WO2022222192A1 - 液晶显示面板及显示装置 - Google Patents

液晶显示面板及显示装置 Download PDF

Info

Publication number
WO2022222192A1
WO2022222192A1 PCT/CN2021/091685 CN2021091685W WO2022222192A1 WO 2022222192 A1 WO2022222192 A1 WO 2022222192A1 CN 2021091685 W CN2021091685 W CN 2021091685W WO 2022222192 A1 WO2022222192 A1 WO 2022222192A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
substrate
display panel
support column
Prior art date
Application number
PCT/CN2021/091685
Other languages
English (en)
French (fr)
Inventor
张驰
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/292,504 priority Critical patent/US20240027805A1/en
Publication of WO2022222192A1 publication Critical patent/WO2022222192A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present application relates to the field of display, and in particular, to a liquid crystal display panel and a display device.
  • the ability of liquid crystal display (Liquid Crystal Display, LCD) to resist external pressure is an important indicator in the industry to evaluate the quality of LCD.
  • the LCD panel includes a support column for supporting the liquid crystal cell. When the LCD panel is pressed by an external force, the pressed panel surface will be deformed, and the support column in the liquid crystal cell will slide sideways when receiving external pressure, and will be in contact with the surface of the array substrate. The alignment layer is rubbed, thereby scratching the alignment layer. The greater the pressing force on the panel, the greater the amount of side sliding of the support column, and the side sliding of the support column to the pixel light-transmitting area will cause the alignment layer in the pixel light-transmitting area to be scratched, and the scratched alignment layer cannot be effectively aligned.
  • the alignment of the liquid crystal results in disorder of the liquid crystal in this area. When the light source illuminates the panel, bright spots caused by light leakage will be seen in this area, which affects the yield of the product.
  • the embodiments of the present application provide a liquid crystal display panel and a display device, which can increase the sliding resistance of the support column, reduce the sliding amount of the side sliding of the support column, and alleviate the damage of the alignment layer in the pixel light-transmitting area caused by the sliding of the support column. risk, and improve the anti-pressing ability and product yield of liquid crystal display panels.
  • An embodiment of the present application provides a liquid crystal display panel, including a first substrate, a second substrate, and a liquid crystal layer filled between the first substrate and the second substrate, and the second substrate includes a liquid crystal layer located between the first substrate and the second substrate.
  • the support column on the side of the floor,
  • a sliding damping structure is provided on a surface of the first substrate close to the liquid crystal layer at a position corresponding to the support column.
  • the second substrate further includes a black matrix layer, the black matrix layer is disposed on a side of the support column away from the liquid crystal layer, and the black matrix layer is located on the side of the support column away from the liquid crystal layer.
  • the projection on the first substrate covers the sliding damping structure.
  • a projected area of the black matrix layer on the first substrate is larger than an area occupied by the sliding damping structure.
  • the sliding damping structure includes grooves and protrusions provided in the sliding direction of the support column under force.
  • the grooves include any one or more of annular grooves, grid-line grooves, circular grooves or polygonal grooves.
  • a projection of a surface boundary of a side of the support column close to the first substrate on the first substrate at least partially falls into the groove.
  • a projection of a surface boundary of a side of the support column close to the first substrate on the first substrate completely falls into the groove.
  • the sliding damping structure includes at least one group of the grooves and the Raised.
  • the grooves are symmetrically arranged with respect to the support column and perpendicular to the center line of the first substrate.
  • the depth of the grooves ranges from 0.4 to 0.6 microns.
  • the width of the groove is in the range of 0.7-2.5 microns
  • the width of the protrusion is in the range of 0.7-2.5 microns.
  • the sliding damping structure includes an organic layer, an alignment layer, and a film layer structure between the organic layer and the alignment layer.
  • the groove is provided on a surface of the organic layer close to the liquid crystal layer, and the alignment layer is provided on a side of the organic layer close to the liquid crystal layer.
  • an embodiment of the present application further provides a display device, including a liquid crystal display panel, wherein the liquid crystal display panel includes a first substrate, a second substrate, and a spacer filled between the first substrate and the second substrate a liquid crystal layer, the second substrate includes a support column on the side of the liquid crystal layer,
  • a sliding damping structure is provided on a surface of the first substrate close to the liquid crystal layer at a position corresponding to the support column.
  • the second substrate further includes a black matrix layer, the black matrix layer is disposed on a side of the support column away from the liquid crystal layer, and the black matrix layer is located on the side of the support column away from the liquid crystal layer.
  • the projection on the first substrate covers the sliding damping structure.
  • the projection of the support column on the first substrate falls within a region where the sliding damping structure is located.
  • the sliding damping structure includes grooves and protrusions provided in the sliding direction of the support column under force.
  • the grooves include any one or more of annular grooves, grid-line grooves, circular grooves or polygonal grooves.
  • the sliding damping structure includes an organic layer, an alignment layer, and a film layer structure between the organic layer and the alignment layer, and the organic layer is disposed close to the surface of the liquid crystal layer With the groove, the alignment layer is disposed on the side of the organic layer close to the liquid crystal layer.
  • Embodiments of the present application provide a liquid crystal display panel and a display device.
  • the liquid crystal display panel includes a first substrate, a second substrate, and a liquid crystal layer filled between the first substrate and the second substrate.
  • the second substrate includes a liquid crystal layer located in the liquid crystal layer.
  • the supporting column on the side, at the position corresponding to the supporting column, the surface of the first substrate close to the liquid crystal layer is provided with a sliding damping structure.
  • the sliding damping structure is arranged on the surface of the first substrate close to the liquid crystal layer, which increases the resistance of the support column sliding along the surface of the first substrate when it is subjected to external pressure, and reduces the side sliding of the supporting column.
  • the reduction of the sliding amount of the support column helps to reduce the amount of light shielding of the support column by the black matrix layer, improves the aperture ratio and transmittance of the liquid crystal display panel, and reduces the backlight cost of the liquid crystal display panel.
  • FIG. 1 is a schematic cross-sectional structure diagram of a liquid crystal display panel provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a first plane structure of a liquid crystal display panel provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second plane structure of a liquid crystal display panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third plane structure of a liquid crystal display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a liquid crystal display panel and a display device, so as to increase the sliding resistance of the support column, reduce the sliding amount of the side sliding of the support column, and alleviate the damage of the alignment layer in the pixel light-transmitting area caused by the sliding of the support column. risk, and improve the anti-pressing ability and product yield of liquid crystal display panels.
  • a liquid crystal display panel and a display device so as to increase the sliding resistance of the support column, reduce the sliding amount of the side sliding of the support column, and alleviate the damage of the alignment layer in the pixel light-transmitting area caused by the sliding of the support column. risk, and improve the anti-pressing ability and product yield of liquid crystal display panels.
  • FIG. 1 shows a schematic cross-sectional structure diagram of a liquid crystal display panel provided by an embodiment of the present application.
  • the liquid crystal display panel provided by the embodiment of the present application includes a first substrate 100, a second substrate 200, and a liquid crystal layer 300 filled between the first substrate 100 and the second substrate 200, and the second substrate 200 includes a
  • the support column 250 on the side of the liquid crystal layer 300 is provided with a sliding damping structure 101 on the surface of the first substrate 100 close to the liquid crystal layer 300 at the position corresponding to the support column 250 .
  • An embodiment of the present application provides a liquid crystal display panel.
  • the liquid crystal display panel provides a sliding damping structure on the surface of the first substrate close to the liquid crystal layer, thereby increasing the sliding resistance of the support column along the surface of the first substrate when subjected to external pressure.
  • the resistance reduces the sliding amount of the support column side-slip, alleviates the risk of damage to the alignment layer in the pixel light-transmitting area due to the support column sliding, and improves the anti-pressing ability and product yield of the liquid crystal display panel.
  • the first substrate 100 is an array substrate, including a first substrate 110 , a first array layer 120 , an organic layer 130 , a second array layer 140 and a first alignment layer, which are sequentially stacked from bottom to top.
  • Layer 150 is an array substrate, including a first substrate 110 , a first array layer 120 , an organic layer 130 , a second array layer 140 and a first alignment layer, which are sequentially stacked from bottom to top.
  • Layer 150 is an array substrate, including a first substrate 110 , a first array layer 120 , an organic layer 130 , a second array layer 140 and a first alignment layer, which are sequentially stacked from bottom to top.
  • Layer 150 is an array substrate, including a first substrate 110 , a first array layer 120 , an organic layer 130 , a second array layer 140 and a first alignment layer, which are sequentially stacked from bottom to top.
  • Layer 150 is an array substrate, including a first substrate 110 , a first array layer 120 , an organic layer 130 , a second
  • the first substrate 110 is usually a transparent rigid substrate, such as transparent glass.
  • the first array layer 120 generally includes a semiconductor active layer, a first insulating layer, a first gate layer, a second insulating layer, a second gate layer, a third insulating layer, and a source and drain layer, which are sequentially stacked from bottom to top.
  • the semiconductor active layer, the first gate layer, the second gate layer and the source and drain layers together form components such as thin film transistors and capacitors of the liquid crystal display panel.
  • the semiconductor active layer is patterned to form the active region of the thin film transistor, and the active region includes the channel region and the doped regions located on both sides of the channel region.
  • the material of the semiconductor active layer can be an oxide semiconductor material or a Polycrystalline silicon material or single crystal silicon material, which is not limited here; the first gate layer is patterned to form the first gate of the thin film transistor and the first electrode plate of the capacitor, and the second gate layer is patterned to form the second The gate and the second electrode plate of the capacitor, the first gate and the second gate correspond to the channel region of the active layer at the same time; the source and drain layers are patterned to form the source and drain, source and drain of the thin film transistor The poles are respectively connected to the doped regions on both sides of the channel region through via holes penetrating through the first insulating layer, the second insulating layer and the third insulating layer.
  • Components such as thin film transistors, capacitors, and signal lines in the array substrate 100 together constitute a driving circuit of the display panel, which is used to drive the liquid crystal in the liquid crystal layer 300 to deflect.
  • the first insulating layer is arranged between the semiconductor active layer and the first gate layer
  • the second insulating layer is arranged between the first gate layer and the second gate layer
  • the third insulating layer is arranged between the second gate layer
  • the first insulating layer, the second insulating layer and the third insulating layer are respectively used to isolate the two adjacent conductive layers.
  • the first array layer 120 may also be other structures known to those skilled in the art, and the above structure of the first array layer 120 is only for explaining the display panel provided by the embodiment of the present application. The structure is not used for limitation.
  • the organic layer 130 is a flat layer and is formed on the source and drain layers for flattening the first array layer 120 and providing a flat substrate for the preparation of the second array layer 140 on the organic layer 130 .
  • the materials of the flat layer mainly include acrylic series organic materials and siloxane series organic materials, specifically including but not limited to organic materials such as acrylic, polyimide or benzocyclobutene.
  • the thickness of the organic layer 130 is in the range of 2-3 microns.
  • the second array layer 140 is formed on the organic layer 130 and is usually an electrode layer.
  • the liquid crystal display panel is a twisted nematic (TN) liquid crystal display panel or a vertical alignment type (Vertical Alignment, VA) liquid crystal display panel
  • the second array layer 140 is the first electrode layer
  • the first electrode layer is patterned to form first electrodes arranged at intervals and independent of each other, and the first electrodes pass through the via holes penetrating the flat layer 130 and the bottom
  • the source or drain of the thin film transistor is connected to the driving circuit of the liquid crystal display panel
  • the second substrate 200 includes a second electrode layer corresponding to the first electrode layer.
  • the second array layer 140 is an electrode layer, and the electrode layer includes a first electrode and a second electrode arranged in the same layer.
  • the first electrode is connected to the source electrode or the drain electrode of the lower thin film transistor through a via hole penetrating through the flat layer 130, so as to be connected to the driving circuit of the liquid crystal display panel.
  • the second array layer 140 includes a first electrode layer, a second electrode layer and an insulating layer between the first electrode layer and the second electrode layer.
  • the first electrode layer The first electrodes spaced apart and independent of each other are formed by patterning, and the first electrodes are connected to the source or drain of the underlying thin film transistor through the via hole penetrating the flat layer 130 , so as to be connected to the driving circuit of the liquid crystal display panel.
  • the thickness of the second array layer 140 is usually controlled at about 0.3 microns.
  • the first alignment layer 150 is formed on the second array layer 140 and is used for aligning the liquid crystal molecules in the liquid crystal layer 300 and controlling the arrangement of the liquid crystal molecules.
  • the material of the first alignment layer 150 is an organic polymer material, usually polyimide (PI).
  • PI polyimide
  • the thickness of the first alignment layer 150 is generally in the range of 500-800 angstroms.
  • the second substrate 200 is a color filter substrate, and includes a second substrate 210 , a black matrix layer 220 , a color filter layer 230 , a flat layer 240 , a support column 250 and a second alignment layer 260 that are stacked in sequence from top to bottom.
  • the second substrate 210 is similar to the first substrate 110, and is usually a transparent rigid substrate, such as transparent glass.
  • the black matrix layer 220 is formed under the second substrate, and is patterned to form color resist openings spaced apart from each other.
  • the color resist openings correspond to the pixel light-transmitting area PA of the liquid crystal display panel, and the position of the patterned black matrix layer 220 corresponds to the liquid crystal display panel.
  • the material of the black matrix layer 220 is generally black resin mixed with black pigment, which is used to block the light between adjacent pixels, avoid the color mixing of the connected color filter layers, improve the contrast of the liquid crystal display panel, reduce the reflection of external light, and reduce the low blue light. In addition, it prevents external light from irradiating the channel of the thin film transistor to increase the leakage current.
  • the color filter layer 230 is formed under the black matrix layer 220, and includes a red color resist layer, a blue color resist layer and a green color resist layer arranged on the same layer.
  • the red color resist layer, the blue color resist layer and the green color resist layer respectively cover different
  • the color resist opening is used to transmit light of the same color as its color resist layer and block light of different colors.
  • the materials of the color blocking layer generally include pigments, photocurable resins, alkali soluble resins, photoinitiators and other materials corresponding to their colors.
  • the flattening layer 240 is formed under the color filter layer 230 to protect the color filter layer 230 and at the same time realize the planarization of the surface of the second substrate 200 .
  • the material of the flat layer 240 mainly includes acrylic series organic materials and siloxane series organic materials, specifically including but not limited to organic materials such as acrylic, polyimide or benzocyclobutene.
  • the support column 250 is formed under the flat layer 240 and located in the light-shielding area BA, and is used to support the first substrate 100 and the second substrate 200 and maintain the cell thickness uniformity of the liquid crystal display panel.
  • the main material of the support column 250 is acrylic resin. Normally, one end of the support column 250 is located on the second substrate 200 , and the other end is in contact with the first substrate 100 , that is, in contact with the first alignment layer 150 of the first substrate 100 .
  • the second alignment layer 260 is formed under the flat layer 240 and is used for aligning the liquid crystal molecules in the liquid crystal layer 300 to control the arrangement of the liquid crystal molecules.
  • the material of the second alignment layer 260 is an organic polymer material, usually polyimide.
  • the alignment directions of the liquid crystal molecules of the second alignment layer 260 and the first alignment layer 150 are perpendicular to each other.
  • the sliding damping structure 101 is formed on the surface of the first substrate 100 close to the liquid crystal layer 300 , and the sliding damping structure 101 is located in the light-shielding area BA and corresponds to the support column 250 . Further, the sliding damping structure 101 is The edge of the structure 101 may not coincide with the edge of the light blocking area BA. While the sliding damping structure 101 increases the sliding resistance of the support column 250 on the first substrate 100 , the influence of the sliding damping structure 101 on the alignment of liquid crystal molecules in the pixel light transmission area PA is avoided.
  • the reduction of the sliding amount of the support column 250 helps to reduce the amount of light shielding of the support column 250 by the black matrix layer 220, that is, the width range of the black matrix layer 220 can be correspondingly reduced, and the color resistance opening can be set
  • Correspondingly enlarged settings help to improve the aperture ratio and transmittance of the liquid crystal display panel and reduce the backlight cost of the liquid crystal display panel.
  • the sliding damping structure 101 is a concave-convex structure provided on the surface of the first substrate 100 close to the support column 250 in the direction of the force sliding of the support column 250 .
  • the concave-convex structure is composed of three film layer structures on the first substrate 100 , and is specifically composed of an organic layer 130 , a second array layer 140 and a first alignment layer 150 .
  • a groove is provided on the surface of the organic layer 130 close to the liquid crystal layer 300, the depth H of the groove is in the range of 0.4-0.6 ⁇ m, and the width of the groove is in the range of 0.7-0.6 ⁇ m. 2.5 microns, the width S of the protrusions between adjacent grooves is in the range of 0.7-2.5 microns. Since the thickness of the organic layer 130 is in the range of 2-3 microns, the arrangement of the grooves makes the surface of the organic layer 130 have an uneven structure without affecting the insulating effect of the organic layer 130 .
  • the grooves on the organic layer 130 can be obtained by patterning, and the patterning method can be realized by changing the mask in the organic layer process on the basis of the existing process, without additionally increasing the number of masks or changing the process.
  • the production steps are saved and the production cost is reduced.
  • the specific patterning processing method may refer to processing means well known to those skilled in the art, and details are not described herein again. Since the organic layer 130 is provided with a groove structure close to the surface of the liquid crystal layer 300 , when the second array layer 140 is formed on the organic layer 130 , a corresponding groove structure will also be formed at the position of the groove of the organic layer 130 , as shown in FIG.
  • the depth H of the grooves in the organic layer is in the range of 0.4-0.6 ⁇ m
  • the width W of the grooves is in the range of 0.7-2.5 ⁇ m
  • the width S of the protrusions between adjacent grooves is in the range of 0.7-2.5 ⁇ m
  • the thickness of the second array layer 140 is about 0.3 ⁇ m, so the second array layer 140 also forms a groove structure with the same shape and size.
  • the first alignment layer 150 is formed on the second array layer 140 , the first alignment layer 150 also forms a groove structure with the same shape and size.
  • the organic layer 130 , the second array layer 140 and the first alignment layer 150 which are stacked in sequence together form a concave-convex structure, that is, a sliding damping structure 101 where the first substrate 100 is close to the support column 250 is formed.
  • the area where the sliding damping structure 101 is located is larger than the area 102 where the support column 250 contacts the first substrate 100 (the area enclosed by the dotted line in the figure) or the support column 250
  • the projection area 102 on the first substrate 100 (the area enclosed by the dotted line in the figure) is large, and the area where the sliding damping structure 101 is located includes the projection area of the support column 250 on the first substrate 100 .
  • the sliding damping structure 101 further includes at least one group of grooves and protrusions, so as to ensure that when the support column 250 slides under external force, there are enough sliding damping structures in the sliding direction to provide sliding resistance.
  • the support column 250 is a columnar support structure, and is usually a regular columnar structure, which may be cylindrical or polygonal, and the embodiment of the present application uses a hexagonal prism as an example , the display panel provided by the embodiments of the present application will be described in detail with reference to the accompanying drawings.
  • the groove 112 of the sliding damping structure 101 is an annular groove.
  • the annular groove 112 is symmetrically arranged around the center line of the support column 250
  • the annular groove 112 includes a plurality of concentric annular grooves arranged at intervals, and the inner and outer circumferences of each annular groove are the same as the outer circumference of the support column 250 .
  • annular sliding damping structure is provided on the surface of the first substrate 100 close to the support column 250, so as to ensure that when the support column 250 is subjected to external pressure to produce a sliding action relative to the surface of the first substrate 100, the support column 250 and the first substrate Each position of the surface that the 100 contacts will be blocked by the annular sliding damping structure, so that the sliding action of the support column 250 relative to the first substrate 100 in any direction will be subject to greater resistance, thereby hindering the support column 250 relative to the first substrate 100.
  • the sliding action on the surface of the substrate 100 reduces the sliding amount of the support column 250 on the surface of the first substrate 100, and alleviates the sliding of the support column 250 to the pixel light transmission area PA and damages the first alignment layer in the pixel light transmission area PA 150 risk, which improves the pressure resistance and product yield of the LCD panel. As shown in FIG.
  • the annular groove 112 not only includes the annular groove in the corresponding area 102 of the support column 250, but also includes the annular groove outside the corresponding area 102 of the support column 250, which ensures a wider range of concave-convex structure settings, and improves the
  • the sliding resistance of the support column 250 relative to the surface of the first substrate 100 is greatly improved, the sliding amount of the support column 250 relative to the surface of the first substrate 100 can be more effectively reduced, and the sliding damage of the support column is alleviated.
  • the risk of the first alignment layer 150 in the pixel light-transmitting area PA improves the pressure resistance and product yield of the liquid crystal display panel.
  • the annular groove 112 may also be an annular groove in the shape of a circular ring, a quadrilateral, a dodecagon, etc., which is not limited herein.
  • the annular groove 112 may also be disposed asymmetrically with respect to the center line of the support column 250, which is not limited herein.
  • the grooves 112 of the sliding damping structure 101 are grid-line grooves.
  • the grid-line grooves 112 are symmetrically arranged around the center line of the support column 250 , and the area where the grid-line grooves 112 are located includes and is larger than the area 102 corresponding to the support column 250 .
  • the enclosed area forms protrusions 111 .
  • the shape of each protrusion 111 can be the same hexagon as the support column 250, or it can be a circle or other polygons, all the protrusions 111 can have the same size, or there can be at least two protrusions 111 with different shapes or sizes. same.
  • the width of the protrusions 111 is in the range of 0.7-2.5 microns, and the width of the grid-line grooves 112 is in the range of 0.7-2.5 microns.
  • a grid-type sliding damping structure is provided on the surface of the first substrate 100 close to the support column 250 , so that the support column 250 is subject to the grid-type sliding motion when the sliding action relative to the surface of the first substrate 100 is generated by the external pressure.
  • the blocking of the damping structure makes the sliding action of the supporting column 250 relative to the first substrate 100 subject to greater resistance, thereby hindering the sliding action of the supporting column 250 relative to the surface of the first substrate 100 and reducing the sliding movement of the supporting column 250
  • the amount of slippage on the surface of the first substrate 100 alleviates the risk that the support column 250 slips to the pixel light-transmitting area PA and damages the first alignment layer 150 in the pixel light-transmitting area PA, and improves the pressure resistance of the liquid crystal display panel.
  • the grooves 112 of the sliding damping structure 101 are circular or polygonal grooves spaced apart from each other. As shown in FIG. .
  • the hexagonal grooves 112 are arranged symmetrically with respect to the center line of the support column 250 , and the area occupied by the hexagonal grooves 112 includes and is larger than the area 102 corresponding to the supporting column 250 .
  • the area in between forms a protrusion 111 .
  • all hexagonal grooves 112 are the same size; in another embodiment, there are at least two hexagonal grooves 112 that differ in size.
  • the distance between any two adjacent hexagonal grooves 112 is equal; in another embodiment, there are at least two adjacent hexagonal grooves 112, the adjacent The distance between the two hexagonal grooves 112 is not equal.
  • the width of the hexagonal groove 112 is in the range of 0.7-2.5 microns, and the width of the protrusions 111 is in the range of 0.7-2.5 microns.
  • a sliding damping structure including independent grooves is provided on the surface of the first substrate 100 close to the support column 250 , so as to ensure that the support column 250 is subjected to sliding damping when the sliding action relative to the surface of the first substrate 100 is generated by the external pressure. Therefore, the sliding action of the support column 250 relative to the first substrate 100 is subject to greater resistance, thereby hindering the sliding action of the support column 250 relative to the surface of the first substrate 100 and reducing the The slippage of the surface of the first substrate 100 alleviates the risk of the support column 250 slipping to the pixel light transmission area PA and damages the first alignment layer 150 in the pixel light transmission area PA, and improves the anti-pressing ability of the liquid crystal display panel and the product Yield.
  • the grooves 112 of the sliding damping structure 101 may further include at least two of annular grooves, grid-line grooves, and polygonal/circular grooves.
  • the embodiments of the present application also provide a display device, the display device includes any of the liquid crystal display panels provided by the embodiments of the present application, and has the technical features and technical effects of any of the liquid crystal display panels provided by the embodiments of the present application. , please refer to the above-mentioned specific embodiment for the specific implementation manner and working principle, which will not be repeated here.
  • the embodiments of the present application provide a liquid crystal display panel and a display device.
  • the liquid crystal display panel includes a first substrate, a second substrate, and a liquid crystal layer filled between the first substrate and the second substrate.
  • the second substrate includes a support column on the side of the liquid crystal layer, and a sliding damping structure is provided on the surface of the first substrate close to the liquid crystal layer at a position corresponding to the support column.
  • the sliding damping structure is arranged on the surface of the first substrate close to the liquid crystal layer, which increases the resistance of the support column sliding along the surface of the first substrate when it is subjected to external pressure, and reduces the side sliding of the supporting column.
  • the reduction of the sliding amount of the support column helps to reduce the amount of light shielding of the support column by the black matrix layer, improves the aperture ratio and transmittance of the liquid crystal display panel, and reduces the backlight cost of the liquid crystal display panel.
  • the preparation of the sliding damping structure does not need to increase the number of photomasks or change the process, which saves the production steps and reduces the production cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶显示面板及显示装置,液晶显示面板包括第一基板(100)、第二基板(200)、以及填充于第一基板(100)和第二基板(200)之间的液晶层(300),第二基板(200)包括位于液晶层(300)侧的支撑柱(250),在支撑柱(250)对应的位置,第一基板(100)靠近液晶层(300)的表面设有滑动阻尼结构(101)。显示装置包括液晶显示面板。通过在第一基板(100)靠近液晶层(300)的表面设置滑动阻尼结构(101),提高了面板的抗按压能力及产品良率。

Description

液晶显示面板及显示装置 技术领域
本申请涉及显示领域,具体涉及一种液晶显示面板及显示装置。
背景技术
液晶显示器(Liquid Crystal Display,LCD)抗外力按压的能力是目前业内评价LCD品质的重要指标。LCD面板包括用于支撑液晶盒的支撑柱,当LCD面板受到外力按压时,受到按压的面板表面会发生形变,液晶盒内的支撑柱接收到外部压力会发生侧滑,并与阵列基板表面的配向层发生摩擦,从而划伤配向层。面板受按压的力越大,支撑柱侧滑量越大,支撑柱侧滑至像素透光区域就会使像素透光区域内的配向层被划伤,划伤后的配向层无法有效的对液晶进行配向,导致该区域液晶紊乱,当光源照射面板时,在此区域内会看到漏光导致的亮点,影响产品的良率。
技术问题
本申请实施例提供一种液晶显示面板及显示装置,可以增大支撑柱的滑移阻力,减小支撑柱侧滑的滑移量,缓解支撑柱滑移损伤像素透光区内的配向层的风险,提高液晶显示面板的抗按压能力及产品良率。
技术解决方案
本申请实施例提供一种液晶显示面板,包括第一基板、第二基板、以及填充于所述第一基板和所述第二基板之间的液晶层,所述第二基板包括位于所述液晶层侧的支撑柱,
在所述支撑柱对应的位置,所述第一基板靠近所述液晶层的表面设有滑动阻尼结构。
可选的,在本申请的一些实施例中,所述第二基板还包括黑矩阵层,所述黑矩阵层设置于所述支撑柱远离所述液晶层的一侧,所述黑矩阵层在所述第一基板上的投影覆盖所述滑动阻尼结构。
可选的,在本申请的一些实施例中,所述黑矩阵层在所述第一基板上的投影面积大于所述滑动阻尼结构所占据的面积。
可选的,在本申请的一些实施例中,所述滑动阻尼结构包括在所述支撑柱受力滑动方向上设置的凹槽和凸起。
可选的,在本申请的一些实施例中,所述凹槽包括环形凹槽、网格线型凹槽、圆形凹槽或多边形凹槽中的任意一种或多种。
可选的,在本申请的一些实施例中,所述支撑柱靠近所述第一基板一侧的表面边界在所述第一基板上的投影至少部分落入所述凹槽。
可选的,在本申请的一些实施例中,所述支撑柱靠近所述第一基板一侧的表面边界在所述第一基板上的投影完全落入所述凹槽内。
可选的,在本申请的一些实施例中,在所述支撑柱靠近所述第一基板一侧的表面对应的位置之外,所述滑动阻尼结构包括至少一组所述凹槽和所述凸起。
可选的,在本申请的一些实施例中,所述凹槽关于所述支撑柱垂直于所述第一基板的中心线对称设置。
可选的,在本申请的一些实施例中,所述凹槽的深度范围为0.4-0.6微米。
可选的,在本申请的一些实施例中,所述凹槽的宽度范围为0.7-2.5微米,所述凸起的宽度范围为0.7-2.5微米。
可选的,在本申请的一些实施例中,所述滑动阻尼结构包括有机层、配向层、以及有机层和配向层之间的膜层结构。
可选的,在本申请的一些实施例中,所述有机层靠近所述液晶层的表面设置有所述凹槽,所述配向层设置于所述有机层靠近所述液晶层的一侧。
相应的,本申请实施例还提供一种显示装置,包括液晶显示面板,所述液晶显示面板包括第一基板、第二基板、以及填充于所述第一基板和所述第二基板之间的液晶层,所述第二基板包括位于所述液晶层侧的支撑柱,
在所述支撑柱对应的位置,所述第一基板靠近所述液晶层的表面设有滑动阻尼结构。
可选的,在本申请的一些实施例中,所述第二基板还包括黑矩阵层,所述黑矩阵层设置于所述支撑柱远离所述液晶层的一侧,所述黑矩阵层在所述第一基板上的投影覆盖所述滑动阻尼结构。
可选的,在本申请的一些实施例中,所述支撑柱在所述第一基板上的投影落入所述滑动阻尼结构所在的区域内。
可选的,在本申请的一些实施例中,所述滑动阻尼结构包括在所述支撑柱受力滑动方向上设置的凹槽和凸起。
可选的,在本申请的一些实施例中,所述凹槽包括环形凹槽、网格线型凹槽、圆形凹槽或多边形凹槽中的任意一种或多种。
可选的,在本申请的一些实施例中,所述滑动阻尼结构包括有机层、配向层、以及有机层和配向层之间的膜层结构,所述有机层靠近所述液晶层的表面设置有所述凹槽,所述配向层设置于所述有机层靠近所述液晶层的一侧。
有益效果
本申请实施例提供一种液晶显示面板及显示装置,该液晶显示面板包括第一基板、第二基板、以及填充于第一基板和第二基板之间的液晶层,第二基板包括位于液晶层侧的支撑柱,在支撑柱对应的位置,第一基板靠近液晶层的表面设有滑动阻尼结构。该液晶显示面板通过在第一基板靠近液晶层的表面设置滑动阻尼结构,增大了支撑柱在受到外部压力时沿第一基板表面发生滑移的阻力,减小了支撑柱侧滑的滑移量,缓解了支撑柱滑移损伤像素透光区内的配向层的风险,提高了液晶显示面板的抗按压能力及产品良率。同时,支撑柱滑移量的减小,有助于减小黑矩阵层对支撑柱的遮光量,提高液晶显示面板的开口率和穿透率,降低液晶显示面板的背光成本。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1是本申请实施例提供的液晶显示面板的一种剖面结构示意图;
图2是本申请实施例提供的液晶显示面板的第一种平面结构示意图;
图3是本申请实施例提供的液晶显示面板的第二种平面结构示意图;
图4是本申请实施例提供的液晶显示面板的第三种平面结构示意图。
本发明的实施方式
本申请实施例提供一种液晶显示面板及显示装置,以增大支撑柱的滑移阻力,减小支撑柱侧滑的滑移量,缓解支撑柱滑移损伤像素透光区内的配向层的风险,提高液晶显示面板的抗按压能力及产品良率。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
在一种实施例中,请参照图1所示,1示出了本申请实施例提供的液晶显示面板的一种剖面结构示意图。如图所示,本申请实施例提供的液晶显示面板包括第一基板100、第二基板200、以及填充于第一基板100和第二基板200之间的液晶层300,第二基板200包括位于液晶层300侧的支撑柱250,在支撑柱250对应的位置,第一基板100靠近液晶层300的表面设有滑动阻尼结构101。
本申请实施例提供了一种液晶显示面板,该液晶显示面板通过在第一基板靠近液晶层的表面设置滑动阻尼结构,增大了支撑柱在受到外部压力时沿第一基板表面发生滑移的阻力,减小了支撑柱侧滑的滑移量,缓解了支撑柱滑移损伤像素透光区内的配向层的风险,提高了液晶显示面板的抗按压能力及产品良率。
具体的,请参照图1,第一基板100为阵列基板,包括从下到上依次层叠设置的第一衬底110,第一阵列层120、有机层130、第二阵列层140和第一配向层150。
其中,第一衬底110通常为透明的刚性衬底,如透明玻璃。
第一阵列层120通常包括从下到上依次层叠设置的半导体有源层、第一绝缘层、第一栅极层、第二绝缘层、第二栅极层、第三绝缘层和源漏极层,其中,半导体有源层、第一栅极层、第二栅极层和源漏极层共同形成液晶显示面板的薄膜晶体管和电容等元器件。半导体有源层图案化形成薄膜晶体管的有源区,有源区又包括沟道区和位于沟道区两侧的掺杂区,半导体有源层的材料可以是氧化物半导体材料,也可以是多晶硅材料或单晶硅材料,在此不做限定;第一栅极层图案化形成薄膜晶体管的第一栅极和电容的第一电极板,第二栅极层图案化形成薄膜晶体管的第二栅极和电容的第二电极板,第一栅极和第二栅极同时对应于有源层的沟道区;源漏极层图案化形成薄膜晶体管的源极和漏极,源极和漏极分别通过贯穿第一绝缘层、第二绝缘层和第三绝缘层的过孔与沟道区两侧的掺杂区连接。薄膜晶体管和电容等元器件、以及阵列基板100中的信号线共同构成显示面板的驱动电路,用于驱动液晶层300中的液晶发生偏转。第一绝缘层设置于半导体有源层和第一栅极层之间,第二绝缘层设置于第一栅极层和第二栅极层之间,第三绝缘层设置于第二栅极层和源漏极层之间,第一绝缘层、第二绝缘层和第三绝缘层分别用于隔绝与其相邻的两导电层。在本申请实施例提供的液晶显示面板中,第一阵列层120也可以是本领域技术人员所熟知的其他结构,以上第一阵列层120的结构仅在于解释说明本申请实施例提供的显示面板的结构,不用于限定。
有机层130为平坦层,形成于源漏极层上,用于平坦化第一阵列层120,为有机层130上的第二阵列层140的制备提供平坦的基底。平坦层的材料主要包括丙烯酸系列有机材料和硅氧烷系列有机材料,具体包括但不限于亚克力、聚酰亚胺或苯并环丁烯等的有机材料。有机层130的厚度范围为2-3微米。
第二阵列层140,形成于有机层130上,通常为电极层。当液晶显示面板为扭曲向列型(Twisted Nematic,TN)液晶显示面板或垂直配向型(Vertical Alignment,VA)液晶显示面板时,第二阵列层140为第一电极层,第一电极层图案化形成间隔设置且相互独立的第一电极,第一电极通过贯穿平坦层130的过孔与下方薄膜晶体管的源极或漏极连接,从而与液晶显示面板的驱动电路进行连接;第二基板200包括对应于第一电极层的第二电极层。当液晶显示面板为面内转换型(In-Plane Switching,IPS)液晶显示面板时,第二阵列层140为一层电极层,该电极层包括同层设置的第一电极和第二电极,同样的,第一电极通过贯穿平坦层130的过孔与下方薄膜晶体管的源极或漏极连接,从而与液晶显示面板的驱动电路进行连接。当液晶显示面板为面内开关型(Fringe Field Switching,FFS)液晶显示面板时,第二阵列层140包括第一层电极层、第二电极层和位于第一电极层和第二电极层之间的绝缘层,同样的,第一电极层图案化形成间隔设置且相互独立的第一电极,第一电极通过贯穿平坦层130的过孔与下方薄膜晶体管的源极或漏极连接,从而与液晶显示面板的驱动电路进行连接。第二阵列层140的厚度通常控制在0.3微米左右。
第一配向层150,形成于第二阵列层140上,用于对液晶层300内的液晶分子进行配向,控制液晶分子的排列。第一配向层150的材料为有机高分子材料,通常为聚酰亚胺(Polyimide,PI)。第一配向层150的厚度范围通常为500-800埃米。
第二基板200为彩膜基板,包括从上到下依次层叠设置的第二衬底210、黑矩阵层220、彩膜层230、平坦层240、支撑柱250和第二配向层260。
其中,第二衬底210与第一衬底110相类似,通常为透明的刚性衬底,如透明玻璃。
黑矩阵层220,形成于第二基板下,图案化形成相互间隔的色阻开口,色阻开口对应于液晶显示面板的像素透光区PA,图案化后黑矩阵层220所在的位置对应于液晶显示面板的遮光区BA。黑矩阵层220的材料一般为参入黑色颜料的黑色树脂,用于遮挡相邻像素之间的光线,避免相连彩膜层混色,提高液晶显示面板的对比度,同时减少外界光线的反射,降低低蓝光效应,另外防止外界光线照射薄膜晶体管的沟道而增加漏电流。
彩膜层230,形成于黑矩阵层220下,包括同层设置的红色色阻层、蓝色色阻层和绿色色阻层,红色色阻层、蓝色色阻层和绿色色阻层分别覆盖不同的色阻开口,用于透过与其色阻层颜色相同的光,阻挡与其颜色不同的光线。色阻层的材料一般包括与其颜色相对应的颜料、光固化树脂、碱性可溶性树脂、光引发剂等材料。
平坦层240,形成于彩膜层230下,用于保护彩膜层230,同时实现第二基板200表面的平坦化。平坦层240的材料主要包括丙烯酸系列有机材料和硅氧烷系列有机材料,具体包括但不限于亚克力、聚酰亚胺或苯并环丁烯等的有机材料。
支撑柱250,形成于平坦层240下,且位于遮光区BA内,用于支撑第一基板100和第二基板200,保持液晶显示面板的盒厚均一性。支撑柱250的主要材料为丙烯树脂。通常情况下,支撑柱250的一端位于第二基板200上,另一端与第一基板100接触,即与第一基板100的第一配向层150接触。
第二配向层260,形成于平坦层240下,用于对液晶层300内的液晶分子进行配向,控制液晶分子的排列。第二配向层260的材料为有机高分子材料,通常为聚酰亚胺。第二配向层260和第一配向层150对液晶分子的配向方向交叉垂直。
在一种实施例中,如图1所示,滑动阻尼结构101形成于第一基板100靠近液晶层300的表面,滑动阻尼结构101位于遮光区BA内且对应于支撑柱250,进一步,滑动阻尼结构101的边缘可与遮光区BA的边缘不重合。滑动阻尼结构101在增加支撑柱250在第一基板100上的滑移阻力的同时,避免了滑动阻尼结构101对像素透光区PA内液晶分子配向的影响。另外,支撑柱250滑移量的减小,有助于减小黑矩阵层220对支撑柱250的遮光量,即黑矩阵层220的宽度范围可以进行相对应的缩小设置,色阻开口可以进行相应的扩大设置,从而有助于提高液晶显示面板的开口率和穿透率,降低液晶显示面板的背光成本。
在一种实施例中,如图1至4所示,滑动阻尼结构101为在第一基板100靠近支撑柱250的表面,支撑柱250受力滑动方向上设置的凹凸结构。在一种实施例中,如图1所示,该凹凸结构由第一基板100上的三个膜层结构构成,具体由有机层130、第二阵列层140和第一配向层150构成。具体的,在遮光区BA内,支撑柱250对应的位置,有机层130靠近液晶层300的表面设置凹槽,凹槽的深度H范围为0.4-0.6微米,凹槽的宽度W范围为0.7-2.5微米,相邻凹槽之间的凸起的宽度S范围为0.7-2.5微米。由于有机层130的厚度在2-3微米范围内,因此该凹槽的设置在不影响有机层130绝缘效果的情况下,使有机层130的表面具有了凹凸不平的结构。有机层130上的凹槽可以通过图案化处理得到,该图案化处理方法可以通过在现有工艺的基础上改变有机层制程中的掩膜版实现,无需额外增加光罩次数或改变工艺制程,节省了制作步骤,降低了生产成本。具体的图案化处理方法可以借鉴本领域技术人员所熟知的处理手段,在此不再赘述。由于有机层130靠近液晶层300的表面设置凹槽结构,当第二阵列层140形成于有机层130上时,在有机层130凹槽的位置也会形成相对应的凹槽结构,如图1所示,又由于有机层凹槽的深度H范围为0.4-0.6微米,凹槽的宽度W范围为0.7-2.5微米,相邻凹槽之间的凸起的宽度S范围为0.7-2.5微米,而第二阵列层140的厚度在0.3微米左右,因此第二阵列层140同样会形成形状和尺寸等同的凹槽结构。同理,当第一配向层150形成于第二阵列层140上时,第一配向层150同样会形成形状和尺寸等同的凹槽结构。这样,依次层叠设置的有机层130、第二阵列层140和第一配向层150共同构成凹凸结构,即形成第一基板100靠近支撑柱250的滑动阻尼结构101。
在一种实施例中,如图2至图4所示,滑动阻尼结构101所在的区域比支撑柱250与第一基板100接触的区域102(图中虚线所在围成的区域)或支撑柱250在第一基板100上的投影区域102(图中虚线所在围成的区域)大,且滑动阻尼结构101所在的区域包括支撑柱250在第一基板100上的投影区域。更进一步,在区域102之外,滑动阻尼结构101还包括至少一组凹槽和凸起,以保证支撑柱250在受到外力发生滑移时,在滑移方向上有足够多的滑动阻尼结构提供滑动阻力。在本申请实施例提供的液晶显示面板中,支撑柱250为柱状支撑结构,且通常为规则的柱状结构,可以是圆柱状,也可以是多棱柱状,本申请实施例以六棱柱状为例,以具体的实施例结合附图对本申请实施例提供的显示面板进行详细说明。
在一种实施例中,如图2所示,滑动阻尼结构101的凹槽112为环形凹槽。优选的,环形凹槽112以支撑柱250的中心线为中心对称设置,环形凹槽112包括间隔设置的多个同心环形凹槽,各个环形凹槽的内外周形状均与支撑柱250的外周形状相同,为正六边形,各个环形凹槽的内外直径均不相同,环形凹槽112的宽度范围为0.7-2.5微米,相邻两个环形凹槽112之间的凸起111的宽度范围为0.7-2.5微米。本实施例通过在第一基板100靠近支撑柱250的表面设置环形滑动阻尼结构,保证了支撑柱250在受到外部压力产生相对第一基板100表面的滑移动作时,支撑柱250与第一基板100接触的表面的各个位置都会受到环形滑动阻尼结构的阻挡,从而使支撑柱250相对于第一基板100任何方向的滑移动作都会受到较大的阻力,从而阻碍了支撑柱250相对于第一基板100表面的滑移动作,减小了支撑柱250在第一基板100表面的滑移量,缓解了支撑柱250滑移至像素透光区PA损伤像素透光区PA内的第一配向层150的风险,提高了液晶显示面板的抗按压能力及产品良率。如图2所示,环形凹槽112不仅包括支撑柱250对应区域102内的环形凹槽,还包括支撑柱250对应区域102外的环形凹槽,这样保证了更大范围的凹凸结构设置,更大程度的提高了支撑柱250相对于第一基板100表面的滑移阻力,能更加有效的减小了支撑柱250相对于第一基板100表面的滑移量,缓解支了撑柱滑移损伤像素透光区PA内的第一配向层150的风险,提高了液晶显示面板的抗按压能力及产品良率。在本实施例提供的液晶显示面板中,环形凹槽112还可以是圆环、四边形、十二边形等形状的环形凹槽,在此不做限定。在本实施例提供的液晶显示面板中,环形凹槽112也可以关于支撑柱250的中心线呈非对称设置,在此也不做限定。
在另一种实施例中,如图3所示,滑动阻尼结构101的凹槽112为网格线型凹槽。优选的,网格线型凹槽112以支撑柱250的中心线为中心对称设置,网格线型凹槽112所在的区域包括且大于支撑柱250对应的区域102,网格线型凹槽112围成的区域形成凸起111。各凸起111的形状可以是如支撑柱250相同的六边形,也可以是圆形或其他多边形,所有凸起111的尺寸可以相同,也可以存在至少两个凸起111的形状或尺寸不相同。凸起111的宽度范围为0.7-2.5微米,网格线型凹槽112的宽度范围为0.7-2.5微米。本实施例通过在第一基板100靠近支撑柱250的表面设置网格型滑动阻尼结构,保证了支撑柱250在受到外部压力产生相对第一基板100表面的滑移动作时,受到网格型滑动阻尼结构的阻挡,从而使支撑柱250相对于第一基板100的滑移动作受到较大的阻力,从而阻碍了支撑柱250相对于第一基板100表面的滑移动作,减小了支撑柱250在第一基板100表面的滑移量,缓解了支撑柱250滑移至像素透光区PA损伤像素透光区PA内的第一配向层150的风险,提高了液晶显示面板的抗按压能力及产品良率。
在又一种实施例中,滑动阻尼结构101的凹槽112为相互间隔的圆形或多边形凹槽,如图4所示,凹槽112的平面形状为与支撑柱250形状相同的六边形。优选的,六边形凹槽112关于支撑柱250的中心线中心对称设置,六边形凹槽112所占据的区域包括且大于支撑柱250对应的区域102,相邻六边形凹槽112之间的区域形成凸起111。在一种实施方案中,所有六边形凹槽112的尺寸均相同;在另一种实施方案中,存在至少两个六边形凹槽112的尺寸不同。在一种实施方案中,任意两个相邻的六边形凹槽112之间的距离相等;在另一种实施方案中,存在至少两个相邻的六边形凹槽112,该相邻两个六边形凹槽112之间的距离不相等。六边形凹槽112的宽度范围为0.7-2.5微米,凸起111的宽度范围为0.7-2.5微米。在本实施例提供的液晶显示面板中,还可以存在至少两个不同的凹槽,所述两个凹槽的形状不同,在此不做限定。本实施例通过在第一基板100靠近支撑柱250的表面设置包括独立凹槽的滑动阻尼结构,保证了支撑柱250在受到外部压力产生相对第一基板100表面的滑移动作时,受到滑动阻尼结构的阻挡,从而使支撑柱250相对于第一基板100的滑移动作受到较大的阻力,从而阻碍了支撑柱250相对于第一基板100表面的滑移动作,减小了支撑柱250在第一基板100表面的滑移量,缓解了支撑柱250滑移至像素透光区PA损伤像素透光区PA内的第一配向层150的风险,提高了液晶显示面板的抗按压能力及产品良率。
在其他实施例中,滑动阻尼结构101的凹槽112还可以包括环形凹槽、网格线型凹槽、以及多边形/圆形凹槽中的至少两种。
相应的,本申请实施例还提供一种显示装置,该显示装置包括本申请实施例提供的任意一种液晶显示面板,具备本申请实施例提供的任意一种液晶显示面板的技术特征和技术效果,具体实施方式及工作原理请参照上述具体实施例,在此不再赘述。
综上所述,本申请实施例提供一种液晶显示面板及显示装置,该液晶显示面板包括第一基板、第二基板、以及填充于第一基板和第二基板之间的液晶层,第二基板包括位于液晶层侧的支撑柱,在支撑柱对应的位置,第一基板靠近液晶层的表面设有滑动阻尼结构。该液晶显示面板通过在第一基板靠近液晶层的表面设置滑动阻尼结构,增大了支撑柱在受到外部压力时沿第一基板表面发生滑移的阻力,减小了支撑柱侧滑的滑移量,缓解了支撑柱滑移损伤像素透光区内的配向层的风险,提高了液晶显示面板的抗按压能力及产品良率。同时,支撑柱滑移量的减小,有助于减小黑矩阵层对支撑柱的遮光量,提高液晶显示面板的开口率和穿透率,降低液晶显示面板的背光成本。另外,滑动阻尼结构的制备无需额外增加光罩次数或改变工艺制程,节省了制作步骤,降低了生产成本。
以上对本申请实施例所提供的液晶显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种液晶显示面板,其包括第一基板、第二基板、以及填充于所述第一基板和所述第二基板之间的液晶层,所述第二基板包括位于所述液晶层侧的支撑柱,
    在所述支撑柱对应的位置,所述第一基板靠近所述液晶层的表面设有滑动阻尼结构。
  2. 如权利要求1所述的液晶显示面板,其中,所述第二基板还包括黑矩阵层,所述黑矩阵层设置于所述支撑柱远离所述液晶层的一侧,所述黑矩阵层在所述第一基板上的投影覆盖所述滑动阻尼结构。
  3. 如权利要求2所述的液晶显示面板,其中,所述黑矩阵层在所述第一基板上的投影面积大于所述滑动阻尼结构所占据的面积。
  4. 如权利要求2所述的液晶显示面板,其中,所述支撑柱在所述第一基板上的投影落入所述滑动阻尼结构所在的区域内。
  5. 如权利要求1所述的液晶显示面板,其中,所述滑动阻尼结构包括在所述支撑柱受力滑动方向上设置的凹槽和凸起。
  6. 如权利要求5所述的液晶显示面板,其中,所述凹槽包括环形凹槽、网格线型凹槽、圆形凹槽或多边形凹槽中的任意一种或多种。
  7. 如权利要求6所述的液晶显示面板,其中,所述支撑柱靠近所述第一基板一侧的表面边界在所述第一基板上的投影至少部分落入所述凹槽。
  8. 如权利要求7所述的液晶显示面板,其中,所述支撑柱靠近所述第一基板一侧的表面边界在所述第一基板上的投影完全落入所述凹槽内。
  9. 如权利要求5所述的液晶显示面板,其中,在所述支撑柱靠近所述第一基板一侧的表面对应的位置之外,所述滑动阻尼结构包括至少一组所述凹槽和所述凸起。
  10. 如权利要求5所述的液晶显示面板,其中,所述凹槽关于所述支撑柱垂直于所述第一基板的中心线对称设置。
  11. 如权利要求5所述的液晶显示面板,其中,所述凹槽的深度范围为0.4-0.6微米。
  12. 如权利要求5所述的液晶显示面板,其中,所述凹槽的宽度范围为0.7-2.5微米,所述凸起的宽度范围为0.7-2.5微米。
  13. 如权利要求5所述的液晶显示面板,其中,所述滑动阻尼结构包括有机层、配向层、以及有机层和配向层之间的膜层结构。
  14. 如权利要求13所述的液晶显示面板,其中,所述有机层靠近所述液晶层的表面设置有所述凹槽,所述配向层设置于所述有机层靠近所述液晶层的一侧。
  15. 一种显示装置,其包括液晶显示面板,所述液晶显示面板包括第一基板、第二基板、以及填充于所述第一基板和所述第二基板之间的液晶层,所述第二基板包括位于所述液晶层侧的支撑柱,
    在所述支撑柱对应的位置,所述第一基板靠近所述液晶层的表面设有滑动阻尼结构。
  16. 如权利要求15所述的显示装置,其中,所述第二基板还包括黑矩阵层,所述黑矩阵层设置于所述支撑柱远离所述液晶层的一侧,所述黑矩阵层在所述第一基板上的投影覆盖所述滑动阻尼结构。
  17. 如权利要求16所述的显示装置,其中,所述支撑柱在所述第一基板上的投影落入所述滑动阻尼结构所在的区域内。
  18. 如权利要求15所述的显示装置,其中,所述滑动阻尼结构包括在所述支撑柱受力滑动方向上设置的凹槽和凸起。
  19. 如权利要求18所述的显示装置,其中,所述凹槽包括环形凹槽、网格线型凹槽、圆形凹槽或多边形凹槽中的任意一种或多种。
  20. 如权利要求18所述的显示装置,其中,所述滑动阻尼结构包括有机层、配向层、以及有机层和配向层之间的膜层结构,所述有机层靠近所述液晶层的表面设置有所述凹槽,所述配向层设置于所述有机层靠近所述液晶层的一侧。
PCT/CN2021/091685 2021-04-22 2021-04-30 液晶显示面板及显示装置 WO2022222192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/292,504 US20240027805A1 (en) 2021-04-22 2021-04-30 Liquid crystal display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110435325.2A CN113238412A (zh) 2021-04-22 2021-04-22 液晶显示面板及显示装置
CN202110435325.2 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222192A1 true WO2022222192A1 (zh) 2022-10-27

Family

ID=77128849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091685 WO2022222192A1 (zh) 2021-04-22 2021-04-30 液晶显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240027805A1 (zh)
CN (1) CN113238412A (zh)
WO (1) WO2022222192A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608382A (zh) * 2021-08-11 2021-11-05 昆山龙腾光电股份有限公司 一种阵列基板及其制作方法、显示面板
CN113539167B (zh) * 2021-09-15 2021-12-24 惠科股份有限公司 显示面板和显示装置
CN113539166B (zh) * 2021-09-15 2021-12-24 惠科股份有限公司 显示面板和显示装置
CN114326233A (zh) * 2021-12-30 2022-04-12 惠科股份有限公司 阵列基板、显示面板及显示装置
CN117642691A (zh) * 2022-06-30 2024-03-01 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573475A (zh) * 2003-05-23 2005-02-02 Nec液晶技术株式会社 液晶显示装置
US20060268214A1 (en) * 2005-05-27 2006-11-30 Yung-Ho Chang Liquid crystal display panel and method manufacturing the same
CN102981315A (zh) * 2011-09-06 2013-03-20 株式会社日本显示器东 液晶显示装置
CN103454812A (zh) * 2013-08-09 2013-12-18 深圳市华星光电技术有限公司 在液晶面板内形成间隔物的方法及由此得到的液晶面板
EP2706404A1 (en) * 2012-09-10 2014-03-12 InnoLux Corporation Liquid crystal display apparatus
CN103676259A (zh) * 2012-09-10 2014-03-26 群康科技(深圳)有限公司 液晶显示装置
CN103885251A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN103969892A (zh) * 2014-04-24 2014-08-06 京东方科技集团股份有限公司 阵列基板、阵列基板的制备方法和显示面板
CN104049417A (zh) * 2014-04-18 2014-09-17 友达光电股份有限公司 显示面板
KR20150078170A (ko) * 2013-12-30 2015-07-08 엘지디스플레이 주식회사 액정표시장치
CN105511170A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 液晶显示面板
CN205450517U (zh) * 2016-01-05 2016-08-10 北京京东方光电科技有限公司 一种隔垫物、显示基板、液晶显示面板和液晶显示装置
CN106019670A (zh) * 2016-06-29 2016-10-12 厦门天马微电子有限公司 显示面板及其制作方法
CN108873522A (zh) * 2018-06-29 2018-11-23 上海天马微电子有限公司 显示面板和显示装置及显示面板的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640216B1 (ko) * 2004-05-29 2006-10-31 엘지.필립스 엘시디 주식회사 액정 표시패널 및 그 제조방법
CN100580523C (zh) * 2006-05-12 2010-01-13 瀚宇彩晶股份有限公司 液晶显示器
JP2008268471A (ja) * 2007-04-19 2008-11-06 Nec Lcd Technologies Ltd 液晶表示装置及びその製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573475A (zh) * 2003-05-23 2005-02-02 Nec液晶技术株式会社 液晶显示装置
US20060268214A1 (en) * 2005-05-27 2006-11-30 Yung-Ho Chang Liquid crystal display panel and method manufacturing the same
CN102981315A (zh) * 2011-09-06 2013-03-20 株式会社日本显示器东 液晶显示装置
CN103676259A (zh) * 2012-09-10 2014-03-26 群康科技(深圳)有限公司 液晶显示装置
EP2706404A1 (en) * 2012-09-10 2014-03-12 InnoLux Corporation Liquid crystal display apparatus
US20140071391A1 (en) * 2012-09-10 2014-03-13 Innolux Corporation Liquid crystal display apparatus
CN103454812A (zh) * 2013-08-09 2013-12-18 深圳市华星光电技术有限公司 在液晶面板内形成间隔物的方法及由此得到的液晶面板
KR20150078170A (ko) * 2013-12-30 2015-07-08 엘지디스플레이 주식회사 액정표시장치
CN103885251A (zh) * 2014-03-07 2014-06-25 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN104049417A (zh) * 2014-04-18 2014-09-17 友达光电股份有限公司 显示面板
CN103969892A (zh) * 2014-04-24 2014-08-06 京东方科技集团股份有限公司 阵列基板、阵列基板的制备方法和显示面板
CN205450517U (zh) * 2016-01-05 2016-08-10 北京京东方光电科技有限公司 一种隔垫物、显示基板、液晶显示面板和液晶显示装置
CN105511170A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 液晶显示面板
CN106019670A (zh) * 2016-06-29 2016-10-12 厦门天马微电子有限公司 显示面板及其制作方法
CN108873522A (zh) * 2018-06-29 2018-11-23 上海天马微电子有限公司 显示面板和显示装置及显示面板的制造方法

Also Published As

Publication number Publication date
US20240027805A1 (en) 2024-01-25
CN113238412A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022222192A1 (zh) 液晶显示面板及显示装置
TWI686645B (zh) 液晶顯示面板
US10162222B2 (en) Curved liquid crystal display device
JP6347937B2 (ja) 液晶表示装置
US10018877B2 (en) Liquid crystal display device
US7212264B2 (en) Liquid crystal display device comprising a black matrix having a first sloped side less steep than a second sloped side
US7684003B2 (en) Liquid crystal display device and method for manufacturing the same
US10809559B2 (en) Liquid crystal display device and method of fabricating the same
US20180321549A1 (en) Color filter substrate and liquid crystal display device
US9766514B2 (en) Liquid crystal display device with gap spacer and push spacer and method of fabricating the same
KR102259230B1 (ko) 표시 장치 및 그 제조 방법
US9851607B2 (en) Pixel structure comprising a pixel electrode having block-shaped portion and branch-shaped portion formed over a passivation layer having branch-shaped portion and block-shaped portion
KR20090097565A (ko) 액정 표시패널 및 액정 표시패널의 제조방법
WO2018176629A1 (zh) 显示面板及其制造方法
CN107688254B (zh) Coa型液晶显示面板及其制作方法
KR102103501B1 (ko) 액정 표시 장치
US7528411B2 (en) Display panel and method of manufacturing the same
US9116297B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal panel
CN106896587B (zh) 液晶显示设备及其制造方法
US20210165256A1 (en) Active switch array substrate, manufacturing method thereof and liquid crystal display panel applying the same
KR20130062123A (ko) 스페이서용 레진조성물 및 이를 이용한 씨오티 구조 어레이기판의 제조방법
KR102178488B1 (ko) 액정 디스플레이 장치
TW201310147A (zh) 邊緣場切換式液晶顯示器之像素結構
CN109407389B (zh) 一种显示面板及其制造方法
KR20150018144A (ko) 액정표시장치 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17292504

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937418

Country of ref document: EP

Kind code of ref document: A1