WO2022219858A1 - 特性平準化方法、および、特性平準化装置 - Google Patents

特性平準化方法、および、特性平準化装置 Download PDF

Info

Publication number
WO2022219858A1
WO2022219858A1 PCT/JP2022/000361 JP2022000361W WO2022219858A1 WO 2022219858 A1 WO2022219858 A1 WO 2022219858A1 JP 2022000361 W JP2022000361 W JP 2022000361W WO 2022219858 A1 WO2022219858 A1 WO 2022219858A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
secondary batteries
used secondary
degree
aging
Prior art date
Application number
PCT/JP2022/000361
Other languages
English (en)
French (fr)
Inventor
明日輝 柳原
正臣 堤
公一 伊藤
洋 竹村
史聖 川原
奏子 深堀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP22787786.7A priority Critical patent/EP4325688A1/en
Priority to CN202280024714.9A priority patent/CN117063327A/zh
Priority to JP2023514336A priority patent/JPWO2022219858A1/ja
Publication of WO2022219858A1 publication Critical patent/WO2022219858A1/ja
Priority to US18/237,767 priority patent/US20230408598A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to technology for leveling the characteristics of a plurality of used secondary batteries.
  • Patent Document 1 describes a technique for determining whether a used secondary battery is applicable to reconfiguring an assembled battery, and a method for reconfiguring an assembled battery using the technology.
  • Patent Document 1 acquires the AC internal resistance value of a used secondary battery, compares it with a threshold value, and determines its application to reconfigured products.
  • Patent Document 1 If the technique described in Patent Document 1 can be applied to a reconstituted product, this used secondary battery is used for the assembled battery reconstituted product. If the technology described in Patent Document 1 cannot be applied to a reconstituted product, the second-hand secondary battery is not used as a reconstituted assembled battery.
  • the second-hand secondary batteries that have deteriorated the most are subjected to more abuse than other second-hand secondary batteries. For this reason, in the reconfigured assembled battery, there arises a problem that deterioration of the second-hand secondary battery, which is most deteriorated, progresses further.
  • an object of the present invention is to provide a technique for reconfiguring an assembled battery using a plurality of second-hand secondary batteries having substantially the same degree of deterioration.
  • the characteristic leveling method of the present invention includes a step of assigning identification information to each of a plurality of used secondary batteries, a step of measuring characteristic parameters of the plurality of used secondary batteries, a step of measuring characteristic parameters of the plurality of used secondary batteries, and A step of calculating the degree of deterioration of a plurality of used secondary batteries from the parameters of the secondary batteries when new, a step of determining a target degree of deterioration adapted to the degree of deterioration of the plurality of used secondary batteries, and a step of determining the degree of deterioration of the plurality of used secondary batteries.
  • a battery pack can be reconfigured using a plurality of second-hand secondary batteries with substantially the same state of deterioration.
  • FIG. 1 is a block diagram showing the configuration of the characteristic smoothing device according to the first embodiment.
  • FIGS. 2A, 2B, 2C, and 2D are diagrams showing the concept of characteristic leveling according to the first embodiment.
  • FIG. 3 is a graph showing an example of a deterioration curve of a used secondary battery.
  • FIG. 4 is a flow chart showing a characteristic smoothing method according to the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of a characteristic smoothing device according to the second embodiment.
  • FIGS. 6A, 6B, and 6C are diagrams showing the concept of characteristic leveling according to the second embodiment.
  • FIG. 7 is a diagram showing the concept of characteristic leveling according to the second embodiment.
  • FIG. 8 is a diagram showing the concept of characteristic leveling according to the second embodiment.
  • FIG. 9 is a diagram showing the concept of characteristic leveling according to the second embodiment.
  • FIG. 10 is a flow chart showing a characteristic smoothing method according to the second embodiment.
  • FIG. 1 is a block diagram showing the configuration of the characteristic smoothing device according to the first embodiment.
  • FIGS. 2A, 2B, 2C, and 2D are diagrams showing the concept of characteristic leveling according to the first embodiment.
  • FIG. 3 is a graph showing an example of a deterioration curve of a used secondary battery.
  • the first embodiment six used secondary batteries are inserted to reconfigure an assembled battery composed of the six used secondary batteries with the degree of deterioration uniform.
  • the number of used secondary batteries to be inserted and the number of used secondary batteries constituting the assembled battery are not limited to this. If the number of second-hand secondary batteries to be inserted is the same as the number of second-hand secondary batteries forming the assembled battery, another number may be used.
  • the characteristic leveling device 10 includes an ID assignment unit 11, a parameter measurement unit 12, a deterioration degree calculation unit 13, a target deterioration degree determination unit 14, an aging condition determination unit 15, and an aging processing unit 16. Prepare.
  • the ID assigning unit 11 identifies a plurality of inserted used secondary batteries 901 to 906 (used secondary battery 901, used secondary battery 902, used secondary battery 903, used secondary battery 904, used secondary battery 905, used An ID, which is individual identification information, is given to the secondary battery 906).
  • the ID assigning unit 11 assigns an ID1 to a used secondary battery 901, an ID2 to a used secondary battery 902, and an ID3 to a used secondary battery 903. .
  • the ID assigning unit 11 assigns an ID4 to the used secondary battery 904 , an ID5 to the used secondary battery 905 , and an ID6 to the used secondary battery 906 .
  • a plurality of used secondary batteries 901-906 are arranged in a case and transported.
  • An element such as an IC tag capable of storing an ID is installed in each housing portion of the second-hand secondary batteries 901 to 906 in the case.
  • the characteristic leveling device 10 can transport the plurality of used secondary batteries 901 to 906 and ID1 to ID6 in a stringed state in subsequent processing of each functional unit.
  • the ID assignment unit 11 sends a plurality of used secondary batteries 901 to 906 assigned ID1 to ID6 to the parameter measurement unit 12 .
  • the ID assigning section 11 corresponds to the "identification number assigning section" of the present invention.
  • the parameter measurement unit 12 measures unique parameters of the plurality of used secondary batteries 901-906.
  • the inherent parameters are, for example, an effective capacity value, an internal resistance value, a charge/discharge curve that describes changes in voltage when discharged or charged at a constant current, and the like.
  • Such intrinsic parameters can be measured, for example, by arranging electrodes in the housings of the plurality of used secondary batteries 901-906.
  • the intrinsic parameter may be measured by a separately installed intrinsic parameter measuring device.
  • the parameter measurement unit 12 sends the plurality of second-hand secondary batteries 901 to 906 whose intrinsic parameters have been measured to the deterioration degree calculation unit 13 .
  • the deterioration degree calculation unit 13 stores unique parameters of new secondary batteries of the same type as the plurality of used secondary batteries 901-906.
  • the deterioration degree calculation unit 13 compares the characteristic parameters of the plurality of used secondary batteries 901 to 906 measured by the parameter measurement unit 12 and the characteristic parameters of the new batteries, and calculates the degree of deterioration of the plurality of used secondary batteries 901 to 906. do.
  • the degree of deterioration for example, SOH is used.
  • the deterioration degree calculation unit 13 associates the calculated deterioration degrees of the plurality of used secondary batteries 901 to 906 with ID1 to ID6 and outputs them to the target deterioration degree determination unit 14 . Further, the deterioration degree calculator 13 sends the plurality of used secondary batteries 901 to 906 to the aging processor 16 .
  • the target deterioration degree determination unit 14 determines a target deterioration degree DL adapted to the deterioration degrees of the plurality of used secondary batteries 901-906. More specifically, the target deterioration level determination unit 14 detects the lowest deterioration level from the deterioration levels of the plurality of used secondary batteries 901-906. That is, the target deterioration degree determination unit 14 detects the deterioration degree of the used secondary battery whose deterioration state is the most advanced. As shown in FIGS. 2B and 2C, the target deterioration degree determination unit 14 determines the lowest deterioration degree as the target deterioration degree DL.
  • the target deterioration degree determination unit 14 outputs the target deterioration degree DL to the aging condition determination unit 15. Further, the target deterioration degree determination unit 14 associates the deterioration degrees of the plurality of used secondary batteries 901 to 906 with ID1 to ID6 and outputs them to the aging condition determination unit 15 .
  • the aging condition determination unit 15 determines aging conditions using the deterioration levels of the plurality of used secondary batteries 901-906, the target deterioration level DL, and the deterioration curve of the used secondary batteries as shown in FIG. More specifically, the aging condition determining unit 15 calculates the difference between the deterioration degree and the target deterioration degree DL for each of the used secondary batteries 901-906. The aging condition determining unit 15 sets the aging voltage, aging temperature and aging time using the difference between the degree of deterioration and the target degree of deterioration DL and the deterioration curve.
  • the deterioration curve represents the time characteristics of the degree of deterioration.
  • the deterioration curve represents the amount of change in the degree of deterioration (degradation rate) of the used secondary battery per unit time.
  • the deterioration rate is determined by the applied voltage (aging voltage) and ambient temperature (aging temperature), and the amount of deterioration is determined by the applied voltage, ambient temperature and aging time.
  • the aging condition determining unit 15 calculates the deterioration speed from the deterioration curve, and determines the aging voltage, aging temperature, and aging time based on the deterioration speed so as to progress to the desired degree of deterioration.
  • the aging condition determination unit 15 fixes and sets at least one of the aging voltage, aging temperature, and aging time. For example, the aging condition determination unit 15 fixes the aging temperature and the aging time for the plurality of used secondary batteries 901 to 906, and adjusts and sets the aging voltage for each of the plurality of used secondary batteries 901 to 906. do. By fixing the aging temperature and aging time in this manner, a plurality of used secondary batteries 901 to 906 can be aged in one aging furnace for the same time. This facilitates the aging process.
  • the aging condition determining unit 15 provides the aging processing unit 16 with aging conditions for each of the plurality of used secondary batteries 901-906.
  • the aging processing unit 16 is, for example, an aging furnace.
  • the aging processing unit 16 ages the plurality of used secondary batteries 901 to 906 under the aging conditions given from the aging condition determining unit 15 .
  • aging conditions are determined according to the degree of deterioration and the target deterioration degree DL, so that the deterioration of the plurality of used secondary batteries 901-906 after the aging process degree becomes substantially the same at the target deterioration degree DL.
  • the characteristic leveling device 10 can send out a plurality of used secondary batteries with substantially the same deterioration state. Therefore, a battery pack can be reconfigured using a plurality of second-hand secondary batteries having substantially the same state of deterioration.
  • the target deterioration level DL is set to the lowest deterioration level.
  • the target deterioration level DL may be set lower than the lowest deterioration level.
  • a mode is shown in which all used secondary batteries 901-906 are subjected to aging treatment.
  • a used secondary battery having the same degree of deterioration as the target degree of deterioration DL does not need to be aged.
  • FIG. 4 is a flow chart showing a characteristic smoothing method according to the first embodiment. The detailed contents of each process in FIG. 4 have been described in the description of the configuration of the characteristic leveling device 10 described above, and the detailed description will be omitted except where additional description is required. .
  • the ID assignment unit 11 of the characteristic leveling device 10 assigns ID1 to ID6 to each of the plurality of used secondary batteries 901 to 906 (S11).
  • the parameter measurement unit 12 of the characteristic leveling device 10 measures the characteristic parameters of the plurality of used secondary batteries 901-906 (S12).
  • the deterioration degree calculation unit 13 of the characteristic leveling device 10 calculates the respective deterioration degrees from the characteristic parameters of the plurality of used secondary batteries 901-906 (S13).
  • the target deterioration degree determination unit 14 of the characteristic leveling device 10 determines the target deterioration degree DL from the deterioration degrees of the plurality of used secondary batteries 901-906 (S14).
  • the aging condition determination unit 15 of the characteristic leveling device 10 uses the deterioration degree, the target deterioration degree DL, and the deterioration curve of the plurality of used secondary batteries 901 to 906 to determine the aging condition for each of the plurality of used secondary batteries 901 to 906. is determined (S15).
  • the aging processing unit 16 of the characteristic leveling device 10 performs aging processing on the plurality of used secondary batteries 901-906 under aging conditions determined for each of the plurality of used secondary batteries 901-906 (S16).
  • a battery pack can be reconfigured using a plurality of second-hand secondary batteries having substantially the same state of deterioration.
  • a characteristic leveling technique for second-hand secondary batteries according to a second embodiment of the present invention will be described with reference to the drawings.
  • the technology for leveling the characteristics of used secondary batteries according to the second embodiment is different from the technology for leveling characteristics of used secondary batteries according to the first embodiment. It differs in that it processes secondary batteries.
  • a case is shown in which a number of used secondary batteries (24) capable of reconfiguring one set of battery packs with 6 IDs (24 sets) is processed.
  • the description of the part where the same processing as the second-hand secondary battery characteristic smoothing technique of the first embodiment is performed will be simplified or omitted.
  • FIG. 5 is a block diagram showing the configuration of a characteristic smoothing device according to the second embodiment.
  • 6A, 6B, 6C, 7, 8, and 9 are diagrams showing the concept of characteristic leveling according to the second embodiment.
  • the characteristic leveling device 10A includes an ID assignment unit 11, a parameter measurement unit 12, a deterioration degree calculation unit 13, a target deterioration degree determination unit 14A, an aging condition determination unit 15A, an aging processing unit 16, and A grouping processing unit 17 is provided.
  • the ID assigning unit 11 assigns ID1 to ID24 to the plurality of used secondary batteries 901 to 924 (see FIG. 6(A)).
  • the parameter measurement unit 12 measures the characteristic parameters of the plurality of used secondary batteries 901-924.
  • the deterioration degree calculation unit 13 calculates the deterioration degrees of the plurality of used secondary batteries 901-924 (see FIG. 6(B)).
  • the deterioration degree calculation unit 13 sends the plurality of used secondary batteries 901 to 924 to the grouping processing unit 17, associates the deterioration degree of the plurality of used secondary batteries 901 to 924 with the ID, and classifies the grouping processing unit 17 output to
  • the grouping processing unit 17 sorts the plurality of used secondary batteries 901-924 into a plurality of groups GRPA, GRPB, GRPC, and GRPD according to the degree of deterioration (see FIG. 6(C)). More specifically, the grouping processing unit 17 rearranges the degrees of deterioration of the plurality of second-hand secondary batteries 901-924 in ascending order or descending order. The grouping processing unit 17 sorts the deterioration degrees into groups for each number of assembled batteries to be reconfigured.
  • the assembled battery is reconfigured with 6 batteries, in order of deterioration degree (in order of deterioration state), 6 each in terms of deterioration degree, if it is a used secondary battery Divide the 6 into groups. Note that the sorting here is a data process, and there is no need to move the used secondary batteries 901-924.
  • the grouping processing unit 17 collects used secondary batteries 901, 908, 911, 912, 914, and 917 of ID1, ID8, ID11, ID12, ID14, and ID17. are sorted to the group GRPA with the highest degree of deterioration.
  • the grouping processing unit 17 sorts the used secondary batteries 903, 904, 907, 909, 915, and 923 of ID3, ID4, ID7, ID9, ID15, and ID23 into the group GRPB with the second highest degree of deterioration.
  • the grouping processing unit 17 sorts the used secondary batteries 906, 918, 919, 921, 922, and 924 of ID6, ID18, ID19, ID21, ID22, and ID24 into the group GRPC with the third highest degree of deterioration.
  • the grouping processing unit 17 sorts the used secondary batteries 902, 905, 910, 913, 916, and 920 of ID2, ID5, ID10, ID13, ID16, and ID20 into the group GRPD with the lowest degree of deterioration.
  • the grouping processing unit 17 sends a plurality of used secondary batteries 901-924 to the aging processing unit 16.
  • the grouping processing unit 17 converts the ID1 to ID24 of the plurality of used secondary batteries 901 to 924 and the degree of deterioration of the plurality of used secondary batteries 901 to 924 into group identification information of the sorted groups GRPA, GRPB, GRPC, and GRPD. It is linked and output to the target deterioration degree determination unit 14A.
  • the target deterioration degree determination unit 14A determines target deterioration degrees DLA, DLB, DLC, and DLD for each of the groups GRPA, GRPB, GRPC, and GRPD.
  • the target deterioration degree determination unit 14A detects the lowest deterioration degree from the deterioration degrees of the plurality of used secondary batteries in the group. Then, the target deterioration level determination unit 14 determines the lowest deterioration level as the target deterioration level DL of the group.
  • the target deterioration degree determining unit 14A determines the deterioration of each of the second-hand secondary batteries 901, 908, 911, 912, 914, and 917 of ID1, ID8, ID11, ID12, ID14, and ID17. Detect the lowest degree of deterioration in the degree of deterioration, and determine this lowest degree of deterioration as the target deterioration degree DLA of the group GRPA.
  • the target deterioration level determination unit 14A detects the lowest deterioration level among the deterioration levels of the second-hand secondary batteries 903, 904, 907, 909, 915, and 923 of ID3, ID4, ID7, ID9, ID15, and ID23, and determines the lowest deterioration level. is determined as the target deterioration level DLB of the group GRPB.
  • the target deterioration degree determination unit 14A detects the lowest deterioration degree among the deterioration degrees of the second-hand secondary batteries 906, 918, 919, 921, 922, and 924 of ID6, ID18, ID19, ID21, ID22, and ID24, and determines the lowest deterioration degree.
  • the target deterioration degree determination unit 14A detects the lowest deterioration degree among the deterioration degrees of the second-hand secondary batteries 902, 905, 910, 913, 916, and 920 of ID2, ID5, ID10, ID13, ID16, and ID20, and determines the lowest deterioration degree. is determined as the target deterioration degree DLD of the group GRPD.
  • the target deterioration degree determination unit 14A determines ID1 to ID24 of the plurality of used secondary batteries 901 to 924, deterioration degrees of the plurality of used secondary batteries 901 to 924, group identification information (groups GRPA, GRPB, GRPC, GRPD), and , the target deterioration levels DLA, DLB, DLC, and DLD for each group are output to the aging condition determination unit 15A.
  • the aging condition determination unit 15A determines the ID1 to ID24 of the plurality of used secondary batteries 901 to 924, the degree of deterioration of the plurality of used secondary batteries 901 to 924, group identification information (groups GRPA, GRPB, GRPC, GRPD), and Using the target deterioration levels DLA, DLB, DLC, and DLD for each group, aging conditions for each of the plurality of used secondary batteries 901-924 are determined.
  • the aging condition determination unit 15A uses the respective deterioration degrees and the target deterioration degree DLA of the group GRPA to determine a plurality of Aging conditions for each of the used secondary batteries 901, 908, 911, 912, 914, and 917 are determined.
  • the aging condition determining unit 15A associates the aging conditions determined for each of the plurality of used secondary batteries 901-924 with ID1-ID24 and provides them to the aging processing unit 16.
  • the aging processing unit 16 ages the plurality of used secondary batteries 901-924 under the aging conditions given by the aging condition determining unit 15. As a result, as shown in FIG. 8, the degree of deterioration of the plurality of used secondary batteries in each group is approximately the same as the target degree of deterioration of that group. For example, the deterioration levels of the plurality of used secondary batteries 901, 908, 911, 912, 914, and 917 of the group GRPA are approximately the same as the target deterioration level DLA of the group GRPA.
  • the deterioration levels of the plurality of used secondary batteries 903, 904, 907, 909, 915, and 923 are almost the same as the target deterioration level DLB of the group GRPB.
  • the deterioration levels of the plurality of used secondary batteries 906, 918, 919, 921, 922, and 924 are almost the same as the target deterioration level DLC of the group GRPC.
  • the deterioration levels of the plurality of used secondary batteries 902, 905, 910, 913, 916, and 920 are approximately the same as the target deterioration level DLD of the group GRPD.
  • the characteristic leveling device 10A makes the degree of deterioration of the plurality of used secondary batteries that reconfigure each assembled battery approximately the same for each set. can be aligned (see FIG. 9).
  • the characteristic leveling device 10A determines the target degree of deterioration for each group, so it is not necessary to set all used secondary batteries to the same degree of deterioration. For example, in the above example, the characteristic leveling device 10A does not have to match the deterioration levels of the plurality of used secondary batteries in the group GRPA to the target deterioration level of the group GRPD with the highest deterioration level. As a result, the characteristic leveling device 10A can reconfigure the second-hand secondary batteries by adjusting the degree of deterioration for each assembled battery without excessively deteriorating them.
  • the characteristic leveling device 10A may include, at the exit of the aging processing unit 16, a display for displaying group information of the plurality of used secondary batteries 901-924.
  • the characteristic leveling device 10A superimposes each group identification information on an image of a plurality of used secondary batteries 901-924 and displays them. This allows the operator to easily identify the group to which the plurality of used secondary batteries 901-924 belong.
  • the characteristic leveling device 10A may include a group-by-group carry-out mechanism in the latter stage of the aging processing section 16.
  • the group-by-group carry-out mechanism refers to the group identification information, picks up the plurality of used secondary batteries 901 to 924 for each group, and carries them out. This allows the operator to easily reconfigure the assembled battery.
  • the characteristic leveling device 10A may have a reconfiguration mechanism for assembled batteries.
  • FIG. 10 is a flow chart showing a characteristic smoothing method according to the second embodiment. The detailed contents of each process in FIG. 10 are described in the description of the configuration of the characteristic leveling device 10A described above, and the detailed description will be omitted except where additional description is required. .
  • the ID assignment unit 11 of the characteristic leveling device 10A assigns ID1 to ID24 to each of the plurality of used secondary batteries 901 to 924 (S11).
  • the parameter measurement unit 12 of the characteristic leveling device 10A measures the characteristic parameters of the plurality of used secondary batteries 901-924 (S12).
  • the deterioration degree calculation unit 13 of the characteristic leveling device 10 calculates the deterioration degree of each of the plurality of used secondary batteries 901-924 from the unique parameters (S13).
  • the grouping processing unit 17 of the characteristic leveling device 10A sorts the plurality of used secondary batteries 901-924 into the plurality of groups GRPA, GRPB, GRPC, and GRPD according to the degree of deterioration (S21).
  • the target deterioration degree determination unit 14A of the characteristic leveling device 10A determines the target deterioration degrees DLA, DLB, DLC, and DLD for each of the groups GRPA, GRPB, GRPC, and GRPD for the plurality of used secondary batteries 901 to 924. (S22).
  • the aging condition determining unit 15A of the characteristic leveling device 10A determines the degree of deterioration of the plurality of used secondary batteries 901 to 924, the target deterioration degrees DLA, DLB, DLC, DLD, and the deterioration curve for each of the groups GRPA, GRPB, GRPC, and GRPD. are used to determine aging conditions for each of the plurality of used secondary batteries 901-924 (S23).
  • the aging processing unit 16 of the characteristic leveling device 10A performs aging processing on the plurality of used secondary batteries 901-924 under aging conditions determined for each of the plurality of used secondary batteries 901-924 (S16).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

パラメータ計測部(12)は、複数の中古二次電池(901-906)の固有パラメータを計測する。劣化度算出部(13)は、固有パラメータから複数の中古二次電池(901-906)の劣化度を算出する。目標劣化度決定部(14)は、複数の中古二次電池(901-906)の劣化度から目標劣化度(DL)を決定する。エージング条件決定部(15)は、複数の中古二次電池(901-906)の劣化度、目標劣化度(DL)を用いて、複数の中古二次電池(901-906)のエージング条件を決定する。エージング処理部(16)は、複数の中古二次電池(901-906)毎のエージング条件で複数の中古二次電池(901-906)をエージング処理する。

Description

特性平準化方法、および、特性平準化装置
 本発明は、複数の中古二次電池の特性を平準化する技術に関する。
 特許文献1には、中古二次電池が組電池の再構成に適用可能か判定する技術、および、これを用いた組電池の再構成方法が記載されている。
 特許文献1に記載の技術は、中古二次電池の交流内部抵抗値を取得し、閾値と比較し、再構成品への適用を判定する。
 特許文献1に記載の技術は、再構成品へ適用できれば、この中古二次電池を、組電池再構成品に用いる。特許文献1に記載の技術は、再構成品へ適用できなければ、この中古二次電池を、組電池再構成品に用いない。
特開2015-222195号公報
 しかしながら、特許文献1に記載の技術では、適用可能と判定された複数の中古二次電池で組電池を再構成しても、この組電池を構成する複数の中古二次電池間で劣化状態がバラツキを有する。この場合、再構成した組電池では、劣化状態が最も進んだ中古二次電池に、組電池の性能が制限されてしまう。
 具体的には、劣化状態が最も進んだ中古二次電池が他の中古二次電池よりも酷使されてしまう。このため、再構成した組電池では、劣化状態が最も進んだ中古二次電池の劣化がより進行するという問題が生じる。
 したがって、本発明の目的は、劣化状態をほぼ同じに揃えた複数の中古二次電池を用いて組電池を再構成する技術を提供することにある。
 この発明の特性平準化方法は、複数の中古二次電池にそれぞれ識別情報を付与するステップ、複数の中古二次電池の固有パラメータを計測するステップ、複数の中古二次電池の固有パラメータと中古二次電池の新品時のパラメータとから複数の中古二次電池の劣化度を算出するステップ、複数の中古二次電池の劣化度に適応する目標劣化度を決定するステップ、複数の中古二次電池の劣化度を目標劣化度にする複数の中古二次電池毎のエージング条件を決定するステップ、および、複数の中古二次電池毎のエージング条件によって、複数の中古二次電池をエージングするステップ、を有する。
 この方法では、複数の中古二次電池の劣化度が、目標劣化度に揃う。
 この発明によれば、劣化状態をほぼ同じに揃えた複数の中古二次電池を用いて組電池を再構成できる。
図1は、第1の実施形態に係る特性平準化装置の構成を示すブロック図である。 図2(A)、図2(B)、図2(C)、図2(D)は、第1の実施形態に係る特性平準化の概念を示す図である。 図3は、中古二次電池の劣化曲線の一例を示すグラフである。 図4は、第1の実施形態に係る特性平準化方法を示すフローチャートである。 図5は、第2の実施形態に係る特性平準化装置の構成を示すブロック図である。 図6(A)、図6(B)、図6(C)は、第2の実施形態に係る特性平準化の概念を示す図である。 図7は、第2の実施形態に係る特性平準化の概念を示す図である。 図8は、第2の実施形態に係る特性平準化の概念を示す図である。 図9は、第2の実施形態に係る特性平準化の概念を示す図である。 図10は、第2の実施形態に係る特性平準化方法を示すフローチャートである。
 [第1の実施形態]
 本発明の第1の実施形態に係る中古二次電池の特性平準化技術について、図を参照して説明する。
 (特性平準化装置10の構成)
 図1は、第1の実施形態に係る特性平準化装置の構成を示すブロック図である。図2(A)、図2(B)、図2(C)、図2(D)は、第1の実施形態に係る特性平準化の概念を示す図である。図3は、中古二次電池の劣化曲線の一例を示すグラフである。
 なお、第1の実施形態では6本の中古二次電池を挿入し、劣化度を揃えて6本の中古二次電池からなる組電池を再構成する態様を示す。挿入する中古二次電池の本数および組電池を構成する中古二次電池の本数はこれに限らない。挿入する中古二次電池の本数と組電池を構成する中古二次電池の本数とが同じであれば、他の本数であってもよい。
 図1に示すように、特性平準化装置10は、ID付与部11、パラメータ計測部12、劣化度算出部13、目標劣化度決定部14、エージング条件決定部15、および、エージング処理部16を備える。
 ID付与部11は、挿入された複数の中古二次電池901-906(中古二次電池901、中古二次電池902、中古二次電池903、中古二次電池904、中古二次電池905、中古二次電池906)に対して、固体識別情報であるIDを付与する。
 例えば、図2(A)に示すように、ID付与部11は、中古二次電池901にID1を付与し、中古二次電池902にID2を付与し、中古二次電池903にID3を付与する。ID付与部11は、中古二次電池904にID4を付与し、中古二次電池905にID5を付与し、中古二次電池906にID6を付与する。
 例えば、複数の中古二次電池901-906は、ケースに配列して搬送される。そして、ケースにおける複数の中古二次電池901-906の収容部には、それぞれに対応して、ICタグ等のIDを記憶可能な素子が設置されている。これにより、特性平準化装置10は、この後の各機能部の処理において、複数の中古二次電池901-906とID1-ID6を紐付けた状態で搬送可能である。
 ID付与部11は、ID1-ID6がそれぞれ付与された複数の中古二次電池901-906を、パラメータ計測部12に送出する。ID付与部11が、本発明の「識別番号付与部」に対応する。
 パラメータ計測部12は、複数の中古二次電池901-906の固有パラメータを計測する。固有パラメータは、例えば、実効容量値、内部抵抗値、定電流での放電あるいは充電させた時の電圧の変化を記した充放電カーブ等である。
 このような固有パラメータは、例えば、複数の中古二次電池901-906の収容部に電極を配置することによって、計測可能である。なお、固有パラメータは、別途設置された固有パラメータの計測装置によって、計測してもよい。
 パラメータ計測部12は、固有パラメータを計測した複数の中古二次電池901-906を、劣化度算出部13に送出する。
 劣化度算出部13は、複数の中古二次電池901-906と同じ型の新品の二次電池の固有パラメータを記憶している。劣化度算出部13は、パラメータ計測部12で計測した複数の中古二次電池901-906の固有パラメータと新品の固有パラメータとを比較し、複数の中古二次電池901-906の劣化度を算出する。劣化度としては、例えば、SOHを用いる。
 劣化度算出部13は、算出した複数の中古二次電池901-906の劣化度を、ID1-ID6に紐付けして、目標劣化度決定部14に出力する。また、劣化度算出部13は、複数の中古二次電池901-906を、エージング処理部16に送出する。
 目標劣化度決定部14は、複数の中古二次電池901-906の劣化度に適応する目標劣化度DLを決定する。より具体的には、目標劣化度決定部14は、複数の中古二次電池901-906の劣化度から、最も低い劣化度を検出する。すなわち、目標劣化度決定部14は、劣化状態が最も進んだ中古二次電池の劣化度を検出する。図2(B)、図2(C)に示すように、目標劣化度決定部14は、最も低い劣化度を、目標劣化度DLに決定する。
 目標劣化度決定部14は、目標劣化度DLをエージング条件決定部15に出力する。また、目標劣化度決定部14は、複数の中古二次電池901-906の劣化度を、ID1-ID6に紐付けして、エージング条件決定部15に出力する。
 エージング条件決定部15は、複数の中古二次電池901-906の劣化度、目標劣化度DL、および、図3に示すような中古二次電池の劣化曲線を用いて、エージング条件を決定する。より具体的には、エージング条件決定部15は、複数の中古二次電池901-906のそれぞれに対して、劣化度と目標劣化度DLとの差を算出する。エージング条件決定部15は、劣化度と目標劣化度DLとの差と、劣化曲線とを用いて、エージング電圧、エージング温度およびエージング時間を設定する。
 劣化曲線は、劣化度の時間特性を表すものである。言い換えれば、劣化曲線は、単位時間当たりの中古二次電池の劣化度の変化量(劣化速度)を表すものである。そして、劣化曲線が表すように、劣化速度は、印加電圧(エージング電圧)、周囲温度(エージング温度)によって決まり、劣化量は、印加電圧、周囲温度、エージング時間によって決まる。
 したがって、エージング条件決定部15は、劣化曲線から劣化速度を算出し、劣化速度に基づいて、所望の劣化度まで進むようにエージング電圧、エージング温度およびエージング時間を決定する。
 この際、エージング条件決定部15は、エージング電圧、エージング温度およびエージング時間の少なくとも1つを固定して設定する。例えば、エージング条件決定部15は、エージング温度およびエージング時間を複数の中古二次電池901-906に対して固定し、エージング電圧を、複数の中古二次電池901-906のそれぞれで調整して設定する。このように、エージング温度およびエージング時間を固定することによって、1つのエージング炉で、複数の中古二次電池901-906を同じ時間でエージング処理を行えばよい。これにより、エージング処理を容易にできる。
 エージング条件決定部15は、複数の中古二次電池901-906毎のエージング条件をエージング処理部16に与える。
 エージング処理部16は、例えば、エージング炉である。エージング処理部16は、エージング条件決定部15から与えられたエージング条件にて、複数の中古二次電池901-906をエージングする。
 複数の中古二次電池901-906のそれぞれに対して、劣化度と目標劣化度DLに応じてエージング条件が決定されていることにより、エージング処理後の複数の中古二次電池901-906の劣化度は、目標劣化度DLで略同じになる。
 これにより、特性平準化装置10は、複数の中古二次電池の劣化状態をほぼ同じに揃えて送出できる。したがって、劣化状態をほぼ同じに揃えた複数の中古二次電池を用いて組電池を再構成できる。
 なお、本実施形態では、目標劣化度DLは、最も低い劣化度に合わせている。しかしながら、目標劣化度DLは、最も低い劣化度より低く設定してもよい。
 また、本実施形態では、全ての中古二次電池901-906をエージング処理する態様を示した。しかしながら、目標劣化度DLと同じ劣化度の中古二次電池は、エージング処理しなくてもよい。
 (特性平準化方法)
 図4は、第1の実施形態に係る特性平準化方法を示すフローチャートである。なお、図4の各処理の詳細な内容の説明は、上述の特性平準化装置10の構成の説明において行っており、以下で、追加説明が必要な箇所を除いて、詳細な説明を省略する。
 特性平準化装置10のID付与部11は、複数の中古二次電池901-906のそれぞれに、ID1-ID6を付与する(S11)。
 特性平準化装置10のパラメータ計測部12は、複数の中古二次電池901-906の固有パラメータを計測する(S12)。
 特性平準化装置10の劣化度算出部13は、複数の中古二次電池901-906の固有パラメータから、それぞれの劣化度を算出する(S13)。
 特性平準化装置10の目標劣化度決定部14は、複数の中古二次電池901-906の劣化度から、目標劣化度DLを決定する(S14)。
 特性平準化装置10のエージング条件決定部15は、複数の中古二次電池901-906の劣化度、目標劣化度DL、劣化曲線を用いて、複数の中古二次電池901-906毎のエージング条件を決定する(S15)。
 特性平準化装置10のエージング処理部16は、複数の中古二次電池901-906毎に決定されたエージング条件で、複数の中古二次電池901-906をエージング処理する(S16)。
 このような方法を用いることによって、複数の中古二次電池の劣化状態をほぼ同じに揃えることができる。したがって、劣化状態をほぼ同じに揃えた複数の中古二次電池を用いて組電池を再構成できる。
 [第2の実施形態]
 本発明の第2の実施形態に係る中古二次電池の特性平準化技術について、図を参照して説明する。第2の実施形態に係る中古二次電池の特性平準化技術は、第1の実施形態に係る中古二次電池の特性平準化技術に対して、複数の組電池を再構成可能な個数の中古二次電池を処理する点で異なる。例えば、本実施形態の例では-ID6本で1組の組電池を4組再構成可能な本数(24本)の中古二次電池を処理する場合を示す。なお、以下では、第1の実施形態の中古二次電池の特性平滑化技術と同様の処理をする箇所については、説明を簡略化または省略する。
 (特性平準化装置10Aの構成)
 図5は、第2の実施形態に係る特性平準化装置の構成を示すブロック図である。図6(A)、図6(B)、図6(C)、図7、図8、図9は、第2の実施形態に係る特性平準化の概念を示す図である。
 図5に示すように、特性平準化装置10Aは、ID付与部11、パラメータ計測部12、劣化度算出部13、目標劣化度決定部14A、エージング条件決定部15A、エージング処理部16、および、グルーピング処理部17を備える。
 ID付与部11は、複数の中古二次電池901-924にID1-ID24を付与する(図6(A)参照)。パラメータ計測部12は、複数の中古二次電池901-924の固有パラメータを計測する。
 劣化度算出部13は、複数の中古二次電池901-924の劣化度を算出する(図6(B)参照)。劣化度算出部13は、複数の中古二次電池901-924をグルーピング処理部17に送出するとともに、複数の中古二次電池901-924の劣化度をIDに紐付けして、グルーピング処理部17に出力する。
 グルーピング処理部17は、劣化度に応じて、複数の中古二次電池901-924を複数のグループGRPA、GRPB、GRPC、GRPDに振り分ける(図6(C)参照)。より具体的には、グルーピング処理部17は、複数の中古二次電池901-924の劣化度を、高い順または低い順に並び替える。グルーピング処理部17は、組電池を再構成する個数毎に、劣化度をグループに振り分ける。
 例えば、本実施形態では、組電池は6本で再構成されるので、劣化度の高い順(劣化状態が進んでいない順)に、劣化度でいえば6ずつ、中古二次電池であれば6本ずつを、グループに振り分ける。なお、ここでの振り分けは、データ上の処理であり、中古二次電池901-924の配置を移動させる必要はない。
 図6(B)、図6(C)の場合であれば、グルーピング処理部17は、ID1、ID8、ID11、ID12、ID14、ID17の中古二次電池901、908、911、912、914、917を、最も劣化度が高いグループGRPAに振り分ける。グルーピング処理部17は、ID3、ID4、ID7、ID9、ID15、ID23の中古二次電池903、904、907、909、915、923を、二番目に劣化度が高いグループGRPBに振り分ける。グルーピング処理部17は、ID6、ID18、ID19、ID21、ID22、ID24の中古二次電池906、918、919、921、922、924を、三番目に劣化度が高いグループGRPCに振り分ける。グルーピング処理部17は、ID2、ID5、ID10、ID13、ID16、ID20の中古二次電池902、905、910、913、916、920を、最も劣化度が低いグループGRPDに振り分ける。
 グルーピング処理部17は、複数の中古二次電池901-924をエージング処理部16に送出する。
 グルーピング処理部17は、複数の中古二次電池901-924のID1-ID24と複数の中古二次電池901-924の劣化度とを、振り分けたグループGRPA、GRPB、GRPC、GRPDのグループ識別情報に紐付けして、目標劣化度決定部14Aに出力する。
 目標劣化度決定部14Aは、グループGRPA、GRPB、GRPC、GRPD毎に目標劣化度DLA、DLB、DLC、DLDを決定する。
 より具体的には、目標劣化度決定部14Aは、グループ内の複数の中古二次電池の劣化度から、最も低い劣化度を検出する。そして、目標劣化度決定部14は、最も低い劣化度を、そのグループの目標劣化度DLに決定する。
 例えば、図7(A)に示すように、目標劣化度決定部14Aは、ID1、ID8、ID11、ID12、ID14、ID17の中古二次電池901、908、911、912、914、917の各劣化度における最も低い劣化度を検出し、この最低の劣化度をグループGRPAの目標劣化度DLAに決定する。目標劣化度決定部14Aは、ID3、ID4、ID7、ID9、ID15、ID23の中古二次電池903、904、907、909、915、923の各劣化度における最も低い劣化度を検出し、この最低の劣化度をグループGRPBの目標劣化度DLBに決定する。目標劣化度決定部14Aは、ID6、ID18、ID19、ID21、ID22、ID24の中古二次電池906、918、919、921、922、924の各劣化度における最も低い劣化度を検出し、この最低の劣化度をグループGRPCの目標劣化度DLCに決定する。目標劣化度決定部14Aは、ID2、ID5、ID10、ID13、ID16、ID20の中古二次電池902、905、910、913、916、920の各劣化度における最も低い劣化度を検出し、この最低の劣化度をグループGRPDの目標劣化度DLDに決定する。
 目標劣化度決定部14Aは、複数の中古二次電池901-924のID1-ID24、複数の中古二次電池901-924の劣化度、グループ識別情報(グループGRPA、GRPB、GRPC、GRPD)、および、グループ毎の目標劣化度DLA、DLB、DLC、DLDを、エージング条件決定部15Aに出力する。
 エージング条件決定部15Aは、複数の中古二次電池901-924のID1-ID24、複数の中古二次電池901-924の劣化度、グループ識別情報(グループGRPA、GRPB、GRPC、GRPD)、および、グループ毎の目標劣化度DLA、DLB、DLC、DLDを用いて、複数の中古二次電池901-924のそれぞれに対するエージング条件を決定する。
 例えば、グループGRPAに属する複数の中古二次電池901、908、911、912、914、917について、エージング条件決定部15Aは、それぞれの劣化度とグループGRPAの目標劣化度DLAとを用いて、複数の中古二次電池901、908、911、912、914、917のそれぞれのエージング条件を決定する。なお、グループGRPB、GRPC、GRPDについても同様であり、説明は省略する。
 エージング条件決定部15Aは、複数の中古二次電池901-924のそれぞれに決定されたエージング条件を、ID1-ID24に紐付けして、エージング処理部16に与える。
 エージング処理部16は、エージング条件決定部15から与えられたエージング条件にて、複数の中古二次電池901-924をエージングする。これにより、図8に示すように、各グループの複数の中古二次電池の劣化度は、そのグループの目標劣化度とほぼ同じになる。例えば、グループGRPAの複数の中古二次電池901、908、911、912、914、917の劣化度は、グループGRPAの目標劣化度DLAとほぼ同じになる。同様に、複数の中古二次電池903、904、907、909、915、923の劣化度は、グループGRPBの目標劣化度DLBとほぼ同じになる。複数の中古二次電池906、918、919、921、922、924の劣化度は、グループGRPCの目標劣化度DLCとほぼ同じになる。複数の中古二次電池902、905、910、913、916、920の劣化度は、グループGRPDの目標劣化度DLDとほぼ同じになる。
 この後、グループ単位の複数の中古二次電池は、1つの組電池の再構成に用いられる。
 このような構成および処理によって、特性平準化装置10Aは、複数の組電池に対して、各組電池を再構成する複数の中古二次電池の劣化度を、組毎に劣化状態をほぼ同じに揃えることができる(図9参照)。
 また、この構成および処理によって、特性平準化装置10Aは、グループ毎に目標劣化度を決定するので、全ての中古二次電池を同じ劣化度にしなくてもよい。例えば、上述の例であれば、特性平準化装置10Aは、グループGRPAの複数の中古二次電池の劣化度を、最も高い劣化度のグループGRPDの目標劣化度に合わせなくてもよい。これにより、特性平準化装置10Aは、中古二次電池を、不必要に過剰に劣化させなくても、組電池の単位で劣化度を揃えて、再構成できる。
 なお、特性平準化装置10Aは、エージング処理部16の出口に、複数の中古二次電池901-924のグループ情報を表示する表示器を備えてもよい。例えば、特性平準化装置10Aは、複数の中古二次電池901-924が並ぶ画像に、それぞれのグループ識別情報を重畳して表示する。これにより、作業者は、複数の中古二次電池901-924が属するグループを容易に判別できる。
 また、特性平準化装置10Aは、エージング処理部16の後段に、グループ別搬出機構を備えてもよい。この場合、グループ別搬出機構は、グループ識別情報を参照し、複数の中古二次電池901-924を、グループ毎にピックアップして搬出する。これにより、作業者は、組電池への再構成を容易にできる。さらには、特性平準化装置10Aは、ここに組電池への再構成機構を備えていてもよい。
 (特性平準化方法)
 図10は、第2の実施形態に係る特性平準化方法を示すフローチャートである。なお、図10の各処理の詳細な内容の説明は、上述の特性平準化装置10Aの構成の説明において行っており、以下で、追加説明が必要な箇所を除いて、詳細な説明を省略する。
 特性平準化装置10AのID付与部11は、複数の中古二次電池901-924のそれぞれに、ID1-ID24を付与する(S11)。
 特性平準化装置10Aのパラメータ計測部12は、複数の中古二次電池901-924の固有パラメータを計測する(S12)。
 特性平準化装置10の劣化度算出部13は、複数の中古二次電池901-924の固有パラメータから、それぞれの劣化度を算出する(S13)。
 特性平準化装置10Aのグルーピング処理部17は、劣化度に応じて、複数の中古二次電池901-924を、複数のグループGRPA、GRPB、GRPC、GRPDに振り分ける(S21)。
 特性平準化装置10Aの目標劣化度決定部14Aは、複数の中古二次電池901-924に対して、グループGRPA、GRPB、GRPC、GRPD毎に、目標劣化度DLA、DLB、DLC、DLDを決定する(S22)。
 特性平準化装置10Aのエージング条件決定部15Aは、複数の中古二次電池901-924の劣化度、グループGRPA、GRPB、GRPC、GRPD毎の目標劣化度DLA、DLB、DLC、DLD、劣化曲線を用いて、複数の中古二次電池901-924毎のエージング条件を決定する(S23)。
 特性平準化装置10Aのエージング処理部16は、複数の中古二次電池901-924毎に決定されたエージング条件で、複数の中古二次電池901-924をエージング処理する(S16)。
 このような方法を用いることによって、複数の組電池を構成する複数の中古二次電池の劣化状態を、組毎にほぼ同じに揃えることができる。したがって、劣化状態をほぼ同じに揃えた複数の中古二次電池を用いて、複数の組電池を再構成できる。
10、10A:特性平準化装置
11:ID付与部
12:パラメータ計測部
13:劣化度算出部
14、14A:目標劣化度決定部
15、15A:エージング条件決定部
16:エージング処理部
17:グルーピング処理部
901-924:中古二次電池
DL、DLA、DLB、DLC、DLD:目標劣化度
GRPA、GRPB、GRPC、GRPD:グループ

Claims (8)

  1.  複数の中古二次電池にそれぞれ識別情報を付与するステップと、
     前記複数の中古二次電池の固有パラメータを計測するステップと、
     前記複数の中古二次電池の固有パラメータと、前記中古二次電池の新品時のパラメータとから、前記複数の中古二次電池の劣化度を算出するステップと、
     前記複数の中古二次電池の劣化度に適応する目標劣化度を決定するステップと、
     前記複数の中古二次電池の劣化度を前記目標劣化度にする前記複数の中古二次電池毎のエージング条件を決定するステップと、
     前記複数の中古二次電池毎のエージング条件によって、前記複数の中古二次電池をエージングするステップと、
     を有する、特性平準化方法。
  2.  前記エージング条件は、単位時間当たりの前記中古二次電池を劣化させる速度である劣化速度を、前記複数の中古二次電池毎に設定する、
     請求項1に記載の特性平準化方法。
  3.  前記エージング条件は、エージング電圧、エージング温度およびエージング時間の少なくとも1つを固定にする、
     請求項1または請求項2に記載の特性平準化方法。
  4.  前記目標劣化度は、前記複数の中古二次電池における最も劣化状態が進んだ中古二次電池の劣化度に設定する、
     請求項1乃至請求項3のいずれかに記載の特性平準化方法。
  5.  前記劣化度に応じて、前記複数の中古二次電池を複数のグループに振り分けるステップを有し、
     前記目標劣化度は、前記複数のグループ毎に設定する、
     請求項1乃至請求項3のいずれかに記載の特性平準化方法。
  6.  前記目標劣化度は、前記複数のグループの各グループにおける最も劣化状態が進んだ中古二次電池の劣化度に設定する、
     請求項5に記載の特性平準化方法。
  7.  複数の中古二次電池にそれぞれ識別情報を付与する識別番号付与部と、
     前記複数の中古二次電池の固有パラメータを計測するパラメータ計測部と、
     前記複数の中古二次電池の固有パラメータと、前記中古二次電池の新品時のパラメータとから、前記複数の中古二次電池の劣化度を算出する劣化度算出部と、
     前記複数の中古二次電池の劣化度に適応する目標劣化度を決定する目標劣化度決定部と、
     前記複数の中古二次電池の劣化度を前記目標劣化度にする前記複数の中古二次電池毎のエージング条件を決定するエージング条件決定部と、
     前記複数の中古二次電池毎のエージング条件によって、前記複数の中古二次電池をエージングするエージング処理部と、
     を備える、特性平準化装置。
  8.  前記複数の中古二次電池の劣化度に応じて、前記複数の中古二次電池を複数のグループに振り分けるグルーピング処理部を備え、
     前記目標劣化度決定部は、
     前記グループ毎に目標劣化度を決定する、
     請求項7に記載の特性平準化装置。
PCT/JP2022/000361 2021-04-12 2022-01-07 特性平準化方法、および、特性平準化装置 WO2022219858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22787786.7A EP4325688A1 (en) 2021-04-12 2022-01-07 Characteristic leveling method and characteristic leveling device
CN202280024714.9A CN117063327A (zh) 2021-04-12 2022-01-07 特性均衡化方法以及特性均衡化装置
JP2023514336A JPWO2022219858A1 (ja) 2021-04-12 2022-01-07
US18/237,767 US20230408598A1 (en) 2021-04-12 2023-08-24 Characteristic leveling method and characteristic leveling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067277 2021-04-12
JP2021-067277 2021-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/237,767 Continuation US20230408598A1 (en) 2021-04-12 2023-08-24 Characteristic leveling method and characteristic leveling apparatus

Publications (1)

Publication Number Publication Date
WO2022219858A1 true WO2022219858A1 (ja) 2022-10-20

Family

ID=83639505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000361 WO2022219858A1 (ja) 2021-04-12 2022-01-07 特性平準化方法、および、特性平準化装置

Country Status (5)

Country Link
US (1) US20230408598A1 (ja)
EP (1) EP4325688A1 (ja)
JP (1) JPWO2022219858A1 (ja)
CN (1) CN117063327A (ja)
WO (1) WO2022219858A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222195A (ja) 2014-05-22 2015-12-10 トヨタ自動車株式会社 中古二次電池の再構成品適用判定方法及び組電池再構成品の再構成方法
JP2017054684A (ja) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 蓄電池制御装置
JP2017147898A (ja) * 2016-02-19 2017-08-24 大阪瓦斯株式会社 蓄電装置及びマイクロバッテリ
JP2020181667A (ja) * 2019-04-24 2020-11-05 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222195A (ja) 2014-05-22 2015-12-10 トヨタ自動車株式会社 中古二次電池の再構成品適用判定方法及び組電池再構成品の再構成方法
JP2017054684A (ja) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 蓄電池制御装置
JP2017147898A (ja) * 2016-02-19 2017-08-24 大阪瓦斯株式会社 蓄電装置及びマイクロバッテリ
JP2020181667A (ja) * 2019-04-24 2020-11-05 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置

Also Published As

Publication number Publication date
EP4325688A1 (en) 2024-02-21
CN117063327A (zh) 2023-11-14
JPWO2022219858A1 (ja) 2022-10-20
US20230408598A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
CN110049896B (zh) 选择用于平衡电能存储组的储能单体的系统和方法
KR101678522B1 (ko) 대규모 배터리 시스템을 위한 동적으로 재구성가능한 프레임워크
EP2894748A1 (en) Demand response method and demand response control device
JP2019510970A (ja) 電池ヘルス状態を検出する装置及び方法
CN109946611B (zh) 估计电池状态的方法和装置
US20120054474A1 (en) System and Method for Customizing Information Handling System Internal Power Source and Service Offerings Based on Usage Profiles
CN111527641A (zh) 电池管理装置、电池系统、及车辆用电源系统
US7715937B2 (en) Allocating manufactured devices according to customer specifications
WO2022219858A1 (ja) 特性平準化方法、および、特性平準化装置
US20140039664A1 (en) Reliability test screen optimization
Salameh et al. Parametric and nonparametric models for lifespan modeling of insulation systems in electrical machines
CN111856283A (zh) 电池评价系统、电池评价方法以及程序
US20230258734A1 (en) System for estimating the state of health (soh) of battery, system and method for deriving parameters therefor
Shaaban et al. Transient behaviour of unbalanced lines
JP6036436B2 (ja) 伝送装置、制御カード、伝送方法及び伝送プログラム
EP3584873A1 (en) Determination device, determination method, and program
JP2007330021A (ja) 組電池の容量調整装置
CN110716806B (zh) 边缘节点计算能力确定方法、电子设备、系统及介质
CN113484760B (zh) 一种电池热失控识别方法、装置、设备及存储介质
JP7168521B2 (ja) 決定装置、二次電池、決定方法およびプログラム
JP2023016696A (ja) 二次電池の寿命を推定する方法、装置およびコンピュータプログラム製品
US6846992B2 (en) Power plane splitting using a contour method
Jansen et al. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine
CN112396291A (zh) 信息确定方法、装置、电子设备及计算机存储介质
KR102637850B1 (ko) 반도체 디바이스 테스트 장치 및 그것의 리던던시 분석 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514336

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280024714.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022787786

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022787786

Country of ref document: EP

Effective date: 20231113