WO2022216015A1 - 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체 - Google Patents

열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체 Download PDF

Info

Publication number
WO2022216015A1
WO2022216015A1 PCT/KR2022/004891 KR2022004891W WO2022216015A1 WO 2022216015 A1 WO2022216015 A1 WO 2022216015A1 KR 2022004891 W KR2022004891 W KR 2022004891W WO 2022216015 A1 WO2022216015 A1 WO 2022216015A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene glycol
compound
polymer
nmr
epcnn
Prior art date
Application number
PCT/KR2022/004891
Other languages
English (en)
French (fr)
Inventor
여현욱
최소영
구교선
한예지
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220041487A external-priority patent/KR20220139234A/ko
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to JP2023561313A priority Critical patent/JP2024514257A/ja
Publication of WO2022216015A1 publication Critical patent/WO2022216015A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls

Definitions

  • the present invention relates to a compound having a thermotropic liquid crystal structure obtained by modifying an epoxide functional group in a thermotropic liquid crystal molecule, and a polyethylene glycol polymer obtained by ring-opening polymerization thereof, and more specifically, to a thin film, bulk, or fiber form. , It relates to a polymer of a polyethylene glycol main chain that can be used alone or in the form of a composite material because of its high thermal conductivity.
  • Liquid crystalline polymer is a polymer that exhibits a liquid crystal phase in a molten or solution state, and generally has a structure including a mesogenic unit.
  • TLCP thermotropic liquid crystalline polymer
  • a liquid crystal behavior according to a change in temperature appears, and its properties vary greatly depending on the position, shape, and structure of the mesogenic unit. Because it exhibits excellent mechanical properties in addition to high heat resistance and chemical resistance, it can be applied to fields such as high-performance composites and engineering plastics, and many studies have been made academically and industrially.
  • thermotropic liquid crystal polymer there is a disadvantage that it must be synthesized and processed at a high temperature or in a solution state of a strong acid and an organic solvent because of its high melting temperature and chemical resistance.
  • Most liquid crystal polymers are synthesized using a solvent, and are typically shown in detail in U.S. Patent No. 04954606, U.S. Patent No. 05109100, and U.S. Patent No. 04912193.
  • the solvent is There is a disadvantage that it has to go through a removal process, and at the same time, there is a disadvantage that it is difficult to process in a molten state.
  • the present inventor recognized that it is urgent to develop a compound having a thermotropic liquid crystal structure and a polyethylene glycol polymer thereof for the development of a thermoplastic liquid crystal polymer that can be easily molded, and completed the present invention.
  • An object of the present invention is to provide a compound having a thermotropic liquid crystal structure obtained by modifying an epoxide functional group in a thermotropic liquid crystal molecule, and a polyethylene glycol polymer obtained by ring-opening polymerization thereof.
  • Another object of the present invention is to provide a polyethylene glycol polymer that can be easily formed into a thin film, bulk, or fiber form, and has high thermal conductivity, which can be used as a heat dissipating polymer and a composite material.
  • the present invention provides a compound having a thermotropic liquid crystal structure in the side chain represented by the following formula (I).
  • n is an integer ranging from 1 to 30.
  • the present invention provides a compound having a thermotropic liquid crystal structure in the side chain represented by the following formula (II).
  • n is an integer ranging from 1 to 30.
  • the present invention provides a polyethylene glycol polymer obtained by ring-opening polymerization of the compound represented by the formula (I).
  • the present invention provides a polyethylene glycol polymer obtained by ring-opening polymerization of a compound represented by the above formula (II).
  • the present invention provides a polyethylene glycol polymer represented by the following formula (III) and obtained by ring-opening polymerization of a compound represented by the formula (I) or (II).
  • X1 and X2 may be the same or different, and are selected from the compound according to claim 1 or the compound according to claim 2].
  • the polyethylene glycol polymer may be used as a general-purpose material based on various electronic components such as a substrate, a compound, an adhesive, a pad, a heat spread, and a heat sink.
  • thermotropic liquid crystal structure and its polyethylene glycol polymer apply equally unless contradictory.
  • novel polyethylene glycol polymer prepared according to the present invention can be easily formed into a thin film, bulk, or fiber form and has improved thermal conductivity, and thus can be used in various electronic components.
  • EPCNn (4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile) synthesized according to an embodiment of the present invention
  • (a) is EPCN4
  • (b ) is the spectrum of EPCN5
  • (c) is EPCN6,
  • (d) is EPCN7
  • (e) is EPCN8, and
  • (f) is EPCN9.
  • EPCN4 is EPCN4
  • EPCN5 is EPCN5
  • EPCN6 is EPCN7
  • EPCN8 is EPCN9 is the spectrum.
  • DSC differential scanning calorimetry
  • EPCN 7 is a DSC analysis graph of the EPCNn analyzed at a heating and cooling rate of 2° C./min.
  • (a) is EPCN4,
  • (b) is EPCN5,
  • (c) is EPCN6,
  • (d) is EPCN7
  • (e) is a graph of EPCN8, and
  • (f) is a graph of EPCN9.
  • POM polarization optical microscope
  • XRD 12 is an X-ray diffraction analysis (XRD) graph of P-EPCNn at room temperature.
  • OMPBn (4-(oxiran-2-ylmethoxy)phenyl 4-alkoxybenzoate) synthesized according to another embodiment of the present invention, (a) is OMPB4, (b) is OMPB6, ( c) is the spectrum of OMPB8, and (d) is the spectrum of OMPB10.
  • 16 is a 1 H-NMR spectrum of P-OMPBn synthesized according to another embodiment of the present invention, (a) is P-OMPB4, (b) is P-OMPB6, (c) is P-OMPB8, and ( d) is the spectrum of P-OMPB10.
  • the present invention provides a compound having a thermotropic liquid crystal structure in the side chain represented by the following formula (I).
  • n is an integer ranging from 1 to 30.
  • the compound of formula (I) is 4-(4-) through the reaction with dibromoalkane using 4-hydroxy-4-biphenylcarbonitrile as a starting material
  • Bromoalkoxy)-4-biphenylcarbonitrile (4-(4-bromoalkoxy)-4-biphenylcarbonitrile, BRCNn) can be synthesized, and then 4-(4-bromoalkoxy)-4-biphenylcarbonitrile
  • the compound can be synthesized through a reaction with glycidol as a starting material.
  • the compound may be 4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile (4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile) .
  • the preparation of the compound of formula (I) can be carried out under basic conditions, for example in the presence of sodium hydroxide.
  • dimethylformamide (DMF), N-methylpyrilidone (NMP), N,N'-dimethylacetamide (DMAc), dimethylsulfuroxide (DMSO), tetrahydrofuran ( THF), methacresol (m-cresol), or a mixture thereof may be used as the solvent.
  • NMF N-methylpyrilidone
  • DMAc N,N'-dimethylacetamide
  • DMSO dimethylsulfuroxide
  • THF tetrahydrofuran
  • m-cresol methacresol
  • the reaction for preparing the compound of formula (I) may be carried out at a temperature in the range of 20 to 45 °C, preferably at a temperature in the range of 30 to 45 °C.
  • the preparation time of the compound of formula (I) may range from 36 hours to 48 hours, preferably from 36 hours to 42 hours.
  • the present invention provides a compound having a thermotropic liquid crystal structure in the side chain represented by the following formula (II).
  • n is an integer ranging from 1 to 30.
  • the compound of formula (II) is 4-(alkoxy)benzoic acid as a starting material, and 4-hydroxyphenyl 4-alkoxybenzoate ( After synthesizing 4-hydroxyphenyl 4-alkoxybenzoate (HPBn), the compound may be synthesized through reaction with epichlorohydrin using 4-hydroxyphenyl 4-alkoxybenzoate as a starting material.
  • the compound may be 4-(oxiran-2-ylmethoxy)phenyl 4-butoxybenzoate (4-(oxiran-2-ylmethoxy)phenyl 4-butoxybenzoate).
  • the preparation of the compound of formula (II) can be carried out under basic conditions, for example in the presence of sodium hydroxide.
  • the reaction for preparing the compound of formula (II) may be carried out at a temperature in the range of 65 to 95 °C, preferably at a temperature in the range of 70 to 85 °C.
  • the preparation time of the compound of formula (II) may be in the range of 0.5 hours to 4 hours, and preferably in the range of 0.5 hours to 2 hours.
  • the present invention provides a polyethylene glycol polymer obtained by ring-opening polymerization of a compound having a thermotropic liquid crystal structure in the side chain represented by the formula (II).
  • the present invention provides a polyethylene glycol polymer represented by the following formula (III), obtained by ring-opening polymerization of a compound having a thermotropic liquid crystal structure according to the formula (I) or (II).
  • the ring-opening polymerization may be any one selected from anionic ring-opening polymerization, cationic ring-opening polymerization, and radical ring-opening polymerization, but is not limited thereto.
  • X1 and X2 may be the same or different, and are selected from the compound according to claim 1 or the compound according to claim 2].
  • the formula (III) may be a homopolymer or a copolymer.
  • the ring-opening polymerization may be carried out in the presence of an initiator, wherein the initiator is a metal such as potassium tert-butoxide, lithium tert-butoxide, sodium tert-butoxide, potassium ethoxide, aluminum butoxide, or aluminum isopropoxide. It may be an alkoxide, and initiators commonly known to those skilled in the art may be used.
  • an initiator such as potassium tert-butoxide, lithium tert-butoxide, sodium tert-butoxide, potassium ethoxide, aluminum butoxide, or aluminum isopropoxide. It may be an alkoxide, and initiators commonly known to those skilled in the art may be used.
  • the ring-opening polymerization may be carried out in the presence of a catalyst, wherein the catalyst is 18-crown-6 ether, 15-crown-5 ether, dibenzo-18-crown-6, dicyclohexyl-18-crown-6 and tetra It may be a catalyst such as methyl ammonium chloride (TMAC), and a catalyst commonly known to those skilled in the art may be used.
  • a catalyst such as methyl ammonium chloride (TMAC), and a catalyst commonly known to those skilled in the art may be used.
  • the ring-opening polymerization may be performed in the presence of a solvent, and the solvent may be a solvent such as toluene, cyclohexane, hexane, heptane, xylene, or ethylbenzene, and a solvent commonly known to those skilled in the art may be used.
  • a solvent such as toluene, cyclohexane, hexane, heptane, xylene, or ethylbenzene, and a solvent commonly known to those skilled in the art may be used.
  • the initiator may be included in an amount of 1 to 45 parts by weight, preferably 5 to 45 parts by weight, and more preferably 10 to 45 parts by weight.
  • the catalyst may be included in an amount of 0.1 to 15 parts by weight, preferably 0.5 to 15 parts by weight, and more preferably 1 to 15 parts by weight.
  • the catalyst When the catalyst is added in an amount of less than 0.1 parts by weight, a problem of non-polymerization or a decrease in reaction rate may occur, and when the catalyst is added in an amount of more than 15 parts by weight, there may be a problem of generating a low molecular weight polymer.
  • the ring-opening polymerization may be carried out at a temperature in the range of 50 to 70 °C, preferably at a temperature in the range of 55 to 65 °C.
  • the ring-opening polymerization may be carried out for 72 hours to 84 hours, preferably for 72 hours to 80 hours.
  • the ring-opening polymerization may be performed by substituting a non-reactive gas condition, and the non-reactive gas may be helium, argon or nitrogen, preferably argon or nitrogen, and most preferably argon.
  • the non-reactive gas may be helium, argon or nitrogen, preferably argon or nitrogen, and most preferably argon.
  • the polymerization solution may be precipitated in alcohol.
  • the alcohol may be an alcohol such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol and heptanol, and alcohols commonly known to those skilled in the art may be used.
  • the precipitation may be performed 2 to 5 times, preferably 2 to 4 times.
  • the polyethylene glycol polymer of Formula (III) may have a thermal conductivity of 0.30 (W/m ⁇ K) or more, for example, in the range of 0.30 to 0.45 (W/m ⁇ K).
  • the polyethylene glycol polymer of Formula (III) may have a glass transition temperature of 10° C. or higher, for example, may have a glass transition temperature in the range of 10 to 60° C., preferably having a glass transition temperature in the range of 10 to 55° C. can have
  • the polyethylene glycol polymer of Formula (III) may have a melting point of 85°C or higher, for example, may have a melting point in the range of 85 to 200°C, and preferably may have a melting point in the range of 88 to 200°C.
  • the polyethylene glycol polymer of the present invention can be used in the electronics industry, for example, as a substrate, a compound, an adhesive, a pad, a heat spread, and a heat sink.
  • the chemical structure of the synthesized material was analyzed by nuclear magnetic resonance spectroscopy (NMR, AVANCE III 500, Bruker) at Kyungpook National University's Instrumentation Analysis Center using CDCl 3 or DMSO-d 6 as a solvent 1 H NMR (500 MHz) and 13 C NMR ( 125 MHz), and tetramethylsilane (TMS) was used as an internal standard.
  • Thermal properties including phase transition behavior were investigated with a differential scanning calorimeter (DSC, Q2000, TA Instruments and DSC4000, PerkinElmer) under N 2 atmosphere. A sample of about 5.0 mg was used for the DSC measurement, and an empty aluminum pan was used as a reference. The heating and cooling rates of the DSC measurement were 2° C. or 5° C. per minute, and it was confirmed that there was no critical difference through at least two repeated cycle measurements.
  • the mesomorphic properties were analyzed using a polarized light microscope (POM, BX53M, Olympus) with a Linkam stage (LTS420).
  • POM polarized light microscope
  • LTS420 Linkam stage
  • 20 ⁇ m thick LC (liquid crystals) cells were used and fabricated as follows:
  • TC Thermal conductivity
  • microstructure of the bulk polymer was investigated using an X-ray diffractometer (XRD, Empyrean, Malvern Panalytical).
  • EPCNn 4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile (4-( n -(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile) monomer synthesis
  • Scheme 1 shows the synthesis process of the epoxide monomer EPCNn having a thermotropic liquid crystal structure cyanobiphenyl in the side chain, and 4-hydroxy-4-biphenylcarbonitrile (4-hydroxy-4-biphenylcarbonitrile) was used as a starting material, BRCNn was synthesized through reaction with dibromoalkane, and then EPCNn was obtained through reaction with glycidol.
  • the obtained material was extracted using diethyl ether, and the organic phase was dried over magnesium sulfate and purified through silica column chromatography using a hexane:ethyl acetate volume ratio 8:1 solution as a developing solution. The yield was 57%.
  • the BRCN4 (1.94 g, 5.87 mmol) and sodium hydroxide (0.352 g, 8.81 mmol) were placed in a three-necked round flask, substituted with an argon atmosphere, and glycidol (1.00 ml, 11.6 mmol) and dimethylformamide 35.0 ml was added.
  • the reaction was carried out at 30° C. for 3 days, and the obtained material was extracted using ethyl acetate, dried over magnesium sulfate, and purified by silica column chromatography using a 4:1 solution by volume of hexane:ethyl acetate as a developing solution. The yield was 51%. Identification of the material was made through 1 H NMR, 13 C NMR, and high-resolution mass spectrometry, and the analysis results are as follows.
  • EPCN4 (1.34 mmol), potassium tert -butoxide (50.5 mg, 500 ⁇ mol), and 18-crown-6 (18-crown-6) (28.0 mg, 100 ⁇ mol) were added to a Schlenk tube. After replacing with an argon atmosphere, 3 ml of toluene was added. After the polymerization solution was stirred at 60° C. for 3 days, it was poured into 50 ml of methanol for precipitation, and the precipitate was recovered. The precipitation process was repeated twice, and a pale yellow solid was obtained in a yield of 61%.
  • FIG. 4 is a Fourier transform infrared (FT-IR) spectrum of P-EPCNn obtained as described above, it can be confirmed that the polyethylene glycol (PEG) backbone polymer was synthesized without the remaining epoxide moiety.
  • FT-IR Fourier transform infrared
  • Table 1 below shows the molecular weight of P-EPCNn obtained as described above (FIG. 5), and Table 2 below shows the physical properties of P-EPCNn.
  • thermotropic liquid crystal, cyanobiphenyl (CB) structure forms a transparent liquid crystal phase, but a slight diversification was observed depending on the length of the alkyl linkage.
  • EPCN5, EPCN6, and EPCN8 showed an enantiotropic mesophase
  • EPCN4, EPCN7, and EPCN9 showed unidirectional LC during cooling.
  • EPCN5 showed an LC phase in a relatively wide range below room temperature
  • EPCN7 showed an intermediate phase in a fairly narrow range above room temperature.
  • the POM observation confirmed that the LC phase of all monomers was a transparent nematic phase.
  • the EPCN series were thermotropic LCs with mesophases ranging from about 40°C to 15°C, slightly above room temperature.
  • P-EPCNn exhibits a phase transition behavior independent of EPCNn in the polymer state.
  • the structure of the polymer was expected to tend to some extent because the PEG backbone polymer was formed while maintaining the structure of the monomer, but the results did not indicate this.
  • T g glass transition temperature
  • P-EPCN4 The glass transition temperature (T g ), except for P-EPCN4, was observed between 15 and 20°C, which is slightly lower at room temperature, whereas the T g of P-EPCN4 was observed at 32.6°C, which is slightly higher at room temperature.
  • phase transition temperature of P-EPCN4 was slightly higher than that of other polymers, and the behavior of other polymers was similar. This is considered to be a result of similarly controlled molecular weight and polymerization degree. Since P-EPCNn was not a main chain type, but a side chain liquid crystal polymer (SCLCP), it is presumed that a similar phase transition behavior was observed when a linker length capable of interaction was secured to some extent. In particular, a translucent liquid with high viscosity was obtained at a temperature above T m , and an opaque solid phase was maintained below T m .
  • SCLCP side chain liquid crystal polymer
  • Liquid crystal polymers exhibit anisotropic thermal conductivity properties due to their molecular arrangement in a specific direction. In particular, this molecular orientation reduces phonon scattering through a uniform arrangement in a specific direction to improve heat conduction properties, and induces different phonon pathways depending on the dimension.
  • P-EPCNn did not undergo a special arrangement in the bulk material preparation process, it did not show dimensional anisotropy. It is expected to exhibit anisotropy at the microscopic scale, but isotropic at the macroscopic level. Nevertheless, all P-EPCNn except P-EPCN4 showed a significantly high TC of 0.42-0.46 W m -1 K -1 .
  • P-EPCN4 exhibited a TC of 0.32 W m ⁇ 1 K ⁇ 1 , which is also a high value considering the PEG value.
  • a slight change with molecular weight was observed in PEG whose main chain was similar to that of P-EPCNn, but the TC ranged from about 0.2 to 0.3 W m ⁇ 1 K ⁇ 1 . Therefore, it was evident that P-EPCNn has a 2-fold higher TC due to the interaction of cyanobiphenyl mesogen in the pendant chain.
  • the peak sharpness was different for the PEG samples, which were assumed to represent the interplanar distances of the mesogens according to the random LC arrangement. These broad peaks were approximately 4-5 ⁇ , corresponding to typical inter-mesogen distances. In particular, clear evidence of mesogen self-assembly was observed in the low angle region of less than 10°. Depending on the length of the chain spacer, there was a slight difference in the peaks of about 4° and 7-8°. The peak at about 4° corresponds to 20-25 ⁇ , and the peak at 7-8° corresponds to 11-13 ⁇ , indicating relatively long-range regularity.
  • the optimized molecular structure of the P-EPCNn model compound calculated by density functional theory (DFT) at the B3LYP/6-31G level is as shown in FIG. 13 , the long axis length of the CB molecule of P-EPCNn is It appeared to be about 11 ⁇ corresponding to the peak seen in the 7-8° region. In addition, the long-axis length of the entire part of the side chain was obtained as 17 ⁇ for P-EPCN4 and 23 ⁇ for P-EPCN9 from the same DFT calculation result, confirming the regularity of the pendant group around 4°. Although it is difficult to see that P-EPCNn has high crystallinity because the peak is not clear, considering that they are high molecular materials, P-EPCNn has a sufficiently high level of crystal structure derived from mesogenic self-assembly.
  • DFT density functional theory
  • P-EPCNn the mesogen of P-EPCN4 located through a four-carbon alkyl bond from the main chain made it difficult to secure a sufficient distance for interaction, unlike other long spacer P-EPCNn.
  • P-EPCNn except for P-EPCN4 due to the room temperature glassy phase can form into the LC phase in the rubbery region at room temperature. This resulted in low crystallinity and TC of P-EPCN4.
  • P-EPCNn exhibits an LC phase at room temperature with a high TC.
  • the resulting solution was concentrated using a rotary evaporator, and organic matter was extracted with diethyl ether, and the organic phase was dried over magnesium sulfate and purified through silica column chromatography using a hexane:ethyl acetate volume ratio of 7:1 as a developing solution. .
  • the yield was 24%.
  • OMPB4 (0.300 g, 0.876 mmol), potassium tert -butoxide (39.0 mg, 327 ⁇ mol), and 18-crown-6 (18.0 mg, 65.0 ⁇ mol) were placed in a Schlenk tube, substituted with an argon atmosphere, and then 3 ml of toluene was added and stirred at room temperature for 3 days to carry out polymerization. After the polymerization solution was precipitated in 50 ml of methanol, the precipitate was recovered. The precipitation process was repeated twice, and a brown solid was obtained in a yield of 81%.
  • Table 3 below shows the molecular weight of P-OMPBn obtained as described above, and Table 4 below shows the physical properties of P-OMPBn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

본 발명은 열방성 액정 분자에 에폭사이드 작용기를 수식하여 수득된 열방성 액정 구조를 갖는 화합물 및 이를 개환 중합하여 얻어지는 폴리에틸렌글리콜 중합체에 관한 것으로서, 보다 구체적으로 박막, 벌크, 섬유 상으로 성형이 용이하고, 열전도도가 높아 방열 고분자로 단독 활용 또는 복합재료의 형태로 사용가능한 폴리에틸렌글리콜 주쇄의 중합체에 관한 것이다.

Description

열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체
본 발명은 열방성 액정 분자에 에폭사이드 작용기를 수식하여 수득된 열방성 액정 구조를 갖는 화합물 및 이를 개환 중합하여 얻어지는 폴리에틸렌글리콜 중합체에 관한 것으로서, 보다 구체적으로 박막, 벌크, 섬유 상으로 성형이 용이하고, 열전도도가 높아 방열 고분자로 단독 활용 또는 복합재료의 형태로 사용가능한 폴리에틸렌글리콜 주쇄의 중합체에 관한 것이다.
액정고분자(Liquid crystalline polymer, LCP)는 용융 또는 용액 상태에서 액정상을 나타내는 고분자로 일반적으로 메소겐 단위(mesogenic unit)를 포함하는 구조를 가지고 있다. 열방성 액정고분자(Thermotropic liquid crystalline polymer, TLCP)의 경우, 온도의 변화에 따른 액정거동이 나타나며 메소겐 단위의 위치, 형태, 구조에 따라 그 특성이 크게 달라진다. 높은 내열성과 내화학성 외에 뛰어난 기계적 물성을 나타내므로 고성능 복합체나 엔지니어링 플라스틱과 같은 분야에 응용이 가능하며 학문적, 산업적으로 많은 연구가 이루어져 왔다.
하지만, 기존에 보고된 열방성 액정고분자의 경우, 높은 용융 온도와 내화학성 때문에 높은 온도 또는 강산 및 유기 용매의 용액 상태에서 합성, 가공하여야 한다는 단점이 존재한다. 대부분의 액정고분자들의 경우 용매를 사용하여 합성하며, 대표적으로 미국 등록특허 제04954606호, 미국 등록특허 제05109100호 및 미국 등록특허 제04912193호에 자세하게 나타나 있는데, 이 경우 액정고분자를 제조한 후 용매를 제거하는 공정을 거쳐야 한다는 단점이 존재함과 동시에 용융상태에서의 가공이 어렵다는 단점이 있다. 중합 및 가공 온도를 낮추기 위해 측쇄(side chain)에 부피가 큰 분자를 배치하거나 주쇄 내 긴 유연쇄를 도입하는 등의 방식을 사용하고 있으며, 이러한 종래 기술로는 Journal of Polymer Science Part A: Polymer Chemistry, Vol. 19, (8), 1901 (1981); Macromolecular Chemistry and Physics, Vol. 192, (2), 201 (1991); Polymer Journal, Vol. 17, (1), 105 (1985); Polymer, Vol. 32, (9), 1703 (1991); Polymer Preprint (American Chemical Society), Vol. 27, (1), 369 (1986) : Polymer Journal, Vol. 17, (1), 277 (1985); Journal of Polymer Science Part A: Polymer Chemistry, Vol. 21, (11), 3313 (1983) 등이 있다. 하지만, 어느 이러한 구조의 중합 및 가공온도에서는 어느 정도 성능 저하가 일어나고 새로운 공정이나 반응물의 투입은 원가 상승을 가져오며, 제조한 액정고분자를 가공하기 위해서 추가 공정을 거쳐야 한다는 한계점이 있다.
따라서, 전술한 문제점을 보완하기 위해 본 발명가는 성형이 용이한 열가소성 액정고분자 개발을 위하여 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체의 개발이 시급하다 인식하여, 본 발명을 완성하였다.
본 발명의 목적은 열방성 액정 분자에 에폭사이드 작용기를 수식하여 수득된 열방성 액정 구조를 갖는 화합물 및 이를 개환 중합하여 얻어지는 폴리에틸렌글리콜 중합체를 제공하는 것이다.
본 발명의 다른 목적은 박막, 벌크, 섬유 상으로 성형이 용이하고, 열전도도가 높아 방열 고분자 및 복합재료로서 사용가능한 폴리에틸렌글리콜 중합체를 제공하는 것이다.
발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 (I)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 제공한다.
[화학식 (I)]
Figure PCTKR2022004891-appb-I000001
[식 중, n은 1 내지 30 범위의 정수임].
본 발명은 하기 화학식 (Ⅱ)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 제공한다.
[화학식 (Ⅱ)]
Figure PCTKR2022004891-appb-I000002
[식 중, n은 1 내지 30 범위의 정수임].
본 발명은 상기 화학식 (I)로 표시되는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
본 발명은 상기 화학식 (Ⅱ)로 표시되는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
또한, 본 발명은 하기 화학식 (Ⅲ)으로 표시되며, 상기 화학식 (I) 또는 화학식 (Ⅱ)로 표시되는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
[화학식 (Ⅲ)]
Figure PCTKR2022004891-appb-I000003
[식 중, X1, X2는 동일하거나 다를 수 있고, 제 1 항에 따른 화합물 또는 제 2 항에 따른 화합물에서 선택됨].
상기 폴리에틸렌글리콜 중합체는 기판, 컴파운드, 접착제, 패드, 히트스프레드 및 히트싱크 등 각종 전자부품류를 주축으로 한 범용물질로 사용할 수 있다.
상기 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체에 언급된 모든 사항은 모순되지 않는 한 동일하게 적용된다.
본 발명에 따라 제조된 신규한 폴리에틸렌글리콜 중합체는 박막, 벌크, 섬유 상으로 성형이 용이하고 열전도도가 향상되어, 다양한 전자부품류에 활용될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따라 합성된 EPCNn (4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile)의 1H-NMR 스펙트럼으로, (a)는 EPCN4, (b)는 EPCN5, (c)는 EPCN6, (d)는 EPCN7, (e)는 EPCN8, 및 (f)는 EPCN9의 스펙트럼이다.
도 2는 상기 EPCNn의 13C-NMR 스펙트럼으로, (a)는 EPCN4, (b)는 EPCN5, (c)는 EPCN6, (d)는 EPCN7, (e)는 EPCN8, 및 (f)는 EPCN9의 스펙트럼이다.
도 3은 본 발명의 다른 실시예에 따라 합성된 P-EPCNn의 1H-NMR 스펙트럼으로, (a)는 P-EPCN4, (b)는 P-EPCN5, (c)는 P-EPCN6, (d)는 P-EPCN7, (e)는 P-EPCN8, 및 (f)는 P-EPCN9의 스펙트럼이다.
도 4는 상기 P-EPCNn의 FT-IR 스펙트럼이다.
도 5는 상기 P-EPCNn의 겔 투과 크로마토그래피(GPC) 분석 결과이다.
도 6은 시차주사열량계(DSC)에 의해 분석된 상 전이도이다.
도 7은 2℃/분의 가열 및 냉각속도로 분석된 상기 EPCNn의 DSC 분석 그래프로, (a)는 EPCN4, (b)는 EPCN5, (c)는 EPCN6, (d)는 EPCN7, (e)는 EPCN8, 및 (f)는 EPCN9의 그래프이다.
도 8은 상기 EPCNn의 편광 광학 현미경 (POM) 이미지이다 (scale bar = 50μm).
도 9는 5℃/분의 가열 및 냉각속도로 분석된 상기 P-EPCNn의 DSC 분석 그래프이다.
도 10은 상기 P-EPCNn의 POM 이미지이다 (scale bar = 50μm).
도 11은 열 전도도 평가를 위해 제조된 P-EPCNn의 벌크 시편이다.
도 12는 실온에서 P-EPCNn의 X-선 회절 분석한(XRD) 그래프이다.
도 13은 B3LYP/6-31G 수준에서 밀도범함수이론(density functional theory, DFT)에 의해 계산된 P-EPCNn 모델 화합물의 최적화된 분자 구조를 나타낸 것이다.
도 14는 본 발명의 다른 실시예에 따라 합성된 OMPBn (4-(oxiran-2-ylmethoxy)phenyl 4-alkoxybenzoate)의 1H-NMR 스펙트럼으로, (a)는 OMPB4, (b)는 OMPB6, (c)는 OMPB8, 및 (d)는 OMPB10의 스펙트럼이다.
도 15는 상기 OMPBn의 13C-NMR 스펙트럼으로, (a)는 OMPB4, (b)는 OMPB6, (c)는 OMPB8, 및 (d)는 OMPB10의 스펙트럼이다.
도 16은 본 발명의 다른 실시예에 따라 합성된 P-OMPBn의 1H-NMR 스펙트럼으로, (a)는 P-OMPB4, (b)는 P-OMPB6, (c)는 P-OMPB8, 및 (d)는 P-OMPB10의 스펙트럼이다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여져 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.
이하, 본 발명을 상세하게 설명하기로 한다.
본 발명은 하기 화학식 (I)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 제공한다.
[화학식 (I)]
Figure PCTKR2022004891-appb-I000004
[식 중, n은 1 내지 30 범위의 정수임].
상기 화학식 (I)의 화합물은 4-하이드록시-4-바이페닐카르보니트릴(4-hydroxy-4-biphenylcarbonitrile)을 출발물질로 하여 디브로모알칸(dibromoalkane)과의 반응을 통해 4-(4-브로모알콕시)-4-바이페닐카르보니트릴 (4-(4-bromoalkoxy)-4-biphenylcarbonitrile, BRCNn)을 합성할 수 있고, 이후 4-(4-브로모알콕시)-4-바이페닐카르보니트릴을 다시 개시물질로 하여 글리시돌(glycidol)과 의 반응을 통해 상기 화합물을 합성할 수 있다.
상기 화합물은 4-(n-(옥시란-2-일메톡시)알킬옥시)-4-바이페닐카르보니트릴 (4-(n-(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile) 일 수 있다.
상기 화학식 (I)의 화합물의 제조는 염기성 조건 하에서, 예컨대 수산화나트륨의 존재 하에서 수행될 수 있다.
상기 화학식 (I)의 화합물의 제조에서 디메틸포름아미드(DMF), N-메틸피릴리돈(NMP), N,N'-디메틸아세트아미드(DMAc), 디메틸설퍼옥사이드(DMSO), 테트라하이드로퓨란(THF), 메타크레졸(m-cresol) 또는 이들의 혼합물 등을 용매로서 사용할 수 있다.
상기 화학식 (I)의 화합물의 제조 반응은 20 내지 45℃ 범위의 온도에서 수행될 수 있고, 바람직하게는 30 내지 45℃ 범위의 온도에서 수행될 수 있다.
상기 화학식 (I)의 화합물의 제조 시간은 36시간 내지 48시간 범위일 수 있고, 바람직하게는 36시간 내지 42시간 범위일 수 있다.
본 발명은 하기 화학식 (Ⅱ)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 제공한다.
[화학식 (Ⅱ)]
Figure PCTKR2022004891-appb-I000005
[식 중, n은 1 내지 30 범위의 정수임].
상기 화학식 (Ⅱ)의 화합물은 4-(알콕시)벤조산(4-(alkoxy)benzoic acid)을 출발물질로 하여, 하이드로퀴논(hydroquinone)과의 반응을 통해 4-하이드록시페닐 4-알콕시벤조에이트 (4-hydroxyphenyl 4-alkoxybenzoate, HPBn)를 합성하고, 이후 4-하이드록시페닐 4-알콕시벤조에이트를 개시물질로 하여 에피클로로히드린과의 반응을 통해 상기 화합물을 합성할 수 있다.
상기 화합물은 4-(옥시란-2-일메톡시)페닐 4-부톡시벤조에이트 (4-(oxiran-2-ylmethoxy)phenyl 4-butoxybenzoate) 일 수 있다.
상기 화학식 (Ⅱ)의 화합물의 제조는 염기성 조건 하에서, 예컨대 수산화나트륨의 존재 하에서 수행될 수 있다.
상기 화학식 (Ⅱ)의 화합물의 제조 반응은 65 내지 95℃ 범위의 온도에서 수행될 수 있고, 바람직하게는 70 내지 85℃ 범위의 온도에서 수행될 수 있다.
상기 화학식 (Ⅱ)의 화합물의 제조 시간은 0.5시간 내지 4시간 범위일 수 있고, 바람직하게는 0.5시간 내지 2시간 범위일 수 있다.
본 발명은 상기 화학식 (I)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
본 발명은 상기 화학식 (Ⅱ)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
또한, 본 발명은 하기 화학식 (Ⅲ)로 표시되며, 상기 화학식 (I) 또는 (Ⅱ)에 따라 열방성 액정 구조를 갖는 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체를 제공한다.
상기 개환 중합은 음이온성 개환 중합, 양이온성 개환 중합 및 라디칼 개환 중합 중 선택된 어느 하나일 수 있지만, 이에 제한되지는 않는다.
[화학식 (Ⅲ)]
Figure PCTKR2022004891-appb-I000006
[식 중, X1, X2는 동일하거나 다를 수 있고, 제 1 항에 따른 화합물 또는 제 2 항에 따른 화합물에서 선택됨].
상기 화학식 (Ⅲ)은 단독 중합체 또는 공중합체일 수 있다.
상기 개환 중합은 개시제의 존재 하에서 수행될 수 있으며, 상기 개시제는 포타슘 tert-부톡사이드, 리튬 tert-부톡사이드, 소듐 tert-부톡사이드, 포타슘 에톡사이드, 알루미늄 부톡사이드, 알루미늄 이소프로폭사이드와 같은 금속 알콕사이드일 수 있으며, 당업자에게 통상 알려진 개시제가 사용될 수 있다.
상기 개환 중합은 촉매의 존재 하에서 수행될 수 있으며, 상기 촉매는 18-크라운-6 에테르, 15-크라운-5 에테르, 디벤조-18-크라운-6, 디시클로헥실-18-크라운-6 및 테트라메틸 암모늄 클로라이드(TMAC)과 같은 촉매일 수 있으며, 당업자에게 통상 알려진 촉매가 사용될 수 있다.
상기 개환 중합은 용매의 존재 하에서 수행될 수 있으며, 상기 용매는 톨루엔, 시클로헥산, 헥산, 헵탄, 자일렌, 에틸벤젠과 같은 용매일 수 있으며, 당업자에게 통상 알려진 용매가 사용될 수 있다.
상기 개환 중합에서, 전체 단량체 100 중량부에 대하여, 개시제는 1 내지 45 중량부로 포함될 수 있고, 바람직하게는 5 내지 45 중량부로 포함될 수 있고, 보다 바람직하게는 10 내지 45 중량부로 포함될 수 있다.
상기 개시제가 1 중량부 미만으로 첨가되는 경우에는 미중합 문제가 있을 수 있고, 상기 개시제가 45 중량부 초과로 첨가되는 경우에는 저분자량 고분자의 생성 문제가 있을 수 있다.
상기 개환 중합에서, 전체 단량체 100 중량부에 대하여, 촉매는 0.1 내지 15 중량부로 포함될 수 있고, 바람직하게는 0.5 내지 15 중량부로 포함될 수 있고, 보다 바람직하게는 1 내지 15 중량부로 포함될 수 있다.
상기 촉매가 0.1 중량부 미만으로 첨가되는 경우에는 미중합 또는 반응 속도 저하 문제가 일어날 수 있고, 상기 촉매가 15 중량부 초과로 첨가되는 경우에는 저분자량 고분자 생성 문제가 있을 수 있다.
상기 개환 중합은 50 내지 70℃ 범위의 온도에서 수행될 수 있고, 바람직하게는 55 내지 65℃ 범위의 온도에서 수행될 수 있다.
상기 개환 중합은 72시간 내지 84시간 동안 수행될 수 있고, 바람직하게는 72시간 내지 80시간 동안 수행될 수 있다.
상기 개환 중합은 비반응성 기체 조건으로 치환하여 수행될 수 있으며, 상기 비반응성 기체는 헬륨, 아르곤 또는 질소일 수 있으며, 바람직하게는 아르곤 또는 질소일 수 있고, 가장 바람직하게는 아르곤일 수 있다.
상기 개환 중합 후, 중합 용액을 알코올에 침전시킬 수 있다.
상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 펜탄올, 헥산올 및 헵탄올과 같은 알코올일 수 있으며, 당업자에게 통상 알려진 알코올이 사용될 수 있다.
상기 침전은 2회 내지 5회 수행될 수 있고, 바람직하게는 2회 내지 4회 수행될 수 있다.
상기 화학식 (Ⅲ)의 폴리에틸렌글리콜 중합체는 열 전도도가 0.30 (W/m·K) 이상일 수 있고, 예를 들어 0.30 내지 0.45 (W/m·K) 범위일 수 있다.
상기 화학식 (Ⅲ)의 폴리에틸렌글리콜 중합체는 유리전이온도가 10℃ 이상일 수 있고, 예를 들어 10 내지 60℃ 범위의 유리전이온도를 가질 수 있고, 바람직하게는 10 내지 55℃ 범위의 유리전이온도를 가질 수 있다.
상기 화학식 (Ⅲ)의 폴리에틸렌글리콜 중합체는 용융점이 85℃ 이상일 수 있고, 예를 들어 85 내지 200℃ 범위의 용융점을 가질 수 있고, 바람직하게는 88 내지 200℃ 범위의 용융점을 가질 수 있다.
본 발명의 폴리에틸렌글리콜 중합체는 전자산업계에서, 예컨대 기판, 컴파운드, 접착제, 패드, 히트스프레드 및 히트싱크로 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<사용물질 및 분석방법>
1. 사용물질
4-하이드록시-4-바이페닐카르보니트릴(4-hydroxy-4-biphenylcarbonitrile) 및 6 종류의 디브로모알칸(dibromoalkanes)은 TCI (Japan)로 부터 구입하였다. 탄산칼륨(potassium carbonate), 무수 톨루엔(anhydrous toluene), 18-크라운-6(18-crown-6), 및 포타슘-터트-부톡사이드(potassium tert-butoxide)는 Alfa Aesar (USA)로 부터 입수하였다. 황산마그네슘 및 수산화나트륨과 같은 일반 화학물질 및 일반 유기용제는 Duksan 및 Daejung Chemicals (Korea)로부터 구입하였다. 무수 톨루엔, 무수 아세톤(anhydrous acetone), 무수 DMF, 및 실리카 겔은 Wako Pure Chemical (Japan)에서 구입하였다. 모든 화학물질은 추가 정제없이 사용하였으며, 모든 반응은 아르곤(Ar) 분위기에서 진행되었다.
2. 분석방법
합성된 물질의 화학 구조는 경북대학교 기기분석센터에서 핵 자기 공명 분광기 (NMR, AVANCE III 500, Bruker)로 CDCl3 또는 DMSO-d6를 용매로 하여 1H NMR (500 MHz) 및 13C NMR (125 MHz)로 결정하였으며, 테트라메틸실란(tetramethylsilane, TMS)을 내부 표준물질로 사용하였다.
합성된 고분자의 기능기를 조사하기 위하여 푸리에-변환 적외선 분광법 (FT-IR, FT/IR-4100, Jasco)을 수행하였고, 고해상도 질량 스펙트럼 (HRMS)은 한국기초과학연구원 대구센터에서 입수하였다.
상전이 거동을 포함한 열적 특성은 N2 분위기 하에서 시차 주사 열량계 (DSC, Q2000, TA Instruments and DSC4000, PerkinElmer)로 조사되었다. 약 5.0 mg의 샘플이 DSC 측정에 사용되었으며, 빈 알루미늄 팬이 기준으로 사용되었다. DSC 측정의 가열 및 냉각 속도는 분당 2℃ 또는 5℃로, 적어도 2회의 반복 사이클 측정을 통해 임계적 차이가 없음을 확인하였다.
중간상 특성(mesomorphic property)은 Linkam stage (LTS420)를 가진 편광 광학 현미경 (POM, BX53M, Olympus)을 사용하여 분석되었다. POM 관찰을 위해, 20μm 두께의 LC(liquid crystals) 셀을 사용하였으며, 하기와 같이 제작하였다:
유리판 (2.5 × 2.5 cm2) 및 세척된 유리판 (7.0 × 5.0 cm2)을 물, 증류수, 및 2-프로판올에 1.0 중량%의 중성 세제를 사용하여 연속 3단계로 초음파 세척하였다. 상기 판 표면을 120℃에서 1시간 동안 건조시킨 후, 스페이서(spacer) 및 에폭시 접착제로 한 쌍의 유리판을 조립하여 20μm의 셀 간격을 가지는 LC 셀을 구성하였다. LC 물질은 LC 상태에서 모세관력에 의해 셀에 주입되었다.
중합체의 분자량은 50 mM LiBr 용리액과 디메틸포름아미드(DMF)를 사용한 겔 투과 크로마토그래피 (GPC, AS-4050, Jasco)에 의해 결정되었고, 폴리스티렌 (PS)으로 보정하였다.
열 전도도(thermal conductivity, TC)는 원형 시편 (직경: 10 mm, 두께: 약 3 mm)으로 TC 측정 시스템 (TPS 3500S, Hot Disk)을 통해 기록되었다.
벌크 상태의 중합체의 미세구조는 X-선 회절계 (XRD, Empyrean, Malvern Panalytical)를 사용하여 조사되었다.
<실시예 1> EPCNn : 4-(n-(옥시란-2-일메톡시)알킬옥시)-4-바이페닐카르보니트릴 (4-( n -(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile) 모노머 합성
하기 반응식 1은 측쇄에 열방성 액정 구조인 시아노바이페닐(cyanobiphenyl)을 가지는 에폭사이드 단량체 EPCNn의 합성 과정을 나타낸 것으로, 4-하이드록시-4-바이페닐카르보니트릴(4-hydroxy-4-biphenylcarbonitrile)을 출발물질로 하여, 디브로모알칸(dibromoalkane)과의 반응을 통해 BRCNn을 합성하였고, 이후 글리시돌(glycidol)과의 반응을 통해 EPCNn을 얻었다.
<반응식 1>
Figure PCTKR2022004891-appb-I000007
① BRCNn : 4-(4-브로모알콕시)-4-바이페닐카르보니트릴 (4-(4-bromoalkoxy)-4-biphenylcarbonitrile)의 합성
A) n=4 (BRCN4)
3구 라운드 플라스크에 탄산칼륨 (3.19 g, 23.1 mmol)과 4-하이드록시-4-바이페닐카르보니트릴 (3.00 g, 15.4 mmol)을 넣고, 아르곤 분위기로 치환한 후, 아세톤 45 ml을 추가하여 용질을 용해시켰다. 이후 1,4-디브로모부탄(1,4-dibromobutane) (2.80 ml, 23.1 mmol)을 플라스크에 투입하고 60℃에서 24시간 교반하였다. 얻어진 물질은 디에틸에테르를 이용하여 추출하였고, 유기상은 황산마그네슘으로 건조한 후 헥산:에틸 아세테이트 부피비 8:1 용액을 전개액으로 하는 실리카 컬럼 크로마토그래피를 통해 정제되었다. 수율은 57% 였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 4.07 (t, J = 6.0 Hz, 2H), 3.52 (t, J = 6.5 Hz, 2H), 2.13-2.08 (m, 2H), 2.01-1.96 (m, 2H) ppm.
B) n=5 (BRCN5)
1,5-디브로모펜탄(1,5-dibromopentane)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 42%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 4.04 (t, J = 6.5 Hz, 2H), 3.47 (t, J = 7.0 Hz, 2H), 1.99-1.93 (m, 2H), 1.88-1.83 (m, 2H), 1.69-1.64 (m, 2H) ppm.
C) n=6 (BRCN6)
1,6-디브로모헥산(1,6-dibromohexane)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 53%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 9.0 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 4.03 (t, J = 6.0 Hz, 2H), 3.45 (t, J = 7.0 Hz, 2H), 1.93-1.90 (m, 2H), 1.85-1.82 (m, 2H), 1.53-1.52 (m, 4H) ppm.
D) n=7 (BRCN7)
1,7-디브로모헵탄(1,7-dibromoheptane)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 24%였다.
1H NMR (500 MHz, CDCl3): δ = 7.63 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 3.95 (t, J = 6.5 Hz, 2H), 3.37 (t, J = 6.5 Hz, 2H), 1.91-1.79 (m, 4H), 1.51-1.40 (m, 6H) ppm.
E) n=8 (BRCN8)
1,8-디브로모옥탄(1,8-dibromooctane)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 34%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 9.0 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 4.02 (t, J = 6.5 Hz, 2H), 3.43 (t, J = 6.5 Hz, 2H), 1.90-1.79 (m, 4H), 1.53-1.34 (m, 8H) ppm.
F) n=9 (BRCN9)
1,9-디브로모노난(1,9-dibromononane)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 51%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 4.02 (t, J = 6.5 Hz, 2H), 3.43 (t, J = 6.5 Hz, 2H), 1.89-1.78 (m, 4H), 1.51-1.31 (m, 10H) ppm.
② EPCNn (4-( n -(oxiran-2-ylmethoxy)alkyloxy)-4-biphenylcarbonitrile)의 합성
G) n=4 (EPCN4)
상기 BRCN4 (1.94 g, 5.87 mmol)와 수산화나트륨 (0.352 g, 8.81 mmol)을 3구 라운드 플라스크에 넣고 아르곤 분위기로 치환한 후, 글리시돌 (1.00 ml, 11.6 mmol)과 다이메틸포름아마이드 35.0 ml을 추가하였다. 30℃에서 3일간 반응을 진행하였고, 얻어진 물질은 에틸 아세테이트를 이용하여 추출하여 황산마그네슘으로 건조한 후 헥산:에틸아세테이트 부피비 4:1 용액을 전개액으로 하는 실리카 컬럼 크로마토그래피를 통해 정제되었다. 수율은 51%였다. 물질의 확인은 1H NMR, 13C NMR, 고분해능 질량 분석을 통해 이뤄졌으며, 분석 결과는 다음과 같다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 4.04 (t, J = 6.5 Hz, 2H), 3.77 (dd, J = 11.5, 3 Hz, 1H), 3.60 (m, 2H), 3.39 (dd, J = 11.5, 6 Hz, 1H), 3.16 (m, 1H), 2.80 (dd, J = 5, 4.5 Hz, 1H), 2.61 (dd, J = 5, 3 Hz, 1H), 1.90 (m, 2H), 1.81 (m, 2H) ppm. 13C NMR (125 MHz, CDCl3):δ = 159.7, 145.3, 132.6, 131.4, 128.3, 127.1, 119.1, 115.1, 110.1, 71.5, 71.1, 67.8, 50.9, 44.2, 26.3, 26.0 ppm. HRMS (+EI): calcd for [C20H21NO3]+: m/z 323.1521; found: m/z 323.1522 (도 1(a) 및 도 2(a)).
H) n=5 (EPCN5)
상기 BRCN5를 사용한 것을 제외하고, G)와 동일한 절차로 합성되었다. 수율은 35%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 9 Hz, 2H), 6.99 (d, J = 9 Hz, 2H), 4.02 (t, J = 6 Hz, 2H), 3.77 (dd, J = 11.5, 3 Hz, 1H), 3.55 (m, 2H), 3.40 (dd, J = 11.5, 6 Hz, 1H), 3.15 (m, 1H), 2.80 (dd, J = 5, 4 Hz, 1H), 2.62 (dd, J = 5, 2.5 Hz, 1H), 1.84 (m, 2H), 1.68 (m, 2H), 1.56 (m, 2H) ppm. 13C NMR (125 MHz, CDCl3): δ = 159.7, 145.3, 132.6, 131.3, 128.3, 127.1, 119.1, 115.1, 110.0, 71.6, 71.4, 68.0, 50.9, 44.3, 29.5, 29.0, 22.7 ppm. HRMS (+EI): calcd for [C21H23NO3]+: m/z 337.1678; found: m/z 337.1680 (도 1(b) 및 도 2(b)).
I) n=6 (EPCN6)
상기 BRCN6를 사용한 것을 제외하고, G)와 동일한 절차로 합성되었다. 수율은 47%였다.
1H NMR (500 MHz, CDCl3):δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 9 Hz, 2H), 4.01 (t, J = 6.5 Hz, 2H), 3.74 (dd, J = 11.5, 3 Hz, 1H), 3.52 (m, 2H), 3.38 (dd, J = 11.5, 6 Hz, 1H), 3.15 (m, 1H), 2.80 (dd, J = 5, 4.5 Hz, 1H), 2.61 (dd, J = 5, 3 Hz, 1H), 1.82 (m, 2H), 1.64 (m, 2H), 1.50 (m, 4H) ppm. 13C NMR (125 MHz, CDCl3):δ = 159.8, 145.3, 132.6, 131.3, 128.3, 127.1, 119.1, 115.1, 110.0, 71.5, 71.5, 68.0, 50.9, 44.3, 29.6, 29.7, 25.9 ppm. HRMS (+EI): calcd for [C22H25NO3]+: m/z 351.1834; found: m/z 351.1832 (도 1(c) 및 도 2(c)).
J) n=7 (EPCN7)
상기 BRCN7을 사용한 것을 제외하고, G)와 동일한 절차로 합성되었다. 수율은 33%였다.
1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 9 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 9 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 4.00 (t, J = 6.5 Hz, 2H), 3.73 (dd, J =11.5, 3 Hz, 1H), 3.51 (m, 2H), 3.39 (dd, J =11.5, 5.5 Hz, 1H), 3.14 (m, 1H), 2.80 (dd, J =5, 4 Hz, 1H), 2.61 (dd, J =5, 2.5 Hz, 1H), 1.81 (m, 2H), 1.61 (m, 2H), 1.50 (m, 2H), 1.39 (m, 4H) ppm. 13C NMR (125 MHz, CDCl3): δ= 159.8, 145.3, 132.6, 131.3, 128.3, 127.1, 119.1, 115.1, 110.0, 71.6, 71.5, 68.1, 50.9, 44.3, 29.6, 29.2, 29.1, 26.0, 25.9 ppm. HRMS (+EI): calcd for [C23H27NO3]+: m/z 365.1991; found: m/z 365.1992 (도 1(d) 및 도 2(d)).
K) n=8 (EPCN8)
상기 BRCN8을 사용한 것을 제외하고, G)와 동일한 절차로 합성되었다. 수율은 44%였다.
1H NMR (500 MHz, CDCl3):δ = 7.70 (d, J = 8 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 9 Hz, 2H), 4.00 (t, J = 6.5 Hz, 2H), 3.73 (dd, J = 11.5, 3 Hz, 1H), 3.50 (m, 2H), 3.39 (dd, J = 11.5, 5.5 Hz, 1H), 3.15 (m, 1H), 2.80 (dd, J = 5, 4.5 Hz, 1H), 2.61 (dd, J = 5, 3 Hz, 1H), 1.80 (m, 2H), 1.60 (m, 2H), 1.47 (m, 2H), 1.36 (m, 6H) ppm. 13C NMR (125 MHz, CDCl3):δ= 159.8, 145.3, 132.6, 131.3, 128.3, 127.1, 119.1, 115.1, 110.0, 71.7, 71.5, 68.1, 50.9, 44.3, 29.7, 29.4, 29.3, 29.2, 26.0, 25.9 ppm. HRMS (+EI): calcd for [C24H29NO3]+: m/z 379.2147; found: m/z 379.2145 (도 1(e) 및 도 2(e)).
L) n=9 (EPCN9)
상기 BRCN9를 사용한 것을 제외하고, G)와 동일한 절차로 합성되었다. 수율은 38%였다.
1H NMR (500 MHz, CDCl3):δ = 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 9 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 4.00 (t, J = 6.5 Hz, 2H), 3.72 (dd, J = 11.5, 3 Hz, 1H), 3.50 (m, 2H), 3.37 (dd, J = 11.5, 6 Hz, 1H), 3.15 (m, 1H), 2.79 (dd, J = 5, 4 Hz, 1H), 2.61 (dd, J = 5, 2.5 Hz, 1H), 1.80 (m, 2H), 1.59 (m, 2H), 1.47 (m, 2H), 1.33 (m, 8H) ppm. 13C NMR (125 MHz, CDCl3):δ = 159.8, 145.3, 132.6, 131.3, 128.3, 127.1, 119.1, 115.1, 110.0, 71.7, 71.5, 68.2, 50.9, 44.3, 29.7, 29.5, 29.4, 29.3, 29.2, 26.1, 26.0 ppm. HRMS (+EI): calcd for [C25H31NO3]+: m/z 393.2304; found: m/z 393.2304 (도 1(f) 및 도 2(f)).
<실시예 2> EPCNn 폴리머 (P-EPCNn) 의 합성
하기 반응식 2는 측쇄에 액정 구조인 시아노바이페닐을 가지는 폴리에틸렌글리콜 유도체인 P-EPCNn의 합성 과정을 나타낸 것으로, 하기 반응식 2에 나타낸 바와 같이 폴리에틸렌글리콜 주쇄를 형성하기 위한 에폭사이드 단량체 EPCNn의 음이온성 개환 중합을 통해 합성되었다.
<반응식 2>
Figure PCTKR2022004891-appb-I000008
A) n=4 (P-EPCN4)
EPCN4 (1.34 mmol), 포타슘 tert-부톡사이드(potassium tert-butoxide) (50.5 mg, 500 μmol), 18-크라운-6(18-crown-6) (28.0 mg, 100 μmol)을 Schlenk 튜브에 넣은 후 아르곤 분위기로 치환한 후, 톨루엔 3 ml을 추가하였다. 중합 용액을 60℃에서 3일간 교반한 후 메탄올 50 ml에 부어 침전시킨 후, 침전물을 회수하였다. 침전 과정은 2번 반복되었고, 옅은 노란색의 고체를 61%의 수율로 수득하였다.
1H NMR (500 MHz, CDCl3): δ = 7.63-7.45 (m, 6H), 6.93-6.92 (m, 2H), 3.98-3.95 (m, 2H), 3.76-3.39 (m, 7H), 1.83-1.40 (m, 4H), 1.09 (s, terminal-9H) ppm. FT-IR (ATR): 3365, 3184, 2940, 2867, 2225, 1651, 1603, 1495, 1250, 1110, 822, 770 cm-1 (도 3(a)).
B) n=5 (P-EPCN5)
상기 EPCN5를 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 72%였다.
1H NMR (500 MHz, CDCl3): δ = 7.67-7.66 (m, 2H), 7.62-7.61 (m, 2H), 7.50-7.49 (m, 2H), 6.96-6.95 (m, 2H), 3.98-3.97 (m, 2H), 3.80-3.41 (m, 7H), 1.80-1.42 (m, 6H), 1.11 (s, terminal-9H) ppm. FT-IR (ATR): 3360, 3181, 2937, 2865, 2224, 1657, 1602, 1494, 1248, 1110, 821, 771 cm-1 (도 3(b)).
C) n=6 (P-EPCN6)
상기 EPCN6을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 71%였다.
1H NMR (500 MHz, CDCl3): δ = 7.66 (s, 2H), 7.62-7.61 (m, 2H), 7.50-7.49 (m, 2H), 6.96-6.95 (m, 2H), 3.98-3.97 (m, 2H), 3.77-3.41 (m, 7H), 1.80-1.42 (m, 8H), 1.11 (s, terminal-9H) ppm. FT-IR (ATR): 3362, 3176, 2935, 2863, 2224, 1656, 1603, 1495, 1250, 1111, 822, 770 cm-1 (도 3(c)).
D) n=7 (P-EPCN7)
상기 EPCN7을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 71%였다.
1H NMR (500 MHz, CDCl3): δ = 7.66 (s, 2H), 7.62 (s, 2H), 7.50 (s, 2H), 6.97 (s, 2H), 3.98-3.97 (m, 2H), 3.78-3.43 (m, 7H), 1.79-1.37 (m, 10H), 1.11 (s, terminal-9H) ppm. FT-IR (ATR): 3675, 3364, 3184, 2989, 2990, 2225, 1653, 1603, 1495, 1393, 1249, 1065, 822, 771 cm-1 (도 3(d)).
E) n=8 (P-EPCN8)
상기 EPCN8을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 71%였다.
1H NMR (500 MHz, CDCl3): δ = 7.68-7.67 (m, 2H), 7.63-7.62 (m, 2H), 7.52-7.50 (m, 2H), 6.97-6.96 (m, 2H), 3.98-3.96 (m, 2H), 3.74-3.42 (m, 7H), 1.79-1.34 (m, 12H), 1.11 (s, terminal-9H) ppm. FT-IR (ATR): 3675, 3364, 3185, 2930, 2859, 2224, 1652, 1603, 1495, 1250, 1111, 1077, 822, 770 cm-1 (도 3(e)).
F) n=9 (P-EPCN9)
상기 EPCN9를 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 71%였다.
1H NMR (500 MHz, CDCl3): δ = 7.68-7.67 (m, 2H), 7.65-7.62 (m, 2H), 7.53-7.51 (m, 2H), 6.98-6.97 (m, 2H), 4.00-3.94 (m, 2H), 3.73-3.41 (m, 7H), 1.79-1.31 (m, 14H), 1.11 (s, terminal-9H) ppm. FT-IR (ATR): 3675, 3380, 3192, 2931, 2854, 2225, 1650, 1603, 1495, 1394, 1251, 1110, 1077, 823, 770 cm-1 (도 3(f)).
상기에 따라 수득된 P-EPCNn의 FT-IR (Fourier transform infrared) 스펙트럼인 도 4를 참조하면, 폴리에틸렌글리콜(PEG) 골격 중합체가 남은 에폭사이드 모이어티없이 합성되었음을 확인할 수 있다.
하기 표 1은 상기에 따라 수득된 P-EPCNn의 분자량을 나타낸 것이고 (도 5), 하기 표 2는 P-EPCNn의 물성을 나타낸 것이다.
Figure PCTKR2022004891-appb-T000001
Figure PCTKR2022004891-appb-T000002
상기에 따라 합성된 물질의 중간상 및 상전이 거동을 시차주사열량계(DSC) 및 편광광학현미경(POM)을 통해 분석한 결과, 도 6 내지 도 10에 나타난 바와 같이, POM에서 관찰된 상전이 거동이 DSC 결과와 동일한 경향을 보임을 확인할 수 있다.
단량체 상태에서는 대표적인 열방성(thermotropic)의 액정인 시아노바이페닐(cyanobiphenyl, CB) 구조가 투명한 액정상을 형성하나, 알킬 연결 길이에 따라 약간의 다양화가 관찰되었다. 구체적으로 도 7을 참조하면, EPCN5, EPCN6, 및 EPCN8은 거울상 이방성 중간상을 보인 반면, EPCN4, EPCN7, 및 EPCN9는 냉각 동안 단방성 LC를 나타냈다. EPCN5는 실온 이하(below) 비교적 넓은 범위에서 LC 상을 나타내는 반면, EPCN7은 실온 이상(above) 상당히 좁은 영역에서 중간상을 나타내었다. 게다가, POM 관찰에서 모든 단량체의 LC 상은 투명한 네마틱(nematic) 상임을 확인하였다. 전반적으로, EPCN 시리즈는 실온보다 약간 높은, 약 40℃에서 15℃의 범위의 중간상을 갖는 열방성 LC 였다.
도 9를 참조하면, P-EPCNn은 고분자 상태에서 EPCNn과 독립적인 상전이 거동을 보임을 확인할 수 있다. PEG 주쇄 중합체가 단량체의 구조를 유지하면서 형성되었기 때문에 중합체의 구조는 어느 정도 경향이 있을 것으로 예상하였으나, 결과는 이를 나타내지 않았다.
P-EPCN4를 제외한 유리전이온도(Tg)는 실온에서 약간 낮은 15℃와 20℃ 사이에서 관찰된 반면, P-EPCN4의 Tg는 실온에서 약간 높은 32.6℃에서 관찰되었다.
용융온도(Tm)의 경우, 홀수 개의 사슬 스페이서를 갖는 P-EPCN5, P-EPCN7, 및 P-EPCN9의 흡열 피크가 100℃ 아래에서 관찰된 반면, 짝수 개의 사슬 스페이서를 갖는 P-EPCN4, P-EPCN6, 및 P-EPCN8의 흡열 피크는 100℃ 이상에서 관찰되었다.
유리전이 거동과 달리, 용융 거동에서 홀수-짝수 효과와 관련된 어떤 경향성이 관찰되었는데, 이는 알킬 스페이서 결정 구조의 형성과 관련이 있는 것으로 생각된다.
상기 표 1 및 2에 나타난 바와 같이, P-EPCNn은 알킬 스페이서에 따라 뚜렷한 홀수-짝수 효과를 보였다. 이러한 결과는 측쇄의 평균 형태 변화 및 스페이서의 당량 변화에 대한 메소겐기(mesogenic group)의 상대적 방향의 영향으로 생각된다. 홀수 부재의 경우 메소겐 단위는 골격에 직교하는 반면, 짝수의 경우 메소겐 단위는 골격에 대해 특정 각도에 위치하는 것으로 제한되었다. 게다가, 사슬 길이의 영향이 홀수 부재에서는 현저하지만, 짝수 부재에서는 그렇지 않음을 확인할 수 있다. 이러한 결과는 대칭 효과에 의해 제한되는 짝수 링커가 사슬 길이보다 각도 제한이 더 큼을 암시한다.
전반적으로, P-EPCN4의 상 전이 온도는 다른 고분자에 비해 약간 높았고, 다른 고분자의 거동은 유사하였다. 이는 분자량 및 중합도가 유사하게 조절되어 나타난 결과로 생각된다. P-EPCNn은 주쇄형이 아닌 측쇄 액정고분자(side chain LCP, SCLCP) 였기 때문에 상호작용이 가능한 링커 길이가 어느 정도 확보되었을 때 유사한 상전이 거동이 관찰된 것으로 추정된다. 특히, Tm 이상의 온도에서는 고 점도의 반투명 액상이 얻어지고, Tm 이하에서는 불투명한 고상이 유지되었다.
열 전도도(TC) 평가를 위해, 용융 공정을 통해 P-EPCNn 벌크 시편을 제조하였다. P-EPCNn은 각각 폴리머의 Tm 이상의 온도에서 용융되어 1 cm 직경의 원형 칩으로 가공되었다. 두께는 샘플의 양에 따라 다양하나, 약 3 mm 정도로 고정되었다 (도 11). 중합 후 샘플 색은 완전히 흰색이었으나, 가공 후 옅은 노란색으로 변했는데, 이는 방향족 성분의 상호작용 때문일 수 있다. TC 값은 상기 표 2를 통해 확인할 수 있다.
액정고분자는 특정 방향에서 그들 분자 배열로 인해 이방성 열 전도도 특성을 나타낸다. 특히, 이 분자 배향은 특정 방향으로 균일한 배열을 통해 포논 산란(phonon scattering)을 감소시켜 열 전도 특성을 개선시키고, 차원에 따라 다른 포논 경로를 유도한다. 그러나, 본 실험에서는 P-EPCNn이 벌크 재료 준비 과정에서 특별한 배열 과정을 거치지 않았기 때문에, 차원에 따른 이방성을 나타내지는 않았다. 미시적 규모에서는 이방성을 나타내나, 거시적 수준에서는 등방성을 나타낼 것으로 예상된다. 그럼에도 불구하고, P-EPCN4를 제외한 모든 P-EPCNn는 0.42-0.46 W m-1K-1 의 상당히 높은 TC를 나타내었다. P-EPCN4는 0.32 W m-1K-1 의 TC를 나타내었고, 이는 PEG 값을 고려할 때 역시 높은 값이다. 주쇄가 P-EPCNn과 유사한 PEG에서 분자량에 따라 약간의 변화가 관찰되었지만, TC는 약 0.2에서 0.3 W m-1K-1 이었다. 따라서, 펜던트 사슬에서 시아노바이페닐 메소겐의 상호 작용으로 인해 P-EPCNn는 2배 높은 TC를 가짐이 명백하였다.
분자 상호작용을 확인하기 위해, X-선 회절(XRD) 측정을 통해 벌크 시편의 결정 구조를 분석한 결과, 도 12에 나타난 바와 같이, 회절 곡선에서 2θ가 10°미만인 저각 영역의 피크 (옅은 노란색으로 표시), 20°부근의 피크 (옅은 파란색으로 표시) 및 25°이상의 피크 (옅은 녹색으로 표시)의 3가지 유형의 특정 피크가 관찰되었다. 분자량에 따른 차이는 있으나, 고 결정도의 반 결정성 고분자로서 순수 선형 PEG는 20°전 후에서의 뚜렷한 두 피크 및 25°이상에서의 여러 피크를 보여주며, P-EPCNn이 유사한 골격 구조의 SCLCP 임을 시사하였다. P-EPCN6 내지 P-EPCN8의 경우, 2θ = 20°영역 근처에서 PEG 골격으로부터 유래된 피크가 명확하게 식별되었으며, 나머지는 모호하지만 유사한 모양을 나타내었다.
그러나, 피크 선명도(sharpness)는 랜덤 LC 배열에 따른 메소겐의 면간 거리를 나타내는 것으로 가정된 PEG 샘플에 대해 다르게 나타났다. 이러한 넓은 피크는 전형적인 메소겐 간 거리에 해당하는 대략 4-5 Å 였다. 특히, 메소겐 자가-조립의 명백한 증거는 10°미만의 저각 영역에서 관찰되었다. 사슬 스페이서의 길이에 따라, 약 4°및 7-8°의 피크에서 약간의 차이는 있었다. 약 4°에서의 피크는 20-25 Å에 해당하고, 7-8°에서의 피크는 11-13 Å에 해당하여, 상대적으로 장거리 규칙성을 나타낸다.
P-EPCN5 내지 P-EPCN9는 장거리 상호작용이 관찰되었는데, 실온에서 LC 상을 나타내는 P-EPCN4에서는 약한 상호작용이 관찰되었다. 그 결과, P-EPCN4의 배열 품질이 상호작용에 의해 저하되었고, 다른 샘플보다 열 전도도가 더 낮았다. 또한, P-EPCNn의 LC 상은 광학적 관찰을 통해 모든 P-EPCNn이 네마틱 상을 가지고 있음을 확인하였으나, 구조적 분석을 통해 P-EPCN5 내지 P-EPCN9는 스메틱 상(smectic phase)은 아니었지만 상온에서 상대적으로 강한 질서를 가짐을 유추할 수 있다.
또한, XRD 결과는 P-EPCN5 내지 P-EPCN9가 유사한 분자 배열 수준을 보였고, 그들이 TC에서도 유사한 경향을 보임을 확인하였다. 한편, XRD에서 분자 배열 수준의 차이를 나타내는 P-EPCN4는 TC에서 큰 차이를 나타내었다. 이러한 결과는 폴리머 네트워크에서 분자 배열 수준이 TC 값에 큰 영향을 미침을 보여준다.
B3LYP/6-31G 수준에서 밀도범함수이론(density functional theory, DFT)에 의해 계산된 P-EPCNn 모델 화합물의 최적화된 분자 구조는 도 13에 나타난 바와 같이, P-EPCNn의 CB 분자의 장축 길이가 7-8°영역에서 보이는 피크에 해당하는 약 11 Å로 나타났다. 또한, 측쇄 전체 부분의 장축 길이는 동일한 DFT 계산 결과로부터 P-EPCN4에서 17 Å 및 P-EPCN9에서 23 Å로 획득되어, 펜던트 그룹의 규칙성은 4°근처에서 확인되었다. 피크가 선명하지 않아 P-EPCNn이 높은 결정도를 갖는 것으로 보긴 어려우나, 이들이 고분자 물질임을 감안할 때, P-EPCNn은 메소겐 자가 조립으로부터 유래된 충분히 높은 수준의 결정 구조를 가진다.
더욱이, 다른 P-EPCNn과는 달리, P-EPCN4에서 낮은 TC가 관찰되는 이유는 결정 구조와 TC 사이의 상관관계로부터 확인할 수 있다. 다른 P-EPCNn과는 달리, P-EPCN4의 저각 영역에서는 피크가 거의 관찰되지 않았고, 이는 메소겐 자가 조립이 충분히 발생하지 않음을 나타내며, 이것이 P-EPCN4의 낮은 TC의 이유이다.
또한, 주쇄로부터 4개의 탄소 알킬 결합을 통해 위치하는 P-EPCN4의 메소겐은 다른 긴 스페이서 P-EPCNn과 달리, 상호작용을 위한 충분한 거리를 확보하기 어렵게 하였다. 게다가, 실온 유리질 상으로 인해 P-EPCN4를 제외한 P-EPCNn은 실온의 고무질 영역에서 LC 상으로 형성될 수 있다. 이는 P-EPCN4의 낮은 결정도 및 TC를 초래하였다. 반대로, P-EPCNn은 실온에서 LC 상을 나타내어 높은 TC를 가진다.
<실시예 3> OMPBn : 4-(옥시란-2-일메톡시)페닐 4-부톡시벤조에이트 (4-(oxiran-2-ylmethoxy)phenyl 4-butoxybenzoate) 단량체의 합성
하기 반응식 3은 측쇄에 열방성 액정 구조인 페닐 벤조에이트(phenyl benzoate)를 가지는 에폭사이드 단량체 OMPBn의 합성 과정을 나타낸 것으로, 4-(알콕시)벤조산(4-(alkoxy)benzoic acid)을 출발물질로 하여, 하이드로퀴논(hydroquinone)과의 반응을 통해 HPBn을 합성하고, 이후 에피클로로히드린과의 반응을 통해 OMPBn을 얻었다.
<반응식 3>
Figure PCTKR2022004891-appb-I000009
HPBn : 4-하이드록시페닐 4-알콕시벤조에이트 (4-hydroxyphenyl 4-alkoxybenzoate)의 합성
A) n=4 (HPB4)
3구 라운드 플라스크에 4-부톡시벤조산(4-butoxybenzoic acid) (3.00 g, 15.4 mmol), 하이드로퀴논 (6.80 g, 61.7 mmol)과 BH3O3 (0.0318 g)를 넣고, 아르곤 분위기로 치환하였다. 이후 톨루엔 120 ml과 황산 0.1 ml을 넣고, 130℃에서 12시간 교반하였다. 얻어진 용액은 회전증발농축기를 이용하여 농축된 후 디에틸에테르로 유기물을 추출하였고, 유기상은 황산마그네슘으로 건조한 후 헥산:에틸아세테이트 부피비 7:1 용액을 전개액으로 하는 실리카 컬럼 크로마토그래피를 통해 정제되었다. 수율은 24%였다.
1H NMR (500 MHz, CDCl3): δ = 8.13 (d, J = 9.0 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.87 (s, 1H), 4.06 (t, J = 6.5 Hz, 2H), 1.84-1.78 (m, 2H), 1.54-1.48 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H) ppm.
B) n=6 (HPB6)
4-부톡시벤조산 대신 4-(헥실옥시)벤조산(4-(hexyloxy)benzoic acid)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 58%였다.
1H NMR (500 MHz, CDCl3): δ = 8.13 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 4.87 (s, 1H), 4.05 (t, J = 6.5 Hz, 2H), 1.85-1.79 (m, 2H), 1.52-1.45 (m, 2H), 1.37-1.34 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H) ppm.
C) n=8 (HPB8)
4-부톡시벤조산 대신 4-(옥틸옥시)벤조산(4-(octyloxy)benzoic acid)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 57%였다.
1H NMR (500 MHz, CDCl3): δ = 8.13 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9 .0Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 4.88 (s, 1H), 4.05 (t, J = 6.5 Hz, 2H), 1.86-1.79 (m, 2H), 1.50-1.44 (m, 2H), 1.38-1.29 (m, 8H), 0.91 (t, J = 7.0 Hz, 3H) ppm.
D) n=10 (HPB10)
4-부톡시벤조산 대신 4-(데실옥시)벤조산(4-(decyloxy)benzoic acid)을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 59%였다.
1H NMR (500 MHz, CDCl3): δ = 8.13 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 4.80 (s, 1H), 4.05 (t, J = 6.5 Hz, 2H), 1.85-1.79 (m, 2H), 1.51-1.44 (m, 2H), 1.38-1.27 (m, 10H), 0.90 (t, J = 7.0 Hz, 3H) ppm.
② OMPBn (4-(oxiran-2-ylmethoxy)phenyl 4-alkoxybenzoate)의 합성
E) n=4 (OMPB4)
3구 플라스크에 4-하이드록시페닐 4-부톡시벤조에이트(4-hydroxyphenyl 4-butoxybenzoate, HPB4) (0.50 g, 1.74 mmol), NaOH (0.0701 g, 1.74 mmol) 및 벤질 트리메틸 암모늄 브로마이드(benzyl trimethyl ammonium bromide) (0.401 g, 1.74 mmol)를 넣고 아르곤 분위기로 치환한 후, 에피클로로히드린 10 ml과 물 1 ml을 추가하여 70℃에서 1시간 교반하였다. 얻어진 용액은 용매를 제거한 후 헥산:에틸아세테이트 부피비 5:1 용액을 전개액으로 하는 실리카 컬럼 크로마토그래피를 통해 정제되었다. 수율은 29%였다.
1H NMR (500 MHz, CDCl3): δ = 8.13 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 9.5 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.22 (dd, J = 11, 3.0 Hz, 1H), 4.05 (t, J = 6.5 Hz, 2H), 3.98 (dd, J = 11, 5.5 Hz, 1H), 3.38-3.35 (m, 1H), 2.91 (dd, J = 5.0, 4.5 Hz, 1H), 2.77 (dd, J = 5.0, 2.5 Hz, 1H), 1.84-1.78 (m, 2H), 1.53-1.48 (m, 2H), 0.99 (t, J = 7.0 Hz, 3H) ppm. 13C (125 MHz, CDCl3): δ = 165.3, 163.5, 156.1, 145.0, 132.2, 122.6, 121.6, 115.3, 114.3, 69.2, 68.0, 50.1, 44.7, 31.1, 19.2, 13.8 ppm. HRMS (+EI) : calcd for [C20H22O5]+ : 342.1467 ; found : 342.1467 (도 14(a) 및 도 15(a)).
F) n=6 (OMPB6)
상기 HPB6을 사용한 것을 제외하고, E)와 동일한 절차로 합성되었다. 수율은 40%였다.
1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.22 (dd, J = 11, 3.0 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 3.97 (dd, J = 11, 5.5 Hz, 1H), 3.38-3.35 (m, 1H), 2.91 (dd, J = 5.0, 4.5 Hz, 1H), 2.77 (dd, J = 5.0, 2.5 Hz, 1H), 1.85-1.79 (m, 2H), 1.52-1.45 (m, 2H), 1.37-1.34 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H) ppm. 13C (125 MHz, CDCl3): δ = 165.3, 163.5, 156.1, 145.0, 132.2, 122.6, 121.6, 115.3, 114.3, 69.3, 68.3, 50.1, 44.7, 31.6, 29.1, 25.7, 22.6, 14.0 ppm. HRMS (+EI) : calcd for [C22H26O5]+ : 370.1780 ; found : 370.1779 (도 14(b) 및 도 15(b)).
G) n=8 (OMPB8)
상기 HPB8을 사용한 것을 제외하고, E)와 동일한 절차로 합성되었다. 수율은 35%였다.
1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 9.5 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.22 (dd, J = 11, 3.0 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 3.97 (dd, J = 11, 5.5 Hz, 1H), 3.38-3.34 (m, 1H), 2.91 (dd, J = 5.0, 4.5 Hz, 1H), 2.77 (dd, J = 5.0, 2.5 Hz, 1H), 1.85-1.79 (m, 2H), 1.50-1.44 (m, 2H), 1.38-1.29 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H) ppm. 13C (125 MHz, CDCl3): δ = 165.3, 163.5, 156.1, 145.0, 132.2, 122.6, 121.6, 115.3, 114.3, 69.3, 68.3, 50.1, 44.7, 31.8, 29.3, 29.2, 29.1, 26.0 25.7, 14.1 ppm. HRMS (+EI) : calcd for [C24H30O5]+ : 398.2093 ; found : 398.2094 (도 14(c) 및 도 15(c)).
H) n=10 (OMPB10)
상기 HPB10을 사용한 것을 제외하고, E)와 동일한 절차로 합성되었다. 수율은 36%였다.
1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.22 (dd, J = 11, 3.0 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 3.97 (dd, J = 11, 5.5 Hz, 1H), 3.39-3.35 (m, 1H), 2.91 (dd, J = 5.0, 4.5 Hz, 1H), 2.77 (dd, J = 5.0, 2.5 Hz, 1H), 1.85-1.79 (m, 2H), 1.50-1.44 (m, 2H), 1.39-1.28 (m, 12H), 0.88 (t, J = 7.0 Hz, 3H) ppm. 13C (125 MHz, CDCl3): δ = 165.3, 163.5, 156.1, 145.0, 132.2, 122.7, 121.6, 115.4, 114.3, 69.3, 68.3, 50.1, 44.7, 31.9, 29.6, 29.6, 29.4, 29.3, 29.1, 26.0, 25.7, 14.1 ppm. HRMS (+EI) : calcd for [C26H34O5]+ : 426.2406 ; found : 426.2409 (도 14(d) 및 도 15(d)).
<실시예 4> OMPBn 폴리머 (P-OMPBn)의 합성
하기 반응식 4는 측쇄에 액정 구조인 페닐 벤조에이트를 가지는 폴리에틸렌글리콜 유도체인 P-OMPBn의 합성 과정을 나타낸 것으로, 하기 반응식 4에 나타난 바와 같이, 폴리에틸렌글리콜 주쇄를 형성하기 위해 에폭사이드 단량체 OMPBn의 음이온성 개환 중합을 통해 합성되었다.
<반응식 4>
Figure PCTKR2022004891-appb-I000010
A) n=4 (P-OMPB4)
OMPB4 (0.300 g, 0.876 mmol), 포타슘 tert-부톡사이드 (39.0 mg, 327 μmol), 18-크라운-6 (18.0 mg, 65.0 μmol)을 Schlenk 튜브에 넣은 후 아르곤 분위기로 치환한 후, 톨루엔 3 ml을 추가하고 실온에서 3일간 교반하여 중합을 실시하였다. 이후 중합 용액을 메탄올 50 ml에 침전시킨 후, 침전물을 회수하였다. 침전 과정은 2번 반복되었고, 갈색의 고체가 81%의 수율로 얻어졌다.
1H NMR (500 MHz, CDCl3): δ = 8.02-7.96 (m, 2H), 6.91-6.82 (m, 6H), 4.29-4.28 (m, 2H), 4.08-3.64 (m, 5H), 1.81-1.26 (m, 4H), 1.11 (s, 9H), 0.10-0.81 (m, 3H) ppm (도 16(a)).
B) n=6 (P-OMPB6)
상기 OMPB6를 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 82%였다.
1H NMR (500 MHz, CDCl3): δ = 8.02-7.96 (m, 2H), 6.91-6.82 (m, 6H), 4.29-4.28 (m, 2H), 4.08-3.63 (m, 5H), 1.82-1.26 (m, 8H), 1.11 (s, 9H), 0.10-0.81 (m, 3H) ppm (도 16(b)).
C) n=8 (P-OMPB8)
상기 OMPB8을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 82%였다.
1H NMR (500 MHz, CDCl3): δ = 8.02-7.96 (m, 2H), 6.91-6.82 (m, 6H), 4.29-4.28 (m, 2H), 4.08-3.63 (m, 5H), 1.82-1.26 (m, 8H), 1.11 (s, 9H), 0.10-0.81 (m, 3H) ppm (도 16(c)).
D) n=10 (P-OMPB10)
상기 OMPB10을 사용한 것을 제외하고, A)와 동일한 절차로 합성되었다. 수율은 92%였다.
1H NMR (500 MHz, CDCl3): δ = 8.02-7.94 (m, 2H), 7.12-6.86 (m, 6H), 4.37-4.28 (m, 2H), 4.05-3.97 (m, 5H), 1.82-1.26 (m, 16H), 1.11 (s, 9H), 0.89-0.87 (m, 3H) ppm (도 16(d)).
하기 표 3은 상기에 따라 수득된 P-OMPBn의 분자량을 나타낸 것이고, 하기 표 4는 P-OMPBn의 물성을 나타낸 것이다.
Figure PCTKR2022004891-appb-T000003
Figure PCTKR2022004891-appb-T000004
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며,이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. 하기 화학식 (I)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물:
    [화학식 (I)]
    Figure PCTKR2022004891-appb-I000011
    [식 중, n은 1 내지 30 범위의 정수임].
  2. 하기 화학식 (Ⅱ)로 표시되는 측쇄에 열방성 액정 구조를 갖는 화합물:
    [화학식 (Ⅱ)]
    Figure PCTKR2022004891-appb-I000012
    [식 중, n은 1 내지 30 범위의 정수임].
  3. 제 1 항에 따른 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체.
  4. 제 2 항에 따른 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체.
  5. 하기 화학식 (Ⅲ)으로 표시되며,
    제 1 항 또는 제 2 항에 따른 화합물을 개환 중합하여 수득한 폴리에틸렌글리콜 중합체:
    [화학식 (Ⅲ)]
    Figure PCTKR2022004891-appb-I000013
    [식 중, X1, X2는 동일하거나 다를 수 있고, 제 1 항에 따른 화합물 또는 제 2 항에 따른 화합물에서 선택됨].
  6. 제 3 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 폴리에틸렌글리콜 중합체는,
    기판, 컴파운드, 접착제, 패드, 히트스프레드 및 히트싱크에서 사용되는 것을 특징으로 하는, 폴리에틸렌글리콜 중합체.
PCT/KR2022/004891 2021-04-07 2022-04-05 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체 WO2022216015A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561313A JP2024514257A (ja) 2021-04-07 2022-04-05 サーモトロピック液晶構造を有する化合物及びそのポリエチレングリコールポリマー

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0045178 2021-04-07
KR20210045178 2021-04-07
KR1020220041487A KR20220139234A (ko) 2021-04-07 2022-04-04 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체
KR10-2022-0041487 2022-04-04

Publications (1)

Publication Number Publication Date
WO2022216015A1 true WO2022216015A1 (ko) 2022-10-13

Family

ID=83545572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004891 WO2022216015A1 (ko) 2021-04-07 2022-04-05 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체

Country Status (2)

Country Link
JP (1) JP2024514257A (ko)
WO (1) WO2022216015A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104992A (ko) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 그것을 사용한 광학 이방체

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104992A (ko) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 그것을 사용한 광학 이방체

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE SHANGJIN; SONG MOUDAO; ZHANG BANGHUA: "Synthesis and characterization of polyethers containing mesogenic groups in side chain", LIZI JIAOHUAN YU XIFU - ION EXCHANGE AND ADSORPTION, NANKAI DAXUE, GAOFENZI HUAXUE YANJIUSUO, TIANJIN, CN, vol. 15, no. 2, 1 January 1999 (1999-01-01), CN , pages 115 - 120, XP009540264, ISSN: 1001-5493, DOI: 10.16026/j.cnki.iea.1999.02.004 *
SNYDER SAVANNAH R., WEI WEI, XIONG HUIMING, WESDEMIOTIS CHRYS: "Sequencing of Side-Chain Liquid Crystalline Copolymers by Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry", POLYMERS, vol. 11, no. 7, 1 July 2019 (2019-07-01), pages 1118, XP055975646, DOI: 10.3390/polym11071118 *
TATON D., LE BORGNE A., SPASSKY N.: "SYNTHESIS AND THERMAL PROPERTIES OF SIDE-CHAIN LIQUID-CRYSTALLINE POLY(GLYCIDYL ETHERS) WITH RACEMIC AND CHIRAL BACKBONE.", MACROMOLECULAR CHEMISTRY AND PHYSICS, WILEY-VCH VERLAG, WEINHEIM., DE, vol. 196., no. 09., 1 September 1995 (1995-09-01), DE , pages 2941 - 2954., XP000530442, ISSN: 1022-1352, DOI: 10.1002/macp.1995.021960918 *
WEI WEI, YOU DONGLEI, XIONG HUIMING: "Thermotropic and Lyotropic Transitions of Concentrated Solutions of Liquid Crystalline Block Copolymers in a Liquid Crystalline Solvent", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 50, no. 20, 24 October 2017 (2017-10-24), US , pages 7844 - 7851, XP055975644, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b01669 *

Also Published As

Publication number Publication date
JP2024514257A (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2010002198A2 (ko) 점착제 조성물, 편광판용 보호 필름, 편광판 및 액정표시장치
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2009096758A2 (ko) 광학 이방성 화합물을 포함하는 아크릴계 점착제 조성물, 이를 포함하는 편광판 및 액정 표시장치
WO2019013516A1 (ko) 원편광판
WO2020091550A1 (ko) 편광판
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2022216015A1 (ko) 열방성 액정 구조를 갖는 화합물 및 이의 폴리에틸렌글리콜 중합체
WO2015182926A1 (ko) 신규 이반응성 메소게닉 화합물
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020080625A1 (ko) 요오드를 포함한 다이아세틸렌계 유방성 액정 혼합물을 이용한 코팅형 편광필름 및 그 제조방법
WO2020036443A1 (ko) 저마찰 수지 복합체
WO2018097630A1 (ko) 중합성 화합물 및 이를 포함하는 액정 조성물
WO2022231172A1 (ko) 복수의 액정 코어를 갖는 다작용기성 에폭시 화합물 및 이로부터 제조된 경화물
WO2019212183A1 (ko) 중합성 액정 화합물, 광학 소자용 액정 조성물, 중합체, 광학 이방체 및 디스플레이 장치용 광학 소자
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2021010701A1 (ko) 화합물, 이를 포함하는 감광성 형광 수지 조성물, 이로 제조된 색변환 필름, 백라이트 유닛 및 디스플레이 장치
WO2019013520A1 (ko) 원편광판
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2020153659A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막 및 액정표시소자
WO2010067933A1 (en) Liquid crystal photo-alignment agent, liquid crystal photo-alignment film manufactured using the same
WO2020105927A1 (ko) 가교제 화합물, 이를 포함하는 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561313

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18286082

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784924

Country of ref document: EP

Kind code of ref document: A1