WO2022218164A1 - 一种车身主动控制方法、装置及车辆 - Google Patents

一种车身主动控制方法、装置及车辆 Download PDF

Info

Publication number
WO2022218164A1
WO2022218164A1 PCT/CN2022/084528 CN2022084528W WO2022218164A1 WO 2022218164 A1 WO2022218164 A1 WO 2022218164A1 CN 2022084528 W CN2022084528 W CN 2022084528W WO 2022218164 A1 WO2022218164 A1 WO 2022218164A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
damping force
shock absorber
speed
relative
Prior art date
Application number
PCT/CN2022/084528
Other languages
English (en)
French (fr)
Inventor
王星亮
刘天培
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022218164A1 publication Critical patent/WO2022218164A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control

Definitions

  • the present invention relates to the technical field of automobiles, and in particular, to a method, a device and a vehicle for active body control.
  • the present invention aims to provide a vehicle body active stability control method, device and vehicle, so as to solve the problem that the vehicle body easily shakes violently when the vehicle is overtaken at high speed, causing disturbing drivers and passengers.
  • a vehicle body active stability control method wherein a controller applied to an electronically controlled shock absorption system of a first vehicle, the method comprising:
  • the damping force of the shock absorber at different positions of the first vehicle is adjusted according to the real-time vehicle speed, the relative vehicle speed and the relative position relationship, so that the first vehicle The body of the vehicle remains stable.
  • the first vehicle in the process of meeting with the second vehicle, according to the real-time vehicle speed, the relative vehicle speed and the relative positional relationship, the first vehicle is adjusted to be different.
  • the step of damping the force of the shock absorber at the position to stabilize the body of the first vehicle comprising:
  • the restoring damping force of the shock absorber at the first wheel of the first vehicle is increased, and the first wheel is increased.
  • the first wheel is a wheel on the side away from the lane where the second vehicle is located
  • the second wheel is a wheel on the side of the lane where the second vehicle is located.
  • the step of obtaining the relative vehicle speed between the second vehicle and the first vehicle includes:
  • the relative vehicle speed is determined according to the change value of the distance and the corresponding monitoring time interval.
  • the method further includes:
  • the damping force of the shock absorber at different positions of the first vehicle is adjusted to return to the state before the rendezvous with the second vehicle.
  • the vehicle stores a restoration damping force ratio map and a compression damping force ratio map for shock absorbers at different positions;
  • the restoration damping force ratio map is used to indicate the The first correspondence between the restoration damping force control ratio and the real-time vehicle speed and the relative vehicle speed;
  • the compression damping force ratio map is used to indicate the compression damping force control ratio and the real-time vehicle speed and the relative speed. a second correspondence between vehicle speeds;
  • the restoring damping force of the shock absorber at the first wheel of the first vehicle is increased, and the The step of describing the compression damping force of the shock absorber at the second wheel of the first vehicle, comprising:
  • the restoration damping force ratio map corresponding to the first target shock absorber For the first target shock absorber at the first wheel of the first vehicle, according to the real-time vehicle speed and the relative vehicle speed, query the restoration damping force ratio map corresponding to the first target shock absorber, and determine Target restoration damping force control ratio;
  • the compression damping force ratio map corresponding to the second target shock absorber For the second target shock absorber at the second wheel of the first vehicle, according to the real-time vehicle speed and the relative vehicle speed, query the compression damping force ratio map corresponding to the second target shock absorber, and determine Target compression damping force control ratio;
  • the compression damping force of the second target shock absorber is increased according to the target compression damping force control ratio.
  • Another object of the present invention is to provide a vehicle body active stability control device, wherein the controller is applied to the electronically controlled damping system of the first vehicle, and the electronically controlled damping system further includes a plurality of shock absorbers, so
  • the device includes:
  • a first obtaining module for obtaining the real-time speed of the first vehicle
  • a second obtaining module configured to obtain the relative speed between the second vehicle and the first vehicle
  • an identification module for identifying the relative positional relationship between the second vehicle and the first vehicle
  • a first adjustment module configured to adjust shock absorber damping at different positions of the first vehicle according to the real-time vehicle speed, the relative vehicle speed and the relative positional relationship during the meeting with the second vehicle force to stabilize the body of the first vehicle.
  • the first adjustment module is specifically configured to, during the meeting with the second vehicle, increase the total vehicle speed according to the real-time vehicle speed and the relative vehicle speed. restoring the damping force of the shock absorber at the first wheel of the first vehicle, and increasing the compression damping force of the shock absorber at the second wheel of the first vehicle;
  • the first wheel is a wheel on the side away from the lane where the second vehicle is located
  • the second wheel is a wheel on the side of the lane where the second vehicle is located.
  • the second acquisition module includes:
  • a monitoring unit for monitoring the distance between the second vehicle and the first vehicle
  • the first determining unit is configured to determine the relative vehicle speed according to the change value of the distance and the corresponding monitoring time interval.
  • the device further includes:
  • the second adjustment module is configured to adjust the damping force of the shock absorber at different positions of the first vehicle to restore the state before the rendezvous with the second vehicle when it is determined that the rendezvous with the second vehicle is completed.
  • the vehicle stores a restoration damping force ratio map and a compression damping force ratio map for shock absorbers at different positions;
  • the restoration damping force ratio map is used to indicate the The first correspondence between the restoration damping force control ratio and the real-time vehicle speed and the relative vehicle speed;
  • the compression damping force ratio map is used to indicate the compression damping force control ratio and the real-time vehicle speed and the relative speed. a second correspondence between vehicle speeds;
  • the first adjustment module includes:
  • a second determining unit configured to, for the first target shock absorber at the first wheel of the first vehicle, query the corresponding value of the first target shock absorber according to the real-time vehicle speed and the relative vehicle speed Restoration damping force ratio chart, to determine the target restoration damping force control ratio;
  • a first adjustment unit configured to increase the restoring damping force of the first target shock absorber according to the control ratio of the target restoring damping force
  • a third determining unit configured to, for the second target shock absorber at the second wheel of the first vehicle, query the corresponding value of the second target shock absorber according to the real-time vehicle speed and the relative vehicle speed Compression damping force ratio chart to determine the target compression damping force control ratio;
  • a second adjustment unit configured to increase the compression damping force of the second target shock absorber according to the target compression damping force control ratio.
  • Another object of the present invention is to provide a vehicle, wherein the vehicle includes an electronically controlled shock absorption system, the electronically controlled shock absorption system includes a controller and a plurality of shock absorbers, and the vehicle further includes the vehicle body Active Stability Control.
  • the vehicle body active stability control method, device and vehicle of the present invention have the following advantages:
  • the damping force of the shock absorber at different positions of the vehicle is used to cope with the air pressure change caused by the air disturbance between the two vehicles, so as to prevent the vehicle from shaking left and right due to the air disturbance, so that the body of the first vehicle remains in a stable state, so as to solve the problem.
  • FIG. 1 is a schematic flowchart of a vehicle body active stability control method provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the ratio of restoring damping force provided by an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a vehicle body active stability control method provided by a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of signal interaction and execution of a vehicle body active stability control method provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a vehicle body active stability control device provided by an embodiment of the present invention.
  • Figure 6 schematically shows a block diagram of a computing processing device for performing methods according to the present disclosure
  • Figure 7 schematically shows a memory unit for holding or carrying program code implementing the method according to the present disclosure.
  • FIG. 1 shows a schematic flowchart of a vehicle body active stability control method provided by an embodiment of the present invention.
  • the vehicle body active stability control method provided by an embodiment of the present invention is applied to an electronically controlled shock absorption system of a vehicle
  • the controller in , wherein, as shown in FIG. 1 , the method includes steps S100-S400.
  • the electronically controlled shock absorption system includes a controller and a plurality of shock absorbers.
  • the electronically controlled shock absorption system can respond in time and control the damping force of each shock absorber in real time according to the needs of shock absorption control.
  • the shock absorbers are arranged at different positions of the vehicle suspension, and the shock absorbers are specifically electromagnetic shock absorbers.
  • the real-time vehicle speed of the first vehicle specifically refers to the real-time running speed of the first vehicle in the process of being overtaken by the second vehicle.
  • the above step of acquiring the real-time vehicle speed of the first vehicle specifically includes: collecting a wheel speed signal of the first vehicle, and determining the real-time vehicle speed according to the wheel speed signal. That is, the wheel speed signal of the first vehicle is collected by the wheel speed sensor of the vehicle, and the real-time vehicle speed of the vehicle can be calculated by combining the wheel speed signal with the wheel size of the first vehicle.
  • the real-time speed of the first vehicle can also be obtained directly through the Electronic Stability Program (ESP) of the vehicle, wherein the ESP converts the information of the entire wheel speed sensor and inputs the speed signal of the current vehicle.
  • ESP Electronic Stability Program
  • the above-mentioned relative vehicle speed is the speed difference between the first vehicle and the second vehicle in the process of intersection.
  • steps S100 and S200 when the vehicle is overtaken at different speeds by a vehicle with a higher speed at different speeds, when the vehicle is overtaken by a vehicle with a different speed at a higher speed, and at different speeds.
  • the degree of violent shaking of the vehicle body is different when it meets other vehicles at the driving speed, so it is necessary to obtain the real-time vehicle speed of the first vehicle and the relative speed between the second vehicle and the first vehicle, so as to determine theoretically The degree of shaking corresponding to the body.
  • Step S300 identifying the relative positional relationship between the second vehicle and the first vehicle.
  • step S300 the relative positional relationship between the second vehicle and the first vehicle is identified, that is, whether the second vehicle is located in the left lane or the right lane of the first vehicle is identified. Because the direction of shaking caused by different positions of the first vehicle is different when the second vehicle overtakes from different relative positions of the vehicle, it is necessary to instantly identify the relative position of the second vehicle relative to the first vehicle.
  • two millimeter-wave radars installed on the left rear and right rear of the first vehicle are used to identify whether the second vehicle is in the left lane or the right lane of the first vehicle, and continuously monitor The relative distance from the driving direction of the first vehicle, and finally send the monitoring signal to the control unit of the electronically controlled shock absorber.
  • Step S400 in the process of meeting with the second vehicle, according to the real-time vehicle speed, the relative vehicle speed and the relative position relationship, adjust the damping force of the shock absorber at different positions of the first vehicle, so that all The body of the first vehicle remains stable.
  • step S400 because the vehicle is overtaken at different speeds by vehicles with higher speeds at different speeds, the degree of violent shaking of the vehicle body is different; when overtaking vehicles with different speeds at higher speeds , the degree of violent shaking of the vehicle body is different; and the degree of violent shaking of the vehicle body is different when it meets other vehicles at different driving speeds, and the second vehicle passes from different relative positions of the vehicle.
  • the shaking directions caused by different positions are different, so according to the real-time speed of the first vehicle, the relative speed between the second vehicle and the first vehicle, and the relative position of the second vehicle relative to the first vehicle, the first vehicle can be theoretically determined first.
  • the degree and direction of shaking that will occur at different positions of the vehicle and then adjust the damping force of the shock absorber at different positions of the first vehicle in advance in the process of meeting with the second vehicle to deal with the shaking of the first vehicle about to travel at different positions. , so that the body of the first vehicle remains stable.
  • the above-mentioned process of meeting with the second vehicle includes a process of meeting with the second vehicle, a process of being overtaken by the second vehicle, and a process of overtaking the second vehicle. That is, the embodiments of the present invention are applicable to scenarios such as meeting a car, being overtaken, and overtaking.
  • the object recognition method of the present invention has the following advantages:
  • the damping force of the shock absorber at different positions of the vehicle is used to cope with the air pressure change caused by the air disturbance between the two vehicles, so as to prevent the vehicle from shaking left and right due to the air disturbance, so that the body of the first vehicle remains in a stable state, so as to solve the problem.
  • step S200 includes steps S201 to S202.
  • Step S201 monitoring the distance between the second vehicle and the first vehicle.
  • the distance sensor is used to continuously or regularly monitor the relative distance between the second vehicle and the first vehicle in the traveling direction.
  • the above-mentioned distance sensors may be radar or infrared sensors, specifically, four millimeter-wave radars installed on the left front side, right front side, left rear side and right rear side respectively, that is, it can identify the relative distance between the second vehicle and the first vehicle.
  • the relative position relationship of the vehicle can also continuously monitor the distance between the second vehicle and the first vehicle.
  • Step S202 Determine the relative vehicle speed according to the change value of the distance and the corresponding monitoring time interval.
  • step S202 because the distance between the second vehicle and the first vehicle is continuously monitored, when the above-mentioned distance changes, the change in the distance is divided by the monitoring time interval corresponding to the change, that is, it can be calculated. Relative vehicle speed between the second vehicle and the first vehicle.
  • the vehicle body active stability control method provided by the embodiment of the present invention further includes step S301 before step S400, and further includes steps S302-S304 after step S301.
  • Step S301 when the distance between the second vehicle and the first vehicle is less than or equal to a preset distance threshold, determine to enter a process of meeting with the second vehicle.
  • the above-mentioned preset distance threshold is a pre-calibrated two-vehicle distance value that will cause the body of the first vehicle to shake, for example, 1 meter.
  • the distance between the second vehicle and the first vehicle is continuously monitored by the distance sensor.
  • the distance between the second vehicle and the first vehicle is less than the above-mentioned preset distance threshold, it means that the second vehicle has entered the body of the first vehicle.
  • the shaking overtaking area it can be determined that the first vehicle has entered the process of meeting the second vehicle.
  • the distance between the second vehicle and the first vehicle may continue to be monitored, and when the distance between the second vehicle and the first vehicle is widened to If the distance is greater than the above preset distance threshold, it means that the second vehicle has traveled out of the intersection area where the body of the first vehicle is likely to shake, so it can be determined that the intersection of the second vehicle is completed, that is, it can be determined that the first vehicle is met by the second vehicle process ends.
  • the method for active vehicle body stability control provided by the embodiment of the present invention further includes steps S302-S304 after step S301.
  • Step S302 acquiring body length information of the first vehicle.
  • control unit of the electronically controlled shock absorber obtains the body length information of the first vehicle through the vehicle information.
  • Step S303 Determine the meeting time length according to the vehicle body length information and the relative vehicle speed.
  • the time required for the first vehicle and the first vehicle to complete the intersection can be determined by dividing the vehicle body length by the relative speed of the second vehicle and the first vehicle, that is, the above-mentioned meeting time.
  • Step S304 after the meeting time period has elapsed, it is determined that the meeting with the second vehicle is completed.
  • step S304 the timing is started when it is determined that the first vehicle is in the process of interacting with the second vehicle, and after the above-mentioned meeting time period, the distance between the second vehicle and the first vehicle relative movement is the body length of the first vehicle, At this time, the second vehicle travels out of the interaction area that is easy to shake the body of the first vehicle, so it can be determined that the rendezvous with the second vehicle is completed, that is, it can be determined that the process of rendezvous between the first vehicle and the second vehicle is over.
  • the vehicle body length information can be used in combination with the relative speed between the second vehicle and the first vehicle to estimate the second vehicle
  • the duration of the rendezvous process required to complete the rendezvous with the first vehicle is determined, and then the exit timing for enhancing the control of the damping force of the shock absorber at different positions of the first vehicle is determined, so that the vehicle can return to normal control.
  • step S400 specifically includes step S401.
  • Step S401 during the meeting with the second vehicle, according to the real-time vehicle speed and the relative vehicle speed, increase the restoring damping force of the shock absorber at the first wheel of the first vehicle, and increase the compression damping force of the shock absorber at the second wheel of the first vehicle;
  • the first wheel is a wheel on the side away from the lane where the second vehicle is located
  • the second wheel is a wheel on the side of the lane where the second vehicle is located.
  • step S401 because the first vehicle is in the process of meeting the second vehicle, the body close to the side of the lane where the second vehicle is located will tend to be depressed downward under the action of the airflow, and will be far away from the lane where the second vehicle is located. Under the action of the airflow, the body on the side will tend to rise upward, so in order to maintain the stability of the body, it is necessary to increase the compression damping force of the shock absorber at the wheel of the first vehicle close to the side of the lane where the second vehicle is located , and increase the shock absorber restoring damping force at the wheel of the first vehicle away from the lane where the second vehicle is located.
  • the first vehicle is a four-wheeled vehicle, and the four wheels are respectively arranged in the left front, left rear, right front and right rear orientations
  • the first wheel are the right front wheel and right rear wheel of the first vehicle
  • the second wheel is the left front wheel and left rear wheel of the first vehicle
  • each wheel of the vehicle is provided with an electromagnetic shock absorber body, which can respond in time by receiving the current signal output by the controller of the electronically controlled shock absorber system for indicating the enhancement of the damping force in real time, thereby
  • the damping force enhancement control is realized, in which the duration of the electronically controlled shock absorption system from the determination to the issuance of the command to the completion of the response of the electromagnetic shock absorber is less than or equal to 10ms.
  • the above-mentioned vehicle stores a restoration damping force ratio map and a compression damping force ratio map for shock absorbers at different positions; the above-mentioned restoration damping force ratio map is used to indicate the above-mentioned restoration damping force control.
  • the above steps S401 includes steps S402 to S405.
  • the evaluation is made in advance according to the different degrees of violent shaking of the vehicle body when it meets with vehicles running at different speeds under different real-time vehicle speed conditions, and the compression damping force corresponding to the shock absorber at different positions is adjusted by adjusting the compression damping force.
  • the ratio of the restoration damping force and the ratio of the restoration damping force to the ratio of the restoration damping force and the compression damping force ratio of each shock absorber required to maintain the stability of the body are calibrated, and then the restoration damping force ratio map and the compression damping force of the shock absorber at different positions are determined.
  • ratio graph For example, the restoration damping force ratio diagram of the front wheel shock absorber is shown in FIG. 2 , wherein the restoration damping control ratio and the compression damping control ratio of each shock absorber are divided into 0-100 parts for subdivision enhancement control.
  • Step S402 For the first target shock absorber at the first wheel of the first vehicle, query the restoration damping force ratio corresponding to the first target shock absorber according to the real-time vehicle speed and the relative vehicle speed Figure, determine the target restoration damping force control ratio.
  • the first wheel is the wheel on the side away from the lane where the second vehicle is located, because the body on the side away from the lane where the second vehicle is located will tend to lift up under the action of the airflow, so in order to To maintain the stability of the body, it is necessary to increase the restoring damping force of the first target shock absorber at the wheel of the first vehicle close to the second vehicle, and the magnitude of the enhancement of the restoring damping force needs to be based on the current real-time vehicle speed and the relationship between the first vehicle and the second vehicle.
  • the relative vehicle speed between vehicles query the restoration damping force ratio map corresponding to the first target shock absorber, and determine the corresponding restoration damping force control ratio, that is, the above-mentioned target restoration damping force control ratio.
  • Step S403 increasing the restoring damping force of the first target shock absorber according to the target restoring damping force control ratio.
  • step S403 for the first target shock absorber that is far away from the second vehicle side, according to the target restoration damping force control ratio determined in the above step S402, it is controlled to increase the restoration damping force to offset the overtaking of the second vehicle.
  • the upward trend of the body formed by the airflow keeps the body stable.
  • Step S404 For the second target shock absorber at the second wheel of the first vehicle, query the compression damping force ratio corresponding to the second target shock absorber according to the real-time vehicle speed and the relative vehicle speed Figure, determine the target compression damping force control ratio.
  • the second wheel is the wheel close to the side of the lane where the second vehicle is located, because the body on the side farther from the second vehicle will have a tendency to be lowered under the action of the airflow, so in order to maintain the stability of the body.
  • query the compression damping force ratio map corresponding to the second target shock absorber query the compression damping force ratio map corresponding to the second target shock absorber, and determine the corresponding compression damping force control ratio, that is, the above-mentioned target compression damping force control ratio.
  • Step S405 according to the target compression damping force control ratio, increase the second target shock absorber compression damping force.
  • step S405 for the second target shock absorber close to the side of the lane where the second vehicle is located, according to the target compression damping force control ratio determined in the above step S404, it is controlled to increase the compression damping force to offset the damage caused by the second vehicle.
  • the restoration damping force ratios for the shock absorbers at different positions determined by pre-tuning are queried.
  • Figure and compression damping force ratio map quickly determine the proportion of restoring damping force that needs to be increased for the first target shock absorber close to the lane where the second vehicle is located, and the second target damping force ratio away from the lane side where the second vehicle is located.
  • the ratio of the increased compression damping force required by the shock absorber can be accurately and quickly controlled to increase the restoring damping force of the first target shock absorber, and to control the increased compression damping force of the second target shock absorber, so as to maintain real-time The speed is steady.
  • the vehicle body active stability control method provided by the embodiment of the present invention further includes step S500:
  • the damping force of the shock absorber at different positions of the first vehicle is adjusted to return to the state before the rendezvous with the second vehicle.
  • step S500 since the first vehicle will no longer shake the body due to the airflow brought by the rapid passage of the second vehicle after the rendezvous with the second vehicle is completed, the shock absorbers at different positions of the first vehicle can be damped. The force is restored to the state before the rendezvous with the second vehicle to ensure ride comfort.
  • the damping force of the shock absorber at different positions of the first vehicle is adjusted to restore the state before overtaking by the second vehicle.
  • FIG. 3 shows a schematic flowchart of a vehicle body active stability control method provided by a preferred embodiment of the present invention.
  • the vehicle body active stability control method provided by the embodiment of the present invention is applied to a controller in an electronically controlled damping system of a first vehicle, and the electronically controlled damping system further includes a plurality of shock absorbers, as shown in FIG. 3 ,
  • the method includes steps S311-S220.
  • Step S311 monitor the distance between the second vehicle and the first vehicle.
  • step S31 reference may be made to the description of step S201, which will not be repeated here.
  • Step S312 Determine the relative vehicle speed according to the change value of the distance and the corresponding monitoring time interval.
  • step S312 reference may be made to the description of step S202, which will not be repeated here.
  • Step S313 acquiring the real-time vehicle speed of the first vehicle.
  • step S313 reference may be made to the description of step S100, which will not be repeated here.
  • Step S314 identifying the relative positional relationship between the second vehicle and the first vehicle.
  • step S31 reference may be made to the description of step S300, which will not be repeated here.
  • Step S315 when the distance between the second vehicle and the first vehicle is less than or equal to a preset distance threshold, determine to enter a process of meeting with the second vehicle.
  • step S31 For the above step S315, reference may be made to the description of step S301, which will not be repeated here.
  • Step S316 in the process of meeting with the second vehicle, according to the real-time vehicle speed and the relative vehicle speed, increase the recovery of the shock absorber at the wheel on the side of the lane where the first vehicle is away from the second vehicle damping force, and increase the shock absorber compression damping force at the wheel of the first vehicle close to the lane side where the second vehicle is located.
  • step S316 reference may be made to the description of step S401, which will not be repeated here.
  • Step S317 After it is determined that the process of entering the meeting with the second vehicle is entered, the body length information of the first vehicle is acquired.
  • step S317 reference may be made to the description of step S302, which will not be repeated here.
  • Step S318 Determine the meeting time length according to the vehicle body length information and the relative vehicle speed.
  • step S318 reference may be made to the description of step S303, which will not be repeated here.
  • Step S319 after the meeting duration has elapsed, it is determined that the meeting with the second vehicle is completed.
  • step S319 reference may be made to the description of step S304, which will not be repeated here.
  • Step S320 when it is determined that the rendezvous with the second vehicle is completed, adjust the damping force of the shock absorber at different positions of the first vehicle to restore the state before the rendezvous with the second vehicle.
  • step S320 reference may be made to the description of step S500, which will not be repeated here.
  • the vehicle body active stability control method of the present invention has the following advantages:
  • FIG. 4 shows a schematic diagram of signal interaction and execution of the vehicle body active stability control method provided by the embodiment of the present invention.
  • the above-mentioned vehicle body active stability control method is jointly completed by the electronically controlled damping system 10 in combination with the millimeter-wave radar 20 and the electronic stability program (ESP) 30 .
  • ESP electronic stability program
  • the electronically controlled shock absorption system 10 includes a controller (Electronic Control Unit, ECU) and a plurality of electromagnetic shock absorbers as shock absorbing actuators, and the plurality of electromagnetic shock absorbers are respectively arranged on the left front wheel and the right front wheel of the vehicle. wheel, left rear wheel, right rear wheel;
  • ECU Electronic Control Unit
  • the millimeter-wave radar 20 is installed on the left rear side and the right rear side of the first vehicle, and is used to identify whether the second vehicle that meets the first vehicle is in the left or right lane of the first wheel, and continuously monitor the distance from the first vehicle in the direction of travel. , and send the monitoring signal to the electronic control unit of the electronically controlled vibration reduction system;
  • the electronic stability system 30 converts the wheel speed signal collected by the wheel speed sensor into the current real-time vehicle speed signal of the first vehicle, and sends it to the ECU of the electronically controlled vibration reduction system;
  • the ECU of the electronically controlled vibration damping system receives the current speed signal of the first vehicle and the distance signal between the two vehicles and calculates the relative speed of the two vehicles.
  • the damping force ratio of each shock absorber should be increased, and converted into enhanced control current through system calculation; when the ECU receives the distance signal between the two vehicle driving directions is less than or equal to the preset distance threshold, such as ⁇ 1 meter, that is When it is determined that the intervention time is reached, the normal control current is immediately converted to the enhanced control current, so that the vehicle can actively enhance the suspension damping control and improve the stability of the vehicle when the above intersection scene is about to occur;
  • the ECU systematically calculates the rendezvous duration according to the body length information of the first vehicle and the relative vehicle speed signal, and then determines the exit timing of the enhanced control current after the overtaking duration, so that the vehicle returns to the normal suspension control state to ensure ride comfort.
  • Another object of the present invention is to provide an active stability control device for a vehicle body, which is applied to a controller in an electronically controlled damping system of a vehicle.
  • the electronically controlled damping system further includes a plurality of shock absorbers, wherein, please refer to FIG. 5, FIG. 5 shows a schematic structural diagram of a vehicle body active stability control device proposed in an embodiment of the present invention, the device includes:
  • the first obtaining module 51 is used to obtain the real-time speed of the first vehicle
  • the second obtaining module 52 is configured to obtain the relative speed between the second vehicle and the first vehicle
  • an identification module 53 configured to identify the relative positional relationship between the second vehicle and the first vehicle
  • the first adjustment module 54 is configured to adjust shock absorbers at different positions of the first vehicle according to the real-time vehicle speed, the relative vehicle speed and the relative positional relationship during the meeting with the second vehicle damping force to stabilize the body of the first vehicle.
  • the second vehicle and the first vehicle are combined according to the real-time vehicle speed of the first vehicle and the relative speed between the first vehicle and the second vehicle.
  • the relative positional relationship between the two vehicles can actively adjust the damping force of the shock absorber at different positions of the first vehicle in advance to cope with the air pressure change caused by the air disturbance between the two vehicles, thereby preventing the vehicle from shaking left and right due to the air disturbance.
  • the vehicle body of the first vehicle is kept in a stable state, thereby solving the problem that the vehicle body of the existing vehicle is easily shaken violently in the scenario of being overtaken at a high speed, causing disturbing drivers and passengers.
  • the first adjustment module 54 is specifically configured to, in the process of meeting with the second vehicle, according to the real-time vehicle speed and the relative vehicle speed, increasing the recovery damping force of the shock absorber at the first wheel of the first vehicle and increasing the compression damping force of the shock absorber at the second wheel of the first vehicle;
  • the first wheel is a wheel on the side away from the lane where the second vehicle is located
  • the second wheel is a wheel on the side of the lane where the second vehicle is located.
  • the second acquisition module 52 includes:
  • a monitoring unit for monitoring the distance between the second vehicle and the first vehicle
  • the first determining unit is configured to determine the relative vehicle speed according to the change value of the distance and the corresponding monitoring time interval.
  • the device further includes:
  • a first determination module configured to adjust shock absorber damping at different positions of the first vehicle according to the real-time vehicle speed, the relative vehicle speed and the relative positional relationship during the meeting with the second vehicle Before the force step, when the distance between the second vehicle and the first vehicle is less than or equal to a preset distance threshold, it is determined to enter a process of being overtaken by the second vehicle.
  • the device further includes:
  • a third obtaining module configured to obtain the body length information of the first vehicle after it is determined to enter the process of meeting with the second vehicle
  • a second determining module configured to determine the rendezvous duration according to the vehicle body length information and the relative vehicle speed
  • the third determining module is configured to determine that the meeting with the second vehicle is completed after the meeting duration has elapsed.
  • the device further includes:
  • the second adjustment module is configured to adjust the damping force of the shock absorber at different positions of the first vehicle to restore the state before the rendezvous with the second vehicle when it is determined that the rendezvous with the second vehicle is completed.
  • the vehicle stores a restoration damping force ratio map and a compression damping force ratio map for shock absorbers at different positions;
  • the restoration damping force ratio map is used to indicate the The first correspondence between the restoration damping force control ratio and the real-time vehicle speed and the relative vehicle speed;
  • the compression damping force ratio map is used to indicate the compression damping force control ratio and the real-time vehicle speed and the relative speed. a second correspondence between vehicle speeds;
  • the first adjustment module 54 includes:
  • a second determining unit configured to, for the first target shock absorber at the first wheel of the first vehicle, query the corresponding value of the first target shock absorber according to the real-time vehicle speed and the relative vehicle speed Restoration damping force ratio chart, to determine the target restoration damping force control ratio;
  • a first adjustment unit configured to increase the restoring damping force of the first target shock absorber according to the control ratio of the target restoring damping force
  • a third determining unit configured to, for the second target shock absorber at the second wheel of the first vehicle, query the corresponding value of the second target shock absorber according to the real-time vehicle speed and the relative vehicle speed Compression damping force ratio chart to determine the target compression damping force control ratio;
  • a second adjustment unit configured to increase the compression damping force of the second target shock absorber according to the target compression damping force control ratio.
  • Another object of the present invention is to provide a vehicle, wherein the vehicle includes an electronically controlled shock absorption system, the electronically controlled shock absorption system includes a controller and a plurality of shock absorbers, and the vehicle further includes the vehicle body Active Stability Control.
  • the real-time vehicle speed of the first vehicle and the relative vehicle speed between the second vehicle and the first vehicle are obtained first;
  • the relative positional relationship between the first vehicles in the process of meeting with the second vehicle, according to the real-time speed of the first vehicle, the relative speed and the relative positional relationship, adjust the shock absorption at different positions of the first vehicle damper force to stabilize the body of the first vehicle. Because in the process of rendezvous with the second wheel, according to the real-time speed of the first vehicle and the relative speed between the first vehicle and the second vehicle, combined with the relative position of the second vehicle relative to the first vehicle, the first vehicle is actively adjusted in advance.
  • the damping force of the shock absorber at different positions of a vehicle is to cope with the air pressure change caused by the air disturbance between the two vehicles, so as to prevent the vehicle from shaking left and right due to the air disturbance, so that the body of the first vehicle remains in a stable state, thereby It solves the problem that the existing vehicle is easily shaken violently in the scene of being overtaken when driving at high speed, causing the driver and passengers to be disturbed.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in a computing processing device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as apparatus or apparatus programs (eg, computer programs and computer program products) for performing some or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
  • Figure 6 illustrates a computing processing device that may implement methods in accordance with the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product or computer readable medium in the form of a memory 1020 .
  • the memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has storage space 1030 for program code 1031 for performing any of the method steps in the above-described methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 7 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 6 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code readable by a processor such as 1010, for example, which, when executed by a computing processing device, causes the computing processing device to perform any of the methods described above. of the various steps.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种车身主动稳定控制方法,应用于第一车辆的电控减震系统中的控制器,该方法包括:获取第一车辆的实时车速(S100);获取第二车辆与第一车辆之间的相对车速(S200);识别第二车辆与第一车辆之间的相对位置关系(S300);在与第二车辆交会的过程中,根据实时车速、相对车速及相对位置关系,调整第一车辆不同位置处的减震器阻尼力,以使第一车辆的车身保持稳定(S400)。该车身主动稳定控制方法解决了现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。还公开了一种车身主动稳定控制装置和一种包括该装置的车辆。

Description

一种车身主动控制方法、装置及车辆
相关申请的交叉引用
本公开要求在2021年04月14日提交中国专利局、申请号为202110402035.8、名称为“一种车身主动控制方法、装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明涉及汽车技术领域,特别涉及一种车身主动控制方法、装置及车辆。
背景技术
当前,随着私家车的普及,行驶于高速道路上的车流量随之增大,用户驾驶车辆高速行驶超车或被超车的场景变得非常频繁。
现阶段,驾驶车辆高速行驶被另一辆急速行驶的车辆从临近车道超越时,因两车之间空气扰动车辆会出现非常明显的左右晃动,不仅容易惊扰驾乘人员,影响驾乘人员的乘坐体验,甚至会导致驾驶人员的慌乱操作,进而发生危险。
发明内容
有鉴于此,本发明旨在提出一种车身主动稳定控制方法、装置及车辆,以解决现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车身主动稳定控制方法,其中,应用于第一车辆的电控减震系统中的控制器,所述方法包括:
获取第一车辆的实时车速;
获取第二车辆与所述第一车辆之间的相对车速;
识别所述第二车辆与所述第一车辆之间的相对位置关系;
在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及 所在相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
可选地,所述的车身主动稳定控制方法中,在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定的步骤,包括:
在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮。
可选地,所述的车身主动稳定控制方法中,所述获取第二车辆与所述第一车辆之间的相对车速的步骤,包括:
监测第二车辆与所述第一车辆之间的距离;
根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
可选地,所述的车身主动稳定控制方法中,所述方法还包括:
在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
可选地,所述的车身主动稳定控制方法中,所述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;所述复原阻尼力比例图用于指示所述复原阻尼力控制比例与所述实时车速及所述相对车速之间的第一对应关系;所述压缩阻尼力比例图用于指示所述压缩阻尼力控制比例与所述实时车速及所述相对车速之间的第二对应关系;
所述在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力的步骤,包括:
针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例;
根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻 尼力;
针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例;
根据所述目标压缩阻尼力控制比例,增大所述第二目标减震器的压缩阻尼力。
本发明的另一目的在于提出一种车身主动稳定控制装置,其中,应用于第一车辆的电控减震系统中的控制器,所述电控减震系统还包括多个减震器,所述装置包括:
第一获取模块,用于获取第一车辆的实时车速;
第二获取模块,用于获取第二车辆与所述第一车辆之间的相对车速;
识别模块,用于识别所述第二车辆与所述第一车辆之间的相对位置关系;
第一调整模块,用于在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
可选地,所述的车身主动稳定控制装置中,所述第一调整模块,具体用于在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮。
可选地,所述的车身主动稳定控制装置中,所述第二获取模块包括:
监测单元,用于监测第二车辆与所述第一车辆之间的距离;
第一确定单元,用于根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
可选地,所述装置还包括:
第二调整模块,用于在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
可选地,所述的车身主动稳定控制装置中,所述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;所述复原阻尼力比例 图用于指示所述复原阻尼力控制比例与所述实时车速及所述相对车速之间的第一对应关系;所述压缩阻尼力比例图用于指示所述压缩阻尼力控制比例与所述实时车速及所述相对车速之间的第二对应关系;
所述第一调整模块包括:
第二确定单元,用于针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例;
第一调整单元,用于根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻尼力;
第三确定单元,用于针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例;
第二调整单元,用于根据所述目标压缩阻尼力控制比例,增大所述第二目标减震器的压缩阻尼力。
本发明的再一目的在于提出一种车辆,其中,所述车辆包括电控减震系统,所述电控减震系统包括控制器及多个减震器,所述车辆还包括所述的车身主动稳定控制装置。
相对于在先技术,本发明所述的车身主动稳定控制方法、装置及车辆具有以下优势:
先获取第一车辆的实时车速、以及第二车辆与第一车辆之间的相对车速;并识别第二车辆与第一车辆之间的相对位置关系;在与第二车辆交会的过程中,根据第一车辆的实时车速、上述相对车速及上述相对位置关系,调整第一车辆不同位置处的减震器阻尼力,以使第一车辆的车身保持稳定。因为在与第二车轮交会的过程中,根据第一车辆的实时车速及第一车辆与第二车辆之间的相对车速,结合第二车辆相对第一车辆所在相对位置关系,提前主动调整第一车辆不同位置处的减震器阻尼力,以应对因两车之间空气扰动带来的气压变化,从而避免车辆因空气扰动出现左右晃动的情况,使得第一车辆的车身保持稳定状态,从而解决了现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技 术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所提供的车身主动稳定控制方法的流程示意图;
图2为本发明实施例所提供的复原阻尼力比例示意图;
图3为本发明一优选实施例所提供的车身主动稳定控制方法的流程示意图;
图4为本发明实施例所提供的车身主动稳定控制方法的信号交互及执行原理图;
图5为本发明实施例所提供的车身主动稳定控制装置的结构示意图;
图6示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;
图7示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
请参阅图1,示出了本发明实施例所提供的一种车身主动稳定控制方法的流程示意图,本发明实施例所提供的一种车身主动稳定控制方法,应用于车辆的电控减震系统中的控制器,其中,如图1所示,所述方法包括步骤S100~S400。
本发明实施例中,电控减震系统包括控制器及多个减震器,电控减震系统可以根据减震控制需要,及时响应,实时控制各减震器阻尼力的大小,上述多个减震器设置于车辆悬架的不同位置处,上述减震器具体为电磁减振器。
S100、获取第一车辆的实时车速。
上述步骤S100中,上述第一车辆的实时车速具体指第一车辆在被第二车辆超车的过程中的实时行驶速度。
可选地,上述获取第一车辆的实时车速的步骤具体包括:采集第一车辆的轮速信号,并根据所述轮速信号确定所述实时车速。即通过车辆的轮速传感器采集第一车辆的轮速信号,利用上述轮速信号结合第一车辆的车轮尺寸,即可以计算出车辆的实时车速。
当然,在实际应用中,也可以直接通过车辆的电子稳定系统(Electronic Stability Program,ESP)获取第一车辆的实时车速,其中,ESP通过转化整车轮速传感器信息并输入当前车辆的车速信号。
S200、获取第二车辆与所述第一车辆之间的相对车速。
上述步骤S200中,上述相对车速则是第一车辆与第二车辆相交会的过程中二者之间的速度差值。
上述步骤S100及步骤S200中,因为车辆在不同行驶车速下,被更高车速行驶的车辆以不同的速度超越时,在更高行驶车速下,对不同车速行驶的车辆进行超越时,以及在不同行驶车速下与其他车辆会车时,车体发生剧烈晃动的程度不同,因而需要获取第一车辆的实时车速以及第二车辆与所述第一车辆之间的相对车速,以便于从理论上确定车体对应的晃动程度。
步骤S300、识别所述第二车辆与所述第一车辆之间的相对位置关系。
上述步骤S300中,识别第二车辆相对第一车辆所在相对位置关系,即识别第二车辆是处于第一车辆的左侧车道还是右侧车道。因为第二车辆从车辆的不同相对位置关系超越时,对第一车辆不同位置造成的晃动方向不同,因而需要即时识别第二车辆相对第一车辆所在相对位置关系。
在实际应用中,针对被超车的场景,利用分别安装于第一车辆左后侧及右后侧的两个毫米波雷达识别第二车辆处于第一车辆左侧车道还是右侧车道,并持续监测与第一车辆行驶方向的相对距离,最终将监测信号发送至电控减振器的控制单元。
步骤S400、在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所在相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
上述步骤S400中,因为车辆在不同行驶车速下被更高车速行驶的车辆以不同的速度超越时,车体发生剧烈晃动的程度不同;在更高行驶车速下对不同车速行驶的车辆进行超越时,车体发生剧烈晃动的程度不同;以及在不同行驶车速下与其他车辆会车时,车体发生剧烈晃动的程度不同,且第二车辆从车辆的不同相对位置关系超越时,对第一车辆不同位置造成的晃动方向不同,因而根据第一车辆的实时车速、第二车辆于第一车辆之间的相对车速及第二车辆相对第一车辆所在相对位置关系,可以从理论上先确定第一车辆不同位置处会出现的晃动程度及晃动方向,然后在与第二车辆交会的过程中,提前调整第一车辆不同位置处的减震器阻尼力,以应对第一车辆不同位置即将出行的晃动,从而使所述第一车辆的车身保持稳定。
可选地,上述与第二车辆交会的过程包括与第二车辆会车的过程、被第二车辆超车的过程及对第二车辆超车的过程。也即本发明实施例适用于会车、被超车及超车等场景。
相对于现有技术,本发明所述的物体识别方法具有以下优势:
先获取第一车辆的实时车速、以及第二车辆与第一车辆之间的相对车速;并识别所述第二车辆与所述第一车辆之间的相对位置关系;在与上述第二车辆交会的过程中,根据第一车辆的实时车速、上述相对车速及上述相对位置关系,调整第一车辆不同位置处的减震器阻尼力,以使第一车辆的车身保持稳定。因为在与第二车辆交会的过程中,根据第一车辆的实时车速及第一车辆与第二车辆之间的相对车速,结合第二车辆相对第一车辆所在相对位置关系,提前主动调整第一车辆不同位置处的减震器阻尼力,以应对因两车之间空气扰动带来的气压变化,从而避免车辆因空气扰动出现左右晃动的情况,使得第一车辆的车身保持稳定状态,从而解决了现有车辆在高速行驶时被超 车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
可选地,在一种实施方式中,本发明实施例所提供的车身主动稳定控制方法,上述步骤S200包括步骤S201~S202。
步骤S201、监测第二车辆与所述第一车辆之间的距离。
上述步骤S201中,即利用距离传感器持续或定时监测第二车辆在行驶方向上与第一车辆之间的相对距离。在实际应用中,上述距离传感器可以为雷达或红外传感器,具体可以为分别安装于左前侧、右前侧、左后侧及右后侧的四个毫米波雷达,即可以识别第二车辆相对第一车辆所在相对位置关系,又可以持续监测第二车辆与第一车辆之间的距离。
步骤S202、根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
上述步骤S202中,因为是持续对第二车辆与第一车辆之间的距离进行监测,在上述距离发生变化时,根据距离的变化量除以该变化量对应的监测时间间隔,即可以计算出第二车辆与第一车辆之间的相对车速。
可选地,在一种实施方式中,本发明实施例所提供的车身主动稳定控制方法,在上述步骤S400之前,还包括步骤S301,在步骤S301之后还包括步骤S302~S304。
步骤S301、在所述第二车辆与所述第一车辆之间的距离小于或等于预设距离阈值的情况下,确定进入与所述第二车辆交会的过程。
上述步骤S301中,上述预设距离阈值为预先标定的会对第一车辆车身造成晃动的两车距离值,例如为1米。通过距离传感器持续监测第二车辆相对第一车辆的距离,在第二车辆与第一车辆之间的距离小于上述预设距离阈值的情况下,说明第二车辆进入了容易对第一车辆的车身晃动的超车区域,也即可以确定第一车辆进入了与所述第二车辆交会的过程。
可选地,在一种实施方式中,在进入与第二车辆交会的过程后,可以继续监测第二车辆与第一车辆之间的距离,在第二车辆与第一车辆的距离拉开至大于上述预设距离阈值的情况下,说明第二车辆已经行驶出容易对第一车辆的车身晃动的交会区域,因而可以确定第二车辆交会完成,也即可以确定第一车辆被第二车辆交会的过程结束。
可选地,在另一种实施方式中,本发明实施例所提供的车身主动稳定控 制方法,在步骤S301之后还包括步骤S302~S304。
步骤S302、获取所述第一车辆的车身长度信息。
上述步骤S302中,电控减震器的控制单元通过车辆信息获取第一车辆的车身长度信息。
步骤S303、根据所述车身长度信息与所述相对车速,确定交会时长。
上述步骤S303中,利用车身长度除以第二车辆与第一车辆的相对车速,即可以确定出第一车辆与第一车辆完成交会所需要的时长,也即上述交会时长。
步骤S304、在经过所述交会时长后,确定与所述第二车辆完成交会。
上述步骤S304中,即在确定第一车辆进入与第二车辆交互的过程中时开始计时,至经过上述交会时长后,第二车辆与第一车辆相对移动的距离为第一车辆的车身长度,此时第二车辆即行驶出容易对第一车辆的车身晃动的交互区域,因而可以确定与第二车辆交会完成,也即可以确定第一车辆与第二车辆交会的过程结束。
在本实施方式中,可以在第一车辆车身左侧、右侧及前侧不存在距离传感器的情况下,利用车身长度信息结合第二车辆与第一车辆之间的相对车速,估算第二车辆完成与第一车辆交会所需的交会过程时长,进而判定增强控制第一车辆不同位置处的减震器阻尼力的退出时机,使车辆恢复正常控制。
可选地,在一种实施方式中,本发明实施例所提供的车身主动稳定控制方法,上述步骤S400具体包括步骤S401。
步骤S401、在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮。
上述步骤S401中,因为第一车辆在与第二车辆交会的过程中,靠近第二车辆所在车道一侧的车身会在气流的作用下产生往下压低的趋势,而远离第二车辆所在车道一侧的车身则会在气流的作用下产生往上抬升的趋势,因而为了保持车身的稳定,需要增大所述第一车辆靠近所述第二车辆所在车道侧车轮处的减震器压缩阻尼力,并增大所述第一车辆远离所述第二车辆所在车 道侧车轮处的减震器复原阻尼力。
例如,在第一车辆为四轮车,且四个车轮分别设置于左前、左后、右前及右后方位的情况下,在第二车辆从第一车辆的左侧超车时,则第一车轮为第一车辆右前车轮及右后车轮,而第二车轮则为第一车辆左前车轮及左后车轮,所以会根据第一车辆的实时车速及第一车辆与第二车辆之间的相对车速,增大第一车辆的左前车轮及左后车轮处的减震器的压缩阻尼力,并增大第一车辆的右前车轮及右后车轮处的减震器的复原阻尼力。
本发明实施例中,在车辆的各个车轮处均对应设置有电磁减震器本体,可以通过实时接收电控减震系统的控制器输出的用于指示增强阻尼力的电流信号,及时响应,从而实现阻尼力增强控制,其中,电控减震系统从判定到指令发出到电磁减震器完成响应的过程时长≤10ms。
可选地,在一种具体实施方式中,上述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;上述复原阻尼力比例图用于指示上述复原阻尼力控制比例与上述实时车速及上述相对车速之间的第一对应关系;上述压缩阻尼力比例图用于指示上述压缩阻尼力控制比例与上述实时车速及上述相对车速之间的第二对应关系;上述步骤S401包括步骤S402~S405。
在本具体实施方式中,预先由根据不同实时车速状态下,与以不同车速行驶的车辆进行交会时车体发生剧烈晃动的不同程度进行评价,通过调校不同位置减振器对应的压缩阻尼力比例及复原阻尼力比例,从而标定出维持车身平稳所需各减震器增强的复原阻尼力比例及压缩阻尼力比例,进而确定针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图。示例地,前轮减震器的复原阻尼力比例图如图2所示,其中,将各个减震器的复原阻尼控制比例及压缩阻尼控制比例分为0~100份进行细分增强控制。
步骤S402、针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例。
上述步骤S402中,第一车轮为远离所述第二车辆所处车道一侧的车轮,因为远离第二车辆所处车道一侧的车身会在气流的作用下产生往上抬升的趋势,因而为了保持车身的稳定,需要增大第一车辆靠近第二车辆侧车轮处的 第一目标减震器的复原阻尼力,而复原阻尼力增强的幅度需要根据当前的实时车速及第一车辆与第二车辆之间的相对车速,查询第一目标减震器对应的复原阻尼力比例图,确定出对应的复原阻尼力控制比例,即上述目标复原阻尼力控制比例。
步骤S403、根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻尼力。
上述步骤S403中,针对远离第二车辆侧的第一目标减震器,按照上述步骤S402所确定的目标复原阻尼力控制比例,控制其增大复原阻尼力,以抵消因第二车辆超车带动的气流形成的车身抬升趋势,从而使车身保持平稳。
步骤S404、针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例。
上述步骤S404中,第二车轮为靠近第二车辆所处车道一侧的车轮,因为远离第二车辆一侧的车身则会在气流的作用下产生往下压低的趋势,因而为了保持车身的稳定,需要增大第一车辆远离第二车辆侧车轮处的第二目标减震器的压缩阻尼力,而压缩阻尼力增强的幅度需要根据当前的实时车速及第一车辆与第二车辆之间的相对车速,查询第二目标减震器对应的压缩阻尼力比例图,确定出对应的压缩阻尼力控制比例,即上述目标压缩阻尼力控制比例。
步骤S405、根据所述目标压缩阻尼力控制比例,增大所述第二目标减震器压缩阻尼力。
上述步骤S405中,针对靠近第二车辆所处车道侧的第二目标减震器,按照上述步骤S404所确定的目标压缩阻尼力控制比例,控制其增大压缩阻尼力,以抵消因第二车辆会车带动的气流形成的车身下压趋势,从而使车身保持平稳。
在本实施方式中,在确定出实时车速、第二车辆与第一车辆的相对车速、以及第二车辆所在相对位置关系后,查询预先调教确定的针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图,快速确定出靠近第二车辆所处车道侧的第一目标减震器所需增大的复原阻尼力比例,以及远离第二车辆所处车道侧的第二目标减震器所需增大的压缩阻尼力比例,进而可以准确、 快速地控制第一目标减震器的增大复原阻尼力,以及控制第二目标减震器的增大压缩阻尼力,从而保持实时车速处于平稳状态。
可选地,在一种实施方式中,本发明实施例所提供的车身主动稳定控制方法,还包括步骤S500:
在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
上述步骤S500中,因为在与第二车辆交会完成后,第一车辆不会再因第二车辆快速通过所带来的气流造成车身晃动,因而可以将第一车辆不同位置处的减震器阻尼力恢复至与第二车辆交会之前的状态,以保证乘坐的舒适性。
例如,在确定第一车辆被第二车辆完成超车时,调整所述第一车辆不同位置处的减震器阻尼力恢复至被第二车辆超车之前的状态。
请参阅图3,示出了本发明一优选实施例所提供的车身主动稳定控制方法的流程示意图。本发明实施例所提供的车身主动稳定控制方法,应用于第一车辆的电控减震系统中的控制器,所述电控减震系统还包括多个减震器,如图3所示,所述方法包括步骤S311~S220。
步骤S311、监测第二车辆与所述第一车辆之间的距离。
上述步骤S311可以参照步骤S201的说明,在此不再赘述。
步骤S312、根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
上述步骤S312可以参照步骤S202的说明,在此不再赘述。
步骤S313、获取第一车辆的实时车速。
上述步骤S313可以参照步骤S100的说明,在此不再赘述。
步骤S314、识别所述第二车辆与所述第一车辆之间的相对位置关系。
上述步骤S314可以参照步骤S300的说明,在此不再赘述。
步骤S315、在所述第二车辆与所述第一车辆之间的距离小于或等于预设距离阈值的情况下,确定进入与所述第二车辆交会的过程。
上述步骤S315可以参照步骤S301的说明,在此不再赘述。
步骤S316、在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆远离所述第二车辆所处车道侧车轮处的减震器复原阻尼力,并增大所述第一车辆靠近所述第二车辆所处车道侧车轮处 的减震器压缩阻尼力。
上述步骤S316可以参照步骤S401的说明,在此不再赘述。
步骤S317、在确定进入与所述第二车辆交会的过程之后,获取所述第一车辆的车身长度信息。
上述步骤S317可以参照步骤S302的说明,在此不再赘述。
步骤S318、根据所述车身长度信息与所述相对车速,确定交会时长。
上述步骤S318可以参照步骤S303的说明,在此不再赘述。
步骤S319、在经过所述交会时长后,确定与所述第二车辆完成交会。
上述步骤S319可以参照步骤S304的说明,在此不再赘述。
步骤S320、在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
上述步骤S320可以参照步骤S500的说明,在此不再赘述。
相对于现有技术,本发明所述的车身主动稳定控制方法具有以下优势:
先监测第二车辆与第一车辆之间的距离及第一车辆的实时车速,进而根据上述距离的变化确定第二车辆与第一车辆之间的相对车速;同时识别第二车辆相对第一车辆所在相对位置关系;然后在第二车辆与第一车辆之间的距离小于或等于预设距离阈值的情况下,确定进入与第二车辆交会的过程中时,根据第一车辆的实时车速、上述相对车速及上述相对位置关系,提前主动调整第一车辆不同位置处的减震器阻尼力,以应对因两车之间空气扰动带来的气压变化,以使第一车辆的车身保持稳定;而在确定与第二车辆完成交会时,调整第一车辆不同位置处的减震器阻尼力恢复至与第二车辆交会之前的状态,使车辆恢复正常控制;本发明实施例解决了现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
请参阅图4,图4示出了本发明实施例所提供的车身主动稳定控制方法的信号交互及执行原理图。如图4所示,上述车身主动稳定控制方法由电控减震系统10结合毫米波雷达20及电子稳定系统(Electronic Stability Program,ESP)30共同完成。
其中,电控减震系统10包括控制器(Electronic Control Unit,ECU)及作为减震执行器的多个电磁减振器,上述多个电磁减振器分别设置于车辆的左前轮、右前轮、左后轮、右后轮处;
毫米波雷达20分别安装于第一车辆左后侧、右后侧,并用于识别与第一交会的第二车辆处于第一车轮左侧还是右侧车道,并持续监测与第一车辆行驶方向距离,并将监测信号发送至电控减振系统的电子控制单元;
电子稳定系统30将轮速传感器采集轮速信号转化为第一车辆辆当前实时车速信号,并发送至电控减振系统的ECU;
电控减振系统的ECU接收第一车辆当前车速信号及两车间距离信号进行系统计算得出两车相对车速,然后根据第一车辆当前车速及两车相对车速,结合阻尼力比例map,识别该交会场景下应各减震器增加控制的阻尼力比例,并通过系统计算转化为增强控制电流;当ECU接收到两车间行驶方向距离信号小于或等于预设距离阈值时,例如≤1米,即判定达到介入时机,则由正常控制电流立即转换为增强控制电流,从而使车辆在即将发生以上交会场景时主动增强悬架阻尼控制,提升车辆稳定性;
同时,ECU根据第一车辆辆车身长度信息及相对车速信号进行系统计算得出交会时长,然后经过超车时长后判定增强控制电流退出时机,使车辆恢复正常悬架控制状态,保证乘车舒适感。
本发明的另一目的在于提出一种车身主动稳定控制装置,应用于车辆的电控减震系统中的控制器,所述电控减震系统还包括多个减震器,其中,请参阅图5,图5示出了本发明实施例所提出的车身主动稳定控制装置的结构示意图,所述装置包括:
第一获取模块51,用于获取第一车辆的实时车速;
第二获取模块52,用于获取第二车辆与所述第一车辆之间的相对车速;
识别模块53,用于识别所述第二车辆与所述第一车辆之间的相对位置关系;
第一调整模块54,用于在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
本发明实施例所述的装置中,因为在与第二车辆交会的过程中,根据第一车辆的实时车速及第一车辆与第二车辆之间的相对车速,结合第二车辆与第一车辆之间的相对位置关系,提前主动调整第一车辆不同位置处的减震器阻尼力,以应对因两车之间空气扰动带来的气压变化,从而避免车辆因空气 扰动出现左右晃动的情况,使得第一车辆的车身保持稳定状态,从而解决了现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
可选地,所述的车身主动稳定控制装置中,所述所述第一调整模块54,具体用于在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮。
可选地,所述的车身主动稳定控制装置中,所述第二获取模块52包括:
监测单元,用于监测第二车辆与所述第一车辆之间的距离;
第一确定单元,用于根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
可选地,所述装置还包括:
第一确定模块,用于在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力的步骤之前,在所述第二车辆与所述第一车辆之间的距离小于或等于预设距离阈值的情况下,确定进入被所述第二车辆超车的过程。
可选地,所述装置还包括:
第三获取模块,用于在确定进入与所述第二车辆交会的过程之后,获取所述第一车辆的车身长度信息;
第二确定模块,用于根据所述车身长度信息与所述相对车速,确定交会时长;
第三确定模块,用于在经过所述交会时长后,确定与所述第二车辆完成交会。
可选地,所述装置还包括:
第二调整模块,用于在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
可选地,所述的车身主动稳定控制装置中,所述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;所述复原阻尼力比例 图用于指示所述复原阻尼力控制比例与所述实时车速及所述相对车速之间的第一对应关系;所述压缩阻尼力比例图用于指示所述压缩阻尼力控制比例与所述实时车速及所述相对车速之间的第二对应关系;
所述第一调整模块54包括:
第二确定单元,用于针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例;
第一调整单元,用于根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻尼力;
第三确定单元,用于针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例;
第二调整单元,用于根据所述目标压缩阻尼力控制比例,增大所述第二目标减震器的压缩阻尼力。
本发明的再一目的在于提出一种车辆,其中,所述车辆包括电控减震系统,所述电控减震系统包括控制器及多个减震器,所述车辆还包括所述的车身主动稳定控制装置。
关于上述装置和车辆的技术细节和好处已在上述方法中进行了详细阐述,此处不再赘述。
综上所述,本申请提供的车身主动稳定控制方法、装置及车辆,先获取第一车辆的实时车速、以及第二车辆与第一车辆之间的相对车速;并识别所述第二车辆与所述第一车辆之间的相对位置关系;在与上述第二车辆交会的过程中,根据第一车辆的实时车速、上述相对车速及上述相对位置关系,调整第一车辆不同位置处的减震器阻尼力,以使第一车辆的车身保持稳定。因为在与第二车轮进行交会的过程中,根据第一车辆的实时车速及第一车辆与第二车辆之间的相对车速,结合第二车辆相对第一车辆所在相对位置关系,提前主动调整第一车辆不同位置处的减震器阻尼力,以应对因两车之间空气扰动带来的气压变化,从而避免车辆因空气扰动出现左右晃动的情况,使得第一车辆的车身保持稳定状态,从而解决了现有车辆在高速行驶时被超车场景下车体容易剧烈晃动,造成驾乘人员惊扰的问题。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图6示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图7所述的便携式或者固定存储单元。该存储单元可以具有与图6的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种车身主动稳定控制方法,其特征在于,应用于第一车辆的电控减震系统中的控制器,所述方法包括:
    获取第一车辆的实时车速;
    获取第二车辆与所述第一车辆之间的相对车速;
    识别所述第二车辆与所述第一车辆之间的相对位置关系;
    在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
  2. 根据权利要求1所述的车身主动稳定控制方法,其特征在于,在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定的步骤,包括:
    在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
    其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮。
  3. 根据权利要求1所述的车身主动稳定控制方法,其特征在于,所述获取第二车辆与所述第一车辆之间的相对车速的步骤,包括:
    监测所述第二车辆与所述第一车辆之间的距离;
    根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
  4. 根据权利要求1所述的车身主动稳定控制方法,其特征在于,所述方法还包括:
    在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
  5. 根据权利要求2所述的车身主动稳定控制方法,其特征在于,所述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;所述复原阻尼力比例图用于指示所述复原阻尼力控制比例与所述实时车速及所述相对车速之间的第一对应关系;所述压缩阻尼力比例图用于指示所述压缩阻尼力控制比例与所述实时车速及所述相对车速之间的第二对应关系;
    所述在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力的步骤,包括:
    针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例;
    根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻尼力;
    针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例;
    根据所述目标压缩阻尼力控制比例,增大所述第二目标减震器的压缩阻尼力。
  6. 一种车身主动稳定控制装置,其特征在于,应用于第一车辆的电控减震系统中的控制器,所述电控减震系统还包括多个减震器,所述车身主动稳定控制装置包括:
    第一获取模块,用于获取第一车辆的实时车速;
    第二获取模块,用于获取第二车辆与所述第一车辆之间的相对车速;
    识别模块,用于识别所述第二车辆与所述第一车辆之间的相对位置关系;
    第一调整模块,用于在与所述第二车辆交会的过程中,根据所述实时车速、所述相对车速及所述相对位置关系,调整所述第一车辆不同位置处的减震器阻尼力,以使所述第一车辆的车身保持稳定。
  7. 根据权利要求6所述的车身主动稳定控制装置,其特征在于,所述第 一调整模块,具体用于在与所述第二车辆交会的过程中,根据所述实时车速及所述相对车速,增大所述第一车辆的第一车轮处的减震器的复原阻尼力,并增大所述第一车辆的第二车轮处的减震器的压缩阻尼力;
    其中,所述第一车轮为远离所述第二车辆所处车道一侧的车轮,第二车轮为靠近所述第二车辆所处车道一侧的车轮;
    所述车身主动稳定控制装置还包括:
    第二调整模块,用于在确定与所述第二车辆完成交会时,调整所述第一车辆不同位置处的减震器阻尼力恢复至与所述第二车辆交会之前的状态。
  8. 根据权利要求6所述的车身主动稳定控制装置,其特征在于,所述第二获取模块包括:
    监测单元,用于监测所述第二车辆与所述第一车辆之间的距离;
    第一确定单元,用于根据所述距离的变化值及对应的监测时间间隔,确定所述相对车速。
  9. 根据权利要求7所述的车身主动稳定控制装置,其特征在于,所述车辆存储有针对不同位置处减震器的复原阻尼力比例图及压缩阻尼力比例图;所述复原阻尼力比例图用于指示所述复原阻尼力控制比例与所述实时车速及所述相对车速之间的第一对应关系;所述压缩阻尼力比例图用于指示所述压缩阻尼力控制比例与所述实时车速及所述相对车速之间的第二对应关系;
    所述第一调整模块包括:
    第二确定单元,用于针对所述第一车辆的所述第一车轮处的第一目标减震器,根据所述实时车速及所述相对车速,查询所述第一目标减震器对应的复原阻尼力比例图,确定目标复原阻尼力控制比例;
    第一调整单元,用于根据所述目标复原阻尼力控制比例,增大所述第一目标减震器的复原阻尼力;
    第三确定单元,用于针对所述第一车辆的所述第二车轮处的第二目标减震器,根据所述实时车速及所述相对车速,查询所述第二目标减震器对应的压缩阻尼力比例图,确定目标压缩阻尼力控制比例;
    第二调整单元,用于根据所述目标压缩阻尼力控制比例,增大所述第二 目标减震器的压缩阻尼力。
  10. 一种车辆,其特征在于,所述车辆包括电控减震系统,所述电控减震系统包括控制器及多个减震器,所述车辆还包括如权利要求6~9任一所述的车身主动稳定控制装置。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的车身主动稳定控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的车身主动稳定控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2022/084528 2021-04-14 2022-03-31 一种车身主动控制方法、装置及车辆 WO2022218164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110402035.8A CN115195375B (zh) 2021-04-14 2021-04-14 一种车身主动控制方法、装置及车辆
CN202110402035.8 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022218164A1 true WO2022218164A1 (zh) 2022-10-20

Family

ID=83573932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084528 WO2022218164A1 (zh) 2021-04-14 2022-03-31 一种车身主动控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN115195375B (zh)
WO (1) WO2022218164A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106364A (ja) * 2005-10-17 2007-04-26 Aisin Aw Co Ltd 走行支援装置及び走行支援方法
JP2008030541A (ja) * 2006-07-26 2008-02-14 Toyota Motor Corp 車両用運転支援装置、及び、車両用表示装置
JP2009073349A (ja) * 2007-09-20 2009-04-09 Equos Research Co Ltd 制御装置
JP2009179228A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 車両用減衰力制御装置
JP2013169941A (ja) * 2012-02-22 2013-09-02 Kyb Co Ltd ダンパ制御装置
DE102017223502A1 (de) * 2017-12-21 2019-06-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Einstellung des Dämpfersystems eines sich in einer Fahrspur befindenden ersten Kraftfahrzeugs
CN210502159U (zh) * 2019-07-24 2020-05-12 江苏徐工工程机械研究院有限公司 一种驱动桥总成主动减振装置及工程车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692128A (ja) * 1992-09-11 1994-04-05 Toyota Motor Corp 減衰力可変式ショックアブソーバの減衰力制御装置
DE502004001458D1 (de) * 2003-09-18 2006-10-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Berücksichtigung der Fahrer-Lenkreaktion bei der Gespannstabilisierung
JP5224039B2 (ja) * 2008-03-31 2013-07-03 日立オートモティブシステムズ株式会社 サスペンション制御装置
CN109515096B (zh) * 2017-09-18 2021-03-09 长城汽车股份有限公司 一种减震控制方法及装置
CN110712490B (zh) * 2018-07-13 2022-11-18 山东大学 一种基于栈式自编码的主动悬架系统及其工作方法
CN111152616B (zh) * 2020-01-08 2022-09-27 合肥工业大学 一种磁流变阻尼悬架及其测控方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106364A (ja) * 2005-10-17 2007-04-26 Aisin Aw Co Ltd 走行支援装置及び走行支援方法
JP2008030541A (ja) * 2006-07-26 2008-02-14 Toyota Motor Corp 車両用運転支援装置、及び、車両用表示装置
JP2009073349A (ja) * 2007-09-20 2009-04-09 Equos Research Co Ltd 制御装置
JP2009179228A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 車両用減衰力制御装置
JP2013169941A (ja) * 2012-02-22 2013-09-02 Kyb Co Ltd ダンパ制御装置
DE102017223502A1 (de) * 2017-12-21 2019-06-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Einstellung des Dämpfersystems eines sich in einer Fahrspur befindenden ersten Kraftfahrzeugs
CN210502159U (zh) * 2019-07-24 2020-05-12 江苏徐工工程机械研究院有限公司 一种驱动桥总成主动减振装置及工程车辆

Also Published As

Publication number Publication date
CN115195375B (zh) 2024-04-26
CN115195375A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN110155046B (zh) 自动紧急制动分级控制方法与系统
Paul et al. Advanced driver assistance systems
CN107082062B (zh) 车辆的控制装置
US9849865B2 (en) Emergency braking system and method of controlling the same
US10198951B2 (en) Models of the surroundings for vehicles
US8543309B2 (en) ACC and AM braking range variable based on lateral and longitudinal position of forward vehicle and curvature of road
CN111433099B (zh) 对于不受保护的转弯的早期对象检测
CN108944943B (zh) 一种基于风险动态平衡理论的弯道跟驰模型
JP2019500661A (ja) 自律走行車を完全に停止させるための速度制御
US10836390B2 (en) Monitoring driver movement
US20210024069A1 (en) Detection of vehicle operating conditions
CN110816541B (zh) 弯道识别方法、装置、计算机设备和存储介质
US10981575B2 (en) System and method for adaptive advanced driver assistance system with a stress driver status monitor with machine learning
US11348343B1 (en) Vehicle parking navigation
JP2017187422A (ja) 周辺物体検出装置
GB2557438A (en) Pedestrian face detection
CN113272197B (zh) 用于改进用于横向车辆运动的辅助系统的装置和方法
CN113911111B (zh) 车辆碰撞检测方法、系统、电子设备以及存储介质
TWI798646B (zh) 移動載具的警示裝置及其警示方法
WO2022218164A1 (zh) 一种车身主动控制方法、装置及车辆
JP6922494B2 (ja) 運転支援方法及び運転支援装置
CN115447607A (zh) 用于规划车辆行驶轨迹的方法和装置
CN110936955B (zh) 自动驾驶车辆车速控制方法、装置、车载设备及存储介质
Batavia Driver adaptive warning systems
KR102347653B1 (ko) 선제대응방식 샤시통합제어 방법 및 차량

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787391

Country of ref document: EP

Kind code of ref document: A1