップ4のカソード電極は、接合部材6を介して電力用半導体チップ1の表面電極1aに接続されている。図3のように、電力用半導体チップ1の上面には、さらに表面電極1aと電気的に接続されたカソードパッド1cが設けられ、カソードパッド1cはカソード電極の電圧測定用のワイヤであるカソード用ワイヤ10w(例えばアルミワイヤ)を介して電力用半導体装置100のカソード端子10(図1)に接続される。
 ヒートスプレッダ2の下面には、絶縁シート11を介して、ヒートスプレッダ2の放熱性を高めるための金属箔12が設けられている。
 電力用半導体装置100は、以上の要素がモールド樹脂13によって封止されることで構成される。ただし、リードフレーム5、リードフレーム7、ゲート端子8、アノード端子9およびカソード端子10の一部分、ならびに金属箔12の下面はモールド樹脂13から露出される。
 次に、電力用半導体装置100の製造方法の主要な工程について説明する。電力用半導体装置100は、主に以下のダイボンド工程、フレーム接合工程、ワイドボンド工程、モールド工程およびリード加工工程を経て形成される。
 ダイボンド工程では、電力用半導体チップ1をヒートスプレッダ2上に接合部材3を用いて実装する。
 フレーム接合工程では、ゲート端子8、アノード端子9、カソード端子10などの信号端子およびリードフレーム5,7などの主端子が一体となった構造体(以下「リードフレーム構造体」という)と、温度センスダイオードチップ4とを、ヒートスプレッダ2およびその上に実装された電力用半導体チップ1に接合部材6を用いて接合する。このとき、温度センスダイオードチップ4は、リードフレーム5の開口部に収まるように位置決めされる。
 ワイヤボンド工程では、信号端子(ゲート端子8、アノード端子9、カソード端子10など)ならびに電力用半導体チップ1および温度センスダイオードチップ4の電極(表面電極1a、ゲートパッド1b、カソードパッド1c、アノード電極4aなど)に、ワイヤ(ゲート用ワイヤ8w、アノード用ワイヤ9w、カソード用ワイヤ10wなど)を超音波接合する。
 モールド工程では、まず、ダイボンド工程、フレーム接合工程およびワイドボンド工程を経た電力用半導体チップ1、ヒートスプレッダ2、温度センスダイオードチップ4、リードフレーム構造体などを、金属箔12を備える絶縁シート11とともに金型のキャビティにセットし、ポットに樹脂ペレットをセットする。そして、金型を高温にしてから、溶融した樹脂をプランジャーによりポットから押し出し、ランナーを通して金型のゲートからキャビティに流し込み、高温下で樹脂を硬化させることでモールド樹脂13を形成する。
 リード加工工程では、モールド工程後の電力用半導体装置100を金型から取り出し、ゲートカットを行い、リードフレーム構造体からタイバーや枠などの不要な部分をプレスにより切断することで電力用半導体装置100の主端子(リードフレーム7,8)および信号端子(ゲート端子8、アノード端子9、カソード端子10)を形成する。そして、主端子および信号端子を、規定の形状に曲げ加工することで、電力用半導体装置100が完成する。
 次に、電力用半導体装置100の動作について説明する。電力用半導体装置100のゲート端子8とリードフレーム7との間に閾値以上の電圧を印加すると、IGBTである電力用半導体チップ1のゲート-エミッタ間にその電圧が印加され、電力用半導体チップ1がオン状態になり、リードフレーム5、ヒートスプレッダ2、電力用半導体チップ1およびリードフレーム7を通して電流が流れる。電力用半導体チップ1は電流が流れるとき内部の抵抗成分により発熱する。
 温度センスダイオードチップ4は、この発熱による電力用半導体チップ1の破壊を未然に防ぐために電力用半導体チップ1の温度を測定する。電力用半導体チップ1の温度は、温度センスダイオードチップ4のアノードとカソード間の電圧、すなわち電力用半導体装置100のアノード端子9とカソード端子10との間の電圧から計算される。
 温度センスダイオードを電力用半導体チップ1の内部に組み込むことも可能であるが、温度センスダイオードを電力用半導体チップ1とは別のチップ(温度センスダイオードチップ4)とする方が、電力用半導体チップ1のチップサイズを小さくできるため、例えば、電力用半導体チップ1をSiよりも高価なSiCを用いて形成する場合などに、コスト低減効果が大きい。さらに、温度センスダイオードチップ4を電力用半導体チップ1の表面電極1aの中央付近に接合すれば、電力用半導体チップ1の動作領域内に温度センスダイオードを配置でき、電力用半導体チップ1の温度を直接的に測定することができる。
 従来、電力用半導体チップ1の表面電極1aの中央部に温度センスダイオードチップ4を搭載させ、なお且つ、表面電極1aにリードフレーム5を接合しようとすると、温度センスダイオードチップ4とリードフレーム5との間の絶縁を保つのは容易ではなかった。しかし、本実施の形態に係る電力用半導体装置100では、リードフレーム5の温度センスダイオードチップ4に対向する側面が絶縁膜5aでコーティングされているため、リードフレーム5と温度センスダイオードチップ4との間の絶縁を保つことができる。
 図3および図4には、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成を示したが、リードフレーム5の形状はこれに限られない。例えば図5のように、リードフレーム5が温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有していてもよい。温度センスダイオードチップ4は、リードフレーム5のU字形状部に三方が囲まれる位置に配設される。この場合も、リードフレーム5の温度センスダイオードチップ4に対向する側面、すなわち、U字形状部の切り欠きの側壁を絶縁膜5aでコーティングすることで、リードフレーム5と温度センスダイオードチップ4との間の絶縁を保つことができる。
 <実施の形態2>
 図6および図7は、実施の形態2に係る電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の上面図である。図6は、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成例であり、図7は、リードフレーム5が温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有する構成例である。図6と図7とは、リードフレーム5の形状が異なるのみで、それ以外は同じである。
 実施の形態2では、温度センスダイオードチップ4の上面に、アノード電極4aとカソード電極4cとの両方が設けられている。アノード電極4aは、アノード用ワイヤ9wを通して電力用半導体装置100のアノード端子9に接続され、カソード電極4cはカソード用ワイヤ10wを通して電力用半導体装置100のカソード端子10に接続される。
 実施の形態1ではカソード電極が温度センスダイオードチップ4の下面に配置されており、電力用半導体チップ1のエミッタ電極と共通化されていたため、温度センスダイオードチップ4のカソード電位が電力用半導体チップ1のエミッタ電位とともに変動し、その電位変動が温度の測定結果に影響するおそれがある。それに対し、実施の形態2では、温度センスダイオードチップ4のカソード電極4cが電力用半導体チップ1のエミッタ電極とは独立して設けられているため、電力用半導体チップ1の通電による電位変動の影響を受けにくく、温度センスダイオードチップ4は電力用半導体チップ1の温度をより正確に測定できる。
 <実施の形態3>
 図8は、実施の形態3に係る電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の上面図である。図8において、リードフレーム5は、温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有する。
 実施の形態1と同様に、温度センスダイオードチップ4のカソード電極は当該チップの下面に配置されて、電力用半導体チップ1の表面電極1aに接合されており、電力用半導体チップ1のエミッタ電極と共通化されている。実施の形態3では、図8のように、表面電極1aの一部分に、第3領域として、カソード用ワイヤ10wが接合されるカソードパッド1cを設けている。よって、表面電極1aにおいて、カソード用ワイヤ10wが接合されるカソードパッド1c(第3領域)と温度センスダイオードチップ4が接合される領域(第1領域)との間に、リードフレーム5が接合される領域(第2領域)が介在しない。したがって、カソード用ワイヤ10wの電位が電力用半導体チップ1の通電による電位変動の影響を受けにくく、実施の形態2と同様に、温度センスダイオードチップ4は電力用半導体チップ1の温度をより正確に測定できる。
 図8では、リードフレーム5がU字形状部を有する構成例を示したが、実施の形態3は、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成に対しても適用可能であり、その場合は、開口部内に第1領域と第3領域の両方を配置すればよい。
 <実施の形態4>
 図9および図10は、実施の形態4に係る電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の上面図である。図9は、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成例であり、図10は、リードフレーム5が温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有する構成例である。図9と図10とは、リードフレーム5の形状が異なるのみで、それ以外は同じである。
 実施の形態4では、リードフレーム5が電力用半導体チップ1の表面電極1aから延びる方向が、温度センスダイオードチップ4のカソード電極の電圧測定用のワイヤであるカソード用ワイヤ10wがカソードパッド1cから延びる方向に直交する。この構成では、カソード用ワイヤ10wが、電力用半導体チップ1のオン(通電)とオフ(非通電)とが切り替わるときに発生する磁界による誘導を受けにくいため、温度センスダイオードチップ4は電力用半導体チップ1の温度をより正確に測定できる。
 <実施の形態5>
 図11、図12および図13は、実施の形態5に係る電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の断面図である。図11、図12および図13は、リードフレーム5の形状が異なるのみで、それ以外は同じである。また、これらの図は、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成例であるが、リードフレーム5は、温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有する構成でもよい。
 実施の形態5では、リードフレーム5は、少なくとも温度センスダイオードチップ4に対向する部分において、リードフレーム5の上面の高さが温度センスダイオードチップ4の上面の高さよりも低くなるように構成されている。
 図11は、リードフレーム5の全体の厚さを薄くして、リードフレーム5の上面の高さが温度センスダイオードチップ4の上面の高さよりも低くした例である。このリードフレーム5は、温度センスダイオードチップ4よりも厚さが薄い金属板(銅板など)を用いてリードフレーム5を加工することで形成できる。
 図12は、リードフレーム5の温度センスダイオードチップ4に対向する部分が、温度センスダイオードチップ4の上面の高さよりも低くなるように、リードフレーム5の上面に段差を設けた例である。このリードフレーム5は、リードフレーム5の温度センスダイオードチップ4に対向する部分を押しつぶして、その部分の厚さを温度センスダイオードチップ4の厚さよりも薄くすることで形成できる。
 図13は、リードフレーム5の温度センスダイオードチップ4に対向する部分の上面を、リードフレーム5の端部側が低くなるように傾斜させることで、リードフレーム5の温度センスダイオードチップ4に対向する部分が、温度センスダイオードチップ4の上面の高さよりも低くなるようにした例である。このリードフレーム5は、リードフレーム5の温度センスダイオードチップ4に対向する部分を面取り加工して、その部分の厚さを温度センスダイオードチップ4の厚さよりも薄くすることで形成できる。
 実施の形態5では、温度センスダイオードチップ4の上面が、リードフレーム5の温度センスダイオードチップ4に対向する部分の上面よりも高くなるため、電力用半導体チップ1の表面電極1a上にリードフレーム5と同時に温度センスダイオードチップ4を実装する工程が容易になる。また、温度センスダイオードチップ4上面のアノード電極4aにアノード用ワイヤ9wを接合する際に、ボンディングツールがリードフレーム5に干渉するのを防止する効果も得られる。
 また、図11のリードフレーム5の形成は温度センスダイオードチップ4よりも薄い金属板を材料に用いる必要があるが、図12および図13のリードフレーム5は、温度センスダイオードチップ4よりも厚い金属板からも形成できるため、リードフレーム5の材料の選択肢が広がるという利点がある。
 <実施の形態6>
 図14は、実施の形態6に係る電力用半導体装置100の主要部(電力用半導体チップ1の近傍)の断面図である。図14は、リードフレーム5が温度センスダイオードチップ4の配置される領域(第1領域)に開口部を有する構成例であるが、リードフレーム5は、温度センスダイオードチップ4の配置される領域に切り欠き(スリット)が形成されたU字形状部を有する構成でもよい。
 実施の形態6の電力用半導体装置100では、リードフレーム5は、はんだから成る接合部材6を用いて電力用半導体チップ1の表面電極1aに接合されているが、温度センスダイオードチップ4は、銀(aG)からなるAg接合部材14を用いて電力用半導体チップ1の表面電極1aに接合されている。
 Ag接合部材14は、はんだと比較して熱抵抗が低く、またボイドの発生が少ないことから、実施の形態6によれば、電力用半導体チップ1の熱が効率よく温度センスダイオードチップ4に伝わるようになり、温度センスダイオードチップ4が電力用半導体チップ1の温度をより正確に測定できるようになる。
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 上記した説明は、すべての態様において、例示であって、例示されていない無数の変形例が想定され得るものと解される。
 100 電力用半導体装置、1 電力用半導体チップ、1a 表面電極、1b ゲートパッド、1c カソードパッド、2 ヒートスプレッダ、3 接合部材、4 温度センスダイオードチップ、4a アノード電極、4c カソード電極、5 リードフレーム、5a 絶縁膜、6 接合部材、7 リードフレーム、8 ゲート端子、8w ゲート用ワイヤ、9 アノード端子、9w アノード用ワイヤ、10 カソード端子、10w カソード用ワイヤ、11 絶縁シート、12 金属箔、13 モールド樹脂、14 Ag接合部材。

Claims (11)

  1.  電力用半導体素子のチップである電力用半導体チップと、
     前記電力用半導体チップの主電極の1つである表面電極上の第1領域に搭載された温度センスダイオード素子のチップである温度センスダイオードチップと、
     前記表面電極上の第2領域に接続されたリードフレームと、
     前記リードフレームの前記温度センスダイオードチップに対向する側面に設けられた絶縁膜と、
    を備える電力用半導体装置。
  2.  前記温度センスダイオードチップは、前記表面電極の中央部に搭載されている、
    請求項1に記載の電力用半導体装置。
  3.  前記リードフレームは開口部を有しており、
     前記温度センスダイオードチップは、前記リードフレームの前記開口部内に配設されている、
    請求項1または請求項2に記載の電力用半導体装置。
  4.  前記リードフレームはU字形状部を有しており、
     前記温度センスダイオードチップは、前記リードフレームの前記U字形状部に三方が囲まれる位置に配設されている、
    請求項1または請求項2に記載の電力用半導体装置。
  5.  前記温度センスダイオードチップは、上面にアノード電極とカソード電極との両方を備えている、
    請求項1から請求項4のいずれか一項に記載の電力用半導体装置。
  6.  前記温度センスダイオードチップは、下面に前記表面電極と接続したカソード電極を備え、
     前記カソード電極の電圧測定用のワイヤが、前記表面電極上の第3領域に接続されており、
     前記第3領域と前記第1領域との間に前記第2領域が介在していない、
    請求項1から請求項4のいずれか一項に記載の電力用半導体装置。
  7.  前記温度センスダイオードチップは、下面に前記表面電極と接続したカソード電極を備え、
     前記リードフレームが前記表面電極から延びる方向は、前記カソード電極の電圧測定用のワイヤが延びる方向に直交する、
    請求項1から請求項6のいずれか一項に記載の電力用半導体装置。
  8.  少なくとも前記リードフレームの前記温度センスダイオードチップに対向する部分において、前記リードフレームの上面の高さは、前記温度センスダイオードチップの上面の高さよりも低い、
    請求項1から請求項7のいずれか一項に記載の電力用半導体装置。
  9.  前記リードフレームの上面は、前記温度センスダイオードチップに対向する部分が低くなるように段差を有している、
    請求項8に記載の電力用半導体装置。
  10.  少なくとも前記リードフレームの前記温度センスダイオードチップに対向する部分の上面は、前記リードフレームの端部側が低くなるように傾斜している、
    請求項8に記載の電力用半導体装置。
  11.  前記温度センスダイオードチップは、銀を用いて前記表面電極に接合されており、
     前記リードフレームは、はんだを用いて前記表面電極に接合されている、
    請求項1から請求項10のいずれか一項に記載の電力用半導体装置。
PCT/JP2021/016000 2021-04-20 2021-04-20 電力用半導体装置 WO2022224340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180097061.2A CN117121197A (zh) 2021-04-20 2021-04-20 电力用半导体装置
JP2023515920A JP7422945B2 (ja) 2021-04-20 2021-04-20 電力用半導体装置
PCT/JP2021/016000 WO2022224340A1 (ja) 2021-04-20 2021-04-20 電力用半導体装置
US18/549,166 US20240162196A1 (en) 2021-04-20 2021-04-20 Power semiconductor device
DE112021007534.9T DE112021007534T5 (de) 2021-04-20 2021-04-20 Leistungs-Halbleitervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016000 WO2022224340A1 (ja) 2021-04-20 2021-04-20 電力用半導体装置

Publications (1)

Publication Number Publication Date
WO2022224340A1 true WO2022224340A1 (ja) 2022-10-27

Family

ID=83722040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016000 WO2022224340A1 (ja) 2021-04-20 2021-04-20 電力用半導体装置

Country Status (5)

Country Link
US (1) US20240162196A1 (ja)
JP (1) JP7422945B2 (ja)
CN (1) CN117121197A (ja)
DE (1) DE112021007534T5 (ja)
WO (1) WO2022224340A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191012A (ja) * 2011-03-10 2012-10-04 Denso Corp 半導体装置
WO2018220721A1 (ja) * 2017-05-30 2018-12-06 三菱電機株式会社 半導体パワーモジュール
JP2019079839A (ja) * 2017-10-20 2019-05-23 三菱電機株式会社 半導体パワーモジュール
JP2019186510A (ja) * 2018-03-30 2019-10-24 富士電機株式会社 半導体装置、半導体パッケージ、半導体モジュール、および半導体回路装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177304B2 (ja) 2015-12-24 2017-08-09 Kyb株式会社 転倒防止装置の把持部材及び転倒防止装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191012A (ja) * 2011-03-10 2012-10-04 Denso Corp 半導体装置
WO2018220721A1 (ja) * 2017-05-30 2018-12-06 三菱電機株式会社 半導体パワーモジュール
JP2019079839A (ja) * 2017-10-20 2019-05-23 三菱電機株式会社 半導体パワーモジュール
JP2019186510A (ja) * 2018-03-30 2019-10-24 富士電機株式会社 半導体装置、半導体パッケージ、半導体モジュール、および半導体回路装置

Also Published As

Publication number Publication date
CN117121197A (zh) 2023-11-24
US20240162196A1 (en) 2024-05-16
DE112021007534T5 (de) 2024-02-15
JP7422945B2 (ja) 2024-01-26
JPWO2022224340A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5661183B2 (ja) 半導体装置およびその製造方法
US9673118B2 (en) Power module and method of manufacturing power module
US9171773B2 (en) Semiconductor device
JP6115738B2 (ja) 半導体装置およびその製造方法
JP4254527B2 (ja) 半導体装置
JPH09260550A (ja) 半導体装置
CN104821302A (zh) 半导体装置
JPWO2013171946A1 (ja) 半導体装置の製造方法および半導体装置
JP2005167075A (ja) 半導体装置
JP2017174951A (ja) 半導体装置
JP4356494B2 (ja) 半導体装置
JP6150866B2 (ja) 電力半導体装置
WO2022224340A1 (ja) 電力用半導体装置
JP4339660B2 (ja) 半導体装置
JP2013113638A (ja) 半導体装置
KR20170068271A (ko) 파워모듈
US11145578B2 (en) Semiconductor package with top or bottom side cooling and method for manufacturing the semiconductor package
JP2017191807A (ja) パワー半導体装置およびパワー半導体装置の製造方法
JP2017069351A (ja) 半導体装置
JP4861200B2 (ja) パワーモジュール
JP4258391B2 (ja) 半導体装置
JP2021019065A (ja) 半導体装置
WO2023175861A1 (ja) 半導体装置
JP4055700B2 (ja) 半導体装置
KR102410257B1 (ko) 양면냉각형 전력반도체 디스크리트 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515920

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18549166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007534

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937837

Country of ref document: EP

Kind code of ref document: A1