WO2022218420A1 - 能在太阳光下促进植物生长的新型荧光粉及其制备和应用 - Google Patents

能在太阳光下促进植物生长的新型荧光粉及其制备和应用 Download PDF

Info

Publication number
WO2022218420A1
WO2022218420A1 PCT/CN2022/087168 CN2022087168W WO2022218420A1 WO 2022218420 A1 WO2022218420 A1 WO 2022218420A1 CN 2022087168 W CN2022087168 W CN 2022087168W WO 2022218420 A1 WO2022218420 A1 WO 2022218420A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
plant growth
fluorescent powder
under sunlight
growth under
Prior art date
Application number
PCT/CN2022/087168
Other languages
English (en)
French (fr)
Inventor
濑户孝俊
刘斌
王育华
王世川
Original Assignee
兰州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州大学 filed Critical 兰州大学
Publication of WO2022218420A1 publication Critical patent/WO2022218420A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/685Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the invention belongs to the technical field of luminescent materials, and relates to a red luminescent material excited by ultraviolet and blue light, in particular to a novel fluorescent powder that can promote plant growth under sunlight; the invention also relates to a preparation method and application of the fluorescent powder.
  • the solar spectrum is particularly important for plant growth.
  • the three regions from the solar spectrum are the irradiance light required for plant growth, namely blue light (400-500nm), red light (620-690nm) and far-red light (730-735nm), respectively responsible for Phototropism, photosynthesis and photomorphogenesis.
  • Plants do not utilize the ultraviolet (n-UV) and green portions of the solar spectrum. Therefore, photoconversion materials for plant growth have attracted more and more attention.
  • the focus of most light-conversion materials is to obtain emission bands suitable for plant growth.
  • Light conversion materials used for plant growth have good application prospects and provide the required light energy for plants in the process of growth and development. Therefore, light regulation is one of the important means to regulate plant growth.
  • Phosphors for fast growth and shortened maturation cycle are important for plant growth.
  • the most important for plant growth is the light located in the red light region (620nm ⁇ 690nm), because red light has a great influence on the flowering and mature stages of plants.
  • the utilization rate of the red light part of sunlight is very low. Therefore, improving the utilization rate of red light by plants has a crucial impact on the growth of plants, which can promote the growth rate of plants and increase yield.
  • LED grow lights In the prior art, phosphors for promoting plant growth are mostly used in LED lamps. In order to better promote the growth of commercial crops, most LED grow lights use high-cost red phosphors. However, there are many shortcomings in the use of phosphors for LED lights: the spectral part of the current LED plant lights on the market is quite different from the spectral curve absorbed by plant photosynthesis, the utilization rate of the light source is not high, and the price of LED chips is high and consumes a lot of electricity resources, increase the cost of cultivation, and waste energy. In addition, since LED grow lights contain high-cost phosphors and high-cost LED devices, power supply and buildings or greenhouses are required to illuminate plants, which makes LED grow lights more expensive. Therefore, although indoor LED plant growth plants can increase crop yield to a certain extent, they are not suitable for cultivating some low-economic crops, making it difficult for LED plant growth lights to be widely used.
  • nitrides such as CaAlSiN 3 :Eu have been used for plant growth, but nitrides are expensive to prepare and difficult to be widely used for plant growth.
  • the purpose of the present invention is to provide a new type of fluorescent powder that can promote plant growth under sunlight, improve the emission intensity of Sr 4 Al 14 O 25 : Mn 4+ fluorescent powder and the ability to absorb the full spectrum, so as to meet the needs of plant growth .
  • Another object of the present invention is to provide a preparation method of the above-mentioned phosphor.
  • the third object of the present invention is to provide an application of the above-mentioned phosphor.
  • the technical scheme adopted in the present invention is: a new type of fluorescent powder that can promote the growth of plants under sunlight,
  • This phosphor may be referred to as 4-14-25:MML.
  • Another technical solution adopted in the present invention is: a preparation method of the above-mentioned fluorescent powder, which is specifically carried out according to the following steps:
  • strontium compound adopts strontium carbonate (SrCO 3 ), strontium hydroxide, strontium nitrate, strontium carbonate, strontium sulfate or strontium phosphate;
  • the aluminum compound adopts aluminum oxide (Al 2 O 3 ), aluminum hydroxide, aluminum nitrate, aluminum sulfate or aluminum phosphate;
  • the manganese compound is manganese oxide (MnO 2 ), manganese hydroxide, manganese nitrate, manganese sulfate or manganese phosphate;
  • the magnesium compound is magnesium oxide (MgO), magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium sulfate or magnesium phosphate;
  • the gallium compound adopts gallium oxide (Ga 2 O 3 ), gallium hydroxide, gallium nitrate, gallium carbonate, gallium sulfate or gallium phosphate;
  • the scandium compound is scandium oxide (Sc 2 O 3 ), scandium hydroxide, scandium nitrate, scandium carbonate, scandium sulfate or scandium phosphate;
  • the chromium compound adopts chromium oxide (Cr 2 O 3 ), chromium hydroxide, chromium nitrate, chromium carbonate, chromium sulfate or chromium phosphate;
  • the lutetium compound employs lutetium oxide (Lu 2 O 3 ), lutetium hydroxide, lutetium nitrate, lutetium carbonate, lutetium sulfate, or lutetium phosphate.
  • the obtained compounds were ground to a micron level, mixed, and H 3 BO 3 powder was added as a flux and mixed to obtain a raw material powder; the mass of the H 3 BO 3 powder was 9wt% of the mass of the raw material powder.
  • step 2) The raw material powder of step 1) is placed in an environment that is passed into an atmosphere of air, heated to 1480°C at a heating rate of 5°C/min, calcined for 6 hours, naturally cooled to room temperature, and ground to obtain a product that can withstand sunlight.
  • the third technical solution adopted in the present invention is: an application of the above-mentioned fluorescent powder in promoting plant growth, especially in tomato growth and Chlorella growth.
  • the phosphor powder is made into a light conversion film, and at least two light conversion films are placed at the bottom of the tomato plant, and the at least two light conversion films are evenly arranged on the Around the tomato plant, the included angle between the light conversion film and the horizontal plane is 0-60°, preferably 20-60°.
  • the light conversion film When the light conversion film is placed parallel to the horizontal line (that is, the angle between the light conversion film and the horizontal plane is 0°), the partial shading of the leaves of the plant affects the sunlight from above reaching the light conversion film; and when the light conversion film is highly inclined, When the angle is 90° to the horizontal line, the amount of light irradiated by sunlight from above to the light conversion film is quite small, so the optimum angle is 20 to 60°.
  • Mn 4+ Mn 4+ activates the compound Sr 4 Al 14 O 25 ; wherein Mn 4+ replaces the six-coordinated Al 3+ position in Sr 4 Al 14 O 25 , but Mn 4+
  • Mg 2+ doping for charge compensation
  • Mg 2+ -Mn 4+ occupies the position of 2Al 3+ to achieve charge balance
  • Mg 2+ acts as a charge compensator It has a crucial influence on the luminescence properties
  • Ln 3+ has a similar ionic radius (0.0535nm) to six-coordinated Al 3+ , which can well replace the position of six-coordinated Al 3+ , while the doping of Ln 3+
  • the miscellaneous breaks the structural symmetry around Mn 4+ , breaks the forbidden transition of the 3d orbital, and also reduces the energy loss of the non-radiative transition, which greatly improves the luminous performance, making the luminous
  • the dd parity forbidden transition is transformed into a parity allowable transition, and the distance between the luminescent centers is increased, thereby suppressing the generation of non-radiative transitions and improving the luminescence performance of the phosphor.
  • the phosphor powder of the present invention is calcined at high temperature, and has the advantages of simple production process, simple equipment operation, low cost, no production of any harmful substances, green environmental protection, and high luminous intensity; under the irradiation of sunlight, it can emit deep red light that is beneficial to plant growth. .
  • the excitation spectrum of the phosphor covers a wide area, and can be directly excited by visible light without making a chip; the emission intensity of the phosphor in the red light region is greatly enhanced, which is more conducive to promoting the growth of plants. Sintering in air does not need to introduce protective gas and reducing gas, which reduces the preparation cost and ensures production safety.
  • FIG. 1 is a comparison diagram of the XRD pattern of the phosphor prepared in the comparative example and the standard card.
  • Figure 2 is the excitation and emission spectra of the phosphors prepared in the comparative example.
  • FIG. 3 is a comparison diagram of the XRD patterns of the phosphors prepared in Examples 1-4 and standard cards.
  • FIG. 4 is a comparison diagram of the emission spectra of the phosphors prepared in Examples 1 to 4 and the phosphors prepared in the comparative example.
  • FIG. 5 is a comparison diagram of the emission spectra of the phosphor powder prepared in Example 1 and the phosphor powder prepared in Comparative Example.
  • FIG. 6 is a spectrum diagram of sunlight.
  • FIG. 7 is a graph showing the emission spectrum of the phosphor of the present invention (Sr 4 Al 14 O 25 : Mn 4+ , Mg 2+ , Ga 3+ ) and the absorption spectrum of chlorophyll a and chlorophyll b.
  • Figure 8 is a graph showing the OD value of Chlorella after 7 days of cultivation.
  • Figure 9 is a schematic diagram of light conversion film transmission and backing plate reflection.
  • Figure 10 is a graph of a tomato growth experiment.
  • FIG. 11 is a comparison diagram of the ripeness of tomato fruits after the tomato growth experiment shown in FIG. 9 is completed.
  • the raw material powder was put into an alumina crucible, placed in a tube furnace, heated to 1480 °C at a heating rate of 5 °C/min under an air atmosphere, calcined for 6 hours, and cooled to room temperature with the furnace to obtain a calcined product, and ground the calcined product , the phosphor powder was obtained.
  • the XRD pattern of the phosphor powder obtained in the comparative example is shown in Figure 1.
  • the peak shape and peak position of each peak in the figure correspond to the PDF card one by one, which proves that the phase of the obtained powder is a single phase.
  • the excitation and emission spectra of the phosphors prepared in the comparative example are shown in Figure 2.
  • the excitation spectrum shows that there are two broad peaks, and the excitation peak peaks are located at 350 nm and 450 nm, respectively.
  • the emission spectrum shows two emission peaks, of which there is a narrow one at 650 nm. peak and the highest intensity. It can be found from the spectrogram that the phosphor Sr 3.993 Al 13.976 O 25 :0.014Mn 4+ can be excited by light in the wavelength range of 310 ⁇ 380nm and 380 ⁇ 520nm, and has a wide excitation region, and the phosphor can be excited by light in the range of 310 ⁇ 380nm and 310 ⁇ 520nm. There is absorption in the 380nm region, thereby avoiding the yellowing and disintegration of the film caused by sunlight; in the luminescence spectrum, the phosphor emits red light with wavelengths of about 650nm and 670nm.
  • the raw material powder was put into an alumina crucible, placed in a tube furnace, heated to 1480 °C at a heating rate of 5 °C/min under an air atmosphere, calcined for 6 hours, and cooled to room temperature with the furnace to obtain a calcined product, and ground the calcined product , to obtain a new type of phosphor that can promote plant growth under sunlight.
  • the raw material powder was put into an alumina crucible, placed in a tube furnace, heated to 1480 °C at a heating rate of 5 °C/min under an air atmosphere, calcined for 6 hours, and cooled to room temperature with the furnace to obtain a calcined product, and ground the calcined product , to obtain a new type of phosphor that can promote plant growth under sunlight.
  • the raw material powder was put into an alumina crucible, placed in a tube furnace, heated to 1480 °C at a heating rate of 5 °C/min under an air atmosphere, calcined for 6 hours, and cooled to room temperature with the furnace to obtain a calcined product, and ground the calcined product , to obtain a new type of phosphor that can promote plant growth under sunlight.
  • the raw material powder was put into an alumina crucible, placed in a tube furnace, heated to 1480 °C at a heating rate of 5 °C/min under an air atmosphere, calcined for 6 hours, and cooled to room temperature with the furnace to obtain a calcined product, and ground the calcined product , to obtain a new type of phosphor that can promote plant growth under sunlight.
  • Example 1 According to the chemical formula Sr 4 Al 13.095 O 25 : 0.005Mn 4+ , 0.2Mg 2+ , 0.7Cr 3+ stoichiometric ratio, weigh SrCO 3 , Al 2 O 3 , MnO 2 , MgO and Cr 2 O 3 respectively;
  • the method of Example 1 produced a new type of fluorescent powder that can promote plant growth under sunlight.
  • Example 2 According to the chemical formula Sr 4 Al 13.095 O 25 : 0.04Mn 4+ , 0.1Mg 2+ , 0.35Cr 3+ stoichiometric ratio, weigh SrCO 3 , Al 2 O 3 , MnO 2 , MgO and Cr 2 O 3 respectively;
  • the method of Example 2 produced a new type of fluorescent powder that can promote plant growth under sunlight.
  • Example 3 According to the chemical formula Sr 4 Al 13.975 O 25 : 0.023Mn 4+ , 0.001Mg 2+ , 0.001Cr 3+ stoichiometric ratio, weigh SrCO 3 , Al 2 O 3 , MnO 2 , MgO and Cr 2 O 3 respectively;
  • the method of Example 3 produced a new type of fluorescent powder that can promote plant growth under sunlight.
  • the XRD patterns of the phosphor powder obtained in Example 1, the phosphor powder obtained in Example 2, the phosphor powder obtained in Example 3, and the phosphor powder obtained in Example 4 are shown in Figure 3.
  • One-to-one correspondence with the PDF cards proves that the phases of the phosphor powders prepared in Examples 1 to 4 are single-phase.
  • a comparison diagram of the emission spectrum of the phosphors prepared in Examples 1 to 4 and the emission spectrum of the phosphors prepared in the comparative example is shown in FIG. 4 . It can be seen from FIG. 4 that the luminescence intensities of the phosphors prepared in Examples 1 to 4 are all increased by more than 500% compared to the luminescence intensity of the phosphors prepared in the comparative example.
  • FIG. 5 A comparison diagram of the emission spectrum of the phosphor prepared in Example 1 and the emission spectrum of the phosphor prepared in the comparative example is shown in FIG. 5 . It can be seen that the luminous intensity of the phosphor prepared in Example 1 is 568.64% higher than that of the phosphor prepared in the comparative example.
  • the light conversion film is made by adding the phosphor powder of the present invention by the preparation method in the prior art.
  • the solar spectrum diagram is shown in Figure 6; it can be seen that the blue light part of the sunlight has the highest intensity.
  • the present invention successfully prepares a new type of red phosphor Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ with excellent luminescence properties, and the red phosphor can be It is effectively excited by blue light, and its emission spectrum covers the absorption range of chlorophyll in plants (600-700 nm).
  • the emission peak position of the red phosphor matches the absorption bands of chlorophyll a and chlorophyll b, as shown in Figure 7. Therefore, the light conversion film prepared by using the phosphor of the present invention can be excited by sunlight outdoors, and emit red light to promote plant growth.
  • the phosphor powders prepared by using different designed raw materials have similar properties and obtained technical effects.
  • Chlorella is a green single-celled algae, which is a hot spot for biological cultivation in recent years. Unlike traditional land cultivation, Chlorella grows and reproduces in the water environment, and is suitable for an alkaline environment with sufficient sunlight and a temperature of about 30°C. Its growth method is cell division, so it has a very fast reproduction speed. During the cultivation process, CO 2 gas needs to be continuously introduced. Chlorella contains more abundant chlorophyll, and light plays a decisive role in its growth. The growth cycle of most plants is very long, and the incubation cycle of Chlorella is usually 7 days, which provides convenience for conducting growth experiments, and can perform multiple experiments in a short period of time.
  • the experimental group was divided into 5 groups, of which the 4th and 5th groups were blank control groups.
  • Groups 1-3 are experimental groups
  • the second group uses a commercial red nitride phosphor Sr 2 Si 5 N 8 :Eu 2+ light conversion film as the experimental control group
  • the third group uses a commercial red nitride phosphor CaAlSiN 3 :
  • the light conversion film prepared by Eu 2+ was used as the experimental control group
  • the first group adopted the light conversion film prepared by the Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , and 0.01Ga 3+ phosphors of the present invention.
  • the light conversion film prepared by using the phosphor of the present invention increases the growth rate of Chlorella by about 15%.
  • the experimental results show that the light conversion film prepared with the phosphor of the present invention Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ has a significant promoting effect on the growth of Chlorella, and the growth rate reaches 25% about.
  • the light conversion film used in the present invention is a reflective type, so in order to reduce part of the light transmission and lead to a decrease in the conversion efficiency, a backing plate needs to be used behind the light conversion film to re-reflect the transmitted light (picture b in FIG. 9 ), the backing plate It not only needs to have good plasticity and can be attached to the light conversion film, but also needs to choose a smooth white material to ensure that the transmitted light is completely reflected back.
  • a Teflon plate is used as the backing plate of the light conversion film.
  • the tomato growth experiment was carried out in April when the sun was full, and four groups were set up: group A, group B, group C and group D, as shown in Figure 10.
  • 1 ⁇ 5 shown in FIG. 10 are the serial numbers of the tomato shoots in each group in the experiment.
  • A1 (No. 1 in Group A) and B1 (No. 1 in Group B) are obtained by using the phosphors of the present invention Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ Experiments were carried out on the light conversion film of A1.
  • the mass percentage of the phosphor of the present invention in the light conversion film of A1 was 20%, and the mass percentage of the phosphor of the present invention in the light conversion film of B1 was 30%.
  • Groups C and D are blank control groups, the mass percentage of commercial phosphor CaAlSiN 3 :Eu 2+ in the light conversion film of A4 is 20%, and the mass percentage of commercial phosphor CaAlSiN 3 :Eu 2+ in the light conversion film of B4 30%.
  • the mass percentage of commercial phosphor Sr 2 Si 5 N 8 :Eu 2+ in the light conversion film of A5 is 20%, and the mass percentage of commercial phosphor Sr 2 Si 5 N 8 :Eu 2+ in the light conversion film of B5 is 30% %.
  • a commercial red phosphor was used as the experimental control group.
  • Two light conversion films are placed at the bottom of the tomato plant, the two light conversion films are respectively placed on both sides of the tomato plant, and the angle between the light conversion film and the horizontal plane is 0-60°, preferably 20-60°.
  • No pesticides and chemical fertilizers were sprayed during the experiment, and the experiment period was 85 days.
  • the promotion effect was characterized by fruit ripeness and fruit weight.
  • Figure 11 is a comparison diagram of the ripening of tomato fruits between the experimental group and the control group. It can be clearly found from the figure that most of the tomato fruits in the experimental group are mature, while almost all the fruits in the control group are immature, indicating that the light conversion film has played a significant role in promoting the ripening of tomato fruits.
  • the phosphor Sr 4 Al 13.969 O 25 The fruit weight and maturity of the light conversion film with 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ content of 30% are slightly worse than those of the phosphor Sr 2 Si 5 N 8 :Eu 2+ content of 30% light conversion film membrane. Based on the above experimental results and analysis, it is shown that the light conversion film prepared by using red phosphor has a significant effect on promoting the growth of tomato, and the fruit ripens in advance and achieves the effect of increasing the yield.
  • the phosphor of the present invention Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ costs only 25% of the cost of nitride, and is more suitable for preparing Light-converting film that promotes plant growth.
  • Table 1 is a statistical table of tomato fruit weights between the experimental group and the control group after the growth experiment . ) increased by about 25%, and B1 (30% of Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ ) increased by about 30%.
  • B1 (30% of Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ ) increased by about 30%.
  • the above experimental results show that the light conversion film prepared with the phosphor of the present invention Sr 4 Al 13.969 O 25 : 0.014Mn 4+ , 0.007Mg 2+ , 0.01Ga 3+ has outstanding performance in promoting tomato fruit ripening.

Abstract

本发明公开一种能在太阳光下促进植物生长的新型荧光粉及其制备和应用,该荧光粉的化学式Sr 4Al 14O 25:xMn 4+,yMg 2+,zLn 3+,0.005≤x≤0.04,0<y≤0.2,0<z≤0.7。按化学式中各化学组成的化学计量比称取锶化合物、铝化合物、锰化合物和镁化合物;再称取镓化合物、钪化合物、铬化合物、镥化合物中的一种;研磨,混合,加助熔剂,混匀;置于通入空气气氛的管式炉中煅烧,自然冷却至室温,研磨,制得能在太阳光下促进植物生长的新型荧光粉。该荧光粉成本低,亮度高,可发出有助于植物生长的红光,提高太阳光的利用率,促进植物生长,且成本低、效率高、绿色无污染。

Description

能在太阳光下促进植物生长的新型荧光粉及其制备和应用 技术领域
本发明属于发光材料技术领域,涉及一种紫外和蓝光激发的红色发光材料,具体涉及一种能在太阳光下促进植物生长的新型荧光粉;本发明还涉及该荧光粉的制备方法及应用。
背景技术
太阳光谱对植物的生长尤为重要。一般来说,来自太阳光谱的三个区域是植物生长所需的辐照光,分别是蓝色光(400~500nm)、红色光(620~690nm)和远红色光(730~735nm),分别负责光向性、光合作用和光形态发生。植物不利用太阳光谱的紫外部分(n-UV)和绿光部分。因此,用于植物生长的光转换材料越来越受到人们的关注。大多数光转换材料的重点是获得适合植物生长的发射带。用于植物生长的光转换材料具有良好的应用前景,为植物在生长发育的过程中提供所需的光能,因此光的调节是调控植物生长的重要手段之一,植物生长荧光粉是促进植物快速生长和缩短成熟周期的荧光粉。其中对植物生长最重要的是位于红光区域的光(620nm~690nm),因为红光在植物开花和成熟阶段影响很大。植物生长过程中对太阳光的红光部分利用率很低,因此,提高植物对红光的利用率对植物的生长有着至关重要的影响,可以促进植物的生长速度,提高产量。
现有技术中,促进植物生长的荧光粉多用于LED灯中。为了更好地促进经济作物的生长,LED植物生长灯大多数采用高成本的红 光荧光粉。但荧光粉用于LED灯存在着许多缺点:目前市面上的LED植物灯的光谱部分与植物光合作用吸收的光谱曲线差异较大,对光源利用率不高,而且LED芯片价格高,消耗大量电力资源,增加了种植成本,且浪费能源。此外,由于LED植物生长灯含有高成本的荧光粉和高成本的LED器件,需要供电和建筑或温室才能对植物进行光照,这使得LED植物生长灯的成本更高。所以室内LED植物生长工厂虽然可以在一定程度提高农作物产量,但不适合培育一些低经济作物,使得LED植物生长灯难以广泛应用。
到目前为止,氮化物如CaAlSiN 3:Eu已被用于植物生长,但是氮化物制备成本较高,难以广泛用于植物生长。
发明内容
本发明的目的是提供一种能在太阳光下促进植物生长的新型荧光粉,提高Sr 4Al 14O 25:Mn 4+荧光粉的发射强度和对全光谱的吸收能力,满足植物生长的需求。
本发明的另一个目的是提供一种上述荧光粉的制备方法。
本发明的第三个目的是提供一种上述荧光粉的应用。
为实现上述目的,本发明所采用的技术方案是:一种能在太阳光下促进植物生长的新型荧光粉,
其化学式为Sr 4Al 14O 25:xMn 4+,yMg 2+,zLn 3+;其中Ln 3+为Ga 3+、Sc 3+、Cr 3+或Lu 3+;0.005≤x≤0.04,0<y≤0.2,0<z≤0.7。
该荧光粉可以称为4-14-25:MML。
本发明所采用的另一个技术方案是:一种上述荧光粉的制备方法, 具体按以下步骤进行:
1)按化学式Sr 4Al 14O 25:xMn 4+,yMg 2+,zLn 3+中各化学组成的化学计量比分别称取锶化合物、铝化合物、锰化合物和镁化合物,再称取镓化合物、钪化合物、铬化合物或镥化合物中的一种;
锶化合物采用碳酸锶(SrCO 3)、锶的氢氧化物、锶的硝酸盐、锶的碳酸盐、锶的硫酸盐或锶的磷酸盐;
铝化合物采用氧化铝(Al 2O 3)、铝的氢氧化物、铝的硝酸盐、铝的硫酸盐或铝的磷酸盐;
锰化合物采用氧化锰(MnO 2)、锰的氢氧化物、锰的硝酸盐、锰的硫酸盐或锰的磷酸盐;
镁化合物采用氧化镁(MgO)、镁的氢氧化物、镁的硝酸盐、镁的碳酸盐、镁的硫酸盐或镁的磷酸盐;
镓化合物采用氧化镓(Ga 2O 3)、镓的氢氧化物、镓的硝酸盐、镓的碳酸盐、镓的硫酸盐或镓的磷酸盐;
钪化合物采用氧化钪(Sc 2O 3)、钪的氢氧化物、钪的硝酸盐、钪的碳酸盐、钪的硫酸盐或钪的磷酸盐;
铬化合物采用氧化铬(Cr 2O 3)、铬的氢氧化物、铬的硝酸盐、铬的碳酸盐、铬的硫酸盐或铬的磷酸盐;
镥化合物采用氧化镥(Lu 2O 3)、镥的氢氧化物、镥的硝酸盐、镥的碳酸盐、镥的硫酸盐或镥的磷酸盐。
将所取各化合物研磨至微米级,混合,加入H 3BO 3粉末作为助熔剂,混匀,得原料粉末;H 3BO 3粉末的质量为原料粉末质量的9wt%。
2)将步骤1)的原料粉末置于通入空气气氛的环境中,以5℃/min的升温速率升温至1480℃,煅烧6小时,自然冷却至室温,研磨,制得能在太阳光下促进植物生长的新型荧光粉。
本发明所采用的第三个技术方案是:一种上述荧光粉在促进植物生长方面的应用,尤其在西红柿生长方面和小球藻生长方面的应用。在用于西红柿生长方面时,采用现有技术中的制备方法,将该荧光粉制成光转换膜,在西红柿植株底部放置至少两块该光转换膜,该至少两块光转换膜均匀布置于西红柿植株的周围,光转换膜与水平面之间的夹角为0~60°,优选20~60°。光转换膜平行于水平线(即光转换膜与水平面之间的夹角为0°)放置的情况下,植物的叶片部分遮挡影响了上方的阳光到达光转换膜;而在光转换膜高度倾斜,与水平线成90°角的状况下,来自上方的阳光照射到光转换膜的光量相当小,因此,最佳角度为20~60°。
由于在Sr 4Al 14O 25:Mn 4+中Mn 4+激活化合物Sr 4Al 14O 25;其中Mn 4+取代Sr 4Al 14O 25中六配位Al 3+的位置,但是Mn 4+与Al 3+存在着电荷的不平衡,本发明荧光粉用Mg 2+的掺杂进行电荷补偿,Mg 2+-Mn 4+占据2Al 3+的位置达到电荷平衡,Mg 2+作为电荷补偿剂对发光性能有着至关重要的影响;Ln 3+与六配位Al 3+有着相近的离子半径(0.0535nm),可以很好的取代六配位Al 3+的位置,而Ln 3+的掺杂打破了Mn 4+周围的结构对称性,打破了3d轨道的禁止跃迁,也会减少非辐射跃迁的能量损失,对发光性能有着很大的提升,使得发光强度相对于现有技术中的Sr 4Al 14O 25:Mn 4+提高了578.64%。
在Ga 3+离子引入后,d-d宇称禁戒跃迁转变为宇称允许跃迁,并增大了发光中心之间的距离,从而抑制非辐射跃迁的产生,使得荧光粉发光性能提升。
本发明荧光粉高温煅烧而成,生产工艺简单、设备操作简单、成本低、无任何有害物质产生、绿色环保、发光强度高;在太阳光的照射下能发射出有利于植物生长的深红光。该荧光粉激发光谱覆盖区域广,可以直接利用可见光激发,无需制成芯片;大幅增强了荧光粉在红光区的发射强度,更有利于促进植物的生长。在空气中烧结,不用通入保护性气体和还原性气体,降低制备成本并且保证生产安全。
附图说明
图1是对比例制得荧光粉的XRD图与标准卡片的对照图。
图2是对比例制得荧光粉的激发和发射光谱图。
图3是实施例1~4制得荧光粉的XRD图谱与标准卡片的对照图。
图4是实施例1~4制得荧光粉与对比例制得荧光粉的发射光谱对照图。
图5是实施例1制得荧光粉与对比例制得荧光粉的发射光谱对照图。
图6是太阳光的光谱图。
图7是本发明荧光粉(Sr 4Al 14O 25:Mn 4+,Mg 2+,Ga 3+)的发射光谱与叶绿素a及叶绿素b的吸收光谱曲线图。
图8是经过7天培育后小球藻的OD值曲线图。
图9是光转化膜透射和衬板反射示意图。
图10是西红柿生长实验图。
图11是图9所示西红柿生长实验结束后,西红柿果实成熟度对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
对比例
按化学式Sr 4Al 13.986O 25:0.014Mn 4+所示的化学计量比,称取1.9649g的SrCO 3、2.3750g的Al 2O 3和0.004g的MnO 2,将称取的各原料充分研磨,混合,加入H 3BO 3粉末,混匀,得原料粉末。将原料粉末放入氧化铝坩埚,置于管式炉中,空气气氛下、以5℃/min的升温速率升温至1480℃,煅烧6小时,随炉冷却至室温,得煅烧物,研磨煅烧物,制得荧光粉。
对比例制得荧光粉的XRD图谱,如图1所示,图中各峰峰形、峰位与PDF卡片一一对应,证明制得的粉末的物相为单相。
对比例制得荧光粉的激发和发射光谱,见图2,激发光谱显示存在两个宽峰,激发峰峰值分别位于350nm和450nm,发射光谱显示了两个发射峰,其中在650nm处存在一个窄峰且强度最高。通过光谱图可以发现,荧光粉Sr 3.993Al 13.976O 25:0.014Mn 4+可被波长范围310~380nm和380~520nm的光激发,有着很广的激发区域,而且该荧光粉在紫外光310~380nm区域有吸收,从而避免了太阳光对膜造成的黄变和崩解;发光光谱中该荧光粉发出波长约为650nm、670nm的红光。
实施例1
按化学式Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+的化学计量比,称取1.9245g的SrCO 3、2.2690g的Al 2O 3,0.004g的MnO 2、0.00094g的MgO和0.003124g的Ga 2O 3;研磨,混合,加入H 3BO 3粉末,混匀,得原料粉末;H 3BO 3粉末的质量为原料粉末质量的9wt%。将原料粉末放入氧化铝坩埚,置于管式炉中,空气气氛下、以5℃/min的升温速率升温至1480℃,煅烧6小时,随炉冷却至室温,得煅烧物,研磨煅烧物,制得能在太阳光下促进植物生长的新型荧光粉。
实施例2
按化学式Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Lu 3+的化学计量比,称取1.9245g的SrCO 3、2.2690g的Al 2O 3、0.004g的MnO 2、0.00094g的MgO和0.006632g的Lu 2O 3;研磨,混合,加入H 3BO 3粉末,混匀,得原料粉末;H 3BO 3粉末的质量为原料粉末质量的9wt%。将原料粉末放入氧化铝坩埚,置于管式炉中,空气气氛下、以5℃/min的升温速率升温至1480℃,煅烧6小时,随炉冷却至室温,得煅烧物,研磨煅烧物,制得能在太阳光下促进植物生长的新型荧光粉。
实施例3
按化学式Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Sc 3+的化学计量比,称取1.9245g的SrCO 3、2.2690g的Al 2O 3,0.004g的MnO 2、0.00094g的MgO和0.002288g的Sc 2O 3;混合,加入H 3BO 3粉末,混匀,得原料粉末;H 3BO 3粉末的质量为原料粉末质量的9wt%。将原料粉末放入氧化铝坩埚,置于管式炉中,空气气氛下、以5℃/min的 升温速率升温至1480℃,煅烧6小时,随炉冷却至室温,得煅烧物,研磨煅烧物,制得能在太阳光下促进植物生长的新型荧光粉。
实施例4
按化学式Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Cr 3+的化学计量比,称取1.9245g的SrCO 3、2.2690g的Al 2O 3、0.004g的MnO 2、0.00094g的MgO和0.002522g的Cr 2O 3;混合,加入H 3BO 3粉末,混匀,得原料粉末;H 3BO 3粉末的质量为原料粉末质量的9wt%。将原料粉末放入氧化铝坩埚,置于管式炉中,空气气氛下、以5℃/min的升温速率升温至1480℃,煅烧6小时,随炉冷却至室温,得煅烧物,研磨煅烧物,制得能在太阳光下促进植物生长的新型荧光粉。
实施例5
按化学式Sr 4Al 13.095O 25:0.005Mn 4+,0.2Mg 2+,0.7Cr 3+的化学计量比,分别称取SrCO 3、Al 2O 3、MnO 2、MgO和Cr 2O 3;按实施例1的方法制得能在太阳光下促进植物生长的新型荧光粉。
实施例6
按化学式Sr 4Al 13.095O 25:0.04Mn 4+,0.1Mg 2+,0.35Cr 3+的化学计量比,分别称取SrCO 3、Al 2O 3、MnO 2、MgO和Cr 2O 3;按实施例2的方法制得能在太阳光下促进植物生长的新型荧光粉。
实施例7
按化学式Sr 4Al 13.975O 25:0.023Mn 4+,0.001Mg 2+,0.001Cr 3+的化学计量比,分别称取SrCO 3、Al 2O 3、MnO 2、MgO和Cr 2O 3;按实施例3的方法制得能在太阳光下促进植物生长的新型荧光粉。
实施例1制得荧光粉、实施例2制得荧光粉、实施例3制得荧光粉和实施例4制得荧光粉的XRD图谱,如图3所示,图中各峰峰形、峰位与PDF卡片一一对应,证明实施例1~4制得的荧光粉粉末的物相为单相。实施例1~4制得荧光粉的发射光谱与对比例制得荧光粉的发射光谱的对比图,如图4。从图4可以看出实施例1~4制得荧光粉的发光强度相对于对比例制得荧光粉的发光强度均提高了500%以上。
实施例1制得荧光粉的发射光谱与对比例制得荧光粉的发射光谱对比图,如图5。可以看出实施例1制得荧光粉的发光强度比对比例制得荧光粉的发光强度提高了568.64%。
用现有技术中的制备方法添加本发明荧光粉制成光转换膜。
太阳光谱图,如图6;可以看出,太阳光中蓝光部分强度最高。本发明基于对发光性能的调控,成功制备出了具有优异发光性能的新型红色荧光粉Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+,且该红色荧光粉可以被蓝光有效激发,其发射光谱覆盖植物体中叶绿素的吸收范围(600~700nm),同时,该红色荧光粉的发射峰位置与叶绿素a和叶绿素b的吸收波段相匹配,如图7所示。因此,使用本发明荧光粉制备的光转换膜可以在室外被太阳光激发,发射出红光促进植物生长。
本发明制备方法中采用设计的不同原料制得的荧光粉的性能和所取得的技术效果均相近。
基于以上理论分析,进行了西红柿和小球藻的生长实验:
1.小球藻生长实验
小球藻是一种绿色的单细胞藻类,是近年来生物培育的热点,不同于传统的土地种植,小球藻在水环境下生长繁殖,适宜在阳光充足、温度约30℃的碱性环境下生长,其生长方式为细胞分裂式,因此具有很快的繁殖速度,在培育过程中需要不断通入CO 2气体,小球藻中含有更丰富的叶绿素体,光对其生长具有决定性作用。大多数植物的生长周期很长,而小球藻的培育周期通常为7天,这为进行生长实验提供了便捷,可以在短期内进行多次实验。
为保证阳光充足,且室外温度适宜,于8月份在室外进行小球藻生长实验。实验组一共分为5组,其中,第4组和第5组为空白对照组。1~3组为实验组,第2组采用商用红色氮化物荧光粉Sr 2Si 5N 8:Eu 2+制备的光转换膜作为实验对照组,第3组采用商用红色氮化物荧光粉CaAlSiN 3:Eu 2+制备的光转换膜作为实验对照组,第1组采用本发明Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+荧光粉制备的光转换膜。
做两次(每次7天)实验。小球藻生长期间不间断均匀通入CO 2气体,经过7天的生长,通过测试光密度(OD值)表征小球藻的最终浓度,实验结果如图8所示。图8中的a图是第一次7天培育后小球藻OD值曲线图,图8中的b图是第二次7天培育后小球藻OD值曲线图。相比于空白对照组,两次实验中,使用本发明荧光粉制备的光转换膜使小球藻的增长率分别提高了24%和26%。相比于两种商用红色荧光粉,使用本发明荧光粉制备的光转换膜使小球藻的增长率均提高了约为15%。实验结果表明,用本发明荧光粉 Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+制备的光转换膜对小球藻生长具有明显促进作用,增长率达到25%左右。
2.西红柿生长实验
无论是透射型光转换膜,还是反射型光转换膜,都会由于部分光的反射、透射或折射产生光损失(图9中的a图)。本发明中采用的光转换膜为反射型,所以为了减少部分光透射导致转换效率下降,需要在光转换膜后采用衬板将透射后的光重新反射(图9中的b图),衬板不仅需要有很好的可塑性,可以与光转换膜贴合,还需要选择光滑的白色材料,保证透射的光被完全反射回去,本发明中采用特氟龙板作为光转换膜的衬板。当太阳光中的蓝光照射到光转换膜上后被转换成植物所需的红光,部分反射到植物体上,也有一部分透射过光转换膜损失掉,当在光转换膜后加装特氟龙衬板后,部分透射的红光被折射后重新反射到植物体,进一步提高光转换利用率。
在阳光充足的4月份进行西红柿生长实验,设置A组、B组、C组和D组共四个组,如图10。图10中显示的1→5是每组中进行实验的西红柿苗在该组中的序号。其中,A1(A组中的1号)和B1(B组中的1号)为采用本发明荧光粉Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+制得的光转换膜进行实验,A1的光转换膜中本发明荧光粉的质量百分比为20%,B1的光转换膜中本发明荧光粉的质量百分比为和30%。C组和D组为空白对照组,A4的光转换膜中商用荧光粉CaAlSiN 3:Eu 2+的质量百分比为20%,B4的光转换膜中商用荧光粉CaAlSiN 3:Eu 2+的质量百分比为30%。A5的光转换膜中商用荧光粉 Sr 2Si 5N 8:Eu 2+的质量百分比为20%,B5的光转换膜中商用荧光粉Sr 2Si 5N 8:Eu 2+的质量百分比为30%。以商用红色荧光粉作为实验对照组。在西红柿植株底部放置两块光转换膜,该两块光转换膜分别置于西红柿植株的两侧,且光转换膜与水平面之间的夹角呈0~60°,优选20~60°。实验过程中不喷洒农药和化肥,实验周期85天。通过果实成熟度和果实重量表征促进效果。
实验期间对照组中有四株西红柿植株死亡。生长实验结束后,对照组中一株西红柿植株没有结果,空白对照组只有五株结果。图11为实验组与对照组西红柿果实成熟情况对比图。从图中可以明显发现,实验组的西红柿果实大部分已经成熟,而对照组果实几乎全部未成熟,说明光转换膜对西红柿果实成熟起到了明显促进作用,其中荧光粉Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+含量为30%的光转换膜的果实重量及成熟度略差于荧光粉Sr 2Si 5N 8:Eu 2+含量为30%的光转换膜。基于以上的实验结果和分析,说明利用红色荧光粉制备的光转换膜,用于促进西红柿生长具有明显作用,果实提前成熟并达到增加产量的效果。相比于氮化物的高成本,本发明荧光粉Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+的成本仅为氮化物成本的25%,更适合制备用于促进植物生长的光转换膜。
西红柿生长实验后,西红柿果实重量统计,如表1。
表1 西红柿果实重量统计表
Figure PCTCN2022087168-appb-000001
Figure PCTCN2022087168-appb-000002
表1为生长实验结束后,实验组与对照组西红柿果实重量统计表,相比于对照组,A1(20%Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+)增产约25%,B1(30%的Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+)增产约30%。以上实验结果表明,用本发明荧光粉Sr 4Al 13.969O 25:0.014Mn 4+,0.007Mg 2+,0.01Ga 3+制备的光转换膜在促进西红柿果实成熟方面具有突出表现。

Claims (10)

  1. 一种能在太阳光下促进植物生长的新型荧光粉,其特征在于,该新型荧光粉的化学式为:
    Sr 4Al 14O 25:xMn 4+,yMg 2+,zLn 3+;其中Ln 3+为Ga 3+、Sc 3+、Cr 3+或Lu 3+;0.005≤x≤0.04,0<y≤0.2,0<z≤0.7。
  2. 如权利要求1所述的能在太阳光下促进植物生长的新型荧光粉,其特征在于,Ln 3+为Ga 3+
  3. 如权利要求1或2所述的能在太阳光下促进植物生长的新型荧光粉,其特征在于,使用该新型荧光粉时,将该新型荧光粉与树脂制成光转换膜,在光转换膜下方设置反射膜,由该反射膜和光转换膜组成的系统可将太阳光转换为波长650~700nm的红光。
  4. 一种权利要求1所述能在太阳光下促进植物生长的新型荧光粉的制备方法,其特征在于,该制备方法具体按以下步骤进行:
    1)按化学式中各化学组成的化学计量比分别称取锶化合物、铝化合物、锰化合物和镁化合物;
    再称取镓化合物、钪化合物、铬化合物或镥化合物;
    将所取各化合物研磨至微米级,混合,加入H 3BO 3粉末,混匀,得原料粉末;
    2)将步骤1)的原料粉末置于通入空气气氛的管式炉中,在1480℃温度下,煅烧6小时,自然冷却至室温,研磨,制得能在太阳光下促进植物生长的新型荧光粉。
  5. 如权利要求4所述的能在太阳光下促进植物生长的新型荧光粉 的制备方法,其特征在于,所述步骤1)中,
    锶化合物采用碳酸锶、锶的氢氧化物、锶的硝酸盐、锶的碳酸盐、锶的硫酸盐或锶的磷酸盐;
    铝化合物采用氧化铝、铝的氢氧化物、铝的硝酸盐、铝的硫酸盐或铝的磷酸盐;
    锰化合物采用氧化锰、锰的氢氧化物、锰的硝酸盐、锰的硫酸盐或锰的磷酸盐;
    镁化合物采用氧化镁、镁的氢氧化物、镁的硝酸盐、镁的碳酸盐、镁的硫酸盐或镁的磷酸盐;
    镓化合物采用氧化镓、镓的氢氧化物、镓的硝酸盐、镓的碳酸盐、镓的硫酸盐或镓的磷酸盐;
    钪化合物采用氧化钪、钪的氢氧化物、钪的硝酸盐、钪的碳酸盐、钪的硫酸盐或钪的磷酸盐;
    铬化合物采用氧化铬、铬的氢氧化物、铬的硝酸盐、铬的碳酸盐、铬的硫酸盐或铬的磷酸盐;
    镥化合物采用氧化镥、镥的氢氧化物、镥的硝酸盐、镥的碳酸盐、镥的硫酸盐或镥的磷酸盐。
  6. 如权利要求4所述的能在太阳光下促进植物生长的新型荧光粉的制备方法,其特征在于,所述步骤1)中,H 3BO 3粉末的质量为原料粉末质量的9wt%。
  7. 如权利要求4所述的能在太阳光下促进植物生长的新型荧光粉的制备方法,其特征在于,所述步骤2)中,以5℃/min的升温速率 升温至1480℃。
  8. 一种权利要求1所述能在太阳光下促进植物生长的新型荧光粉的应用,在西红柿生长方面和小球藻生长方面的应用。
  9. 如权利要求8所述的能在太阳光下促进植物生长的新型荧光粉的应用,其特征在于,该荧光粉用于西红柿生长方面时,采用现有技术中的制备方法,将该荧光粉制成光转换膜,将至少两块该光转换膜均匀布置置于西红柿植株底部周围,光转换膜与水平面之间的夹角为0~60°。
  10. 如权利要求9所述的能在太阳光下促进植物生长的新型荧光粉的应用,其特征在于,光转换膜与水平面之间的夹角为20~60°。
PCT/CN2022/087168 2021-04-16 2022-04-15 能在太阳光下促进植物生长的新型荧光粉及其制备和应用 WO2022218420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110409340.XA CN113088283A (zh) 2021-04-16 2021-04-16 能在太阳光下促进植物生长的新型荧光粉及其制备方法
CN202110409340.X 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022218420A1 true WO2022218420A1 (zh) 2022-10-20

Family

ID=76678116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087168 WO2022218420A1 (zh) 2021-04-16 2022-04-15 能在太阳光下促进植物生长的新型荧光粉及其制备和应用

Country Status (2)

Country Link
CN (2) CN113088283A (zh)
WO (1) WO2022218420A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088283A (zh) * 2021-04-16 2021-07-09 兰州大学 能在太阳光下促进植物生长的新型荧光粉及其制备方法
CN114045169B (zh) * 2021-11-23 2023-07-25 光源股份有限公司 一种能与led蓝光芯片复合成植物生长灯的红色荧光粉及其制备方法
CN115261019A (zh) * 2022-08-26 2022-11-01 兰州大学 一种荧光粉和促进植物生长的光转化膜及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189592A (ja) * 2013-03-26 2014-10-06 Mitsubishi Chemicals Corp 蛍光体及び、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
CN111876145A (zh) * 2020-07-03 2020-11-03 甘肃颐年商贸有限责任公司 一种能促进植物生长的光转化膜及其制备方法
CN112538257A (zh) * 2020-12-28 2021-03-23 甘肃颐年商贸有限责任公司 一种可促进植物生长的玻璃温室用转光膜及其制备方法
CN113088283A (zh) * 2021-04-16 2021-07-09 兰州大学 能在太阳光下促进植物生长的新型荧光粉及其制备方法
CN113248926A (zh) * 2021-05-06 2021-08-13 甘肃颐年商贸有限责任公司 一种能促进植物生长的红光转化膜及其制备方法
CN113444521A (zh) * 2020-03-24 2021-09-28 有研稀土新材料股份有限公司 一种红色荧光粉及具有其的发光器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321472B (zh) * 2011-09-08 2013-11-13 华南理工大学 一种四价锰离子掺杂铝酸锶镁的红色荧光粉及其制备方法
CN102517004B (zh) * 2011-12-16 2014-07-16 华南理工大学 一种铝酸锶镁与氧化铝复合的红色荧光粉及其制备方法
CN102732250B (zh) * 2012-06-27 2014-02-26 华南理工大学 一种红色荧光粉及其制备方法
CN104232082A (zh) * 2013-06-17 2014-12-24 欧司朗有限公司 红色荧光体、白色光源、发光装置和红色荧光体形成方法
CN111205868A (zh) * 2020-01-19 2020-05-29 兰州大学 能促进植物生长荧光粉及其制备和用其制作的转光膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189592A (ja) * 2013-03-26 2014-10-06 Mitsubishi Chemicals Corp 蛍光体及び、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
CN113444521A (zh) * 2020-03-24 2021-09-28 有研稀土新材料股份有限公司 一种红色荧光粉及具有其的发光器件
CN111876145A (zh) * 2020-07-03 2020-11-03 甘肃颐年商贸有限责任公司 一种能促进植物生长的光转化膜及其制备方法
CN112538257A (zh) * 2020-12-28 2021-03-23 甘肃颐年商贸有限责任公司 一种可促进植物生长的玻璃温室用转光膜及其制备方法
CN113088283A (zh) * 2021-04-16 2021-07-09 兰州大学 能在太阳光下促进植物生长的新型荧光粉及其制备方法
CN113248926A (zh) * 2021-05-06 2021-08-13 甘肃颐年商贸有限责任公司 一种能促进植物生长的红光转化膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, LIN ET AL.: "Enhanced luminescence performances of Mn4+-activated Sr4Al14O25 red phosphors by doping with Sc3+ ions", JOURNAL OF RARE EARTHS, vol. 39, no. 4, 18 July 2020 (2020-07-18), XP086521055, ISSN: 1002-0721, DOI: 10.1016/j.jre.2020.06.008 *
PENG MINGYING, YIN XUEWEN, TANNER PETER A., BRIK M. G., LI PENGFEI: "Site Occupancy Preference, Enhancement Mechanism, and Thermal Resistance of Mn 4+ Red Luminescence in Sr 4 Al 14 O 25 : Mn 4+ for Warm WLEDs", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 8, 28 April 2015 (2015-04-28), US , pages 2938 - 2945, XP055977103, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.5b00226 *

Also Published As

Publication number Publication date
CN113088283A (zh) 2021-07-09
CN114656957B (zh) 2023-04-11
CN114656957A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2022002217A1 (zh) 一种能促进植物生长的光转化膜及其制备方法
WO2022218420A1 (zh) 能在太阳光下促进植物生长的新型荧光粉及其制备和应用
CN102709456B (zh) 一种仿生态的植物生长补光led光源
CN109874803B (zh) 一种能促进植物生长的荧光粉及其制备方法
CN115466620B (zh) 一种钠铕镓锗石榴石基高效率深红光荧光粉及其制备方法
Fang et al. Light keys open locks of plant photoresponses: A review of phosphors for plant cultivation LEDs
CN115287068B (zh) 一种钠钇镓锗石榴石基近红外光荧光粉及其制备方法
CN113402744B (zh) 一种能促进植物生长的光转化膜及其制备方法和应用
CN102268261A (zh) 一种双激发双发射荧光粉及其制备方法和应用方法
WO2022218431A1 (zh) 一种能促进植物生长的荧光粉、其制备及应用
CN112011332B (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
Chen et al. Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications
WO2022233116A1 (zh) 一种单基质双发射荧光粉及其制备方法与应用
CN111205868A (zh) 能促进植物生长荧光粉及其制备和用其制作的转光膜
CN113248926B (zh) 一种能促进植物生长的红光转化膜及其制备方法
CN105647535A (zh) 一种Eu2+掺杂的氟磷酸盐及其应用
CN107384383A (zh) 一种uv激发白光led用复合型荧光粉
CN110358537A (zh) 一种用于led植物生长灯的深红色荧光粉及其制备方法
CN115353885A (zh) 一种近紫外光和绿光激发的远红光荧光粉及其应用方法
CN113999677A (zh) 一种双波段紫外光激发的红色荧光粉及其制备方法和应用
CN108217621B (zh) 一种磷酸盐及以其为基质的荧光粉的合成与应用
CN101538464A (zh) 一种真空紫外激发的红色荧光材料及其制备方法和应用
CN114958352B (zh) 一种红色荧光粉及其制备方法和应用
CN112940725B (zh) Mn4+掺杂的稀土铝酸盐红色荧光粉及其制备方法和应用
AU2021103790A4 (en) Synthesis of Green Exciting Eu2+Activated Far Red Color Emitting CaMg2(SO4)3Phosphor for Plant Cultivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18287031

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 22787642

Country of ref document: EP

Kind code of ref document: A1