WO2022216136A1 - 전기분사용 전극조성물 - Google Patents

전기분사용 전극조성물 Download PDF

Info

Publication number
WO2022216136A1
WO2022216136A1 PCT/KR2022/005221 KR2022005221W WO2022216136A1 WO 2022216136 A1 WO2022216136 A1 WO 2022216136A1 KR 2022005221 W KR2022005221 W KR 2022005221W WO 2022216136 A1 WO2022216136 A1 WO 2022216136A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrospray
conductive metal
particle diameter
electrode composition
Prior art date
Application number
PCT/KR2022/005221
Other languages
English (en)
French (fr)
Inventor
전영환
이승현
장해원
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN202280040045.4A priority Critical patent/CN117678039A/zh
Priority to JP2023562308A priority patent/JP2024514319A/ja
Publication of WO2022216136A1 publication Critical patent/WO2022216136A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to an electrode composition, and more particularly, to an electrode composition for electrospray.
  • elements such as capacitors, capacitors, varistors, suppressors, and MLCCs laminate several to hundreds of green sheets printed with electrode patterns, and then simultaneously sinter the electrodes and green sheets to form a single unit. It corresponds to a co-sintering type multilayer ceramic component that implements a device, and many researches are being made so that these devices can also be miniaturized and have a high capacity in line with the recent miniaturization and high performance of electronic devices.
  • the conventional method of printing the electrode pattern on the green sheet has used a screen printing method or a gravure printing method
  • the screen printing method or the gravure printing method has an advantage of low cost.
  • these methods can implement only the electrode line width and the inter-electrode spacing of 40 ⁇ 80 ⁇ m level, it is difficult to form a smaller and more sophisticated fine pattern with these methods.
  • the internal electrodes of highly laminated and miniaturized co-sintered multilayer ceramic parts can be printed using conventional screen printing or gravure printing. There are problems that are difficult to form by law.
  • the viscosity of the printing electrode composition must be greatly reduced, which causes problems in printing blur and lowering of print resolution.
  • the present invention has been devised in view of the above points, and it is an object of the present invention to provide an electrode composition for electrospray suitable for printing an electrode pattern having an ultra-thin film and excellent thickness uniformity on a ceramic sheet such as a green sheet using the electrospray method. There is this.
  • the present invention is an electrode composition for electrospray that realizes an electrode having excellent electrical conductivity and prevents shape deformation or interlayer separation of a sintered body due to a difference in shrinkage characteristics that occurs during simultaneous sintering after being printed on a ceramic sheet such as a green sheet
  • a ceramic sheet such as a green sheet
  • the present invention is an electrode composition for electrospray for realizing an electrode having an average thickness of 1 ⁇ m or less when dried, and comprising a conductive metal powder having an average particle diameter of 150 nm or less, a ceramic powder, a binder resin, and a solvent
  • An electrode composition for electrospray is provided.
  • the electrode composition for electrospray may be an electrode composition for realizing an internal electrode of a multilayer ceramic component.
  • the conductive metal powder may have an average particle diameter of 80 nm or less.
  • the number of particles having a particle diameter of 2 times or more of the average particle diameter is 20% or less of the total number of conductive metal powders, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter is 20 of the total number of conductive metal powders % or less.
  • the conductive metal powder may include at least one metal selected from the group consisting of Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo and Co, an alloy including at least one of them, and at least one of them. It may include any one or more of mixed metals including two types.
  • the ceramic powder may have an average particle diameter of 0.1 to 0.5 times the average particle diameter of the conductive metal powder.
  • the ceramic powder may include at least one ceramic powder selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, and zirconia.
  • the conductive metal powder may be provided in an amount of 10 to 30% by weight or less based on the total weight.
  • the ceramic powder may be included in an amount of 4 to 10 parts by weight based on 100 parts by weight of the conductive metal powder.
  • the binder resin may be included in an amount of 2 to 13 parts by weight or less based on 100 parts by weight of the conductive metal powder.
  • the ceramic powder may have an average particle diameter of 45 nm or less.
  • the binder resin may contain 30 to 60 parts by weight of ethyl cellulose based on 100 parts by weight of polyvinyl butyral.
  • the viscosity may be 50 ⁇ 150 cps at 25 °C.
  • the present invention provides an electrospray electrode having an average thickness of 1 ⁇ m or less as an electrode dried after the electrode composition for electrospray according to the present invention is electrosprayed onto a predetermined area.
  • the thickness uniformity may be 10% or less.
  • the present invention provides a laminated ceramic component including an internal electrode in which the electrospray electrode according to the present invention is sintered.
  • the electrode composition for electrospray according to the present invention is suitable for implementing an electrode pattern having an ultra-thin film and excellent thickness uniformity through electrospray.
  • the implemented electrode may have excellent electrical conductivity.
  • it may be suitable for forming an electrode on a ceramic sheet such as a green sheet.
  • the formed electrode is co-sintered with the ceramic green sheet, the shape of the sintered body may be completely maintained, and interlayer separation of the sintered body may be prevented.
  • an ultra-thin electrode can be implemented, it can be widely used as an internal electrode for highly laminated multilayer ceramic parts.
  • FIG. 1 is a SEM photograph of a nickel powder having an average particle diameter of 75 nm as a conductive metal powder included in an embodiment of the present invention
  • FIG. 2 is an SEM photograph before the nickel powder according to FIG. 1 is wet classified
  • FIGS. 4 and 5 are photographs of the electrode composition for electrospray containing nickel powder according to FIGS. 1 and 2, respectively, and FIG. 4 is a photograph uniformly dispersed with the ceramic powder without precipitation of the nickel powder, and FIG. A photograph of ceramic powder and phase separation due to sedimentation of
  • FIG. 6 and 7 are optical micrographs of the dried electrode after the electrode composition for electrospray is electrosprayed.
  • FIG. 7 is a photograph of an electrode pattern in which a continuous electrode surface is not partially formed due to the presence of a portion (circled portion) in which an electrode is not formed in the electrode pattern, and
  • 8 and 9 are optical micrographs of the dried electrode after the electrode composition for electrospray is electrosprayed. 9 is a photograph of an electrode pattern in which a continuous electrode surface is not partially formed due to a partial presence of a drop-out electrode on which an electrode is not formed in the electrode pattern.
  • the electrode composition according to an embodiment of the present invention is suitable for an electrospray method and is an electrode composition capable of implementing an ultra-thin electrode having an average thickness of 1.0 ⁇ m, preferably 0.6 ⁇ m or less when dried, and a conductive metal having an average particle diameter of 150 nm or less. It is implemented including powder, ceramic powder, binder resin and solvent. In addition, since it is suitable for forming an electrode on a green sheet and an ultra-thin electrode can be implemented, it may be particularly suitable for implementing an internal electrode of a multilayer ceramic component such as MLCC requiring high lamination.
  • the conductive metal powder imparts conductivity and forms the body of the electrode after sintering, and the conductive metal powder commonly used for manufacturing electrodes for electronic components can be used without limitation.
  • the conductive metal powder may include one metal selected from the group consisting of nickel, manganese, chromium, aluminum, silver, copper, palladium, tungsten, molybdenum, and cobalt, an alloy containing at least one of these, and at least one of these It may include any one or more of mixed metals including two types.
  • At least one selected from the group consisting of palladium, silver-palladium alloy, silver, nickel and copper may be included, and more preferably in consideration of heat resistance, conductivity and material cost may include nickel.
  • the conductive metal powder may have an average particle diameter of 150 nm or less, preferably 100 nm or less, and more preferably 80 nm or less. Even when the thickness of the electrode exceeds 1 ⁇ m, it is difficult for the implemented dry electrode to form a continuous electrode surface, or when a dry electrode having a thickness of 1 ⁇ m is implemented, the thickness uniformity may be very non-uniform. It can be difficult to implement layered laminated ceramic parts.
  • the conductive metal powder may have an average particle diameter of 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more. , the material cost may increase.
  • the metal powder is finely divided, it is required to ensure dispersibility, but degreasing may not be easy due to organic compounds such as dispersants added to ensure dispersibility. Separation may occur.
  • a separate dispersing agent when a separate dispersing agent is not included, when the average particle diameter of the conductive metal powder is too small, dispersibility is reduced, and when agglomerated to form coarse secondary particles, it is difficult to form a continuous electrode surface, or It is unpreferable because there is a possibility that non-uniformity may intensify.
  • the number of particles having a particle diameter of at least twice the average particle diameter is 20% or less of the total number of conductive metal powders, more preferably 15% or less, even more preferably 10% or less, more preferably is 5% or less, and the number of particles having a particle diameter of 0.5 times or less of the average particle diameter may have a particle size distribution of 20% or less, more preferably 10% or less, of the total number of conductive metal powders, through which it is supplied for electrospray It is suitable to minimize the aggregation of the conductive metal powder in the electrode composition to form secondary particles, and to minimize or prevent sedimentation of the conductive metal powder in the spinning solution chamber in the electrospray device.
  • the electrode composition in which the electrode composition does not exist is advantageous to form a continuous electrode surface in which the unsprayed region does not exist, and the electrode appearance such as non-uniformity in electrical properties such as resistance by position of the electrode formed by electro-spray or non-uniformity in thickness of the implemented electrode It may be advantageous to prevent deterioration of quality.
  • the conductive metal powder may be included in an amount of 30% by weight or less, more preferably 10 to 30% by weight, and still more preferably 20 to 30% by weight based on the total weight of the electrode composition. If the conductive metal powder is included in excess of 30 wt%, sedimentation or precipitation of the conductive metal powder in the electrode composition supplied for electrospray may occur, and thus the conductive powder may be non-uniformly sprayed during electrospray. In addition, it may be difficult to control the thickness of the electrode implemented by electrospray. In addition, when the conductive metal powder is provided in an amount of less than 10% by weight, the electrosprayed dry electrode or the sintered electrode may form an island such as a water droplet. It may be difficult to implement a desired electrode, such as disconnection.
  • the electrode composition has high electrical conductivity, and electric spraying may be difficult due to the high electrical conductivity.
  • the electrode composition includes the ceramic powder, through which the electrode composition can be adjusted to an electrical conductivity suitable for electrospray.
  • the electrode composition is processed on the green sheet to prevent shape deformation such as the sintered body being crushed due to the difference in the sintering temperature between the electrode and the green sheet and the shrinkage characteristic due to the difference in the sintering temperature generated during simultaneous sintering.
  • the ceramic component derived from the ceramic powder moves toward the surface of the sintered electrode and can be separated from the conductive component derived from the sintered conductive metal powder. have.
  • the ceramic powder may have an average particle diameter of 100 nm or less, in another example 70 nm or less, 45 nm or less, or 1 to 30 nm.
  • ceramic powder having an appropriate average particle diameter in consideration of the average particle diameter of the conductive metal powder may be used.
  • the average particle diameter of the ceramic powder may be 20 nm or less.
  • the amount of resin added may be increased due to the increase in the surface area of the particles, and the thickness unevenness of the dried and/or sintered electrode may be reduced. There is a risk of causing an increase in the shrinkage of the electrode during sintering, which may be undesirable.
  • the ceramic powder may also be advantageous to maintain a uniform dispersed phase as the proportion of coarse particles having a particle diameter of two times or more compared to the average particle diameter is small. Accordingly, in the ceramic powder, the number of particles having a particle diameter of at least twice the average particle diameter may be 20% or less, more preferably 10% or less, and still more preferably 5% or less of the total number of ceramic powder particles.
  • the ceramic powder may be used without limitation in the case of known ceramic powder, but for example, at least one or more ceramic powders selected from the group consisting of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, and zirconia. may include At this time, when the ceramic powder is used to form an internal electrode by electrospraying the electrode composition on the green sheet, it may be selected as a component common to the dielectric component of the green sheet, and through this, shrinkage between the green sheet and the electrode during simultaneous sintering It may be easier to control the properties, and it may be advantageous to improve bonding and adhesion properties between the electrode and the green sheet.
  • the ceramic powder is barium titanate
  • Ca and Zr are partially dissolved (Ba 1-x Ca x )TiO 3 , Ba(Ti 1-y Ca y )O 3 , (Ba 1-x Ca x )(Ti 1 ) -y Zr y )O 3 or Ba(Ti 1-y Zr y )O 3 , etc. also fall within the category of barium titanate.
  • the ceramic powder may be included in an amount of 4 to 10 parts by weight, more preferably 4 to 7 parts by weight, based on 100 parts by weight of the conductive metal powder. If the amount of the ceramic powder is less than 4 parts by weight, the thickness of the electrode implemented Control can be difficult. In addition, it is difficult to control the shrinkage characteristics during simultaneous sintering with the ceramic green sheet, and cracks and peeling of the electrode realized after sintering may occur frequently. In addition, if the ceramic powder is contained in excess of 10 parts by weight, the electrical conductivity of the implemented electrode is lowered, and there is a fear that the degree of contraction of the electrode during sintering may be excessive.
  • the particle diameter of the conductive metal powder and the ceramic powder is a value based on particle size measurement by the dynamic light scattering method, and is a volume-based particle diameter
  • the average particle diameter means a particle diameter corresponding to D50 in the cumulative volume-based particle size distribution.
  • the measuring device may be a known measuring device capable of counting nano-sized powder particle size, for example, a measuring device such as a Zetasizer series or APS-100.
  • the conductive metal powder having an average particle diameter of 150 nm or less can be implemented using a dry plasma powder synthesis method such as PVD or CVD, which can be advantageous for producing a powder with a clean particle surface.
  • a dry plasma powder synthesis method such as PVD or CVD
  • the continuous centrifuge can control the average particle size by controlling the rotational speed and the input amount per minute of the centrifuge, and cause rapid sedimentation of the conductive metal powder in the electrode composition to inhibit uniform dispersion of coarse particles, for example, of the average particle diameter. It is possible to control so that the number ratio of the conductive metal powder having a particle diameter of twice or more is small. If the rotation speed of the centrifuge is too high, the production yield is greatly reduced, and if it is too low, the removal rate of coarse particles that hinders uniform dispersion is reduced. In addition, if the input amount is too large, the time for receiving centrifugal force in the centrifuge chamber is shortened, so it is not easy to remove large particles.
  • FIG. 1 is an SEM photograph of the conductive metal powder used in Example 4, and the particle size of the conductive metal powder as shown in FIG. 2 is adjusted so that the coarse particle ratio is low through wet classification through centrifugation. It can be seen that the dispersion state of the electrode composition is good. On the other hand, when there are many coarse particles of the conductive metal powder, as shown in FIG. 5 , it can be confirmed that the conductive metal powder has a lot of sedimentation and phase separation from the ceramic powder has occurred.
  • the ceramic powder can be prepared by appropriately utilizing a known powder technology and a particle control technology to have a desired particle size distribution using a commercially available ceramic powder, and as a specific means, various known grinding and classification methods, related devices and the same It can be manufactured by adjusting factors such as the grinding conditions used and the grinding time.
  • a pulverizer use either a mechanical pulverizer employing a blade mill or a super rotor, or an airflow pulverizer that pulverizes particles by colliding each other against a wall using a high-speed airflow of high-pressure air.
  • the grinding level can be adjusted by putting it back into another grinder and grinding it.
  • a classifier for classifying the pulverized material such as a centrifugal wind power disperser, a disperser using a physical dispersing force such as a high-speed air flow to prevent agglomeration of fine particles, or a wet classification method to have a desired particle size distribution through a centrifugal separation method.
  • a classifier for classifying the pulverized material such as a centrifugal wind power disperser, a disperser using a physical dispersing force such as a high-speed air flow to prevent agglomeration of fine particles, or a wet classification method to have a desired particle size distribution through a centrifugal separation method.
  • the electrode composition includes a binder resin together with the above-described conductive metal powder and ceramic powder, and through this, electrode formation through electrospray and adhesion properties with the electrosprayed surface can be expressed.
  • the binder resin may be used without limitation in the case of a binder resin used in a conventional electrode composition, for example, polyvinyl butyral, polyvinylbutylaldehyde, polyvinyl alcohol, acrylic resin, epoxy resin, phenolic resin, alkyd-based resin A resin, a cellulose-based polymer, a rosin-based resin, etc. may be used.
  • polyvinyl butyral and ethyl cellulose can be mixed as the binder resin.
  • the binder resin may contain 30 to 60 parts by weight of ethyl cellulose based on 100 parts by weight of polyvinyl butyral, and through this, more improved printability and surface adhesion properties can be expressed. If the ethyl cellulose is provided in excess of 60 parts by weight, the size of the slurry particles sprayed from the spray nozzle may not be refined during electrospray, and the dried electrode film after electrospraying becomes excessively hard, reducing adhesion with the electrosprayed surface.
  • the electrode may be peeled off from the sprayed surface during sintering.
  • the ethyl cellulose is provided in less than 30 parts by weight, the electrode printability through electrospray may be deteriorated.
  • polyvinyl butyral and ethyl cellulose having a weight average molecular weight of 100,000 or less, and in another example, 10,000 to 100,000, through which it may be easy to implement a viscosity suitable for electrospray. If the weight average molecular weight exceeds 100,000, electrospray may become difficult due to excessive viscosity increase.
  • the binder resin may be included in an amount of 13 parts by weight or less, more preferably 10 parts by weight or less, more preferably 2 to 10 parts by weight based on 100 parts by weight of the conductive metal powder. If the binder resin exceeds 13 parts by weight, cracks may occur in the electrode during sintering, or separation between the stacked green sheet layers may be caused in the case of sintering together with the green sheet. In addition, when the binder resin is less than 2 parts by weight, there is a risk that sedimentation of the metal powder or ceramic powder in the electrode composition or dispersibility may be impaired, and the electrode may be peeled off from the surface sprayed before drying and sintering after spraying. .
  • the electrode composition includes a solvent, and the solvent can be employed in a liquid for spraying when electrospraying, and while not having an effect such as infringing on the electrosprayed surface, for example, the green sheet and the conductive metal powder and ceramic powder described above,
  • a solvent used in a known electrode composition capable of dissolving the binder resin may be selected without limitation.
  • An organic solvent such as bornylacetato, isobornyl propionate, isobornyl butyrate, isobornyl isobutylate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, ethyl acetate, butyl acetate, and hexyl acetate 1
  • More than one type of organic solvent may be used, and preferably, a mixed solvent of dihydroterpineol and dihydroterpineol acetate or a mixed solvent of dihydroterpineol acetate and ethyl acetate may be
  • the electrode composition for electrospray according to an embodiment of the present invention may be implemented as a photosensitive electrode composition.
  • the binder resin may include a photosensitive resin
  • the photosensitive electrode composition may further include a monomer and a photoinitiator.
  • the binder resin includes a photosensitive resin, and the photosensitive resin serves as a binder of components in the photosensitive electrode composition to maintain the bonding force of the dried electrode and to impart solubility to a developer.
  • the photosensitive resin may be cured by intermolecular crosslinking under the action of active energy such as ultraviolet rays or electron beams to form a cured coating film, or may be dissolved in a developer by breaking intermolecular crosslinking.
  • the photosensitive resin may be used without limitation if it is a photosensitive resin commonly used in the field of photosensitive electrode paste. In addition, it may be a positive type or negative type photosensitive resin.
  • a photosensitive binder resin used in the photosensitive resin composition such as acrylate-based, cellulose-based, novolac acrylic-based, water-soluble polymer, polyimide, or a precursor thereof may be used.
  • the photosensitive resin may be a negative acrylate-based photosensitive binder.
  • the acrylate-based photosensitive binder examples include a resin having an ethylenically unsaturated bond such as a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group, or a photosensitive functional group such as a propargyl group, for example, an ethylenically unsaturated group in the side chain.
  • a resin having an ethylenically unsaturated bond such as a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group
  • a photosensitive functional group such as a propargyl group
  • Various conventionally well-known photosensitive resins (photosensitive prepolymer) such as the acrylic copolymer which has, the unsaturated carboxylic acid-modified epoxy resin, or the resin which added polybasic acid anhydride further to it, can be used.
  • the photosensitive resin is glycidyl methacrylate (GMA), methyl methacrylate (MMA), isobornyl methacrylate (IBOMA), benzyl methacrylate, methacrylic acid (MMA), acrylic acid (AA) and It may include an acrylate-based copolymer in which at least two monomers of the styrene monomo are copolymerized.
  • the photosensitive resin may include glycidyl methacrylate-methyl methacrylic acid copolymer, glycidyl methacrylate-methyl methacrylic acid-methyl methacrylate-isobornyl methacrylate copolymer, and methyl methacrylic acid. It may be a late-benzyl methacrylate-methacrylic acid copolymer.
  • the photosensitive resin according to an embodiment of the present invention is a copolymer of methacrylic acid, methyl methacrylate and isobornyl methacrylate, and contains 15.5 to 19.5 mol% of methacrylic acid, and a weight average molecular weight of 8000 to It may include an acrylate-based copolymer of 15000, more preferably 25 to 40 mol% of methyl methacrylate, and may be a copolymer containing isobornyl methacrylate as a residual amount, through which better quality and resolution , it may be advantageous to implement an electrode pattern in which residues are prevented with photosensitivity.
  • the acrylate-based copolymer may be introduced by reacting a compound having an epoxy or isocyanate functional group to a carboxy functional group in the acrylate-based copolymer to control the acid value.
  • the compound having the epoxy group may include, for example, at least one of a methylene functional group, a vinyl functional group, and an allyl functional group at the terminal, and specifically may be allyl glycidyl ether.
  • the compound having the isocyanate functional group may be, for example, 2-acryloyloxyethyl isocyanate.
  • the acrylate-based copolymer with the acid value controlled may have an acid value of 25 to 100 mgKOH/g, thereby exhibiting excellent photosensitivity and developability.
  • the glass transition temperature of the photosensitive resin as the acrylate-based copolymer may be 20 ⁇ 150 °C.
  • polyimide or a precursor thereof may be included in addition to the acrylate-based photosensitive resin.
  • the polyimide or its precursor content may be included in an amount of 10 to 60 parts by weight based on 100 parts by weight of the acrylate-based resin, which may be more advantageous in achieving the object of the present invention.
  • the binder resin including the photosensitive resin may further include polyvinyl butyral resin.
  • the binder resin made of only the photosensitive resin may have poor adhesion to the electrosprayed surface, for example, a green sheet. Accordingly, polyvinyl butyral resin may be further included, and improved adhesion and adhesion to the green sheet may be achieved.
  • the polyvinyl butyral resin may be contained in 10 to 50% by weight of the binder resin, and if it is included in an amount exceeding 50% by weight, there is a risk that defects such as residues during development after exposure may increase, and the content is less than 10% by weight. When contained, the effect of improving adhesion may be insignificant.
  • the polyvinyl butyral resin preferably has a weight average molecular weight of 100,000 or less, and in another example, 10,000 to 100,000 in consideration of the need to maintain a low viscosity of the implemented electrode composition.
  • the monomer contains a carbon double bond, and the double bond is converted into a single bond by radicals excited by active energy such as ultraviolet rays or electron beams to polymerize to form a cured structure in the photosensitive electrode composition.
  • the monomer is not particularly limited as long as it is a monomer commonly used in the field of photosensitive paste.
  • the monomer may be, for example, a polyfunctional monomer such as bifunctional, trifunctional, or tetrafunctional.
  • an acrylic ester system selected from trimethylolpropane triacrylate, trimethylolpropane ethoxylated triacrylate, pentaerythritol tri-acrylate or pentaerythritol tetra-acrylate may be used.
  • an acrylic ester system selected from trimethylolpropane triacrylate, trimethylolpropane ethoxylated triacrylate, pentaerythritol tri-acrylate or pentaerythritol tetra-acrylate may be used.
  • the present invention is not limited thereto.
  • the monomer may be included in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin. If the content of the monomer is less than 10 parts by weight, the curing density of the exposure pattern may become weak, and if it exceeds 100 parts by weight, the pattern characteristics may be deteriorated, and resistance may increase due to residual organic matter after curing, or the laminated green There is a fear that separation between the sheet layers may occur.
  • an oligomer may be further included as a component for forming a cured structure by radicals.
  • the oligomer may be an oligomer commonly used in the photosensitive electrode composition without limitation, and may be, for example, an acrylate having a molecular weight of 1000 or less.
  • the oligomer may be contained in an amount of 10 to 100 parts by weight based on 100 parts by weight of the photosensitive resin, but is not limited thereto.
  • the photoinitiator is a compound causing a chemical reaction by generating radicals upon irradiation with active energy such as ultraviolet rays or electron beams, and is not particularly limited as long as it is a photopolymerization initiator commonly used in the field of photosensitive electrode compositions.
  • active energy such as ultraviolet rays or electron beams
  • acetophenone compounds, benzophenone compounds, thioxanthone compounds, benzoin compounds, triazine compounds including monophenyl, oxime compounds, carbazole compounds, diketone compounds, sulfonium borate compounds , a diazo-based compound, a biimidazole-based compound, and the like can be used as the photoinitiator.
  • the photoinitiator is benzophenone, o-benzoylbenzoate methyl, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2 -methyl Propiophenone, p-t-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, 4-azidobenzalacetophenone , 2,6-bis(p-azidobenzylidene)cyclohexanone, 6-bis(
  • 1,2-octanedione 1-[4-(phenylthio)-2-(O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6 -Trimethylbenzoyl)-phenylphosphine oxide, Michler ketone, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, naphthalenesulfonylchloride, quinolinesulfonylchloride, N -Phenylthioacridone, 4,4'-azobisisobutyronitrile, diphenyldisulfide, benzothiazoledisulfide, triphenylphosphine, benzoin peroxide and photoreducing pigments such as eosin, methylene blue and ascorb At least one selected from the group consisting of an acid, and triethanolamine may be used.
  • the photoinitiator may include 1 to 50 parts by weight based on 100 parts by weight of the binder resin. If the content of the photoinitiator is less than 1 part by weight, there is a fear that the cured density of the exposed portion may decrease, and the cured coating film may be affected in the developing process. In addition, if the content of the photoinitiator exceeds 50 parts by weight, it may be difficult to form a desired pattern due to excessive light absorption in the upper part of the dry coating film.
  • an azide-based photocrosslinker compound more specifically, a compound in which an azide group, which is a photocrosslinkable functional group, is substituted at both ends of a linear alkylene group having 4 to 20 carbon atoms.
  • the same compound can be crosslinked without a photoinitiator, thereby reducing the content of the photoinitiator.
  • Specific types thereof include 1,4-diadobutane, 1,5-diadopentane, 1,6-diadohexane, 1,7-diadoheptane, 1,8-diadooctane, and 1,10-diazidotane. decane, 1,12-diazododecane, or mixtures thereof.
  • the total weight of the binder resin and the monomer including the photosensitive resin described above may be included in an amount of 13 parts by weight or less, more preferably 10 parts by weight or less, more preferably 2 to 10 parts by weight based on 100 parts by weight of the conductive metal powder. . If the binder resin exceeds 13 parts by weight, cracks may occur in the electrode during sintering, or separation between the stacked green sheet layers may be caused in the case of sintering together with the green sheet. In addition, when the binder resin is less than 2 parts by weight, there is a risk that sedimentation of the metal powder or ceramic powder in the electrode composition or dispersibility may be impaired, and the electrode may be peeled off from the surface sprayed before drying and sintering after spraying. .
  • the specific types of binder resin, monomer, and photoinitiator including the above-described photosensitive resin and their contents are determined by the manufacturing method through electrospray, the use of the internal electrode of the laminated ceramic part, the thickness, line width, and width of the internal electrode to be implemented. It should be noted that it can be determined by comprehensively considering the distance, the material and particle size of the metal powder and ceramic powder.
  • the above-described electrode composition or photosensitive electrode composition may further include additives such as a dispersant, a plasticizer, a leveling agent, a thixotropic agent, a slip agent, and a curing accelerator in addition to the above-described components, and the additive is contained in a known electrode composition Since additives can be used without limitation, the present invention is not specifically limited thereto.
  • the dispersing agent is included to provide dispersion stability of the metal powder and the ceramic powder, and is not particularly limited as long as it is a dispersant commonly used in the electrode composition.
  • the dispersant is preferably oleic acid, polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester, propylene glycol ester, sugar ester, fatty acid alkanolamide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, amine oxide and poly 12 - At least one selected from the group consisting of hydroxystearic acid may be used.
  • the additive including the dispersant may be included in an amount of 10 to 50 parts by weight based on 100 parts by weight of the binder resin. If the additive is included in less than 10 parts by weight, it may be difficult to achieve a desired effect through the additive. In addition, when it exceeds 50 parts by weight, there is a fear that physical properties such as conductivity of the electrode composition and thickness uniformity of the dry electrode and/or the sintered electrode realized after spraying may be deteriorated.
  • the electrode composition containing the above-described components may have a viscosity of 50 to 150 cps, more preferably 70 to 100 cps, which is suitable for electrospraying, and is advantageous for realizing an ultra-thin dry electrode after electrospraying. . If the viscosity is less than 50 cps, precipitation of the dispersed conductive metal powder and ceramic powder may occur rapidly, and there is a risk that the dispersibility may be deteriorated. In addition, if the viscosity exceeds 150cps, it may be difficult to precisely control the thickness through electrospray, and it may be difficult to manufacture a thin electrode. On the other hand, the viscosity here is the result of measurement with a Brookfield rotational viscometer LV based on ISO 554 under the conditions of a temperature of 25° C., a relative humidity of 65%, and 10 rpm.
  • the above-described electrode composition may be implemented by mixing the conductive metal powder, ceramic powder, binder resin and solvent and then dispersing the conductive metal powder and ceramic powder.
  • a high-pressure dispersing device or a bead mill since a lot of heat is generated due to the fine powder during mixing and dispersing, it may be more advantageous to mix and disperse using a high-pressure dispersing device or a bead mill.
  • the stirring device may be a known stirring device such as an impeller, so the present invention is not particularly limited thereto.
  • the above-described electrode composition may be sprayed to have a predetermined electrode pattern on a surface to be sprayed, for example, a ceramic green sheet through a conventional electrospray device, and then dried and sintered to form an electrode.
  • the average thickness of the electrode during drying may be implemented to be 1 ⁇ m or less
  • the average thickness after sintering may be implemented, for example, 0.3 ⁇ 1.0 ⁇ m or less.
  • the electrode surface of the dried electrode applied to the pattern on which the electrode is formed may have a continuous electrode surface in which an uncoated area does not exist.
  • it can be formed so as to have an area of 90% or more.
  • the average value for the five average thicknesses measured for each region and the standard deviation thereof are shown below.
  • the thickness uniformity according to Equation 1 may be within 10%, more preferably within 5%, and even more preferably within 3%.
  • the thickness uniformity (%) means that the thickness uniformity is excellent as there is no deviation with respect to the average thickness of each region, that is, the standard deviation is close to 0.
  • Thickness uniformity (%) [(Standard deviation for the average thickness of 5 areas (nm))/(Average value for the average thickness of 5 areas (nm))] ⁇ 100
  • the average thickness of the dry electrode or the average thickness of the sintered electrode as defined in the present invention may be measured by a thickness measurement method known as an alpha step, and a known measuring device for measuring the thickness by this method can be used without limitation for thickness measurement.
  • the drying temperature after electrospraying may be 50 to 70° C.
  • the UV exposure amount may be 100mJ to 700mJ.
  • the developer may use, for example, a Na 2 CO 3 solution, and the concentration may be 0.1 to 4% by weight.
  • the developing time may be 20 to 100 seconds.
  • a nickel powder having an average particle diameter of 438 nm was prepared through dry plasma. Afterwards, the prepared nickel powder was subjected to wet classification through centrifugal separation, with an average particle diameter of 147.1 nm, and particles having a particle diameter more than twice the average particle diameter were 15% of the total nickel powder, and particles having a particle diameter less than 0.5 times the average particle diameter were Conductive metal powder having a particle size distribution of 18% of the total nickel powder was prepared.
  • the average particle diameter is 65.8 nm through wet classification through a centrifugal separation method, and particles having a particle diameter more than twice the average particle diameter are the total ceramic powder.
  • a ceramic powder having a particle size distribution in which particles having a particle diameter of 10% or less of 0.5 times the average particle diameter was 9% of the total ceramic powder was prepared.
  • the ceramic powder is mixed so that 6.8 parts by weight and the binder resin are 8 parts by weight, but the total composition is mixed so that the weight of the conductive metal powder is 25% by weight, and the viscosity is 80 cps at a temperature of 25 ° C.
  • An electrode composition for electrospray as shown in Table 1 was prepared.
  • the viscosity of the prepared electrode composition for electrospray is the result of measurement with a Brookfield rotary viscometer LV according to ISO 554 under the conditions of a temperature of 25° C. and a relative humidity of 65% and 10 rpm.
  • Example 2 It was prepared in the same manner as in Example 1, except that the content of the conductive metal powder, the average particle diameter, the particle size distribution, the content of the ceramic powder, the average particle diameter, and/or the viscosity of the electrode composition were changed as shown in Table 1 or Table 2 below. A used electrode composition was prepared.
  • the ceramic powder used has a particle size distribution such that particles having a particle diameter of 2 times or more of the average particle diameter are within 10% of the total ceramic powder, and particles having a particle diameter of 0.5 times or less of the average particle diameter are within 10% of the total ceramic powder. Ceramic powder whose particle size was controlled through wet classification was used.
  • Example 2 It was prepared in the same manner as in Example 1, except that the average particle diameter of the conductive metal powder was changed as shown in Table 1 below to prepare an electrode composition for electrospray.
  • a green sheet was prepared.
  • the electrode compositions for electrospray according to Examples and Comparative Examples were applied to the nozzle and the ceramic green sheet surface at a discharge rate (3 ml/min per hole) using an electrospray device under the conditions of 18° C. and 30% relative humidity.
  • the sintered electrode pattern was realized by sintering the ceramic green sheet on which the electrode pattern was formed at 1000° C. for 2 hours in an atmospheric atmosphere.
  • the average thickness was measured using an alpha-step (Dektak 150, Bruker), which is a stylus-type surface step measuring instrument.
  • the average thickness of the 5 electrode regions and the standard deviation are calculated by the following formula The thickness uniformity according to 1 was calculated.
  • Thickness uniformity (%) [(Standard deviation (nm) for average thickness of 5 regions)/(Average value for average thickness of 5 regions (nm))] ⁇ 100
  • the dry electrode pattern was observed with an optical microscope, counting the number of parts where the electrode material was not formed, and measuring the area, and evaluated as 0 to 5 points according to the following criteria.
  • the number of parts where electrodes are not formed is 1 to 2 and the area of parts where electrodes are not formed is within 2% of the total area of the observed electrode: 4 points
  • the number of parts where electrodes are not formed is more than 2 and less than 5, and the non-electrode area is less than 5% of the total area of the observed electrode: 3 points
  • the number of non-electrode areas exceeds 20 and the non-electrode area exceeds 15% of the observed total area of the electrode: 0 points
  • the shrinkage ratio of the prepared sintered electrode pattern was measured, and the shrinkage degree of the other examples was expressed as a relative percentage based on the shrinkage value of Example 4 as 100.
  • the shrinkage ratio was calculated by measuring the average thickness of the dried electrode and the average thickness of the sintered electrode, and the value calculated by the following Equation 2 was used as the shrinkage ratio.
  • Shrinkage (%) (Average thickness of electrode after sintering (nm/Average thickness of electrode after drying (nm)) ⁇ 100
  • thickness uniformity is obtained by dividing the electrode surface on which the thickness is measured into five non-overlapping regions, measuring the average thickness for each of the five regions, and calculating the average thickness of the five electrode regions and the standard deviation thereof.
  • the thickness uniformity was calculated according to Equation 1 described above.
  • 'Ratio A' and 'Ratio B' are the ratio of particles having a particle diameter of at least twice the average particle diameter of the conductive metal powder and 0.5 times or less of the average particle diameter of the total number of conductive metal powders, respectively. It means the proportion of particles.
  • the 'ratio C' means a value obtained by dividing the average particle diameter of the ceramic powder by the average particle diameter of the conductive metal powder.
  • the content of the conductive metal powder is a content ratio based on the total weight of the electrode composition for electrospray, and the content of the ceramic powder is the content based on 100 parts by weight of the conductive metal powder.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 conductive metal powder Type/content (% by weight) 25 25 25 25 25 25 25 25 25 25
  • Average particle diameter (nm) 160.3 147.1 142.2 98.0 75.0 75.0 75.0 Ratio A (%) 10 15 26 12 9 9 9 9 Ratio B (%) 8 18 23 9 7 7 7 7
  • Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 conductive metal powder Type/content (% by weight) 35 10 8 25 25 25 25 Average particle diameter (nm) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 Ratio A (%) 9 9 9 9 9 9 9 9 9 Ratio B (%) 7 7 7 7 7 7 7 ceramic powder Type/content (parts by weight) 4.2 6.8 6.8 9.7 11.5 4 2.5 Average particle diameter (nm) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 Ratio C 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 Viscosity (cps) 94 72 71 84 85 79 79 Dry electrode average thickness (nm) 445 438 413 445 443 440 426 Dry electrode thickness uniformity (%) 16.9 10 24.5 9.6 9.9 9.7 17.6 Maximum thickness in dry electrode ( ⁇ m) within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within
  • the average thickness of the dry electrode was within 1.0 ⁇ m, but the thickness uniformity was very poor as 28.40%, so the maximum thickness among the dry electrode thicknesses It can be seen that is greater than 1.0 ⁇ m.
  • Example 2 In addition, in the case of Examples 1 and 2 containing conductive metal powder having an average particle diameter of 150 nm or less, the maximum thickness of the dry electrode formed after electrospraying was 1.0 ⁇ m or less, but in Example 2, the average particle diameter The number of coarse particles is large as the number of particles having a particle diameter more than twice that of the conductive metal powder reaches 26% of the conductive metal powder, and the sedimentation rate of the conductive metal powder is high. It can be seen that the surface formation property is significantly lowered compared to Example 1.
  • Example 3 in which the average particle diameter of the conductive metal powder is 100 nm or less, the average thickness of the dry electrode implemented during electrospray under the same conditions is thinner than in Example 1, and the dry electrode It can be seen that the thickness uniformity and the continuous electrode surface formability are increased.
  • the electrode composition according to Example 4 further reduced the ratio of particles that are more than twice the average particle diameter of the conductive metal powder, so that the uniformity of the content of the conductive metal powder sprayed during electric spraying As the mixture increases so that the average particle diameter of the ceramic powder is more controlled compared to the average particle diameter of the conductive metal powder, the thickness uniformity of the dry electrode, the formability of the continuous electrode surface, and the shrinkage characteristic and thickness uniformity of the sintered electrode are very excellent.
  • Example 6 in which ceramic powder having an average particle diameter of less than 0.1 times the average particle diameter of the conductive metal powder was mixed, the thickness uniformity of the dry electrode was lowered compared to that of Example 4, and the shrinkage characteristics and thickness uniformity of the sintered electrode It can be seen that the sex has decreased.
  • Example 7 in which ceramic powder having an average particle diameter exceeding 0.5 times the average particle diameter of the conductive metal powder was mixed, it can be seen that the shrinkage characteristic of the sintered electrode was greatly reduced.
  • the content of the conductive metal powder exceeds 30% by weight, the increased electrical conductivity of the electrospray composition affects the electrospray, so that the continuous electrode surface formability is lowered compared to Example 4, and the thickness uniformity of the dry electrode is also lowered. Able to know.
  • Example 10 in which the content of the conductive metal powder was less than 10% by weight, it can be seen that the continuous electrode surface formability and uniformity of dry thickness were lowered compared to Example 9.
  • Example 12 containing more than the preferred range significantly increased the shrinkage of the sintered electrode compared to Example 4, and Example 14 containing less than the preferred range had little effect of lowering the electrical conductivity. It can be seen that the thickness uniformity of the implemented dry electrode is lowered.
  • Example 1 was prepared in the same manner as in Example 1, but in a mixed solvent in which dihydroterpineol and dihydroterpineol acetate were mixed in a weight ratio of 1:1 to implement a photosensitive electrospray electrode composition.
  • Conductive metal powder and ceramic powder of nickel whose particle size is controlled in a photosensitive resin with a weight average molecular weight of about 10,000 and 19.5 mol% of methacrylic acid, 38.5 mol% of methyl methacrylate and 42 mol of isobornyl methacrylate % copolymerized acrylate-based copolymer 75 wt% and polyvinyl butyral resin binder resin containing 25 wt%, pentaerythritol tri-acrylate as a polyfunctional monomer based on 100 parts by weight of the photosensitive resin 13 parts by weight and Azobisisobutyronitrile was mixed as a photoinitiator, specifically, 6.8 parts by weight of ceramic powder, 8 parts by weight of binder resin
  • the viscosity of the prepared electrode composition for electrospray is the result of measurement with a Brookfield rotational viscometer LV in accordance with ISO 554 under the conditions of a temperature of 25 and a relative humidity of 65% and a rotation speed of 10 rpm.
  • Example 15 It was prepared in the same manner as in Example 15, except that the content of the conductive metal powder, the average particle diameter, the particle size distribution, the content of the ceramic powder, the average particle diameter, and/or the viscosity of the electrode composition were changed as shown in Table 3 or Table 4 below. A used electrode composition was prepared.
  • the ceramic powder used has a particle size distribution such that particles having a particle diameter of 2 times or more of the average particle diameter are within 10% of the total ceramic powder, and particles having a particle diameter of 0.5 times or less of the average particle diameter are within 10% of the total ceramic powder. Ceramic powder whose particle size was controlled through wet classification was used.
  • Example 15 It was prepared in the same manner as in Example 15, except that the average particle diameter of the conductive metal powder was changed as shown in Table 3 below to prepare an electrode composition for electrospray.
  • the photosensitive electrode compositions for electrospray according to Examples 15 to 28 and Comparative Example 2 were applied on the ceramic green sheet used in Experimental Example 1 at a discharge rate (3 ml per hole) at 18° C. and 30% relative humidity using an electrospray device. /min), the air gap, which is the distance between the nozzle and the ceramic green sheet, is 24 cm, and the applied voltage is 70 kV.
  • a photosensitive electrode layer was implemented.
  • a mask was placed on the photosensitive electrode layer to have a predetermined electrode line pattern, and then exposed to UV at an intensity of 550 mJ, and development was performed for 30 seconds through a developer, which is a 3 wt% Na 2 CO 3 solution, to implement an electrode pattern. . Then, the ceramic green sheet on which the electrode pattern was formed was sintered at 1000° C. for 2 hours in an atmospheric atmosphere to realize the electrode pattern in the sintered state.
  • 'ratio A' and 'ratio B' are, respectively, the ratio of particles having a particle diameter of at least twice the average particle diameter of the conductive metal powder among the total number of conductive metal powders, and 0.5 times or less of the average particle diameter. It means the ratio of particles having a particle size.
  • the 'ratio C' means a value obtained by dividing the average particle diameter of the ceramic powder by the average particle diameter of the conductive metal powder.
  • the content of the conductive metal powder is a content ratio based on the total weight of the photosensitive electrospray electrode composition, and the content of the ceramic powder is the content based on 100 parts by weight of the conductive metal powder.
  • Example 22 Example 23 Example 24 Example 25 Example 26 Example 27 Example 28 conductive metal powder Type/content (% by weight) 35 10 8 25 25 25 25 Average particle diameter (nm) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 Ratio A (%) 9 9 9 9 9 9 9 9 9 9 Ratio B (%) 7 7 7 7 7 7 7 ceramic powder Type/content (parts by weight) 4.2 6.8 6.8 9.7 11.5 4 2.5 Average particle diameter (nm) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 Ratio C 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 Viscosity (cps) 94 72 71 84 85 79 79 Dry electrode average thickness (nm) 440 446 408 450 441 442 428 Dry electrode thickness uniformity (%) 16.9 10.3 25.1 9.4 9.8 9.5 19.2 Maximum thickness in dry electrode ( ⁇ m) within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within 1.0 within
  • the average thickness of the dry electrode was within 1.0 ⁇ m, but the thickness uniformity was very poor as 28.40%, so the maximum thickness of the dry electrode was It can be seen that is greater than 1.0 ⁇ m.
  • Example 15 and 16 containing conductive metal powder having an average particle diameter of 150 nm or less the maximum thickness of the dry electrode formed after electrospraying was 1.0 ⁇ m or less, but in Example 16, the average particle diameter The number of coarse particles is large as the number of particles having a particle diameter more than twice that of the conductive metal powder reaches 26% of the conductive metal powder, and the sedimentation rate of the conductive metal powder is high. It can be seen that the surface formation property was significantly lowered compared to Example 15. In addition, it can be seen that the quality of the implemented electrode is deteriorated because the undercut is deepened because exposure to the lower side of the electrode is not performed properly.
  • the proportion of particles that are twice or more compared to the average particle diameter of the conductive metal powder is further reduced, so that the content uniformity of the conductive metal powder sprayed during electric spraying is
  • the thickness uniformity of the dry electrode, the continuous electrode surface formability, and the shrinkage characteristic and thickness uniformity of the sintered electrode are very excellent as the average particle diameter of the ceramic powder is more controlled compared to the average particle diameter of the conductive metal powder.
  • Example 20 in which ceramic powder having an average particle diameter of less than 0.1 times the average particle diameter of the conductive metal powder was mixed, the thickness uniformity of the dry electrode was lowered compared to that of Example 18, and the shrinkage characteristics and thickness uniformity of the sintered electrode It can be seen that the sex has decreased.
  • Example 21 in which ceramic powder having an average particle diameter exceeding 0.5 times the average particle diameter of the conductive metal powder was mixed, it can be seen that the shrinkage characteristic of the sintered electrode was greatly deteriorated.
  • the content of the conductive metal powder exceeds 30% by weight, the increased electrical conductivity of the electrospray composition affects the electrospray, so that the continuous electrode surface formability is lowered compared to Example 18, and the thickness uniformity of the dry electrode is also lowered. Able to know. In addition, it can be seen that the undercut is deepened because exposure of the lower side of the electrode is not performed properly.
  • Example 24 in which the content of the conductive metal powder was less than 10% by weight, the continuous electrode surface formability and uniformity of dry thickness were lowered compared to Example 23.
  • Example 26 With respect to the content of the ceramic powder in Example 26 containing more than the preferred range, the shrinkage of the sintered electrode was significantly increased compared to Example 18, and in Example 28 containing less than the preferred range, the effect of lowering the electrical conductivity was insignificant. It can be seen that the thickness uniformity of the implemented dry electrode is lowered compared to that of Example 27.

Abstract

전기분사용 전극조성물이 제공된다. 본 발명의 일 실시예에 의한 전극조성물은 건조 시 평균두께가 1.0㎛ 이하인 전극을 구현하기 위한 전기분사용 전극조성물로서, 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 포함하여 구현된다. 이에 의하면, 전기분사를 통해서 초박막이면서도 우수한 두께 균일성을 갖는 전극패턴을 구현하는데 적합하다. 또한, 구현된 전극이 우수한 전기전도도를 가질 수 있다. 나아가, 그린시트와 같은 세라믹 시트 상에 전극을 형성하는데 적합할 수 있다. 더불어 형성된 전극을 세라믹 그린시트와 동시소결하는 경우에 소결체의 형상이 온전히 유지될 수 있고, 소결체의 층간 분리가 방지될 수 있다. 또한, 초박막의 전극을 구현할 수 있으므로 고적층화되는 적층세라믹 부품용 내부전극으로 널리 활용될 수 있다.

Description

전기분사용 전극조성물
본 발명은 전극조성물에 관한 것이며, 보다 구체적으로는 전기분사용 전극조성물에 대한 것이다.
전자기기에 많이 사용되는 전자부품들 중 콘덴서, 커패시터, 바리스터, 서프레서, MLCC 등의 소자들은 전극패턴이 인쇄된 그린시트를 수 개에서 수백 개 적층시킨 뒤 전극과 그린시트를 동시소결하여 단일의 소자를 구현하는 동시소결형 적층세라믹 부품에 해당하는데, 최근 전자기기의 소형화, 고성능화에 맞춰서 이들 소자들도 소형화 및 고용량화 되도록 많은 연구가 이루어지고 있다.
이와 같은 동시소결형 적층세라믹 부품의 경우 고용량화를 위해서 그린시트를 구성하는 유전체 및 전극의 재질을 개량시키는 것 이외에도 더 많은 개수의 그린시트를 적층시키는 고적층화를 위한 시도가 계속되고 있다. 동시소결형 적층세라믹 부품의 고적층화를 위해서는 유전체에 해당하는 그린시트와 전극패턴의 두께 감소가 요구되며, 소형화를 위해서는 전극패턴의 전극 선폭, 전극 간 간격의 미세화가 필수적으로 요구된다.
한편, 종래에 그린시트 상에 전극패턴을 인쇄하는 방법은 스크린 인쇄법이나 그라비아 인쇄법을 이용해왔는데, 스크린 인쇄법이나 그라비아 인쇄법은 비용이 저렴한 이점이 있다. 그러나 이들 방법들은 전극 선폭과 전극 간 간격이 40 ~ 80㎛ 수준으로 밖에 구현할 수 없어서 이 방법들로는 더 작고 정교한 미세한 패턴을 형성하기 곤란하다. 또한, 인쇄 후 전극 두께가 5 ~ 100㎛ 수준으로 1㎛ 이하의 초박막의 전극패턴을 형성하기 어려움에 따라서 고적층화 및 소형화된 동시소결형 적층세라믹 부품의 내부 전극을 종래의 스크린 인쇄법이나 그라비아 인쇄법으로는 형성시키기 어려운 문제가 있다. 또한, 초박막의 전극 인쇄를 위해서는 인쇄용 전극조성물의 점도를 크게 낮춰야 하는데, 이로 인해 인쇄번짐, 인쇄 해상도 저하의 문제가 있다.
이에 최근에는 미세 패턴화된 전극을 잉크젯 프린팅 방법으로 구현하는 시도가 계속되고 있는데, 잉크젯 프린팅을 이용해 전극을 형성시킬 경우 두께 1㎛ 이하의 초박막 전극패턴의 구현은 가능하나 생산성이 좋지 않고, 전극 제조용 잉크의 비용이 비싸며, 대면적의 그린시트 상에 전극패턴을 인쇄하기 용이하지 않은 문제가 있다.
이에 따라서 대면적의 그린시트 상에 초박막의 전극패턴을 쉽고, 저렴한 비용으로 형성시킬 수 있는 방법 및 그에 적합한 전극조성물의 개발이 시급한 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 그린시트와 같은 세라믹 시트 상에 전기분사법을 이용해 초박막이면서 우수한 두께균일성을 가지는 전극패턴을 인쇄하는데 적합한 전기분사용 전극조성물을 제공하는데 목적이 있다.
또한, 본 발명은 우수한 전기전도도를 갖는 전극을 구현하면서도 그린시트와 같은 세라믹 시트 상에 인쇄된 후 동시소결 시 발생하는 수축특성 차이로 인한 소결체의 형상 변형이나 층간 분리가 방지되는 전기분사용 전극조성물을 제공하는데 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 건조 시 평균두께가 1㎛ 이하인 전극을 구현하기 위한 전기분사용 전극조성물로서, 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 포함하는 전기분사용 전극조성물을 제공한다.
본 발명의 일 실시예에 의하면, 상기 전기분사용 전극조성물은 적층세라믹 부품의 내부전극을 구현하기 위한 전극조성물일 수 있다.
또한, 상기 도전성 금속분말은 평균입경이 80㎚ 이하일 수 있다.
또한, 상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하일 수 있다.
또한, 상기 도전성 금속분말은 Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo 및 Co로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함할 수 있다.
또한, 상기 세라믹 분말은 상기 도전성 금속분말 평균입경의 0.1 ~ 0.5배의 평균입경을 갖는 것을 사용할 수 있다.
또한, 상기 세라믹 분말은 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함할 수 있다.
또한, 상기 도전성 금속분말은 전체 중량 기준 10 ~ 30중량% 이하로 구비될 수 있다.
또한, 상기 세라믹 분말은 도전성 금속분말 100 중량부에 대해서 4 ~ 10 중량부로 포함될 수 있다.
또한, 상기 바인더 수지는 도전성 금속분말 100 중량부에 대해서 2 ~ 13중량부 이하로 포함될 수 있다.
또한, 상기 세라믹 분말은 평균입경이 45㎚ 이하일 수 있다.
또한, 상기 바인더 수지는 폴리비닐부티랄 100 중량부에 대하여 에틸셀룰로오스를 30 ~ 60 중량부로 포함할 수 있다.
또한, 25℃에서 점도가 50 ~ 150 cps일 수 있다.
또한, 본 발명은 본 발명에 따른 전기분사용 전극조성물이 소정의 영역 상에 전기분사된 후 건조된 전극으로서 평균두께가 1㎛ 이하인 전기분사전극을 제공한다.
또한, 본 발명의 일 실시예에 의하면, 두께균일도가 10% 이하일 수 있다.
또한, 본 발명은 본 발명에 따른 전기분사전극이 소결된 내부전극을 포함하는 적층세라믹 부품을 제공한다.
본 발명에 의한 전기분사용 전극조성물은 전기분사를 통해서 초박막이면서도 우수한 두께 균일성을 갖는 전극패턴을 구현하는데 적합하다. 또한, 구현된 전극이 우수한 전기전도도를 가질 수 있다. 나아가, 그린시트와 같은 세라믹 시트 상에 전극을 형성하는데 적합할 수 있다. 더불어 형성된 전극을 세라믹 그린시트와 동시소결하는 경우에 소결체의 형상이 온전히 유지될 수 있고, 소결체의 층간 분리가 방지될 수 있다. 또한, 초박막의 전극을 구현할 수 있으므로 고적층화되는 적층세라믹 부품용 내부전극으로 널리 활용될 수 있다.
도 1은 본 발명의 일 실시예에 포함되는 도전성 금속분말로써 평균입경이 75㎚인 니켈 분말의 SEM 사진,
도 2는 도 1에 따른 니켈 분말이 습식분급 되기 전 SEM 사진,
도 3은 본 발명의 일 실시예에 포함되는 세라믹 분말로써 티탄산바륨 분말의 SEM 사진,
도 4 및 도 5는 각각 도 1 및 도 2에 따른 니켈 분말을 함유한 전기분사용 전극조성물의 사진으로서, 도 4는 니켈 분말의 침강 없이 세라믹 분말과 균일분산된 사진이고, 도 5는 니켈 분말의 침강에 따라서 세라믹 분말과 상분리가 발생한 사진,
도 6 및 도 7은 각각 전기분사용 전극조성물이 전기분사된 후 건조된 전극의 광학현미경 사진으로 도 6은 전극패턴 내 전극이 미형성된 부분이 없는 연속 전극면 형성성이 우수한 전극패턴의 사진이며, 도 7은 전극패턴 내 전극이 미형성된 부분(동그라미 표시부분)이 존재해 연속 전극면이 부분적으로 형성되지 못한 전극패턴의 사진, 그리고
[규칙 제91조에 의한 정정 03.05.2022] 
도 8 및 도 9는 전기분사용 전극조성물이 전기분사된 후 건조된 전극의 광학현미경 사진으로 도 8은 전극패턴 내 전극이 미형성된 부분이 없는 연속 전극면 형성성이 우수한 전극패턴의 사진이며, 도 9는 전극패턴 내 전극이 미형성된 탈락전극이 부분적으로 존재해 연속 전극면이 부분적으로 형성되지 못한 전극패턴의 사진이다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 전극조성물은 전기분사 방법에 적합하면서도 건조 시 평균두께가 1.0㎛, 바람직하게는 0.6㎛ 이하인 초박막의 전극을 구현할 수 있는 전극조성물로서, 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 포함하여 구현된다. 또한, 그린시트 상에 전극을 형성하기에 적합하면서 초박막의 전극을 구현할 수 있으므로 고적층화가 필요한 MLCC 등의 적층세라믹 부품의 내부전극을 구현하는데 특히 적합할 수 있다.
상기 도전성 금속분말은 도전성을 부여하고 소결 후 전극의 몸체를 형성하는 것으로써, 통상적으로 전자부품용 전극을 제조하는데 사용되는 도전성 금속분말의 경우 제한 없이 사용할 수 있다. 일 예로 상기 도전성 금속분말은 니켈, 망간, 크롬, 알루미늄, 은, 구리, 팔라듐, 텅스텐, 몰리브덴 및 코발트로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함할 수 있다. 다만, 세라믹 그린시트와 함께 동시소결 시 소결온도를 고려해 팔라듐, 은-팔라듐 합금, 은, 니켈 및 구리로 이루어진 군에서 선택된 1종을 이상의 포함할 수 있고, 내열성, 도전성 및 재료비를 고려해 보다 바람직하게는 니켈을 포함할 수 있다.
또한, 상기 도전성 금속분말은 평균입경이 150㎚ 이하, 바람직하게는 100㎚ 이하, 보다 더 바람직하게는 80㎚ 이하일 수 있고, 만일 도전성 금속분말의 평균입경이 150㎚를 초과 시 전기분사 후 건조된 전극의 두께가 1㎛를 초과하거나, 구현된 건조전극이 연속전극면을 형성하기 어렵거나, 두께가 1㎛인 건조전극을 구현하는 경우에도 두께 균일도가 매우 불균일 할 수 있고, 이로 인해 양품의 고적층화된 적층세라믹 부품을 구현하기 어려울 수 있다. 한편, 도전성 금속분말은 평균입경이 5㎚ 이상, 보다 바람직하게는 10㎚ 이상, 보다 더 바람직하게는 20㎚ 이상일 수 있는데, 만일 평균입경이 5㎚ 미만일 경우 도전성 금속분말 자체의 구현이 용이하지 않으며, 재료비가 상승할 수 있다. 또한, 금속분말이 미립자화되어 분산성 확보가 요구되는데, 분산성 확보를 위해 추가되는 분산제와 같은 유기화합물로 인해서 탈지가 용이하지 않을 수 있고, 이로 인해서 적층세라믹 부품이 소결 시에 그린시트 층 간 분리가 발생할 수 있다. 또한, 별도의 분산제를 포함하지 않은 경우 도전성 금속분말의 평균입경이 과소 시 분산성이 저하되고, 응집되어 조대한 2차 입자를 형성 시 구현된 건조전극이 연속전극면을 형성하기 어렵거나, 두께불균일이 심화될 우려가 있어서 바람직하지 못하다.
또한, 상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하, 보다 바람직하게는 15%이하, 보다 더 바람직하게는 10% 이하이며, 더 바람직하게는 5% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하, 보다 바람직하게는 10% 이하인 입도분포를 가질 수 있으며, 이를 통해 전기분사를 위해 공급되는 전극조성물 내 도전성 금속분말이 응집해 2차 입자를 형성시키는 것을 최소화하고, 전기분사 장치 내 방사용액 챔버 내에서 도전성 금속분말의 침강을 최소화 또는 방지하기에 적합하며, 이를 통해서 건조전극 내 부분적으로 전극이 존재하지 않는 전극조성물이 미분사된 영역이 존재하지 않는 연속 전극면을 형성하기 유리하고, 전기분사로 형성된 전극의 위치별 저항 등의 전기적 특성 불균일이나, 구현된 전극의 두께 불균일 등 전극 외관품질의 저하를 방지하기에 유리할 수 있다.
또한, 상기 도전성 금속분말은 전극조성물 전체 중량을 기준으로 30중량% 이하, 보다 바람직하게는 10 ~ 30중량%, 보다 더 바람직하게는 20 ~ 30중량%로 구비될 수 있다. 만일 도전성 금속분말이 30중량%를 초과해 포함될 경우 전기분사를 위해 공급되는 전극조성물 내 도전성 금속분말의 침강 또는 침전이 발생할 수 있고, 이로 인해서 전기분사 시 도전성 분말이 불균일하게 분사될 수 있다. 또한, 전기분사로 구현되는 전극의 두께를 조절하기 어려울 수 있다. 또한, 도전성 금속분말이 10 중량% 미만으로 구비 시 전기분사된 건조전극 또는 소결된 전극이 물방울과 같은 아일랜드를 형성할 수 있고, 이로 인해 전극면의 연속 형성성이 저하되거나 건조된 전극두께가 불균일해지는 등 목적하는 전극을 구현하기 어려울 수 있다.
한편, 상술한 도전성 금속분말로 인해 전극조성물은 높은 전기전도도를 띠게 되는데, 높은 전기전도도로 인해서 전기분사가 어려워질 수 있다. 이에 따라서 전극조성물은 세라믹 분말을 포함하며, 이를 통해 전극조성물이 전기분사에 적합한 전기전도도로 조절될 수 있다. 또한, 그린시트 상에 전극조성물이 처리되어 동시소결 시 발생하는 전극과 그린시트 간의 소결온도 차이 및 이로 인한 수축특성의 차이로 인해서 소결체가 찌그러지는 등의 형상 변형을 방지할 수 있다. 나아가 소결 후 세라믹 분말 유래 세라믹 성분은 소결된 전극의 표면쪽으로 이동하여 소결된 도전성 금속분말 유래 도전성 성분과 층분리될 수 있고 이를 통해 유전율을 높일 수 있어서 MLCC 등의 적층세라믹 부품의 특성 향상에 기여할 수 있다.
또한, 상기 세라믹 분말은 평균입경이 100㎚ 이하, 다른 일예로 70㎚이하, 45㎚ 이하, 또는 1 ~ 30㎚일 수 있다. 또한, 세라믹 분말은 도전성 금속분말의 평균입경을 고려해 적절한 평균입경을 갖는 것을 사용할 수 있는데, 구체적으로 도전성 금속분말 평균입경의 0.5배 이하, 보다 바람직하게는 0.3배 이하로 더 작은 평균입경을 가지는 것을 사용할 수 있고, 이를 통해서 소결 시 전극이 그린시트 보다 더 빠르게 수축되는 것을 지연시키기에 유리하다. 일예로, 평균입경이 80㎚인 도전성 금속분말을 사용 시 세라믹 분말의 평균입경은 20㎚ 이하일 수 있다. 다만, 도전성 금속분말의 평균입경 대비 세라믹 분말의 평균입경이 0.1배 이하로 더 작아질 경우 입자의 표면적 증가로 인한 수지의 첨가량이 많아져야 할 수 있고, 건조 및/또는 소결된 전극의 두께불균일을 야기할 우려가 있고, 소결 시 전극의 수축율이 커져 바람직하지 못할 수 있다.
한편, 세라믹 분말 역시 평균입경 대비 2배 이상의 입경을 가지는 조대입자의 비율이 적을수록 균일한 분산상을 유지하기 유리할 수 있다. 이에 따라 상기 세라믹 분말은 평균입경의 2배 이상의 입경을 갖는 입자의 수가 전체 세라믹 분말 입자 수의 20% 이하, 보다 바람직하게는 10%이하, 더욱 바람직하게는 5% 이하일 수 있다.
또한, 상기 세라믹 분말은 공지된 세라믹 분말의 경우 제한 없이 사용될 수 있으나, 일 예로 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함할 수 있다. 이때, 상기 세라믹 분말이 전극조성물이 그린시트 상에 전기분사되어 내부전극을 형성하는 용도인 경우 그린시트의 유전체 성분과 공통인 성분으로 선택될 수 있고, 이를 통해서 동시소결 시 그린시트와 전극 간 수축특성 제어가 보다 용이할 수 있고, 전극과 그린시트 간의 접합 및 밀착특성을 개선하기에 유리할 수 있다. 한편, 세라믹 분말이 티탄산 바륨인 경우 Ca, Zr이 일부 고용된 (Ba1-xCax)TiO3, Ba(Ti1-yCay)O3, (Ba1-xCax)(Ti1-yZry)O3 또는 Ba(Ti1-yZry)O3 등도 티탄산 바륨의 범주 내 속함을 밝혀둔다.
또한, 상기 세라믹 분말은 도전성 금속분말 100 중량부에 대해서 4 ~ 10 중량부, 보다 바람직하게는 4 ~ 7 중량부로 포함될 수 있는데, 만일 세라믹 분말을 4중량부 미만으로 구비할 경우 구현되는 전극의 두께조절이 어려울 수 있다. 또한, 세라믹 그린시트와 동시소결 시 수축특성의 제어가 어렵고, 소결 후 구현된 전극의 크랙, 박리가 빈번할 수 있다. 또한, 만일 세라믹 분말을 10중량부 초과하여 함유 시 구현되는 전극의 전기전도도가 저하되고, 소결 시 전극의 수축 정도가 과대해질 우려가 있다.
한편, 본 발명에서 도전성 금속분말 및 세라믹 분말의 입경은 동적광산란법에 의한 입도측정에 기초하는 값으로서 체적 기준의 입경이며, 평균입경은 누적체적기준 입도분포에서 D50에 해당하는 입경을 의미한다. 또한, 상기 측정장치는 나노크기의 분말 입경, 계수가 가능한 공지의 측정장치에 의할 수 있고, 일 예로 Zetasizer 시리즈, APS-100 등의 측정장치에 의할 수 있다.
또한, 평균입경이 150㎚ 이하인 도전성 금속분말은 PVD, CVD 등의 건식 플라즈마 분말 합성법을 이용해 구현할 수 있는데, 이를 통해 입자의 표면이 깨끗한 분말을 제조하기에 유리할 수 있다. 또한, 건식 플라즈마 분말 합성법을 이용해 수득된 도전성 금속분말을 공지된 자연낙하법 또는 원심분리 등을 이용한 습식 분급공정을 수행하는 것이 목적하는 입경 및 분포를 가지는 도전성 금속분말을 수득하기에 유리할 수 있다. 이때, 원심분리에 의한 강제 분급을 사용하는 것이 바람직하며 생산의 효율성을 위해 연속식 원심분리기의 사용이 좋다. 상기 연속식 원심분리기는 원심분리기의 회전속도 및 분당 투입량을 조절하여 입경 평균을 조절할 수 있고, 전극조성물 내 도전성 금속분말의 빠른 침강을 유발해 균일 분산을 저해하는 조대입자, 예를 들어 평균입경의 2배 이상의 입경을 가지는 도전성 금속분말의 개수 비율이 적도록 제어할 수 있다. 원심분리기의 회전속도가 너무 높으면 생산 수율이 많이 저하 되며 너무 낮으면 균일분산을 저해하는 조대입자 제거율이 떨어진다. 또한 투입량이 너무 많으면 원심분리기 챔버(chamber)에서 원심력을 받는 시간이 짧아지므로 거대 입자 제거가 용이하지 않으며 너무 적으면 효율은 좋아지지만 생산시간이 길어지므로 바람직하지 않을 수 있다. 또한, 도전성 금속분말의 입경분포를 목적하는 수준으로 세밀하게 제어하기 위한 여과공정을 더 수행할 수 있으며, 이때 여과공정은 공지된 필터여재를 이용해 조대입자를 제거하는 통상적인 공정을 통해서 수행할 수 있으므로 본 발명은 이에 대해 특별히 한정하지 않는다. 구체적으로 도 1은 실시예 4에서 사용된 도전성 금속분말의 SEM 사진으로 도 2에 도시된 것과 같은 도전성 금속분말을 원심분리법을 통한 습식분급을 통해 조대입자 비율이 낮도록 입도가 조절됨에 따라서 도 4에 도시된 것이 전극조성물의 분산상태가 양호한 것을 알 수 있다. 이에 반해 도전성 금속분말의 조대입자가 많을 경우 도 5에 도시된 것과 같이 도전성 금속분말의 침강이 많이 이루어져 세라믹 분말과 상분리가 된 것을 확인할 수 있다.
또한, 상기 세라믹 분말은 상용화된 세라믹 분말을 이용해 목적하는 입도분포를 가지도록 공지의 분체기술 및 미립자 제어기술을 적절히 활용하여 제조할 수 있으며, 구체적인 수단으로서 공지된 여러 분쇄분급법, 관련 장치 및 이를 이용한 분쇄조건, 분쇄시간 등의 인자 조절을 통해서 제조할 수 있다. 일예로 분쇄기의 경우 브레이드 밀 또는 수퍼로터를 채용한 기계식 분쇄기나 고압공기의 고속기류를 이용해서 입자끼리 벽면에 충돌시켜서 분쇄시키는 기류식 분쇄기 중 어느 하나를 사용하거나 어느 하나를 사용해 분쇄한 분쇄물을 다시 다른 분쇄기에 투입해 분쇄하는 방식으로 분쇄수준을 조절할 수 있다. 또한, 원심풍력분산기 등의 분쇄물을 분급시키는 분급기, 미립자의 응집을 방지하기 위해 고속기류 등의 물리적 분산력을 이용한 분산기, 또는 습식분급법으로 원심분리법을 통해 목적하는 입도분포를 가지도록 세라믹 분말을 분급할 수 있으며, 본 발명은 이에 대한 구체적인 설명은 생략한다.
또한, 전극조성물은 상술한 도전성 금속분말 및 세라믹 분말과 함께 바인더 수지를 포함하며, 이를 통해 전기분사를 통한 전극형성성 및 전기분사된 표면과의 접착특성을 발현할 수 있다. 상기 바인더 수지는 통상적인 전극조성물에 사용되는 바인더 수지의 경우 제한 없이 사용될 수 있는데, 일 예로 폴리비닐부티랄, 폴리비닐부틸알데하이드, 폴리비닐알코올, 아크릴계 수지, 에폭시계 수지, 페놀계 수지, 알키드계 수지, 셀룰로오스계 고분자, 로진계 수지 등이 사용될 수 있다. 다만 전기분사를 통한 전극 인쇄성, 및 전기분사되는 표면, 특히 그린시트 표면과의 밀착력과 접착력을 고려해 바인더 수지는 폴리비닐부티랄 및 에틸셀룰로오스를 혼합해서 사용할 수 있다. 이때, 상기 바인더 수지는 폴리비닐부티랄 100 중량부에 대하여 에틸셀룰로오스를 30 ~ 60 중량부로 포함할 수 있으며, 이를 통해서 보다 개선된 인쇄성 및 표면 부착특성을 발현할 수 있다. 만일 에틸셀룰로오스가 60중량부를 초과하여 구비 시 전기분사 시 분사노즐에서 분무된 슬러리 입자의 크기가 미세화 되지 못할 수 있고, 전기분사 후 건조된 전극막이 과도하게 딱딱해져 전기분사된 표면과의 밀착성이 저하되고, 소결 시 분사된 표면에서 전극이 박리될 우려가 있다. 또한, 만일 에틸셀룰로오스가 30중량부 미만으로 구비 시 전기분사를 통한 전극인쇄성이 저하될 수 있다.
또한, 폴리비닐부티랄 및 에틸셀룰로오스는 중량평균분자량이 10만 이하, 다른 일 예로 1만 내지 10만인 것을 사용하는 것이 바람직한데, 이를 통해 전기분사에 적합한 점도를 구현하기 용이할 수 있다. 만일 중량평균분자량 10만을 초과하는 것을 사용 시 과도한 점도상승으로 전기분사가 어려워질 수 있다.
또한, 상기 바인더 수지는 도전성 금속분말 100 중량부에 대해서 13 중량부 이하, 보다 바람직하게는 10중량부 이하, 더 바람직하게는 2 ~ 10중량부로 포함될 수 있다. 만일 바인더 수지가 13중량부를 초과할 경우 소결 시 전극에 크랙이 발생하거나, 그린시트와 함께 소결되는 경우에 있어서 적층된 그린시트 층 간의 분리를 초래할 우려가 있다. 또한, 바인더 수지가 2중량부 미만일 경우 전극조성물 내 금속분말이나 세라믹 분말의 침강이 발생하거나 분산성이 저해될 우려가 있고, 분사 후 건조 및 소결 이전에 분사된 표면에서 전극이 박리될 우려가 있다.
또한, 상기 전극조성물은 용제를 포함하며, 상기 용제는 전기분사 시 분사용액에 채용 가능하면서 전기분사되는 표면, 예를 들어 그린시트 및 상술한 도전성 금속분말과 세라믹 분말을 침해하는 등의 영향이 없으면서 바인더 수지를 용해시킬 수 있는, 공지된 전극조성물에 사용되는 용제의 경우 제한 없이 선택할 수 있다. 일 예로 디하이드로테르피네올, 디하이드로테르피네올 아세테이트, 테르피네올, 옥탄올, n-파라핀, 데카놀, 트리데카놀, 디부틸프탈레이트, 초산 부틸, 부틸 카비톨, 부틸카비톨아세테이트, 이소보닐아세테이토, 이소보닐프로피오네이트, 이소보닐부틸레이트, 이소보닐이소부틸레이트, 에틸렌글리콜모노 부틸에테르아세테이트, 디프로필렌 글리콜 메틸에테르아세테이트, 에틸아세테이트, 부틸아세테이트, 헥틸아세테이트 등의 유기용매를 1종 이상 사용할 수 있으며, 바람직하게는 디하이드로테르피네올 및 디하이드로테르피네올 아세테이트의 혼합용제 또는 디하이드로테르피네올 아세테이트 및 에틸아세테이트의 혼합용제를 사용할 수 있다 등의 유기용매를 1종 이상 사용할 수 있으며, 바람직하게는 디하이드로테르피네올 및 디하이드로테르피네올 아세테이트의 혼합용제를 사용할 수 있다.
한편, 본 발명의 일 실시예에 의한 전기분사용 전극조성물은 감광성 전극조성물로 구현될 수 있다. 이를 위해 상기 바인더 수지는 감광성 수지를 포함하고, 감광성 전극조성물은 모노머 및 광개시제를 더 포함할 수 있다.
상기 바인더 수지는 감광성 수지를 포함하는데, 감광성 수지는 감광성 전극조성물 내 성분들의 바인더 역할을 담당해 건조된 전극의 결합력을 유지시키는 기능 및 현상액에 대한 용해성을 부여하는 기능을 수행한다. 상기 감광성 수지는 자외선, 전자선 등의 활성에너지의 작용을 받아 분자간 가교에 의해 경화되어 경화도막을 형성하거나 분자 간 가교가 끊어져 현상액에 용해될 수 있다.
상기 감광성 수지는 감광성 전극 페이스트 분야에서 통상적으로 사용되는 감광성 수지인 경우 제한 없이 사용할 수 있다. 또한, 포지티브 타입, 또는 네거티브 타입의 감광성 수지일 수 있다. 일 예로 상기 감광성 수지는 아크릴레이트계, 셀룰로오스계, 노볼락 아크릴계, 수용성 폴리머, 폴리이미드 또는 이의 전구체 등의 감광성 수지 조성물에 사용되는 감광성 바인더 수지를 사용할 수 있다. 다만, 상기 감광성 수지는 바람직하게는 네거티브 타입의 아크릴레이트계 감광성 바인더일 수 있다. 상기 아크릴레이트계 감광성 바인더로는, 비닐기, 알릴기, 아크릴로일기, 메타크릴로일기 등의 에틸렌성 불포화 결합이나 프로파르길기 등의 감광성 작용기를 갖는 수지, 예를 들면 측쇄에 에틸렌성 불포화기를 갖는 아크릴계 공중합체, 불포화 카르복실산 변성 에폭시 수지 또는 그것에 추가로 다염기산 무수물을 부가한 수지 등, 종래 공지된 각종 감광성 수지(감광성 예비 중합체)를 사용할 수 있다. 구체적으로 상기 감광성 수지는 글리시딜메타크릴레이트(GMA), 메틸메타크릴레이트(MMA), 이소보닐 메타크릴레이트(IBOMA), 벤질메타크릴레이트, 메타크릴산(MMA), 아크릴산(AA) 및 스티렌 모노모 중 적어도 2개의 단량체가 공중합된 아크릴레이트계 공중합체를 포함할 수 있다. 더 구체적인 일예로 상기 감광성 수지는 글리시딜메타크릴레이트-메틸메타크릴산 공중합체, 글리시딜메타크릴레이트-메틸메타크릴산-메틸메타크릴레이트-이소보닐 메타크릴레이트 공중합체, 메틸메타크릴레이트-벤질메타크릴레이트-메타크릴산 공중합체 일 수 있다.
또한, 본 발명의 일 실시예에 따른 감광성 수지는 메타크릴산, 메틸메타크릴레이트 및 이소보닐 메타크릴레이트가 공중합된 것으로서, 메타크릴산이 15.5 내지 19.5몰%로 함유되고, 중량평균분자량이 8000 내지 15000인 아크릴레이트계 공중합체를 포함할 수 있으며, 보다 바람직하게는 메틸메타크릴레이트 25 ~ 40몰%, 이소보닐 메타크릴레이트가 잔량으로 함유된 공중합체일 수 있고, 이를 통해서 보다 우수한 품질, 해상력, 감광성을 가지고 잔사가 방지된 전극패턴을 구현하기 유리할 수 있다.
또한, 상기 아크릴레이트계 공중합체는 산가의 조절을 위해서 아크릴레이트계 공중합체 내 카르복시 관능기에 에폭시 또는 이소시아네이트 관능기를 가지는 화합물이 반응하여 도입된 것일 수 있다. 이때 상기 에폭시기를 가지는 화합물은 일예로 말단에 메틸렌 관능기, 비닐 관능기 및 알릴 관능기 중 적어도 하나의 관능기를 포함하는 것일 수 있고, 구체적으로 알릴 글리시딜 에테르일 수 있다. 또한, 상기 이소시아네이트 관능기를 갖는 화합물은 일 예로 2-아크릴로일옥시에틸이소시아네이트일 수 있다.
또한, 상기 산가가 조절된 아크릴레이트계 공중합체는 산가가 25 내지 100 mgKOH/g일 수 있고, 이를 통해서 우수한 감광성 및 현상성을 발현할 수 있다.
또한, 상기 아크릴레이트계 공중합체인 감광성 수지의 유리전이온도는 20 ~ 150℃일 수 있다.
또한, 본 발명의 일 실시예에 의하면, 상기 감광성 수지로써 아크릴레이트계 감광성 수지 이외에 폴리이미드 또는 이의 전구체가 포함될 수 있다. 이때, 폴리이미드 또는 이의 전구체 함량은 아크릴레이트계 수지 100 중량부에 대해서 10 ~ 60 중량부 포함될 수 있으며, 이를 통해서 본 발명의 목적을 달성하는데 보다 유리할 수 있다.
한편, 상기 감광성 수지를 포함한 바인더 수지는 폴리비닐부티랄 수지를 더 포함할 수 있다. 감광성 수지로만 이루어진 바인더 수지는 전기분사되는 표면, 일 예로 그린시트와의 부착력이 좋지 않을 수 있다. 이에 폴리비닐부티랄 수지를 더 포함할 수 있고, 그린시트와 보다 개선된 밀착력 및 부착성을 달성할 수 있다. 상기 폴리비닐부티랄 수지는 바인더 수지 중 10 ~ 50중량%로 함유될 수 있고, 만일 50중량%를 초과하여 포함 시 노광 후 현상 시 잔사 등이 불량이 증가할 우려가 있고, 10중량% 미만으로 함유 시 부착력 개선 효과가 미미할 수 있다. 이때, 상기 폴리비닐부티랄 수지는 구현되는 전극조성물이 낮은 점도를 유지해야함을 고려해 바람직하게는 중량평균분자량이 10만 이하, 다른 일예로 1만 내지 10만인 것을 사용하는 것이 바람직하다.
또한, 상기 모노머는 탄소 이중 결합을 함유하는 것으로써, 자외선이나 전자선 등의 활성에너지에 의해 여기된 라디칼에 의해 이중 결합이 단일 결합으로 바뀌면서 중합반응을 하여 감광성 전극 조성물 내의 경화 구조를 형성하는 역할을 담당한다. 상기 모노머는 감광성 페이스트 분야에서 통상적으로 사용되는 모노머라면 특별히 제한되지 않는다. 상기 모노머는 일 예로 2 관능성, 3 관능성, 4 관능성과 같은 다관능성 모노머일 수 있다. 더 구체적으로 상기 다관능성 모노머는 트리메틸롤프로판 트리아크릴레이트, 트리메틸롤프로판 에톡실레이티드 트리아크릴레이트, 펜타에리쓰리톨 트리-아크릴레이트 또는 펜타에리쓰리톨 테트라-아크릴레이트 중 선택된 아크릴 에스테르계가 사용될 수 있으나 이에 제한되는 것은 아니다.
또한, 상기 모노머는 감광성 수지 100 중량부에 대하여 10 ~ 100 중량부로 포함될 수 있다. 상기 모노머의 함량이 10중량부 미만일 경우 노광 패턴의 경화 밀도가 취약하게 될 수 있고, 만일 100중량부를 초과할 경우 패턴 특성이 저하될 수 있으며, 경화 후 유기물 잔류로 인한 저항의 상승이나 적층된 그린시트 층 간의 분리가 발생할 우려가 있다.
본 발명의 일 실시예에 의하면, 상술한 모노머와 유사하게 라디칼에 의해 경화구조를 형성하는 성분으로 올리고머를 더 포함할 수 있다. 상기 올리고머는 감광성 전극조성물에 통상적으로 사용되는 올리고머는 제한 없이 사용될 수 있으며, 일 예로 분자량이 1000 이하인 아크릴레이트 일 수 있다. 상기 올리고머는 상술한 감광성 수지 100 중량부에 대해서 10 ~ 100 중량부로 함유될 수 있는데, 이에 제한되는 것은 아니다.
또한, 상기 광개시제는 자외선이나 전자선 등 활성에너지 조사 시 라디칼을 발생시켜 화학 반응을 일으키는 화합물로서, 감광성 전극조성물 분야에서 통상적으로 사용되는 광중합 개시제라면 특별히 제한되지 않는다. 예를 들어, 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 모노페닐을 포함하는 트리아진계 화합물, 옥심계 화합물, 카바졸계 화합물, 디케톤류 화합물, 술포늄 보레이트계 화합물, 디아조계, 비이미다졸계 화합물 등을 광개시제로서 사용할 수 있다. 구체적으로 상기 광개시제는 벤조페논, o-벤조일벤조산 메틸, 4,4'-비스(디메틸아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디클로로벤조페논, 4-벤조일-4'-메틸디페닐케톤, 디벤질케톤, 플루오레논, 2,2'-디에톡시아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2-히드록시-2 -메틸프로피오페논, p-t-부틸디클로로아세토페논, 티옥산톤, 2-메틸티옥산톤, 2-클로로티옥산톤, 2-이소프로필티옥산톤, 디에틸티옥산톤, 4-아지도벤잘아세토 페논, 2,6-비스(p-아지도벤질리덴)시클로헥사논, 6-비스(p-아지도벤질리덴)-4-메틸시클로헥사논, 1-페닐-1,2-부탄디온-2-(o-메톡시카르보닐)옥심, 1-페닐-프로판디온-2-(o-에톡시카르보닐)옥심, 1-페닐-프로판디온-2-(o-벤조일)옥심, 1,3-디페닐-프로판트리온-2-(o-에톡시카르보닐)옥심, 1-페닐-3-에톡시-프로판트리온-2-(o-벤조일)옥심,
1,2-옥탄디온, 1-[4-(페닐티오)-2-(O-벤조일옥심)], 2,4,6-트리메틸벤조일-디페닐-포스핀옥사이드, 비스(2,4,6-트리메틸벤조일)-페닐포스핀옥사이드, 미힐러케톤, 2-메틸-[4-(메틸티오)페닐]-2-모르폴리노-1-프로판온, 나프탈렌술포닐클로라이드, 퀴놀린술포닐클로라이드, N-페닐티오아크리돈, 4,4'-아조비스이소부티로니트릴, 디페닐디술피드, 벤조티아졸디술피드, 트리페닐포스핀, 과산화벤조인 및 에오신, 메틸렌블루 등의 광 환원성 색소와 아스코르브산, 및 트리에탄올아민으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
상기 광개시제는 바인더 수지 100 중량부에 대해서 1 ~ 50 중량부를 포함할 수 있다. 만일 광개시제의 함량이 1중량부 미만일 경우에는 노광부의 경화 밀도가 감소할 우려가 있고, 현상 공정에서 경화도막이 영향을 받을 수 있다. 또한, 만일 광개시제의 함량이 50중량부를 초과할 경우에는 건조 도막의 상부에서 광흡수가 과잉되어 목적하는 패턴을 형성하기 어려울 수 있다.
한편, 광개시제와 함께 또는 광개시제에 대체하여 아지드 기반의 광가교제 화합물, 더 구체적으로 탄소수 4 내지 20인 선형의 알킬렌기 양말단에 광가교성 작용기인 아지드기가 치환된 화합물을 포함할 수 있으며, 이와 같은 화합물은 광개시제 없이도 가교가 가능해 광개시제의 함량을 줄일 수 있는 이점이 있다. 이의 구체적인 종류로써 1,4-디아지도부탄, 1,5-디아지도펜탄, 1,6-디아지도헥산, 1,7-디아지도헵탄, 1,8-디아지도옥탄, 1,10-디아지도데칸, 1,12-디아지도도데칸, 또는 이들의 혼합물일 수 있다.
또한, 상술한 감광성 수지를 포함하는 바인더 수지 및 모노머 중량 총합은 도전성 금속분말 100 중량부에 대해서 13중량부 이하, 보다 바람직하게는 10중량부 이하, 더 바람직하게는 2 ~ 10중량부로 포함될 수 있다. 만일 바인더 수지가 13중량부를 초과할 경우 소결 시 전극에 크랙이 발생하거나, 그린시트와 함께 소결되는 경우에 있어서 적층된 그린시트 층 간의 분리를 초래할 우려가 있다. 또한, 바인더 수지가 2중량부 미만일 경우 전극조성물 내 금속분말이나 세라믹 분말의 침강이 발생하거나 분산성이 저해될 우려가 있고, 분사 후 건조 및 소결 이전에 분사된 표면에서 전극이 박리될 우려가 있다.
한편, 상술한 감광성 수지를 포함하는 바인더 수지, 모노머 및 광개시제의 구체적인 종류와 이들의 함량은 전기분사를 통한 제조방법, 적층세라믹 부품의 내부전극의 용도, 구현하고자 하는 내부전극의 두께, 선폭, 폭간 거리, 금속분말과 세라믹 분말의 재질과 입경 등을 종합적으로 고려하여 결정될 수 있음을 밝혀둔다.
또한, 상술한 전극조성물 또는 감광성 전극조성물은 상술한 성분들 이외에도 분산제, 가소제, 레벨링제, 요변성제, 슬립제, 경화촉진제 등의 첨가제를 더 포함할 수 있고, 상기 첨가제는 공지된 전극조성물에 함유되는 첨가제의 경우 제한 없이 사용할 수 있으므로 본 발명은 이에 대해 구체적으로 한정하지 않는다.
일 예로 상기 분산제는 금속분말과 세라믹 분말의 분산안정성을 부여하기 위해 포함되는 것으로, 전극 조성물에 통상적으로 사용되는 분산제라면 특별히 제한되지 않는다. 상기 분산제는 바람직하게는, 올레산, 폴리에틸렌글리콜 지방산에스테르, 글리세린에스테르, 솔비탄에스테르, 프로필렌글리콜에스테르, 슈가에스테르, 지방산알카놀아미드, 폴리옥시에틸렌지방산아미드, 폴리옥시에틸렌알킬아민, 아민옥사이드 및 폴리 12-히드록시스테아린산으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
한편, 상기 분산제 등을 포함하는 첨가제는 바인더 수지 100 중량부에 대해서 10 ~ 50중량부로 포함될 수 있다. 만일 첨가제가 10 중량부 미만으로 구비 시 첨가제를 통한 목적하는 효과를 달성하기 어려울 수 있다. 또한, 50 중량부를 초과 시 전극조성물의 도전성, 분사 후 구현된 건조전극 및/또는 소결전극의 두께균일성 등의 물성이 저하될 우려가 있다.
또한, 상술한 성분들을 함유한 전극조성물은 점도가 50 ~ 150cps, 보다 바람직하게는 70 ~ 100cps일 수 있으며, 이를 통해 전기분사에 적합하고, 전기분사된 후 초박막의 건조 전극을 구현하기에 유리하다. 만일 점도가 50cps 미만인 경우 분산된 도전성 금속 분말 및 세라믹 분말의 침전이 빠르게 발생할 수 있고, 분산성이 악화될 우려가 있다. 또한, 만일 점도가 150cps를 초과 시 전기분사를 통해 세밀하게 두께를 제어하기 어려울 수 있고, 얇은 두께의 전극을 제조하기 어려울 수 있다. 한편, 여기서 점도는 온도 25℃, 상대습도 65%, 10rpm의 조건으로 ISO 554에 의거해 브룩필드 회전형 점도계 LV로 측정한 결과이다.
한편, 상술한 전극조성물은 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 혼합한 뒤 도전성 금속분말과 세라믹 분말을 분산시켜서 구현될 수 있다. 이때 혼합 및 분산 시 미세화된 분말들로 인해서 많은 열이 발생하므로 고압분산장치나 비즈밀 등을 이용하여 혼합 및 분산시키는 것이 더 유리할 수 있다. 또한, 전극조성물은 전기분사장치 내부로 이송되어 노즐을 통해 분사되기전까지 최대한의 분산 상태를 유지하는 것이 좋으며, 이를 위해 전기분사장치 내 분사용액 탱크 내에는 분산상태를 계속 유지시킬 수 있는 교반장치를 더 포함할 수 있고, 상기 교반장치는 임펠러 등의 공지된 교반장치 일 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.
상술한 전극조성물은 통상의 전기분사장치를 통해 피분사면, 예를들어 세라믹 그린시트 상에 소정의 전극패턴을 가지도록 분사된 후 건조 및 소결공정을 거쳐서 전극으로 구현될 수 있다. 이때, 건조 시 전극의 평균두께는 1㎛ 이하가 되도록 구현될 수 있고, 소결 후 평균두께는 일 예로 0.3 ~ 1.0㎛ 이하로 구현될 수 있다.
또한, 전극이 형성된 패턴에 도포되어 건조된 전극의 전극면은 미도포된 영역이 존재하지 않은 연속된 전극면을 가질 수 있다. 또한, 대면적화가 가능해 일 예로 20cm x 20cm 이상의 면적을 가지는 세라믹 그린시트 상에 전기분사를 통해 건조된 연속된 전극면의 면적이 세라믹 그린시트 면적의 70% 이상, 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 면적이 되도록 형성시킬 수 있다.
또한, 바람직하게는 건조된 전극에 대한 두께가 측정된 연속된 전극면을 중첩되지 않는 서로 다른 5개의 영역으로 나눈 뒤 각 영역에 대해 측정된 5개의 평균두께에 대한 평균값 및 이의 표준편차를 이용한 아래 식 1에 의한 두께균일도가 10% 이내, 보다 바람직하게는 5% 이내, 보다 더 바람직하게는 3% 이내 일 수 있다. 여기서 두께균일도(%)는 각 영역의 평균두께에 대한 편차가 없을수록, 즉 표준편차가 0에 가까울수록 두께균일도가 우수함을 의미한다.
[식 1]
두께균일도(%) = [(5개 영역의 평균두께에 대한 표준편차(㎚))/(5개 영역의 평균두께에 대한 평균값(㎚))]×100
한편, 본 발명에서 정의하는 건조전극의 평균두께나 소결전극의 평균두께는 알파스텝이라고 알려진 두께측정법으로 측정한 것일 수 있고, 당해 방법으로 두께를 측정하는 공지의 측정장치는 두께 측정에 제한없이 사용될 수 있다.
한편, 전기분사용 감광성 전극조성물로 전기분사된 뒤 소결 전 공지된 노광 및 현상조건에 의거해 목적하는 전극패턴을 구현할 수 있다. 일 예로 전기분사 후 노광 및 현상조건으로, 전기분사 후 건조온도가 50 ~ 70℃, UV 노광량은 100mJ 내지 700mJ일 수 있다. 또한, 현상액은 일예로 Na2CO3 용액을 사용할 수 있으며, 이때 농도는 0.1 ~ 4중량% 농도인 것을 사용할 수 있다. 또한, 현상시간은 20 ~ 100초 일 수 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예1>
건식 플라즈마를 통해 평균입경이 438㎚의 니켈분말을 제조했다. 이후 준비된 니켈분말을 원심분리법을 통한 습식분급을 통해서 평균입경이 147.1㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 니케분말의 15%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 니켈분말의 18%인 입도분포를 가지는 도전성 금속분말을 준비했다.
또한, 세라믹 분말로 평균입경이 155㎚이고 BaTiO3인 세라믹 분말을 준비한 뒤, 이를 원심분리법을 통한 습식분급을 통해서 평균입경이 65.8㎚이며, 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 10%, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 9%인 입도분포를 가지는 세라믹 분말을 준비했다.
이후 용제로써 디하이드로테르피네올 아세테이트 및 에틸아세테이트를 1:1의 중량비로 혼합된 혼합용매에 상술한 입도가 조절된 니켈인 도전성 금속분말, 세라믹 분말, 중량평균분자량이 약 70,000인 폴리비닐부티랄 100 중량부에 대해서 중량평균분자량이 40,000 인 에틸셀룰로오스를 45중량부가 혼합된 바인더 수지를 혼합하였다. 구체적으로 도전성 금속분말 100 중량부에 대해서 세라믹 분말이 6.8 중량부, 바인더 수지가 8 중량부가 되도록 혼합하되 전체 조성물에서 도전성 금속분말의 중량이 25중량%가 되도록 혼합하여 25℃ 온도에서 점도가 80cps인 하기 표 1과 같은 전기분사용 전극조성물을 제조했다.
이때, 제조된 전기분사용 전극조성물의 점도는 온도 25℃ 상대습도 65% 및 10rpm의 조건으로 ISO 554에 의거해 브룩필드 회전형 점도계 LV로 측정된 결과이다.
<실시예2 ~ 14>
실시예1과 동일하게 실시하여 제조하되, 도전성 금속분말의 함량, 평균입경, 입도분포, 세라믹 분말의 함량, 평균입경, 및/또는 전극조성물의 점도를 하기 표 1 또는 표 2와 같이 변경해 전기분사용 전극조성물을 제조했다.
이때, 사용된 세라믹 분말은 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 10% 이내, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 10%이내가 되는 입도분포를 가지도록 습식분급을 통해 입도가 조절된 세라믹 분말을 사용했다.
<비교예1>
실시예1과 동일하게 실시하여 제조하되, 도전성 금속분말의 평균입경을 하기 표 1과 같이 변경해 전기분사용 전극조성물을 제조했다.
<실험예1>
티탄산바륨인 세라믹 성분 100중량부에 폴리비닐부틸랄 바인더 수지를 10중량부 포함하고 용제로 부틸 카르비톨 아세테이트(butyl carbitol acetate)가 혼합되어 제조된 점도 300cps인 세라믹 슬러리로 제조된 두께 5㎛의 세라믹 그린시트를 준비했다. 상기 세라믹 그린시트 상에 실시예 및 비교예에 따른 전기분사용 전극조성물을 18℃, 상대습도 30%인 조건에서 전기분사장치를 이용해 토출속도(Hole당 3ml/min)로 노즐과 세라믹 그린시트면 간의 거리인 에어갭이 24㎝, 인가되는 전압이 70kV인 조건으로 건조 시 두께가 1㎛ 이내, 인접한 전극 간의 거리가 200㎛ 이하가 되도록 전기분사 시킨 뒤 100℃ 10분 동안 건조한 후 건조된 상태의 전극패턴을 구현했다.
또한, 전극패턴이 형성된 세라믹 그린시트를 대기 분위기 하에서 1000℃에서 2시간 동안 소결시켜 소결상태의 전극패턴을 구현했다.
이후 건조된 상태의 전극패턴 또는 소결된 상태의 전극패턴에 대해서 하기의 물성을 측정해 그 결과를 하기 표 1 또는 표 2에 나타내었다.
1. 평균두께 및 두께 균일성
평균두께는 촉침식 표면 단차 측정기인 알파-스텝(Dektak 150, Bruker)을 이용하여 측정하였다.
또한, 측정된 전극면을 중첩되지 않는 임의의 동일면적의 5개 영역으로 나눈 뒤 5개 영역에 각각에 대한 평균두께를 측정 후 5개 전극영역에 대한 두께 평균값 및 이에 대한 표준편차를 계산해 하기 식 1에 따른 두께균일도를 계산했다.
[식 1]
두께균일도(%) = [(5개 영역의 평균두께에 대한 표준편차(㎚))/(5개 영역의 평균두께에 대한 평균값(㎚))]Х100
2. 연속 전극면 형성성
건조 전극패턴을 광학현미경으로 관찰해 전극물질이 형성되지 않은 부분의 개수를 카운팅하고 면적을 측정했고, 아래의 기준에 따라서 0 ~ 5점으로 평가했다.
- 전극이 형성되지 않은 부분이 존재하지 않는 경우 5점
- 전극이 형성되지 않은 부분의 개수가 1 ~ 2개 및 전극이 형성되지 않은 부분의 면적이 관찰한 전극 전체 면적의 2% 이내: 4점
- 전극이 형성되지 않은 부분의 개수가 2개 초과 5개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5% 이내: 3점
- 전극이 형성되지 않은 부분의 개수가 5개 초과 10개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5% 초과 ~ 10% 이내: 2점
- 전극이 형성되지 않은 부분의 개수가 10개 초과 20개 이내 및 전극 미형성 면적이 관찰한 전극 전체 면적의 5%초과 ~ 15% 이내: 1점
전극이 형성되지 않은 부분의 개수가 20개 초과 및 전극 미형성 면적이 관찰한 전극 전체 면적의 15% 초과: 0점
3. 소결 전극의 상대적 수축특성 및 두께균일성
제조된 소결 전극패턴에 대해서 수축율을 측정하고, 실시예4의 수축율 값을 100으로 기준해 다른 실시예의 수축정도를 상대적인 백분율로 나타내었다.
이때 수축율은 건조된 전극의 평균두께와 소결된 전극의 평균두께를 측정하여 하기 식2로 계산한 값을 수축율로 하였다.
[식 2]
수축율(%) = (소결 후 전극 평균두께(㎚/건조 후 전극 평균두께(㎚)) × 100
또한, 두께 균일성은 두께가 측정된 전극면을 중첩되지 않은 임의의 5개 영역으로 나눈 뒤 5개 영역에 각각에 대한 평균두께를 측정 후 5개 전극영역에 대한 두께 평균값 및 이에 대한 표준편차를 계산해 상술한 식 1에 따라서 두께균일도를 계산했다.
아래 표 1 및 표 2에서 '비율 A' 및 '비율 B'는 각각 도전성 금속분말의 전체 개수 중 도전성 금속분말 평균입경의 2배 이상의 입경을 가지는 입자의 비율 및 평균입경의 0.5배 이하의 입경을 가지는 입자의 비율을 의미한다. 또한, '비율 C'란 세라믹 분말의 평균입경을 도전성 금속분말의 평균입경으로 나눈 값을 의미한다. 또한, 도전성 금속분말의 함량은 전기분사용 전극조성물 전체 중량 기준한 함량비율이며, 세라믹 분말의 함량은 도전성 금속분말 100 중량부에 기준한 함량이다.
비교예1 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7
도전성 금속분말 종류/함량(중량%) 25 25 25 25 25 25 25 25
평균입경(㎚) 160.3 147.1 142.2 98.0 75.0 75.0 75.0 75.0
비율A(%) 10 15 26 12 9 9 9 9
비율B(%) 8 18 23 9 7 7 7 7
세라믹 분말(종류/함량) 종류/함량
(중량부)
6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8
평균입경(㎚) 75 65.8 65.8 42.2 21.8 31.1 6.5 39.8
비율C 0.47 0.45 0.46 0.43 0.29 0.41 0.087 0.53
점도(cps) 80 80 80 80 80 80 80 80
건조전극 평균두께(nm) 750 755 813 586 440 444 440 463
건조전극 두께균일도(%) 28.40 9.30 15.9 10 9.1 9.9 15.5 10.9
건조전극 내 최대두께(㎛) 1.0 초과 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내
연속 전극면 형성성 3 3 1 4 5 4 4 4
소결전극 상대적 수축특성 미평가 미평가 미평가 122 100 116 120 147
소결전극 두께균일도(%) 미평가 미평가 미평가 14.3 9.6 11.8 22.9 11.2
실시예8 실시예9 실시예10 실시예11 실시예12 실시예13 실시예14
도전성 금속분말 종류/함량(중량%) 35 10 8 25 25 25 25
평균입경(㎚) 75.0 75.0 75.0 75.0 75.0 75.0 75.0
비율A(%) 9 9 9 9 9 9 9
비율B(%) 7 7 7 7 7 7 7
세라믹 분말 종류/함량(중량부) 4.2 6.8 6.8 9.7 11.5 4 2.5
평균입경(㎚) 21.8 21.8 21.8 21.8 21.8 21.8 21.8
비율C 0.29 0.29 0.29 0.29 0.29 0.29 0.29
점도(cps) 94 72 71 84 85 79 79
건조전극 평균두께(nm) 445 438 413 445 443 440 426
건조전극 두께균일도(%) 16.9 10 24.5 9.6 9.9 9.7 17.6
건조전극 내 최대두께(㎛) 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내
연속 전극면 형성성 3 4 2 4 4 4 2
소결전극 상대적 수축특성 미평가 미평가 미평가 108 120 미평가 미평가
소결전극 두께균일도(%) 미평가 미평가 미평가 미평가 미평가 미평가 미평가
표 1 및 표 2를 통해 알 수 있듯이,
평균입경이 150㎚를 초과하는 도전성 금속분말을 함유한 비교예 1에 따른 전극조성물의 경우 건조전극의 평균두께가 1.0㎛ 이내이나, 두께균일도가 28.40%로 매우 나쁨에 따라서 건조 전극 두께 중 최대두께가 1.0㎛을 초과하는 것을 알 수 있다.
또한, 실시예 중 평균입경이 150㎚ 이내인 도전성 금속분말을 함유한 실시예 1 및 실시예2의 경우 전기분사 후 형성한 건조전극의 최대두께가 1.0㎛ 이하였으나, 실시예2의 경우 평균입경의 2배 이상의 입경을 가지는 입자가 도전성 금속분말의 26%에 달해 조대입자수가 많고, 이로 인한 도전성 금속분말의 침강속도가 빨라 전기분사 시 분사되는 용액에 도전성 금속분말이 불균일하게 분사됨에 따라서 연속 전극면 형성성이 실시예1에 대비해 크게 저하된 것을 알 수 있다.
한편, 도전성 금속분말의 평균입경이 100㎚ 이하가 되도록 구비한 실시예 3 및 실시예 4의 경우 동일조건으로 전기분사 시 구현되는 건조전극의 평균두께가 실시예1에 대비 더욱 얇게 구현하면서 건조전극의 두께균일도와 연속 전극면 형성성이 증가하는 것을 알 수 있다.
다만, 실시예3에 따른 전극조성물에 대비해 실시예 4에 따른 전극조성물은 도전성 금속분말의 평균입경 대비 2배 이상이 되는 입자의 비율이 더욱 줄어들어 전기 분사 시 분사되는 도전성 금속분말의 함량 균일성이 증가하고, 도전성 금속분말의 평균입경 대비 세라믹 분말의 평균입경이 더욱 조절되도록 혼합됨에 따라서 건조전극의 두께균일성, 연속 전극면 형성성 및 소결된 전극의 수축특성과 두께균일성이 매우 우수하게 구현된 것을 알 수 있다.
또한, 도전성 금속분말의 평균입경에 대비해 0.1 배 미만의 평균입경을 가지는 세라믹 분말을 혼합한 실시예6은 건조전극의 두께균일성이 실시예4에 대비 저하되며, 소결전극의 수축특성 및 두께균일성이 저하된 것을 알 수 있다. 또한, 도전성 금속분말의 평균입경에 대비해 0.5배를 넘는 평균입경을 갖는 세라믹 분말을 혼합한 실시예7의 경우 소결전극의 수축특성 저하가 크게 발생한 것을 알 수 있다.
또한, 도전성 금속분말의 함량이 30중량%를 초과 시 전기분사조성물의 높아진 전기전도도가 전기분사에 영향을 미쳐 연속전극면 형성성이 실시예4에 대비해 저하되고, 건조전극의 두께균일성도 낮아진 것을 알 수 있다.
또한, 도전성 금속분말의 함량이 10중량% 미만으로 함유된 실시예10의 경우에도 실시예9에 대비해 연속 전극면 형성성 및 건조두께의 균일도가 저하된 것을 알 수 있다.
한편, 세라믹 분말의 함량과 관련하여 바람직한 범위를 초과해 함유한 실시예 12는 소결전극의 수축이 실시예4에 대비해 크게 증가했고, 바람직한 범위 미만으로 함유한 실시예14는 전기전도도 저하 효과가 미미해 구현된 건조전극의 두께균일도가 저하된 것을 알 수 있다.
<실시예 15>
실시예1과 동일하게 실시하여 제조하되, 감광성 전기분사용 전극조성물로 구현하기 위하여 용제로써 디하이드로테르피네올 및 디하이드로테르피네올 아세테이트가 1:1의 중량비로 혼합된 혼합용매에 실시예1에서 입도가 조절된 니켈인 도전성 금속분말 및 세라믹 분말을 투입하고, 감광성 수지로서 중량평균분자량이 약 10,000이며 메타크릴산 19.5몰%, 메틸메타크릴레이트 38.5 몰% 및 이소보닐 메타크릴레이트가 42몰%가 공중합된 아크릴레이트계 공중합체 75 중량% 및 폴리비닐부티랄 수지 25중량%를 포함하는 바인더 수지, 감광성 수지 100 중량부에 대해서 다관능성 모노머로서 펜타에리쓰리톨 트리-아크릴레이트 13중량부 및 광개시제로서 아조비스이소부티로나이트릴(Azobisisobutyronitrile)을 혼합하였고, 구체적으로 도전성 금속분말 100 중량부에 대해서 세라믹 분말이 6.8 중량부, 바인더 수지 및 다관능성 모노머 중량 총합이 8 중량부, 감광성 수지 100 중량부에 대해서 광개시제 1중량부가 되도록 혼합하되 전체 조성물에서 도전성 금속분말의 중량이 25중량%가 되도록 혼합하여 25℃ 온도에서 점도가 80cps인 하기 표 3과 같은 전기분사용 전극조성물을 제조했다.
이때, 제조된 전기분사용 전극조성물의 점도는 온도 25 상대습도 65% 및 회전속도 10rpm의 조건으로 ISO 554에 의거해 브룩필드 회전형 점도계 LV로 측정된 결과이다.
<실시예 16 ~ 28>
실시예 15와 동일하게 실시하여 제조하되, 도전성 금속분말의 함량, 평균입경, 입도분포, 세라믹 분말의 함량, 평균입경, 및/또는 전극조성물의 점도를 하기 표 3 또는 표 4와 같이 변경해 전기분사용 전극조성물을 제조했다.
이때, 사용된 세라믹 분말은 평균입경의 2배 이상의 입경을 가지는 입자가 전체 세라믹 분말의 10% 이내, 평균입경의 0.5배 이하의 입경을 가지는 입자가 전체 세라믹 분말의 10%이내가 되는 입도분포를 가지도록 습식분급을 통해 입도가 조절된 세라믹 분말을 사용했다.
<비교예2>
실시예 15와 동일하게 실시하여 제조하되, 도전성 금속분말의 평균입경을 하기 표 3과 같이 변경해 전기분사용 전극조성물을 제조했다.
<실험예2>
실험예1에서 사용된 세라믹 그린시트 상에 실시예 15 ~ 28 및 비교예 2에 따른 전기분사용 감광성 전극조성물을 18℃, 상대습도 30% 인 조건에서 전기분사장치를 이용해 토출속도(Hole당 3ml/min)의 속도로 노즐과 세라믹 그린시트면 간의 거리인 에어갭이 24㎝, 인가되는 전압이 70kV인 조건으로 건조 시 두께가 1㎛ 이내가 되도록 전기분사 시킨 뒤 65℃ 10분 동안 건조한 후 건조된 상태의 감광성 전극층을 구현했다.
이후 소정의 전극라인 패턴을 가지도록 마스크를 상기 감광성 전극층 상에 위치시킨 뒤, UV를 550mJ 세기로 노광시키고, 3중량% Na2CO3 용액인 현상액을 통해서 30초간 현상을 진행해 전극패턴을 구현했다. 이후 전극패턴이 형성된 세라믹 그린시트를 대기 분위기 하에서 1000℃에서 2시간 동안 소결시켜 소결상태의 전극패턴을 구현했다.
이후 건조된 상태의 감광성 전극층, 노광 후 현상된 전극패턴 또는 소결된 전극패턴에 대해서 하기의 물성을 측정해 그 결과를 하기 표 3 또는 표 4에 나타내었다.
이때, (1) 평균두께 및 두께 균일성, (2) 건조된 감광성 전극층에 대한 연속 전극면 형성성 및 (3) 소결 전극의 상대적 수축특성 및 두께균일성의 평가방법은 실험예1과 동일하게 수행하였다.
(4) 언더컷 비율
노광 후 현상된 전극패턴에 대해서 임의의 10개 지점에 대해서 단면을 자른 뒤 SEM 사진을 촬영해 각 지점별 전극단면의 상부폭과 하부폭을 각각 측정한 뒤 상부폭에 대한 하부폭의 백분율(하부폭(㎛)×100 / 상부폭(㎛))인 각 지점의 언더컷 비율을 계산한 뒤 10개 지점의 언더컷 비율의 평균값을 계산했다. 언터컷 비율이 100%에 가까울수록 전극의 하부측까지 노광이 잘 이루어진 우수한 품질의 전극이 구현된 것으로 평가할 수 있다.
또한, 아래 표 3 및 표 4에서 '비율 A' 및 '비율 B'는 각각 도전성 금속분말의 전체 개수 중 도전성 금속분말 평균입경의 2배 이상의 입경을 가지는 입자의 비율 및 평균입경의 0.5배 이하의 입경을 가지는 입자의 비율을 의미한다. 또한, '비율 C'란 세라믹 분말의 평균입경을 도전성 금속분말의 평균입경으로 나눈 값을 의미한다. 또한, 도전성 금속분말의 함량은 감광성 전기분사용 전극조성물 전체 중량 기준한 함량비율이며, 세라믹 분말의 함량은 도전성 금속분말 100 중량부에 기준한 함량이다.
비교예2 실시예15 실시예16 실시예17 실시예18 실시예19 실시예20 실시예21
도전성 금속분말 종류/함량(중량%) 25 25 25 25 25 25 25 25
평균입경(㎚) 160.3 147.1 142.2 98.0 75.0 75.0 75.0 75.0
비율A(%) 10 15 26 12 9 9 9 9
비율B(%) 8 18 23 9 7 7 7 7
세라믹 분말(종류/함량) 종류/함량
(중량부)
6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8
평균입경(㎚) 75 65.8 65.8 42.2 21.8 31.1 6.5 39.8
비율C 0.47 0.45 0.46 0.43 0.29 0.41 0.087 0.53
점도(cps) 80 80 80 80 80 80 80 80
건조전극 평균두께(nm) 765 752 810 579 442 444 445 470
건조전극 두께균일도(%) 30.15 9.78 16.8 9.9 9.0 9.8 15.7 11.1
건조전극 내 최대두께(㎛) 1.0 초과 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내
연속 전극면 형성성 3 3 1 4 5 4 4 4
언더컷(%) 65.8 71.5 58.9 75.0 86.6 77.1 62.4 73.5
소결전극 상대적 수축특성 미평가 미평가 미평가 120 100 117 122 151
소결전극 두께균일도(%) 미평가 미평가 미평가 14.6 9.4 11.5 23.9 11.2
실시예22 실시예23 실시예24 실시예25 실시예26 실시예27 실시예28
도전성 금속분말 종류/함량(중량%) 35 10 8 25 25 25 25
평균입경(㎚) 75.0 75.0 75.0 75.0 75.0 75.0 75.0
비율A(%) 9 9 9 9 9 9 9
비율B(%) 7 7 7 7 7 7 7
세라믹 분말 종류/함량(중량부) 4.2 6.8 6.8 9.7 11.5 4 2.5
평균입경(㎚) 21.8 21.8 21.8 21.8 21.8 21.8 21.8
비율C 0.29 0.29 0.29 0.29 0.29 0.29 0.29
점도(cps) 94 72 71 84 85 79 79
건조전극 평균두께(nm) 440 446 408 450 441 442 428
건조전극 두께균일도(%) 16.9 10.3 25.1 9.4 9.8 9.5 19.2
건조전극 내 최대두께(㎛) 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내 1.0 이내
연속 전극면 형성성 3 4 2 4 4 4 2
언더컷 비율(%) 69.8 87.5 88.6 80.5 74.8 85.6 86.0
소결전극 상대적 수축특성 미평가 미평가 미평가 110 126 미평가 미평가
소결전극 두께균일도(%) 미평가 미평가 미평가 미평가 미평가 미평가 미평가
표 3 및 표 4를 통해 알 수 있듯이,
평균입경이 150㎚를 초과하는 도전성 금속분말을 함유한 비교예 2에 따른 전극조성물의 경우 건조전극의 평균두께가 1.0㎛ 이내이나, 두께균일도가 28.40%로 매우 나쁨에 따라서 건조 전극 두께 중 최대두께가 1.0㎛을 초과하는 것을 알 수 있다.
또한, 실시예 중 평균입경이 150㎚ 이내인 도전성 금속분말을 함유한 실시예 15 및 실시예 16의 경우 전기분사 후 형성한 건조전극의 최대두께가 1.0㎛ 이하였으나, 실시예 16의 경우 평균입경의 2배 이상의 입경을 가지는 입자가 도전성 금속분말의 26%에 달해 조대입자수가 많고, 이로 인한 도전성 금속분말의 침강속도가 빨라 전기분사 시 분사되는 용액에 도전성 금속분말이 불균일하게 분사됨에 따라서 연속 전극면 형성성이 실시예 15에 대비해 크게 저하된 것을 알 수 있다. 또한, 전극 하부 측에 노광이 제대로 이루어지지 못해 언더컷이 심화되어 구현된 전극의 품질이 저하된 것을 알 수 있다.
한편, 도전성 금속분말의 평균입경이 100㎚ 이하가 되도록 구비한 실시예 17 및 실시예 18의 경우 동일조건으로 전기분사 시 구현되는 건조전극의 평균두께가 실시예1에 대비 더욱 얇게 구현하면서 건조전극의 두께균일도와 연속 전극면 형성성이 증가하는 것을 알 수 있다.
다만, 실시예 17에 따른 전극조성물에 대비해 실시예 18에 따른 전극조성물은 도전성 금속분말의 평균입경 대비 2배 이상이 되는 입자의 비율이 더욱 줄어들어 전기 분사 시 분사되는 도전성 금속분말의 함량 균일성이 증가하고, 도전성 금속분말의 평균입경 대비 세라믹 분말의 평균입경이 더욱 조절되도록 혼합됨에 따라서 건조전극의 두께균일성, 연속 전극면 형성성 및 소결된 전극의 수축특성과 두께균일성이 매우 우수하게 구현된 것을 알 수 있다.
또한, 도전성 금속분말의 평균입경에 대비해 0.1 배 미만의 평균입경을 가지는 세라믹 분말을 혼합한 실시예 20은 건조전극의 두께균일성이 실시예 18에 대비 저하되며, 소결전극의 수축특성 및 두께균일성이 저하된 것을 알 수 있다. 또한, 도전성 금속분말의 평균입경에 대비해 0.5배를 넘는 평균입경을 갖는 세라믹 분말을 혼합한 실시예 21의 경우 소결전극의 수축특성 저하가 크게 발생한 것을 알 수 있다.
또한, 도전성 금속분말의 함량이 30중량%를 초과 시 전기분사조성물의 높아진 전기전도도가 전기분사에 영향을 미쳐 연속전극면 형성성이 실시예 18에 대비해 저하되고, 건조전극의 두께균일성도 낮아진 것을 알 수 있다. 또한, 전극 하부측의 노광이 제대로 이루어지지 못해 언더컷이 심화된 것을 알 수 있다.
또한, 도전성 금속분말의 함량이 10중량% 미만으로 함유된 실시예24의 경우에도 실시예 23에 대비해 연속 전극면 형성성 및 건조두께의 균일도가 저하된 것을 알 수 있다.
한편, 세라믹 분말의 함량과 관련하여 바람직한 범위를 초과해 함유한 실시예 26은 소결전극의 수축이 실시예 18에 대비해 크게 증가했고, 바람직한 범위 미만으로 함유한 실시예 28은 전기전도도 저하 효과가 미미해 구현된 건조전극의 두께균일도가 실시예 27에 대비해 저하된 것을 알 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (18)

  1. 건조 시 평균두께가 1.0㎛ 이하인 전극을 구현하기 위한 전기분사용 전극조성물로서, 평균입경이 150㎚ 이하인 도전성 금속분말, 세라믹 분말, 바인더 수지 및 용제를 포함하는 전기분사용 전극조성물.
  2. 제1항에 있어서,
    적층세라믹 부품의 내부전극을 구현하기 위한 전극조성물인 전기분사용 전극조성물.
  3. 제1항에 있어서,
    상기 도전성 금속분말은 평균입경이 80㎚ 이하인 전기분사용 전극조성물.
  4. 제1항에 있어서,
    상기 도전성 금속분말은 평균입경의 2배 이상의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하이며, 평균입경의 0.5배 이하의 입경을 가지는 입자의 수가 전체 도전성 금속분말 개수의 20% 이하인 전기분사용 전극조성물.
  5. 제1항에 있어서,
    상기 도전성 금속분말은 Ni, Mn, Cr, Al, Ag, Cu, Pd, W, Mo 및 Co로 이루어진 군에서 선택된 1종의 금속, 이들 중 적어도 1종을 포함하는 합금, 및 이들 중 적어도 2종을 포함하는 혼합금속 중 어느 하나 이상을 포함하는 전기분사용 전극조성물.
  6. 제1항에 있어서,
    상기 세라믹 분말은 도전성 금속분말 평균입경의 0.1 ~ 0.5배의 평균입경을 갖는 전기분사용 전극조성물.
  7. 제1항에 있어서,
    상기 세라믹 분말은 티타니아, 알루미나, 실리카, 코디에라이트, 뮬라이트, 스피넬, 티탄산 바륨, 칼슘지르코니아 및 지르코니아로 이루어지는 군으로부터 선택되는 적어도 1종 이상의 세라믹 분말을 포함하는 전기분사용 전극조성물.
  8. 제1항에 있어서,
    상기 도전성 금속분말은 전체 중량 기준 10 ~ 30중량%로 구비되는 전기분사용 전극조성물.
  9. 제1항에 있어서,
    상기 세라믹 분말은 도전성 금속분말 100 중량부에 대해서 4 ~ 10 중량부로 포함되는 전기분사용 전극조성물.
  10. 제1항에 있어서,
    상기 바인더 수지는 도전성 금속분말 100 중량부에 대해서 2 ~ 13중량부로 포함되는 전기분사용 전극조성물.
  11. 제1항에 있어서,
    상기 바인더 수지는 폴리비닐부티랄 100 중량부에 대하여 에틸셀룰로오스를 30 ~ 60 중량부로 포함하는 전기분사용 전극조성물.
  12. 제1항에 있어서,
    바인더 수지로서 감광성 수지를 포함하며, 모노머 및 광개시제를 더 포함하는 전기분사용 전극조성물.
  13. 제12항에 있어서,
    상기 바인더 수지 및 모노머 중량 총합은 도전성 금속분말 100 중량부에 대해서 2 ~ 13중량부로 포함되는 전기분사용 전극조성물.
  14. 제1항에 있어서,
    상기 세라믹 분말은 평균입경이 45㎚ 이하인 전기분사용 전극조성물.
  15. 제1항에 있어서,
    25℃에서 점도가 50 ~ 150 cps인 전기분사용 전극조성물.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 전기분사용 전극조성물이 소정의 영역 상에 전기분사된 후 건조된 전극으로서 평균두께가 1.0㎛ 이하인 전기분사전극.
  17. 제16항에 있어서,
    두께균일도가 10% 이하인 전기분사전극.
  18. 제16항에 따른 전기분사전극이 소결된 내부전극;을 포함하는 적층세라믹 부품.
PCT/KR2022/005221 2021-04-09 2022-04-11 전기분사용 전극조성물 WO2022216136A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280040045.4A CN117678039A (zh) 2021-04-09 2022-04-11 用于电喷射的电极组合物
JP2023562308A JP2024514319A (ja) 2021-04-09 2022-04-11 電気噴射用電極組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0046504 2021-04-09
KR10-2021-0046505 2021-04-09
KR20210046505 2021-04-09
KR20210046504 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022216136A1 true WO2022216136A1 (ko) 2022-10-13

Family

ID=83546478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005221 WO2022216136A1 (ko) 2021-04-09 2022-04-11 전기분사용 전극조성물

Country Status (2)

Country Link
JP (1) JP2024514319A (ko)
WO (1) WO2022216136A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197062A1 (en) * 2003-03-31 2006-09-07 Tdk Corporation Paste for internal electrode and process for producing electronic part
CN101872679A (zh) * 2010-05-26 2010-10-27 广东风华高新科技股份有限公司 一种镍内电极浆料
KR20110077788A (ko) * 2009-12-30 2011-07-07 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 이용한 적층 세라믹 커패시터의제조방법
KR20130005812A (ko) * 2011-07-07 2013-01-16 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
JP2020188111A (ja) * 2019-05-14 2020-11-19 株式会社ノリタケカンパニーリミテド 内部電極用ペーストおよび積層セラミック電子部品の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197062A1 (en) * 2003-03-31 2006-09-07 Tdk Corporation Paste for internal electrode and process for producing electronic part
KR20110077788A (ko) * 2009-12-30 2011-07-07 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 이용한 적층 세라믹 커패시터의제조방법
CN101872679A (zh) * 2010-05-26 2010-10-27 广东风华高新科技股份有限公司 一种镍内电极浆料
KR20130005812A (ko) * 2011-07-07 2013-01-16 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
JP2020188111A (ja) * 2019-05-14 2020-11-19 株式会社ノリタケカンパニーリミテド 内部電極用ペーストおよび積層セラミック電子部品の製造方法

Also Published As

Publication number Publication date
JP2024514319A (ja) 2024-04-01

Similar Documents

Publication Publication Date Title
KR100669725B1 (ko) 감광성 페이스트 조성물
US20120121798A1 (en) Conductor paste for rapid firing
CN1892926B (zh) 多层电子元件用导电膏及采用该膏的多层电子元件
WO2020137290A1 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
CN112334995B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
WO2019198929A1 (ko) 구리 기반 전도성 페이스트 및 그 제조방법
CN111052263B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
TWI754671B (zh) 導電性糊
WO2022216136A1 (ko) 전기분사용 전극조성물
WO2022225361A1 (ko) 적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품
KR100874281B1 (ko) 유전체 및 유전체를 구비한 디스플레이 장치 및 유전체의제조 방법
WO2022225360A1 (ko) 적층세라믹 전자부품 제조방법 및 이를 통해 구현된 적층세라믹 전자부품
CN111902882B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
KR102611513B1 (ko) 전기분사용 감광성 전극조성물
WO2017025943A1 (ko) 무연 후막 저항 조성물, 무연 후막 저항체 및 이의 제조방법
JP4411940B2 (ja) 無機材料ペースト、およびプラズマディスプレイ部材ならびにプラズマディスプレイ
WO2016171323A1 (ko) 칩 부품용 전극 페이스트 조성물
US20040188659A1 (en) Conductor composition and uses thereof
WO2018147713A1 (ko) 무연 후막 저항체 및 이를 포함하는 전자부품
WO2019013585A1 (ko) 복합기능소자 및 이를 구비한 전자장치
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
WO2017183740A1 (ko) Uv 경화를 이용한 내압착용 전극 페이스트 조성물 및 이를 이용한 칩부품 제조 방법
WO2017135619A1 (ko) 실버 코팅 글래스 프릿, 그 제조방법 및 실버 코팅 글래스 프릿을 이용한 솔라셀용 실버 페이스트 조성물
WO2020184996A2 (ko) 광소결 구리 전구체, 그의 제조 방법, 및 그의 광소결 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22785044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023562308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18286143

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 22785044

Country of ref document: EP

Kind code of ref document: A1