WO2022215694A1 - Zn-Al-Mg系めっき縞鋼板 - Google Patents

Zn-Al-Mg系めっき縞鋼板 Download PDF

Info

Publication number
WO2022215694A1
WO2022215694A1 PCT/JP2022/017109 JP2022017109W WO2022215694A1 WO 2022215694 A1 WO2022215694 A1 WO 2022215694A1 JP 2022017109 W JP2022017109 W JP 2022017109W WO 2022215694 A1 WO2022215694 A1 WO 2022215694A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
checkered steel
layer
steel sheet
plated
Prior art date
Application number
PCT/JP2022/017109
Other languages
English (en)
French (fr)
Inventor
完 齊藤
靖人 後藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023513023A priority Critical patent/JPWO2022215694A1/ja
Priority to MX2023011623A priority patent/MX2023011623A/es
Priority to KR1020237034268A priority patent/KR20230155533A/ko
Priority to CN202280024852.7A priority patent/CN117062935A/zh
Priority to AU2022254564A priority patent/AU2022254564A1/en
Priority to US18/553,206 priority patent/US20240183018A1/en
Priority to EP22784676.3A priority patent/EP4321643A1/en
Priority to CA3213891A priority patent/CA3213891A1/en
Priority to BR112023020234A priority patent/BR112023020234A2/pt
Publication of WO2022215694A1 publication Critical patent/WO2022215694A1/ja
Priority to CONC2023/0013405A priority patent/CO2023013405A2/es

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Definitions

  • the present disclosure relates to a Zn-Al-Mg plated checkered steel sheet.
  • a checkered steel plate is a steel plate with a continuous non-slip projection (that is, a protrusion) on the surface by rolling.
  • protrusions of constant width, constant length, and constant height are provided at a constant angle and a constant pitch with respect to the rolling direction.
  • a checkered steel plate is usually manufactured by hot rolling.
  • Checkered steel sheets are used for floorboards or steps of large vehicles (buses, trucks, etc.), floorboards of multistory parking lots, floorboards of factories, decks of ships, temporary scaffolds or stairs at construction sites, and the like.
  • Patent Document 1 having a base steel sheet, a Ni plating layer arranged on the surface of the base steel sheet, and a hot-dip plating layer arranged on the surface of the Ni plating layer, A hot-dip plated checkered steel sheet having a convex portion and a flat portion, wherein the thickness of the Ni plating layer on the convex portion is 0.07 to 0.4 ⁇ m per side, and the Ni plating layer on the flat portion is The thickness is 0.05 to 0.35 ⁇ m per side, and the thickness of the Ni plating layer on the convex portion is more than 100% and 400% or less of the thickness of the Ni plating layer on the flat portion.
  • the adhesion amount of the hot-dip plated layer is 60 to 400 g / m 2 per side, and the hot-dip plated layer has a chemical composition of, in mass%, Al: more than 1.0% and 26% or less, Mg: 0 05-10%, Si: 0-1.0%, Sn: 0-3.0%, Ca: 0-1.0%, and the balance being Zn and impurities.” It is
  • Corrosion resistance is required for checkered steel sheets because they are often used outdoors. Therefore, as disclosed in Patent Documents 1 and 2, the checkered steel sheet is subjected to hot-dip plating in order to improve corrosion resistance.
  • the checkered steel sheet is a steel sheet having a local thickness difference due to convex portions and flat portions. Therefore, when hot-dip plating is applied to the checkered steel plate to improve corrosion resistance, the amount of expansion and contraction due to temperature changes differs between the convex portions and the flat portions of the checkered steel plate, resulting in deformation of the checkered steel plate. When the deformed plated checkered steel sheet is made into a product, the flatness becomes poor. Further, when the flatness is deteriorated, the thickness of the plating layer is uneven, and the corrosion resistance and workability are deteriorated.
  • the Zn-Al-Mg alloy plating bath has a lower viscosity than the Zn-based plating bath. descend. Therefore, the Zn-Al-Mg plated checkered steel sheet is required to have a further improvement in flatness.
  • an object of the present disclosure is to provide a Zn-Al-Mg plated checkered steel sheet with excellent flatness, corrosion resistance and workability.
  • a Zn-Al-Mg-based plated checkered steel sheet having The plating layer is mass%, Zn: more than 65.0%, Al: more than 1.0% to less than 25.0%, Mg: more than 1.0% to less than 12.5%, Sn: 0% to 5.0%, Bi: 0% to less than 5.0%, In: 0% to less than 2.0%, Ca: 0% to 3.00%, Y: 0% to 0.5%, La: 0% to less than 0.5%, Ce: 0% to less than 0.5%, Si: 0% to less than 2.5%, Cr: 0% to less than 0.25%, Ti: 0% to less than 0.25%, Zr: 0% to less than 0.25%, Mo: 0% to less than 0.25%, W: 0% to less than 0.25%, Ag: 0% to less than 0.25%, P: 0% to less than 0.25%, Ni: 0% to less than 0.25%, Co: 0% to less than 0.25%, V: 0% to less than 0.25%, Nb:
  • Formula 1 x/(T ⁇ t) ⁇ 1.5
  • Formula 2 0.5 ⁇ T ⁇ t ⁇ t
  • the unit of the sheet thicknesses T and t of the base checkered steel sheet and the gap height x in the formulas 1 and 2 is "mm".
  • ⁇ 2> The Zn-Al-Mg-based plating stripes according to ⁇ 1>, wherein the Al concentration is more than 5.0% and less than 25.0%, and the Mg concentration is more than 3.0% and less than 12.5%. steel plate.
  • ⁇ 3> The Zn-Al-Mg plated checkered steel sheet according to ⁇ 1> or ⁇ 2>, wherein the plating layer includes an Al-Fe alloy layer between the base checkered steel sheet and the Zn-Al-Mg alloy layer.
  • FIG. 1 is a SEM photograph (500 ⁇ ) showing an example of a cross section of a Zn—Al—Mg plated checkered steel sheet of the present disclosure.
  • 1 is a SEM photograph (2000 ⁇ ) showing an example of a cross section of a Zn—Al—Mg plated checkered steel sheet of the present disclosure.
  • FIG. 4 is a schematic diagram for explaining a method for measuring the gap height x in the Zn—Al—Mg plated checkered steel sheet of the present disclosure.
  • FIG. 2 is a schematic plan view showing an example of the base checkered steel sheet of the Zn-Al-Mg-based plated checkered steel sheet of the present disclosure.
  • FIG. 3B is a schematic cross-sectional view showing an example of the base checkered steel sheet of the Zn-Al-Mg-based plated checkered steel sheet of the present disclosure, and is a schematic cross-sectional view taken along line GG of FIG. 3A.
  • FIG. 3B is a schematic cross-sectional view showing an example of the base checkered steel sheet of the Zn—Al—Mg-based plated checkered steel plate of the present disclosure, and is a schematic cross-sectional view taken along line FF of FIG. 3A.
  • % display of the content of each element in the chemical composition means “% by mass”.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • Numerical ranges in which "greater” or “less than” are attached to numerical values written before and after “to” mean ranges that do not include these numerical values as lower or upper limits.
  • the content of an element in a chemical composition may be expressed as element concentration (for example, Zn concentration, Mg concentration, etc.).
  • the Zn-Al-Mg-based plated checkered steel sheet (hereinafter also simply referred to as "plated checkered steel sheet”) of the present disclosure includes a base checkered steel plate having a convex portion and a flat portion on one plate surface, and the base checkered steel plate. and a plated layer including a Zn--Al--Mg alloy layer arranged on a plate surface provided with convex portions and flat portions. Then, in the plated checkered steel sheet of the present disclosure, the plated layer has a predetermined chemical composition, and is perpendicular to the longitudinal direction of the protrusion at the center in the longitudinal direction of the protrusion, and is cut along the plate thickness direction.
  • the thickness ratio of the plated layer in the flat part on the left and right of the convex part is 0.2 or more and 5.0 or less, and the convex part
  • the plate thickness of the base checkered steel plate in the flat part is T
  • the plate thickness of the base checkered steel plate in the flat part is t
  • the plated checkered steel plate is set to stand still, and the plated checkered steel plate is placed still.
  • the gap height x between the plate surface of the plated striped steel sheet facing the mounting surface satisfies the following formulas 1 and 2.
  • Formula 2 0.5 ⁇ T ⁇ t ⁇ t
  • the unit of the sheet thicknesses T and t of the base checkered steel sheet and the gap height x in the formulas 1 and 2 is "mm".
  • the plated steel plate of the present disclosure is a Zn-Al-Mg-based plated steel plate with excellent flatness, corrosion resistance and workability due to the above configuration. Then, the plated checkered steel sheet of the present disclosure was found based on the following findings.
  • the inventors further improved the flatness and studied how to suppress variations in the thickness of the plating layer even with the Zn-Al-Mg-based plating, which has a lower viscosity than the Zn-based plating bath. As a result, the following findings were obtained.
  • the deterioration of the flatness of the plated checkered steel sheet affects not only the heating temperature of the base checkered steel sheet before immersion in the plating bath, but also the heating rate and cooling rate.
  • the base checkered steel sheet is hot-dip plated, even if it is rapidly heated and cooled before immersion in the plating bath, the amount of expansion and contraction due to the sudden temperature change between the convex portions and flat portions with different plate thicknesses A difference occurs and transforms. This is because, when heating and cooling, the heating rate and the cooling rate differ between the convex portions and the flat portions of the base checkered steel sheet, unlike a normal flat steel sheet.
  • the base checkered steel sheet is heated and cooled at a moderate heating rate and cooling rate before immersion in the plating bath, it is difficult to cause a difference in heating rate and cooling rate between the convex portion and the flat portion having different plate thicknesses. Become. Thereby, the convex portion and the flat portion are heated and cooled as uniformly as possible, and deformation is suppressed. As a result, the flatness of the base striped steel sheet is further improved, and even with the Zn--Al--Mg-based plating, variations in the thickness of the plating layer are reduced, and corrosion resistance and workability are improved.
  • the inventors have found that a Zn-Al-Mg-based plated checkered steel sheet that satisfies the above formulas 1 and 2 and the layer thickness ratio of the plated layer in the flat portion can be obtained.
  • the plated steel plate of the present disclosure is a Zn-Al-Mg plated steel plate with excellent flatness, corrosion resistance and workability.
  • a striped steel sheet is a steel sheet to be plated.
  • the checkered steel sheet is provided with a convex portion and a flat portion on one plate surface.
  • the checkered steel sheet is usually hot-rolled to have convex shapes.
  • the steel type of the base checkered steel sheet is not particularly limited.
  • the base checkered steel plate includes, for example, a steel type corresponding to general structural rolled steel specified in JIS G3101:2015.
  • the convex shape of the base checkered steel sheet is imparted by, for example, transferring the concave shape formed on the working rolls to the steel sheet surface in the finishing stage of hot rolling.
  • the plate surface opposite to the plate surface provided with the convex portion and the flat portion in the plate thickness direction is a surface having the surface properties of a normal steel plate.
  • the plate surface on which the convex portion and the flat portion are provided and the plate surface opposite to the plate surface in the plate thickness direction are, for example, in the stage of finish hot rolling, the operation in which the convex portion and the flat portion are provided. It is a plate surface provided by a normal rolling roll (that is, a roll having normal roughness) facing the roll.
  • the base checkered steel plate may be a pre-plated checkered steel plate.
  • a pre-plated checkered steel sheet is obtained, for example, by an electrolytic treatment method or a displacement plating method.
  • electrolytic treatment method a pre-plated checkered steel sheet is obtained by immersing the base checkered steel sheet in a sulfuric acid bath or a chloride bath containing metal ions of various pre-plating components and performing electrolytic treatment.
  • displacement plating method a pre-plated checkered steel plate is obtained by immersing a base checkered steel plate in an aqueous solution containing metal ions of various pre-plating components and pH-adjusted with sulfuric acid to cause displacement deposition of metals.
  • a typical example of the pre-plated checkered steel sheet is a pre-Ni-plated checkered steel sheet.
  • the plating layer includes a Zn-Al-Mg alloy layer.
  • the plating layer may include an Al--Fe alloy layer in addition to the Zn--Al--Mg alloy layer.
  • the Al--Fe alloy layer is arranged between the checkered steel sheet and the Zn--Al--Mg alloy layer.
  • the plated layer may have a single layer structure of a Zn--Al--Mg alloy layer, or may have a laminated structure including a Zn--Al--Mg alloy layer and an Al--Fe alloy layer.
  • the Zn--Al--Mg alloy layer is preferably a layer forming the surface of the plating layer.
  • an oxide film of the constituent elements of the plating layer is formed on the surface of the plating layer with a thickness of about 50 nm, it is considered that the thickness is thinner than the thickness of the entire plating layer and does not constitute the main body of the plating layer.
  • the coating weight of the plating layer is preferably 60 to 500 g/m 2 per side.
  • the coating weight of the plating layer is 60 g/m 2 or more, corrosion resistance can be ensured more reliably.
  • the coating amount of the plating layer is 500 g/m 2 or less, it is possible to suppress appearance defects such as drip patterns of the plating layer.
  • the chemical composition of the plating layer is mass %, Zn: more than 65.0%, Al: more than 1.0% to less than 25.0%, Mg: more than 1.0% to less than 12.5%, Sn: 0% to 5.0%, Bi: 0% to less than 5.0%, In: 0% to less than 2.0%, Ca: 0% to 3.00%, Y: 0% to 0.5%, La: 0% to less than 0.5%, Ce: 0% to less than 0.5%, Si: 0% to less than 2.5%, Cr: 0% to less than 0.25%, Ti: 0% to less than 0.25%, Zr: 0% to less than 0.25%, Mo: 0% to less than 0.25%, W: 0% to less than 0.25%, Ag: 0% to less than 0.25%, P: 0% to less than 0.25%, Ni: 0% to less than 0.25%, Co: 0% to less than 0.25%, V: 0% to less than 0.25%, Nb: 0% 0% to less than 0.25%,
  • the chemical composition of this plating layer is the average chemical composition of the entire plating layer (if the plating layer has a single-layer structure of a Zn-Al-Mg alloy layer, the average chemical composition of the Zn-Al-Mg alloy layer, the plating layer is the average chemical composition of the total of the Al--Fe alloy layer and the Zn--Al--Mg alloy layer in the case of the laminated structure of the Al--Fe alloy layer and the Zn--Al--Mg alloy layer.
  • the chemical composition of the Zn--Al--Mg alloy layer is almost the same as the chemical composition of the plating bath, since the formation reaction of the plating layer is completed in the plating bath in most cases.
  • the Al—Fe alloy layer is instantly formed and grown immediately after immersion in the plating bath.
  • the Al--Fe alloy layer has completed its formation reaction in the plating bath, and its thickness is often sufficiently smaller than that of the Zn--Al--Mg alloy layer.
  • the average chemical composition of the entire plating layer is substantially the same as that of the Zn-Al-Mg alloy layer, and that of the Al-Fe alloy layer. component can be ignored.
  • Zn more than 65.0% Zn is an element necessary for obtaining corrosion resistance.
  • the plating layer is composed of elements with low specific gravity such as Al and Mg. Therefore, the Zn concentration should be over 65.0%.
  • Zn concentration is preferably 70% or more. Note that the upper limit of the Zn concentration is the concentration of elements other than Zn and the remainder other than impurities.
  • Al more than 1.0% to less than 25.0%
  • Al is an essential element for forming Al crystals and ensuring corrosion resistance.
  • Al is also an essential element for enhancing the adhesion of the plating layer and ensuring workability. Therefore, the lower limit of the Al concentration should be over 1.0% (preferably over 5.0%, more preferably 10.0% or more).
  • the upper limit of Al concentration is less than 25.0% (preferably 23.0% or less).
  • Mg more than 1.0% to less than 12.5% Mg is an essential element for ensuring corrosion resistance. Therefore, the lower limit of the Mg concentration should be over 1.0% (preferably over 3.0%, more preferably over 5.0%). On the other hand, when the Mg concentration increases too much, workability tends to deteriorate. Therefore, the upper limit of the Mg concentration is less than 12.5% (preferably 10.0% or less).
  • Sn 0-5.0% Sn is an element that contributes to corrosion resistance. Therefore, the lower limit of the Sn concentration is preferably over 0% (preferably 0.1% or more, more preferably 0.5% or more). On the other hand, when the Sn concentration increases too much, the corrosion resistance tends to deteriorate. Therefore, the upper limit of Sn concentration is set to 5.0% or less (preferably 3.0% or less).
  • Bi 0% to less than 5.0% Bi is an element that contributes to corrosion resistance. Therefore, the lower limit of the Bi concentration is preferably over 0% (preferably 0.1% or more, more preferably 3.0% or more). On the other hand, when the Bi concentration increases too much, the corrosion resistance tends to deteriorate. Therefore, the upper limit of the Bi concentration is less than 5.0% (preferably 4.8% or less).
  • In 0% to less than 2.0% In is an element that contributes to corrosion resistance. Therefore, the lower limit of the In concentration is preferably over 0% (preferably 0.1% or more, more preferably 1.0% or more). On the other hand, when the In concentration increases too much, the corrosion resistance tends to deteriorate. Therefore, the upper limit of the In concentration is less than 2.0% (preferably 1.8% or less).
  • Ca 0% to 3.0% Ca is an element that can adjust the optimum Mg elution amount for imparting corrosion resistance. Therefore, the lower limit of Ca concentration is preferably over 0% (preferably 0.05% or more). On the other hand, when the Ca concentration increases too much, corrosion resistance and workability tend to deteriorate. Therefore, the upper limit of Ca concentration is 3.0% or less (preferably 1.0% or less).
  • Y 0% to 0.5% Y is an element that contributes to corrosion resistance. Therefore, the lower limit of the Y concentration is preferably over 0% (preferably 0.1% or more). On the other hand, if the Y concentration increases too much, the corrosion resistance tends to deteriorate. Therefore, the upper limit of the Y concentration is 0.5% or less (preferably 0.3% or less).
  • La and Ce 0% to less than 0.5%
  • La and Ce are elements that contribute to corrosion resistance. Therefore, the lower limits of La concentration and Ce concentration are preferably over 0% (preferably 0.1% or more). On the other hand, if the La concentration and Ce concentration are too high, the corrosion resistance tends to deteriorate. Therefore, the upper limits of La concentration and Ce concentration are each less than 0.5% (preferably 0.4% or less).
  • Si 0% to less than 2.5%
  • Si is an element that suppresses the growth of the Al—Fe alloy layer and contributes to the improvement of corrosion resistance. Therefore, the Si concentration is preferably over 0% (preferably 0.05% or more, more preferably 0.1% or more).
  • the Si concentration is preferably 0.1% or more (preferably 0.2% or more) from the viewpoint of ensuring corrosion resistance.
  • the upper limit of Si concentration is set to less than 2.5%.
  • the Si concentration is preferably 2.4% or less, more preferably 1.8% or less, and even more preferably 1.2% or less.
  • the concentrations of Cr, Ti, Zr, Mo, W, Ag, P, Ni, Co, V, Nb, Cu, Mn, Li, Na and K are too high, corrosion resistance tends to deteriorate. Therefore, the upper limits of the concentrations of Cr, Ti, Zr, Mo, W, Ag, P, Ni, Co, V, Nb, Cu, Mn, Li, Na, and K are each less than 0.25%. .
  • the upper limit of the concentration of Cr, Ti, Zr, Mo, W, Ag, P, Ni, Co, V, Nb, Cu, Mn, Li, Na, and K is preferably 0.22% or less.
  • the Zn--Al--Mg alloy layer and the Al--Fe alloy layer contain a certain Fe concentration. It has been confirmed that up to a Fe concentration of 5.0% does not adversely affect the performance of a plating layer (particularly a Zn--Al--Mg alloy layer). Since most of Fe is often contained in the Al—Fe alloy layer, the Fe concentration generally increases as the thickness of this layer increases.
  • Sr, Sb, Pb and B 0% to less than 0.5% Sr, Sb, Pb and B are elements that contribute to corrosion resistance. Therefore, it is preferable that the lower limits of the concentrations of Sr, Sb, Pb and B each exceed 0% (preferably 0.05% or more, more preferably 0.1% or more). On the other hand, when the concentrations of Sr, Sb, Pb and B are excessively increased, corrosion resistance tends to deteriorate. Therefore, the upper limits of the concentrations of Sr, Sb, Pb and B are each less than 0.5%.
  • Impurity Impurity refers to a component contained in raw materials or a component that is mixed in during the manufacturing process and is not intentionally included.
  • the coating layer may contain a small amount of components other than Fe as impurities due to mutual atomic diffusion between the checkered steel sheet and the coating bath.
  • the chemical composition of the plating layer is measured by the following method. First, an acid solution is obtained by exfoliating and dissolving a plating layer with an acid containing an inhibitor for suppressing corrosion of the base checkered steel sheet. Next, by measuring the obtained acid solution by ICP analysis, the chemical composition of the plating layer (if the plating layer has a single-layer structure of a Zn-Al-Mg alloy layer, the chemical composition of the Zn-Al-Mg alloy layer , the total chemical composition of the Al--Fe alloy layer and the Zn--Al--Mg alloy layer) can be obtained when the plating layer has a laminated structure of an Al--Fe alloy layer and a Zn--Al--Mg alloy layer.
  • the acid species is not particularly limited as long as it is an acid capable of dissolving the plating layer.
  • the components of the pre-plating are also detected.
  • the ICP analysis detects not only Ni in the coating layer but also Ni in the pre-Ni-plating.
  • a pre-plated checkered steel plate with a Ni adhesion amount of 1 g/m 2 to 3 g/m 2 (thickness of about 0.1 to 0.3 ⁇ m) is used as the base checkered steel plate, if the coating layer Even if the Ni concentration contained is 0%, the Ni concentration is detected as 0.1 to 15%. Therefore, the Ni concentration in the plated layer may become unknown as a result of the ICP analysis.
  • the Ni concentration in the coating layer when the pre-Ni-plated checkered steel sheet is used as the base steel sheet is measured by glow discharge optical emission spectrometry (quantitative GDS). Specifically, using three or more standard samples with different Ni concentrations with a high-frequency glow discharge luminescence surface analyzer (manufactured by Horiba, model number: GD-Profiler2), the relationship between the Ni concentration and the luminescence intensity of Ni Create a calibration curve for Zn alloy standard samples IMN ZH1, ZH2 and ZH4 manufactured by BAS are used as standard samples.
  • the GDS measurement conditions are as follows. H. V.
  • the pre-Ni-plated checkered steel sheet is used as the base checkered steel sheet, when the base checkered steel sheet is immersed in the plating bath, a small amount of Ni in the pre-Ni plating layer dissolves in the plating bath.
  • the Ni concentration in the plating bath is 0.02 to 0.03% higher than the Ni concentration in the freshly prepared plating bath. Therefore, when the pre-Ni-plated checkered steel sheet is used, the Ni concentration in the coating layer increases by 0.03% at maximum.
  • the method for determining whether or not the base checkered steel sheet is the pre-plated checkered steel sheet is as follows. From the checkered steel plate to be measured, a sample whose cross section cut along the plate thickness direction of the checkered steel plate is taken as a measurement surface. An electron probe microanalyser (FE-EPMA) is used to line-analyze the vicinity of the interface between the plating layer of the checkered steel sheet and the base checkered steel sheet on the measurement surface of the sample to measure the Ni concentration.
  • FE-EPMA electron probe microanalyser
  • the measurement conditions are an acceleration voltage of 15 kV, a beam diameter of about 100 nm, an irradiation time of 1000 ms per point, and a measurement pitch of 60 nm.
  • the measurement distance may be a distance at which it can be confirmed whether or not the Ni concentration is concentrated at the interface between the coating layer of the checkered steel sheet and the base checkered steel sheet. Then, if the Ni concentration is high at the interface between the coating layer and the base checkered steel plate in the checkered steel plate, the base checkered steel plate is determined to be a pre-plated checkered steel plate.
  • the Al—Fe alloy layer may be formed on the surface of the checkered steel plate (specifically, between the checkered steel plate and the Zn—Al—Mg alloy layer), and the Al 5 Fe phase is the main phase of the structure. layer.
  • the Al—Fe alloy layer is formed by mutual atomic diffusion of the checkered steel sheet and the plating bath.
  • the coating layer is formed by the hot dip coating method, so the coating layer containing the Al element is likely to form an Al—Fe alloy layer. Since the plating bath contains Al at a certain concentration or higher, the Al 5 Fe phase forms the most.
  • the Al—Fe alloy layer may partially contain a small amount of an AlFe phase, an Al 3 Fe phase, an Al 5 Fe 2 phase, or the like.
  • the plating bath contains Zn at a certain concentration, the Al—Fe alloy layer also contains a small amount of Zn.
  • the corrosion resistance of the Al 5 Fe phase, the Al 3 Fe phase, the AlFe phase, and the Al 5 Fe 2 phase is almost the same.
  • the corrosion resistance referred to here is the corrosion resistance of portions not affected by welding.
  • Si when Si is contained in the plated layer, Si is particularly likely to be incorporated into the Al--Fe alloy layer, and may form an Al--Fe--Si intermetallic compound phase.
  • the identified intermetallic compound phase includes the AlFeSi phase, and ⁇ , ⁇ , q1, q2-AlFeSi phases and the like exist as isomers. Therefore, these AlFeSi phases and the like may be detected in the Al--Fe alloy layer.
  • the Al--Fe alloy layer containing these AlFeSi phases and the like is also called an Al--Fe--Si alloy layer. Since the Al--Fe--Si alloy layer is also thinner than the Zn--Al--Mg alloy layer, its influence on the corrosion resistance of the entire plating layer is small.
  • the structure of the Al—Fe alloy layer may change depending on the amount of pre-plating applied. Specifically, when the pure metal layer used for pre-plating remains around the Al-Fe alloy layer, an intermetallic compound phase (for example, Al 3 Ni phase, etc.) forms an alloy layer, forms an Al—Fe alloy layer in which part of Al atoms and Fe atoms are substituted, or forms part of Al atoms, Fe atoms, and Si atoms in substitution In some cases, an Al--Fe--Si alloy layer is formed.
  • an intermetallic compound phase for example, Al 3 Ni phase, etc.
  • the Al--Fe alloy layer is a layer including alloy layers of the above-described various modes in addition to the alloy layer mainly composed of the Al 5 Fe phase.
  • an Al-Ni-Fe alloy layer is formed as the Al-Fe alloy layer.
  • the thickness of the Al—Fe alloy layer is, for example, 0 ⁇ m or more and 7 ⁇ m or less.
  • the thickness of the Al—Fe alloy layer is preferably 0.05 ⁇ m or more and 5 ⁇ m or less from the viewpoint of enhancing the adhesion of the plating layer (specifically, the Zn—Al—Mg alloy layer) and ensuring corrosion resistance and workability.
  • the thickness of the Zn-Al-Mg alloy layer is usually thicker than that of the Al-Fe alloy layer, the contribution of the Al-Fe alloy layer to the corrosion resistance of the plated checkered steel sheet is the same as that of the Zn-Al-Mg alloy layer. small in comparison.
  • the Al—Fe alloy layer contains Al and Zn, which are corrosion-resistant elements, at a certain concentration or more, as presumed from the results of component analysis. Therefore, the Al--Fe alloy layer has a certain degree of corrosion resistance to the checkered steel sheet.
  • a plating layer having a chemical composition specified in the present disclosure is formed by a hot-dip plating method, an Al-Fe alloy layer of 100 nm or more is formed between the base checkered steel sheet and the Zn-Al-Mg alloy layer. many.
  • the thickness of the Al—Fe alloy layer is preferably 0.05 ⁇ m or more. However, since a thick Al--Fe alloy layer causes marked deterioration in plating workability, it is preferable that the thickness is less than a certain value. From the viewpoint of workability, the thickness of the Al—Fe alloy layer is preferably 7 ⁇ m or less. When the thickness of the Al--Fe alloy layer is 7 ⁇ m or less, the amount of cracks and powdering generated starting from the Al--Fe alloy layer is reduced, and workability is improved. The thickness of the Al—Fe alloy layer is more preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the thickness of the Al--Fe alloy layer is measured as follows. After embedding the sample in resin, it is ground and polished, and the backscattered electron image of the SEM of the cross section of the plating layer (the cross section along the plate thickness direction of the plating layer) (with a magnification of 10,000 times and a field size of 50 ⁇ m ⁇ 200 ⁇ m, The field of view in which the Al--Fe alloy layer is visible), the thickness is measured at any five points of the identified Al--Fe alloy layer. The thickness of the Al--Fe alloy layer is taken as the arithmetic average of the five locations.
  • the layer thickness ratio of the plated layers in the flat portions on the left and right sides of the convex portion is set to 0.2 or more and 5.0 or less.
  • the layer thickness ratio of the plated layer in the flat portion is preferably 0.25 or more and 4.00 or less, and more It is preferably 0.33 or more and 3.00 or less.
  • the thickness of the plated layer on the flat portion is preferably 1.0 to 300.0 ⁇ m, more preferably 2.0 to 200.0 ⁇ m.
  • the layer thickness ratio of the plated layer in the flat portion is measured as follows. First, a cut surface (specifically, In FIG. 3A, the cut surface corresponding to the FF cross section) is taken as an observation surface. Next, the sample is embedded in resin, and the observation surface of the sample is observed with a scanning electron microscope (SEM) at a magnification of 500 or 2000 (see FIGS. 1A and 1B). Next, the layer thicknesses of the plated layers on the left and right flat portions are measured, and the ratio of the layer thickness of the left plated layer/the layer thickness of the right plated layer is obtained.
  • SEM scanning electron microscope
  • a point 3 mm away from the boundary between the convex portion and the flat portion (specifically, the end of the flat portion where a pair of plate surfaces facing in the plate thickness direction are parallel (see EG in FIG. 1A)) (See FP in FIG. 1) to measure the thickness of the plated layer (See FT in FIG. 1B) on the left and right flat portions.
  • B is the base checkered steel sheet
  • C is the plating layer
  • Q is the convex portion
  • P is the flat portion.
  • the stripe height Tt should be equal to or less than the plate thickness of the base checkered steel plate in the flat portion.
  • the lower limit of the fringe height Tt is set to more than 0.5 mm in order to ensure the functions of the plated fringed steel sheet (for example, slip resistance).
  • the gap height x between the plated checkered steel sheet and the stationary surface when the plated steel sheet is left at rest is too large, the flatness deteriorates. Therefore, the gap height x should be equal to or less than the stripe height T ⁇ t ⁇ 1.5.
  • the value of "x/(Tt)" is preferably 1.2 or less, more preferably 1.0 or less, from the viewpoints of improving flatness, improving corrosion resistance, and improving workability. From the same point of view, it is preferable that the "x/(Tt)" value be close to zero.
  • the "Tt” value is preferably 0.8 t or less, more preferably 0.7 t or less, from the viewpoints of improving flatness, improving corrosion resistance, and improving workability.
  • the lower limit of the stripe height Tt is set in consideration of the improvement of the function (for example, slip resistance) of the plated steel sheet.
  • the plate thickness t of the base checkered steel plate at the flat portion is preferably 1.6 to 6.0 mm.
  • the gap height x is preferably 3.0 mm or less, more preferably 2.0 mm or less.
  • the area occupancy of the convex portions is preferably 15 to 60%.
  • the plate thickness T of the base checkered steel plate at the convex portion, the plate thickness t of the base checkered steel plate at the flat portion, the checkered height T ⁇ t, and the gap height x are measured as follows.
  • a sample of 300 mm square is taken from the plate surface central portion of the plated striped steel sheet to be measured.
  • the collected sample is left still on a horizontal surface (stilling surface).
  • the plate surface of the sample facing the stationary surface corresponds to the surface of the plated checkered steel sheet on which the convex portions and flat portions are not provided.
  • the stationary sample is observed from the stationary surface and the horizontal direction, and the height of the gap between the stationary surface and the plate surface of the sample facing the stationary surface is measured (see FIG. 2). Then, this operation is performed from four sides of the sample, and the maximum value of the gap height is defined as the gap height x.
  • CS indicates the sample of the plated checkered steel sheet
  • Su indicates the stationary surface.
  • a cut surface (specifically, in FIG. 3A, FF A sample whose observation surface is the cut surface corresponding to the cross section is collected.
  • the sample is embedded in resin, and the observed surface of the sample is observed with an optical microscope at a magnification of 25 (see FIG. 1).
  • the plate thickness of the base checkered steel plate at the center of the convex portion in the width direction and the plate thickness of the base checkered steel plate at the center of the flat portion in the width direction are measured.
  • the base checkered steel sheet is heated to the temperature of the plating bath +20 ° C. or higher and 850 ° C. or lower at a heating rate of 5 to 20 ° C./s and then held, and then the temperature of the plating bath After cooling at a cooling rate of 5 to 20 ° C./s to a range of the temperature of the plating bath + 10 ° C. or less, the cooled base checkered steel sheet is immersed in the plating bath and pulled up from the plating bath. When the temperature exceeds 500°C, the steel sheet is cooled to 500°C at a cooling rate of 5 to 20°C/s to produce a plated checkered steel sheet.
  • the plating is carried out, for example, by a continuous molten metal plating method such as the Sendzimir method.
  • An example of a specific manufacturing method is as follows. First, a base checkered steel sheet having a checkered height T ⁇ t that satisfies Equation 1 is prepared. Next, after pickling the checkered steel sheet, the checkered steel sheet is heated and held at the final heating temperature.
  • pre-plating for example, pre-Ni plating
  • pre-Ni plating may be applied to the base checkered steel sheet after pickling and before heating.
  • the temperature reached by heating is the temperature of the plating bath +20°C or higher and 850°C or lower.
  • the heating rate is 5-20° C./s.
  • the heating rate is set to 5° C./s.
  • the heating holding time is 10 to 120 seconds. By setting the heating and holding time to 10 to 120 seconds, the oxide film on the surface can be reduced to improve the plating properties.
  • the base striped steel sheet is heated by, for example, electric heating, non-oxidizing direct flame heating, or radiation heating.
  • the base checkered steel sheet is cooled to a range of not less than the temperature of the plating bath and not more than the temperature of the plating bath +10.
  • the cooling rate is 5-20° C./s.
  • the cooling rate is set to 5°C/s.
  • Cooling of the base checkered steel sheet is performed, for example, by nitrogen gas cooling.
  • the cooled base checkered steel sheet is immersed in a plating bath having the same chemical composition as the chemical composition of the plating layer in the plated checkered steel sheet of the present disclosure.
  • the amount of coating applied is adjusted by wiping, and then cooled.
  • the temperature of the plating bath is 500° C. or less, there are no particular restrictions on the cooling conditions after plating.
  • the cooling rate to 500° C. after plating is 5 to 20° C./s.
  • the cooling rate is set to 5°C/s. There are no particular restrictions on the cooling conditions below 500°C. Cooling after plating is performed, for example, by air cooling or nitrogen gas cooling.
  • the distance between the wiping nozzle and the checkered steel sheet varies depending on the location during wiping after plating. Variation occurs in the layer thickness of the plating layer between parts. Also, in the case of gas cooling, the distance between the cooling nozzle and the striped steel sheet changes depending on the location, so the plating layer is locally thin and thick, and the thickness of the plating layer varies between flat areas. occur. In particular, since the Zn-Al-Mg-based plating bath has a lower viscosity than the Zn-based plating bath, the thickness of the plating layer tends to vary.
  • Zn-Al-Mg in which the layer thickness of the layer is less likely to vary, and the layer thickness ratio of the plated layer on the flat portion on the left and right of the protrusion (layer thickness on the left side / layer thickness on the right side) satisfies the above range.
  • a system-plated checkered steel sheet is obtained.
  • a film may be formed on the plating layer of the plated checkered steel sheet of the present disclosure.
  • the coating can form one layer or two or more layers.
  • Examples of the types of films directly on the plating layer include chromate films, phosphate films, and chromate-free films. Chromate treatment, phosphate treatment, and chromate-free treatment for forming these films can be performed by known methods.
  • Chromate treatment includes electrolytic chromate treatment, in which a chromate film is formed by electrolysis, reactive chromate treatment, in which a film is formed by using a reaction with the material, and then excess treatment liquid is washed away, and treatment liquid is applied to the object to be coated.
  • electrolytic chromate treatment in which a chromate film is formed by electrolysis
  • reactive chromate treatment in which a film is formed by using a reaction with the material, and then excess treatment liquid is washed away, and treatment liquid is applied to the object to be coated.
  • electrolytic chromate treatment electrolytic chromate treatment using chromic acid, silica sol, resin (acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene-butadiene latex, diisopropanolamine-modified epoxy resin, etc.), and hard silica is used.
  • resin acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene-butadiene latex, diisopropanolamine-modified epoxy resin, etc.
  • phosphate treatment examples include zinc phosphate treatment, zinc calcium phosphate treatment, and manganese phosphate treatment.
  • Chromate-free treatment is particularly suitable because it does not burden the environment.
  • Chromate-free treatment includes electrolytic-type chromate-free treatment that forms a chromate-free film by electrolysis, reaction-type chromate-free treatment that uses a reaction with the material to form a film, and then rinses off the excess treatment solution.
  • organic resin films may be provided on the film directly on the plating layer.
  • the organic resin is not limited to a specific type, and examples thereof include polyester resins, polyurethane resins, epoxy resins, acrylic resins, polyolefin resins, modified products of these resins, and the like.
  • the modified product is a reaction of the reactive functional group contained in the structure of these resins with another compound (monomer, cross-linking agent, etc.) containing a functional group capable of reacting with the functional group in the structure. It refers to resin.
  • organic resin one or two or more organic resins (unmodified) may be mixed and used, or in the presence of at least one organic resin, at least one other One or a mixture of two or more organic resins obtained by modifying the organic resin may be used.
  • the organic resin film may contain any color pigment or rust preventive pigment.
  • a water-based product obtained by dissolving or dispersing in water can also be used.
  • Example 2 A predetermined amount of pure metal ingot was used to melt the ingot so as to obtain a plating layer having the chemical composition shown in Tables 1 and 2. After the ingot was melted, a plating bath was prepared in the atmosphere. A batch-type hot-dip plating apparatus was used to produce the plated checkered steel sheets.
  • plated checkered steel sheets were produced under the conditions shown in Tables 1 and 2. Specifically, it is as follows. Under an environment of N 2 -H 2 (5%) (dew point of -40°C or less, oxygen concentration of less than 25 ppm), the base checkered steel plate was heated from room temperature by electric heating, held for 60 seconds, and then N 2 gas was blown. , the plating bath temperature was cooled to +10°C, and immediately immersed in the plating bath. After that, the base checkered steel sheet is pulled up from the plating bath, and the N2 gas wiping pressure is adjusted so that the coating amount on the plate surface provided with the convex portions and the flat portions is about 250 g/ m2 . , a plated checkered steel sheet was produced.
  • N 2 -H 2 5%) (dew point of -40°C or less, oxygen concentration of less than 25 ppm)
  • FIGS. 3A to 3C The shape of the base checkered steel plate used was the same as in FIGS. 3A to 3C.
  • A, B, C, D, E, and H are as follows.
  • H height of convex portion (that is, height of stripes).
  • This checkered steel plate is hot-rolled Al-killed steel, and has an angle A of 45°, a length B of 25.3 mm, a maximum width C of 5.1 mm, a minimum width D of 2.5 mm, and a pitch E of 28.6 mm. there were. Moreover, the area occupation ratio of the convex portion was 40%. However, the height H of the convex portion (that is, the stripe height T ⁇ t) was as shown in Table 1.
  • pre-Ni-plated checkered steel sheets obtained by applying pre-Ni plating to the hot-rolled checkered steel sheets were used as the base checkered steel sheets.
  • the Ni adhesion amount was set to 1 g/m 2 to 3 g/m 2 .
  • An example using a pre-Ni-plated checkered steel sheet as the checkered steel sheet is indicated as "pre-Ni" in the column of "checkered steel sheet" in the table.
  • the plated checkered steel sheet was bent 90° V with the plate surface on which the convex and flat portions were provided on the crest side, and a cellophane tape with a width of 24 mm was pressed against the crest of the V bend. pulled away. 10. "A+” evaluation when the area ratio of the plating layer separated from the plated checkered steel plate and adhering to the cellophane tape to the area of the pressed cellophane tape is 3.0% or less, and "A” evaluation when 5.0% or less; 0% or less was evaluated as "B", and over 10.0% was evaluated as "NG”.
  • test no. No. 97 is an example having a high heating temperature of 850° C. or higher before plating.
  • Test no. 98 is an example in which the heating rate before plating is as high as 30°C/s.
  • Test no. 99 is an example in which the cooling rate after heating before plating is as high as 30°C/s.
  • Test no. 100 is an example in which the heating rate before plating and the cooling rate after heating before plating are as high as 30° C./s.
  • Test no. 101 is an example in which the cooling rate after plating is as high as 30°C/s. Test no.
  • test example no. 103 (comparative example) to No. No. 105 (comparative example) is an example in which the heating rate before plating, the cooling rate after heating before plating, and the cooling rate after plating are slow.
  • These test nos. 97 to 103 all satisfy the plating layer composition of the present disclosure, but the layer thickness ratio and "x / (Tt)" value of the plating layer in the flat portion are large, flatness, corrosion resistance, and Workability deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Laminated Bodies (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

板面に凸部及び平坦部を有するZn-Al-Mg系めっき縞鋼板であって、めっき層が、所定の化学組成を有し、凸部の長手方向中央部で、凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面を観察したとき、凸部の左右における、平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)が0.2以上5.0以下であり、凸部での素地縞鋼板の板厚をT、平坦部での素地縞鋼板の板厚をtとしたときの縞高さT-tと、めっき縞鋼板を静置したときの静置面との隙間高さxと、が下記式1及び式2を満たすZn-Al-Mg系めっき縞鋼板。 式1:x/(T-t)≦1.5 式2:0.5<T-t≦t

Description

Zn-Al-Mg系めっき縞鋼板
 本開示は、Zn-Al-Mg系めっき縞鋼板に関する。
 縞鋼板は、圧延によって表面に連続した滑り止め用の凸部(つまり突起部)を付けた鋼板である。一般的には、一定の幅、一定の長さ、一定の高さの凸部が、圧延方向に対して、一定の角度および一定のピッチで設けられている。通常、縞鋼板は、熱間圧延により製造される。そして、縞鋼板は、大型車(バス、トラック等)の床板又はステップ、立体駐車場の敷板、工場の敷板、船舶の甲板、建設現場の仮設足場又は階段等に使用されている。
 例えば、特許文献1には、「母材鋼板と、前記母材鋼板の表面に配されたNiめっき層と、前記Niめっき層の表面に配された溶融めっき層とを有し、板面に凸部と平面部とを有する溶融めっき縞鋼板であって、前記凸部の前記Niめっき層の膜厚が片面当たり0.07~0.4μmであり、前記平面部の前記Niめっき層の膜厚が片面当たり0.05~0.35μmであり、前記凸部の前記Niめっき層の前記膜厚が、前記平面部の前記Niめっき層の前記膜厚に対して、100%超400%以下であり、前記溶融めっき層の付着量が片面当たり60~400g/mであり、前記溶融めっき層が、化学組成として、質量%で、Al:1.0%超26%以下、Mg:0.05~10%、Si:0~1.0%、Sn:0~3.0%、Ca:0~1.0%を含み、残部がZnおよび不純物よりなる溶融めっき縞鋼板。」が開示されている。
 また、特許文献2には、「帯状縞鋼板を酸洗処理した後、焼鈍温度:450~850℃、焼鈍炉内の鋼帯張力:0.3~2.0kg/mm、めっきライン内の鋼帯張力:0.3~3.0kg/mm、溶融金属ワイピング用ガス圧:0.02~1.5kg/cmの要件を満たす条件で連続的に溶融金属めっきを行なう帯状縞鋼板の連続溶融金属めっき方法。」が開示されている。
国際公報第2019/054483号 特許第2743774号
 縞鋼板は、屋外で利用されることが多いため、耐食性が求められる。そのため、特許文献1~2で開示されているように、耐食性を向上させるために、縞鋼板に溶融めっきを施す。
 一方で、縞鋼板は、足場、滑り止め等に利用されるため、平坦度も求められる。
 しかし、縞鋼板は、凸部及び平坦部による局所的な板厚の違いを有する鋼板である。そのため、耐食性を向上させるために、縞鋼板に溶融めっきすると、縞鋼板の凸部及び平坦部とで温度変化による膨張量及び収縮量に違いが生じ、縞鋼板は変形する。変形しためっき縞鋼板を製品にすると平坦度が悪くなる。また、平坦度が悪くなると、めっき層の層厚のバラツキが生じ、耐食性及び加工性が低下する。
 特に、Zn-Al-Mg合金系めっき浴は、Zn系めっき浴に比べ、粘度が低いため、縞鋼板の平坦度が悪くなると、めっき層の層厚にバラツキが生じ易く、耐食性及び加工性が低下する。そのため、Zn-Al-Mg系めっき縞鋼板には、更なる平坦度の向上が求められる。
 そこで、本開示の課題は、平坦度、耐食性及び加工性に優れたZn-Al-Mg系めっき縞鋼板を提供することである。
 上記課題は、以下の手段により解決される。
<1>
 一方の板面に凸部及び平坦部が設けられた素地縞鋼板と、前記素地縞鋼板の凸部及び平坦部が設けられた板面に配されたZn-Al-Mg合金層を含むめっき層と、を有するZn-Al-Mg系めっき縞鋼板であって、
 前記めっき層が、質量%で、
 Zn:65.0%超、
 Al:1.0%超~25.0%未満、
 Mg:1.0%超~12.5%未満、
 Sn:0%~5.0%、
 Bi:0%~5.0%未満、
 In:0%~2.0%未満、
 Ca:0%~3.00%、
 Y :0%~0.5%、
 La:0%~0.5%未満、
 Ce:0%~0.5%未満、
 Si:0%~2.5%未満、
 Cr:0%~0.25%未満、
 Ti:0%~0.25%未満、
 Zr:0%~0.25%未満、
 Mo:0%~0.25%未満、
 W :0%~0.25%未満、
 Ag:0%~0.25%未満、
 P :0%~0.25%未満、
 Ni:0%~0.25%未満、
 Co:0%~0.25%未満、
 V :0%~0.25%未満、
 Nb:0%~0.25%未満、
 Cu:0%~0.25%未満、
 Mn:0%~0.25%未満、
 Li:0%~0.25%未満、
 Na:0%~0.25%未満、
 K :0%~0.25%未満、
 Fe:0%~5.0%、
 Sr:0%~0.5%未満、
 Sb:0%~0.5%未満、
 Pb:0%~0.5%未満、
 B :0%~0.5%未満、及び
 不純物からなる化学組成を有し、
 前記凸部の長手方向中央部で、前記凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面を観察したとき、前記凸部の左右における、前記平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)が0.2以上5.0以下であり、
 前記凸部での前記素地縞鋼板の板厚をT、前記平坦部での前記素地縞鋼板の板厚をtとしたときの縞高さT-tと、めっき縞鋼板を静置したとき、静置面と前記静置面に対向するめっき縞鋼板の板面との隙間高さxと、が下記式1及び式2を満たすZn-Al-Mg系めっき縞鋼板。
 式1:x/(T-t)≦1.5
 式2:0.5<T-t≦t
 式1及び式2中の、素地縞鋼板の板厚T、t、隙間高さxの単位は、「mm」である。
<2>
 前記Alの濃度が5.0%超~25.0%未満であり、Mgの濃度が3.0%超~12.5%未満である<1>に記載のZn-Al-Mg系めっき縞鋼板。
<3>
 前記めっき層が、前記素地縞鋼板と前記Zn-Al-Mg合金層との間に、Al-Fe合金層を含む<1>又は<2>に記載のZn-Al-Mg系めっき縞鋼板。
 本開示によれば、平坦度、耐食性及び加工性に優れたZn-Al-Mg系めっき縞鋼板を提供できる。
本開示のZn-Al-Mg系めっき縞鋼板の断面の一例を示すSEM写真(500倍)である。 本開示のZn-Al-Mg系めっき縞鋼板の断面の一例を示すSEM写真(2000倍)である。 本開示のZn-Al-Mg系めっき縞鋼板における隙間高さxの測定方法を説明するための模式図である。 本開示のZn-Al-Mg系めっき縞鋼板の素地縞鋼板の一例を示す平面模式図である。 本開示のZn-Al-Mg系めっき縞鋼板の素地縞鋼板の一例を示す断面模式図であって、図3AのG-G断面模式図である。 本開示のZn-Al-Mg系めっき縞鋼板の素地縞鋼板の一例を示す断面模式図であって、図3AのF-F断面模式図である。
 以下、本開示の一例について説明する。
 なお、本開示において、化学組成の各元素の含有量の「%」表示は、「質量%」を意味する。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 化学組成の元素の含有量は、元素濃度(例えば、Zn濃度、Mg濃度等)と表記することがある。
 本開示のZn-Al-Mg系めっき縞鋼板(以下、単に「めっき縞鋼板」とも称する)は、一方の板面に凸部及び平坦部が設けられた素地縞鋼板と、前記素地縞鋼板の凸部及び平坦部が設けられた板面に配されたZn-Al-Mg合金層を含むめっき層と、を有するめっき縞鋼板である。
 そして、本開示のめっき縞鋼板は、めっき層が所定の化学組成を有し、前記凸部の長手方向中央部で、凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面を観察したとき前記凸部の左右における、平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)が0.2以上5.0以下であり、凸部での素地縞鋼板の板厚をT、平坦部での素地縞鋼板の板厚をtとしたときの縞高さT-tと、めっき縞鋼板を静置したとき、静置面と前記静置面に対向するめっき縞鋼板の板面との隙間高さxと、が下記式1及び式2を満たす。
 式1:x/(T-t)≦1.5
 式2:0.5<T-t≦t
 式1及び式2中の、素地縞鋼板の板厚T、t、隙間高さxの単位は、「mm」である。
 本開示のめっき縞鋼板は、上記構成により、平坦度、耐食性及び加工性に優れたZn-Al-Mg系めっき縞鋼板となる。そして、本開示のめっき縞鋼板は、次の知見により見出された。
 発明者らは、平坦度を更に高め、Zn系めっき浴に比べ粘度が低いZn-Al-Mg系めっきでも、めっき層の層厚にバラツキを抑制することを検討した。その結果、次の知見を得た。
 めっき縞鋼板の平坦度の悪化は、めっき浴浸漬前の、素地縞鋼板の加熱温度だけではなく、加熱速度及び冷却速度にも影響する。具体的には、素地縞鋼板は、溶融めっきすると、めっき浴の浸漬前の急激な加熱及び冷却によっても、板厚が異なる凸部及び平坦部とで、急激な温度変化による膨張量及び収縮量に違いが生じ、変形する。加熱及び冷却するとき、通常の平坦な鋼板とは異なり、素地縞鋼板の凸部及び平坦部とで、加熱速度及び冷却速度に違いが生じるためである。
 そのため、素地縞鋼板に対して、めっき浴浸漬前の加熱及び冷却を緩やかな加熱速度及び冷却速度で実施すると、板厚が異なる凸部及び平坦部とで加熱速度及び冷却速度の違いが生じ難くなる。それにより、凸部及び平坦部が極力均一に加熱及び冷却されて、変形が抑制される。その結果、素地縞鋼板の平坦度が更に向上し、Zn-Al-Mg系めっきでも、めっき層の層厚にバラツキが低減され、耐食性及び加工性が向上する。
 すなわち、発明者らは、上記平坦部のめっき層の層厚比、上記式1及び上記式2を満たすZn-Al-Mg系めっき縞鋼板が得られることを知見した。
 以上の知見から、本開示のめっき縞鋼板は、平坦度、耐食性及び加工性に優れたZn-Al-Mg系めっき縞鋼板となることが見出された。
 以下、本開示のめっき縞鋼板の詳細について説明する。
(素地縞鋼板)
 素地縞鋼板は、めっきされる対象の鋼板である。素地縞鋼板は、一方の板面に凸部及び平坦部が設けられている。
 素地縞鋼板は、通常、熱間圧延によって凸部の形状が付与される。素地縞鋼板の鋼種は特に限定されるものではない。素地縞鋼板は、例えば、JIS G3101:2015に規定される一般構造用圧延鋼材に相当する鋼種が挙げられる。
 素地縞鋼板の凸形状は、例えば、熱間圧延の仕上げ段階で、作動ロールに形成された凹形状を鋼板面に転写することで付与される。
 なお、凸部及び平坦部が設けられている板面と板厚方向に対向する対側の板面は、通常の鋼板の表面性状を有する面である。具体的には、凸部及び平坦部が設けられている板面と板厚方向に対向する対側の板面は、例えば、仕上熱間圧延の段階で、凸部及び平坦部が設けられる作動ロールに対向する通常の圧延用ロール(つまり通常の粗度を有するロール)によって付与される板面である。
 素地縞鋼板は、プレめっきされたプレめっき縞鋼板でもよい。プレめっき縞鋼板は、例えば、電解処理方法または置換めっき方法により得られる。電解処理方法では、種々のプレめっき成分の金属イオンを含む硫酸浴又は塩化物浴に、素地縞鋼板を浸漬して電解処理することにより、プレめっき縞鋼板が得られる。置換めっき方法では、種々のプレめっき成分の金属イオンを含み、硫酸でpH調整した水溶液に、素地縞鋼板を浸漬して、金属を置換析出させて、プレめっき縞鋼板が得られる。
 プレめっき縞鋼板としては、プレNiめっき縞鋼板が代表例として挙げられる。
(めっき層)
 めっき層は、Zn-Al-Mg合金層を含む。めっき層は、Zn-Al-Mg合金層に加え、Al-Fe合金層を含んでもよい。Al-Fe合金層は、素地縞鋼板とZn-Al-Mg合金層との間に配される。
 つまり、めっき層は、Zn-Al-Mg合金層の単層構造であってもよく、Zn-Al-Mg合金層とAl-Fe合金層とを含む積層構造であってもよい。積層構造の場合、Zn-Al-Mg合金層は、めっき層の表面を構成する層とすることがよい。
 ただし、めっき層の表面にめっき層構成元素の酸化被膜が50nm程度形成されているが、めっき層全体の厚さに対して厚さが薄くめっき層の主体を構成していないと見なす。
 めっき層の付着量は、片面あたり60~500g/mが好ましい。
 めっき層の付着量を60g/m以上にすると、より確実に耐食性が確保できる。一方、めっき層の付着量を500g/m以下にすると、めっき層の垂れ模様等の外観不良が抑制できる。
 次に、めっき層の化学組成について説明する。
 めっき層の化学組成は、質量%で、
Zn:65.0%超、
 Al:1.0%超~25.0%未満、
 Mg:1.0%超~12.5%未満、
 Sn:0%~5.0%、
 Bi:0%~5.0%未満、
 In:0%~2.0%未満、
 Ca:0%~3.00%、
 Y :0%~0.5%、
 La:0%~0.5%未満、
 Ce:0%~0.5%未満、
 Si:0%~2.5%未満、
 Cr:0%~0.25%未満、
 Ti:0%~0.25%未満、
 Zr:0%~0.25%未満、
 Mo:0%~0.25%未満、
 W :0%~0.25%未満、
 Ag:0%~0.25%未満、
 P :0%~0.25%未満、
 Ni:0%~0.25%未満、
 Co:0%~0.25%未満、
 V :0%~0.25%未満、
 Nb:0%~0.25%未満、
 Cu:0%~0.25%未満、
 Mn:0%~0.25%未満、
 Li:0%~0.25%未満、
 Na:0%~0.25%未満、
 K:0%~0.25%未満、
 Fe:0%~5.0%、
 Sr:0%~0.5%未満、
 Sb:0%~0.5%未満、
 Pb:0%~0.5%未満、
 B :0%~0.5%未満、及び
 不純物からなる化学組成とする。
 めっき層の化学組成において、Sn、Bi、In、Ca、Y、La、Ce、Si、Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、Na、K、Fe、Sr、Sb、Pb、及びBは、任意成分である。つまり、これら元素は、めっき層中に含まなくてもよい。これら任意成分を含む場合、任意元素の各含有量は、後述する範囲が好ましい。
 ここで、このめっき層の化学組成は、めっき層全体の平均化学組成(めっき層がZn-Al-Mg合金層の単層構造の場合、Zn-Al-Mg合金層の平均化学組成、めっき層がAl-Fe合金層及びZn-Al-Mg合金層の積層構造の場合、Al-Fe合金層及びZn-Al-Mg合金層の合計の平均化学組成)である。
 通常、溶融めっき法において、Zn-Al-Mg合金層の化学組成は、めっき層の形成反応がめっき浴内で完了することがほとんどであるため、ほぼめっき浴の化学組成と同等になる。また、溶融めっき法において、Al-Fe合金層は、めっき浴浸漬直後、瞬時に形成し成長する。そして、Al-Fe合金層は、めっき浴内で形成反応が完了しており、その厚さも、Zn-Al-Mg合金層に対して十分に小さいことが多い。
 したがって、めっき後、加熱合金化処理等、特別な熱処理をしない限りは、めっき層全体の平均化学組成は、Zn-Al-Mg合金層の化学組成と実質的に等しく、Al-Fe合金層の成分を無視することができる。
 以下、めっき層の各元素について説明する。
 Zn:65.0%超
 Znは、耐食性を得るために必要な元素である。Zn濃度は、原子組成比で考慮した場合、Al、Mg等の低比重の元素と共に構成されるめっき層であることから、原子組成比率でもZn主体とする必要がある。
 よって、Zn濃度は、65.0%超とする。Zn濃度は、70%以上が好ましい。なお、Zn濃度の上限は、Znを除く元素及び不純物以外の残部となる濃度である。
 Al:1.0%超~25.0%未満
 Alは、Al晶を形成し、耐食性を確保するために必須の元素である。そして、Alは、めっき層の密着性を高め、加工性を確保するためにも、必須の元素である。よって、Al濃度の下限値は、1.0%超え(好ましくは5.0%超え、より好ましくは10.0%以上)とする。
 一方、Al濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Al濃度の上限値は、25.0%未満(好ましくは23.0%以下)とする。
 Mg:1.0%超~12.5%未満
 Mgは、耐食性を確保するために必須の元素である。よって、Mg濃度の下限値は、1.0%超え(好ましくは3.0%超え、より好ましくは5.0%超え)とする。
 一方、Mg濃度が増加し過ぎると、加工性が劣化する傾向となる。よって、Mg濃度の上限は、12.5%未満(好ましくは10.0%以下)とする。
 Sn:0~5.0%
 Snは、耐食性に寄与する元素である。よって、Sn濃度の下限値は、0%超え(好ましくは0.1%以上、より好ましくは0.5%以上)が好ましい。
 一方、Sn濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Sn濃度の上限値は5.0%以下(好ましくは3.0%以下)とする。
 Bi:0%~5.0%未満
 Biは、耐食性に寄与する元素である。よって、Bi濃度の下限値は、0%超え(好ましくは0.1%以上、より好ましくは3.0%以上)が好ましい。
 一方、Bi濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Bi濃度の上限値は5.0%未満(好ましくは4.8%以下)とする。
 In:0%~2.0%未満
 Inは、耐食性に寄与する元素である。よって、In濃度の下限値は、0%超え(好ましくは0.1%以上、より好ましくは1.0%以上)が好ましい。
 一方、In濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、In濃度の上限値は2.0%未満(好ましくは1.8%以下)とする。
 Ca:0%~3.0%
 Caは、耐食性を付与するのに最適なMg溶出量を調整することができる元素である。よって、Ca濃度の下限値は、0%超え(好ましくは0.05%以上)が好ましい。
 一方、Ca濃度が増加し過ぎると、耐食性および加工性が劣化する傾向となる。よって、Ca濃度の上限値は3.0%以下(好ましくは1.0%以下)とする。
 Y :0%~0.5%
 Yは、耐食性に寄与する元素である。よって、Y濃度の下限値は、0%超え(好ましくは0.1%以上)が好ましい。
 一方、Y濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Y濃度の上限値は0.5%以下(好ましくは0.3%以下)とする。
 LaおよびCe:0%~0.5%未満
 LaおよびCeは、耐食性に寄与する元素である。よって、La濃度およびCe濃度の下限値は、各々、0%超え(好ましくは0.1%以上)が好ましい。
 一方、La濃度およびCe濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、La濃度およびCe濃度の上限値は、各々、0.5%未満(好ましくは0.4%以下)とする。
 Si:0%~2.5%未満
 Siは、Al-Fe合金層の成長を抑制して耐食性向上に寄与する元素である。よって、Si濃度は0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。特に、Snを含まない場合(つまり、Sn濃度が0%である場合)、耐食性の確保の観点から、Si濃度は0.1%以上(好ましくは0.2%以上)が好ましい。
 一方、Si濃度が増加し過ぎると、耐食性および加工性が劣化する傾向となる。よって、Si濃度の上限値は、2.5%未満とする。特に、耐食性の観点からは、Si濃度は、好ましくは2.4%以下、より好ましくは1.8%以下、さらに好ましくは1.2%以下である。
 Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、Na、およびK:0%~0.25%未満
 Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、NaおよびKは、耐食性に寄与する元素である。よって、Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、NaおよびKの濃度の下限値は、各々、0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。
 一方、Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、NaおよびKの濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、Na、およびKの濃度の上限値は、各々、0.25%未満とする。Cr、Ti、Zr、Mo、W、Ag、P、Ni、Co、V、Nb、Cu、Mn、Li、Na、およびKの濃度の上限値は、好ましくは0.22%以下である。
 Fe:0%~5.0%
 溶融めっき法によって、めっき層を形成する場合、Zn-Al-Mg合金層およびAl-Fe合金層に一定のFe濃度が含有される。
 Fe濃度が5.0%までは、めっき層(特にZn-Al-Mg合金層)に含まれても性能に悪影響がないことが確認されている。Feの多くは、Al-Fe合金層に含まれていることが多いため、この層の厚さが大きいと一般的にFe濃度は大きくなる。
 Sr、Sb、PbおよびB:0%~0.5%未満
 Sr、Sb、PbおよびBは、耐食性に寄与する元素である。よって、Sr、Sb、PbおよびBの濃度の下限値は、各々、0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。
 一方、Sr、Sb、PbおよびBの濃度が増加し過ぎると、耐食性が劣化する傾向となる。よって、Sr、Sb、PbおよびBの濃度の上限値は、各々、0.5%未満とする。
 不純物
 不純物は、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。例えば、めっき層には、素地縞鋼板とめっき浴との相互の原子拡散によって、不純物として、Fe以外の成分も微量混入することがある。
 めっき層の化学成分は、次の方法により測定する。
 まず、素地縞鋼板の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP分析で測定することで、めっき層の化学組成(めっき層がZn-Al-Mg合金層の単層構造の場合、Zn-Al-Mg合金層の化学組成、めっき層がAl-Fe合金層及びZn-Al-Mg合金層の積層構造の場合、Al-Fe合金層及びZn-Al-Mg合金層の合計の化学組成)を得ることができる。酸種は、めっき層を溶解できる酸であれば、特に制限はない。なお、化学組成は、平均化学組成として測定される。なお、ICP分析でZn濃度は、「式(a):Zn濃度=100%-他の元素濃度(%)」で求める。
 ここで、素地縞鋼板として、プレめっき縞鋼板を用いた場合、そのプレめっきの成分も検出される。
 例えば、プレNiめっき縞鋼板を用いた場合、ICP分析では、めっき層中のNiだけでなく、プレNiめっき中のNiも検出される。具体的には、例えば、Ni付着量が1g/m~3g/m(厚さ0.1~0.3μm程度)のプレめっき縞鋼板を素地縞鋼板として使用したとき、仮にめっき層に含まれるNi濃度が0%であっても、Ni濃度が0.1~15%として検出される。従って、ICP分析の結果ではめっき層中のNi濃度が不明となる場合がある。そこで、プレNiめっき縞鋼板を素地鋼板として用いた場合のめっき層中のNi濃度は、グロー放電発光分析法(定量GDS)で測定する。具体的には、高周波グロー放電発光表面部分析装置(堀場製作所製、型番:GD-Profiler2)でNi濃度が異なる3種類以上の標準試料を使用して、Ni濃度とNiの発光強度との関係について検量線を作成する。標準試料は、BAS製Zn合金標準試料 IMN ZH1、ZH2、ZH4を用いる。GDSの測定条件は次のとおりとする。
 H.V.:Feが785V、Niが630V、Coが720V
 アノード径:φ4mm
 ガス:Ar
 ガス圧力:600Pa
 出力:35W
 次に、上記条件でGDSを用いて、測定対象のめっき鋼材のめっき層の膜厚1/2位置におけるNiの発光強度を求める。得られたNiの発光強度と作成した検量線とから、めっき層1/2位置でのNi濃度を求める。めっき層1/2位置とは、上記条件でのGDS分析において、Feの強度が飽和した時間、すなわち、地鉄に到達した時間の1/2の時間での位置である。求めためっき層1/2位置でのNi濃度を、めっき層中のNi濃度とする。このとき、上述したZn濃度を求める式(1)における「他の元素濃度(%)」とは、ICP分析でのNi以外の元素の濃度(%)とGDS分析でのNi濃度(%)との合計となる。すなわち、素地鋼材としてプレNiめっき鋼材を用いた場合、めっき層のZn濃度は、「式(a‘):Zn濃度=100-(ICP分析でのNi以外の元素の濃度(%)+GDS分析でのNi濃度(%))」で求める。なお、プレNiめっき縞鋼板を素地縞鋼板として用いた場合、素地縞鋼板をめっき浴に浸漬した際に、プレNiめっき層中のNiがめっき浴中に微量に溶解する。そのため、めっき浴中のNi濃度が、建浴しためっき浴中のNi濃度と比べて0.02~0.03%高くなる。したがって、プレNiめっき縞鋼板を用いた場合には、めっき層中のNi濃度は最大で0.03%高くなる。
 ここで、素地縞鋼板がプレめっき縞鋼板か否かを判別する方法は、次の通りである。
 対象となる縞鋼板から、縞鋼板の板厚方向に沿って切断した断面が測定面となる試料を採取する。
 試料の測定面に対して、電子線マイクロアナライザ(Electron Probe MicroAnalyser:FE-EPMA)により、縞鋼板におけるめっき層と素地縞鋼板との界面付近を線分析し、Ni濃度を測定する。測定条件は、加速電圧15kV、ビーム径100nm程度、1点あたりの照射時間1000ms、測定ピッチ60nmである。なお、測定距離は、縞鋼板におけるめっき層と素地縞鋼板との界面でNi濃度が濃化しているか否かが確認できる距離であればよい。
 そして、縞鋼板におけるめっき層と素地縞鋼板との界面で、Ni濃度が濃化していれば、素地縞鋼板がプレめっき縞鋼板と判別する。
 次にAl-Fe合金層について説明する。
 Al-Fe合金層は、素地縞鋼板表面(具体的には、素地縞鋼板とZn-Al-Mg合金層との間)に形成されることがあり、組織としてAlFe相が主相の層である。Al-Fe合金層は、素地縞鋼板およびめっき浴の相互の原子拡散によって形成する。本開示の縞鋼板は、溶融めっき法によりめっき層を形成するので、Al元素を含有するめっき層では、Al-Fe合金層が形成され易い。めっき浴中に一定濃度以上のAlが含有されることから、AlFe相が最も多く形成する。しかし、原子拡散には時間がかかり、また、素地縞鋼板に近い部分では、Fe濃度が高くなる部分もある。そのため、Al-Fe合金層は、部分的には、AlFe相、AlFe相、AlFe相などが少量含まれる場合もある。また、めっき浴中にZnも一定濃度含まれることから、Al-Fe合金層には、Znも少量含有される。
 AlFe相、AlFe相、AlFe相、およびAlFe相の耐食性は、いずれの相であっても大差がない。ここでいう耐食性とは、溶接の影響を受けない部分での耐食性である。
 ここで、めっき層中にSiを含有する場合、Siは、特にAl-Fe合金層中に取り込まれ易く、Al-Fe-Si金属間化合物相となることがある。同定される金属間化合物相としては、AlFeSi相があり、異性体として、α、β、q1,q2-AlFeSi相等が存在する。そのため、Al-Fe合金層は、これらAlFeSi相等が検出されることがある。これらAlFeSi相等を含むAl-Fe合金層をAl-Fe-Si合金層とも称する。
 なお、Al-Fe-Si合金層もZn-Al-Mg合金層に対し、厚さは小さいため、めっき層全体における耐食性において与える影響は小さい。
 また、素地縞鋼板に各種プレめっき縞鋼板を使用した場合、プレめっきの付着量により、Al-Fe合金層の構造が変化することがある。具体的には、Al-Fe合金層周囲に、プレめっきに用いた純金属層が残存する場合、Zn-Al-Mg合金層の構成成分とプレめっき成分が結合した金属間化合物相(例えば、AlNi相等)が合金層を形成する場合、Al原子およびFe原子の一部が置換したAl-Fe合金層が形成する場合、または、Al原子、Fe原子およびSi原子の一部が置換したAl-Fe-Si合金層を形成する場合等がある。
 つまり、Al-Fe合金層とは、AlFe相を主体とする合金層以外に、上記種々の態様の合金層を包含する層である。
 なお、各種プレめっき縞鋼板のうち、プレNiめっき縞鋼板にめっき層を形成した場合、Al-Fe合金層として、Al-Ni-Fe合金層が形成されることになる。
 Al-Fe合金層の厚さは、例えば、0μm以上7μm以下である。
 Al-Fe合金層の厚さは、めっき層(具体的にはZn-Al-Mg合金層)の密着性を高め、耐食性および加工性を確保する観点から、0.05μm以上5μm以下が好ましい。
 通常、Al-Fe合金層よりもZn-Al-Mg合金層の厚さの方が厚いため、Al-Fe合金層のめっき縞鋼板としての耐食性への寄与は、Zn-Al-Mg合金層と比較すると小さい。しかし、Al-Fe合金層には、成分分析結果から推測されるように耐食性元素であるAlおよびZnを一定濃度以上含有する。そのため、Al-Fe合金層は、素地縞鋼板に対してある程度の耐食性を有している。
 また、溶融めっき法により本開示で規定する化学組成のめっき層を形成すると、素地縞鋼板とZn-Al-Mg合金層との間に、100nm以上のAl-Fe合金層が形成されることが多い。
 耐食性の観点からは、Al-Fe合金層は厚いほど好ましい。よって、Al-Fe合金層の厚さは、好ましくは0.05μm以上である。しかしながら、厚いAl-Fe合金層は著しくめっき加工性を劣化させる原因となるから、一定厚さ以下が好ましい。加工性の観点から、Al-Fe合金層の厚さは7μm以下が好ましい。Al-Fe合金層の厚さが7μm以下であると、Al-Fe合金層を起点に発生するクラック及びパウダリング量が減少し、加工性が向上する。Al-Fe合金層の厚さは、さらに好ましくは5μm以下であり、さらに好ましくは2μm以下である。
 Al-Fe合金層の厚さは、次の通り測定する。
 試料を樹脂埋め込み後、研磨してめっき層断面(めっき層の板厚方向に沿った切断面)のSEMの反射電子像(ただし、倍率10000倍、視野の大きさ:縦50μm×横200μmで、Al-Fe合金層が視認される視野とする。)において、同定されたAl-Fe合金層の任意の5箇所について、厚さを測定する。そして、5箇所の算術平均をAl-Fe合金層の厚さとする。
(めっき縞鋼板の特性)
-平坦部のめっき層の層厚比-
 本開示のめっき縞鋼板において、平坦部で局所的にめっき層が薄い個所、厚い個所が生じている場合、耐食性が劣化する。加えて、加工性も劣化する。
 そのため、凸部の左右における、平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)は、0.2以上5.0以下とする。
 平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)は、耐食性向上及び加工性向上の観点から、好ましくは0.25以上4.00以下であり、より好ましくは0.33以上3.00以下である。
 ここで、耐食性及び加工性の観点から、平坦部のめっき層の層厚は、1.0~300.0μmが好ましく、2.0~200.0μmがより好ましい。
 平坦部のめっき層の層厚比は、次の通り測定される。
 まず、測定対象のめっき縞鋼板の板面中央部から、凸部の長手方向中央部で、凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面(具体的には、図3A中、F-F断面に相当する切断面)が観察面となる試料を採取する。
 次に、試料を樹脂埋め込みして、走査型電子顕微鏡(SEM)により倍率500倍又は2000倍で試料の観察面を観察する(図1A及び図1B参照)。
 次に、左右の平坦部のめっき層の層厚を測定し、左側めっき層の層厚/右側めっき層の層厚の比を求める。
 ここで、凸部と平坦部との境界(具体的には、板厚方向に対向する一対の板面が平行である平坦部の端(図1A中、EG参照))から、3mm離れた個所(図1中、FP参照)で、左右の平坦部のめっき層の層厚(図1B中、FT参照)を測定する。
 なお、図1中、Bは素地縞鋼板、Cはめっき層、Qは凸部、Pは平坦部を示す。
 そして、この操作を、互いに100mm以上離れた個所で採取した3つの試料に対して実施し、得られた「左側めっき層の層厚/右側めっき層の層厚の比」の算出平均値を「平坦部のめっき層の層厚比」とする。
-式1及び式2-
 本開示のめっき縞鋼板において、凸部での素地縞鋼板の板厚Tと平坦部での素地縞鋼板の板厚tとの差で示される縞高さT-tが大きすぎると、凸部と平坦部の熱膨張量差が大きくなりすぎる。その結果、めっき浴浸漬前の加熱及び冷却により変形して、平坦度が悪化する。そのため、縞高さT-tは、平坦部での素地縞鋼板の板厚と同等以下とする。
 一方、縞高さT-tの下限は、めっき縞鋼板の機能(例えば耐滑り性)を確保するために、0.5mm超とする。
 本開示のめっき縞鋼板において、めっき縞鋼板を静置したときの静置面との隙間高さxが大きすぎると、平坦度が悪化する。よって、隙間高さxは、縞高さT-t×1.5以下とする。
 そして、本開示のめっき縞鋼板の平坦度が悪化すると、凸部の左右における、平坦部のめっき層の層厚比が大きくなり、耐食性及び加工性も劣化する。
 よって、凸部での素地縞鋼板の板厚をT、平坦部での前記素地縞鋼板の板厚をtとしたときの縞高さT-tと、めっき縞鋼板を静置したとき、静置面と前記静置面に対向するめっき縞鋼板の板面との隙間高さxとは、下記式1及び式2を満たすようにする。
 式1:x/(T-t)≦1.5
 式2:0.5<T-t≦t
 式1及び式2中の、素地縞鋼板の板厚T、t、隙間高さxの単位は、「mm」である。
 式1中、平坦度向上、耐食性向上、加工性向上の観点から、「x/(T-t)」値は、1.2以下が好ましく、1.0以下がより好ましい。なお、同観点から、「x/(T-t)」値は0に近いことが好ましい。
 式2中、平坦度向上、耐食性向上、加工性向上の観点から、「T-t」値は0.8t以下が好ましく、0.7t以下がより好ましい。なお、縞高さT-tの下限は、めっき縞鋼板の機能(例えば耐滑り性)向上を考慮して設定される。
 ここで、平坦部での素地縞鋼板の板厚tは、1.6~6.0mmが好ましい。
 隙間高さxは、平坦度、耐食性及び加工性の観点から、3.0mm以下が好ましく、2.0mm以下がより好ましい。
 なお、めっき縞鋼板の機能(例えば耐滑り性)を考慮すると、凸部(つまり縞部)の面積占有率は15~60%が好ましい。
 凸部での素地縞鋼板の板厚T、平坦部での素地縞鋼板の板厚t、縞高さT-t、及び隙間高さxは、次の通り測定される。
 まず、測定対象のめっき縞鋼板の板面中央部から、300mm角の試料を採取する。
 次に、採取した試料を、水平な面(静置面)に静置する。ただし、静置面に対向する試料の板面は、めっき縞鋼板における、凸部及び平坦部が設けられていない板面に相当する面とする。
 静置した試料を、静置面と水平方向から観察し、静置面と静置面に対向する試料の板面との隙間高さを測定する(図2参照)。
 そして、この操作を、試料の4辺方向から実施し、隙間高さの最大値を隙間高さxとする。
 ここで、図2中、CSはめっき縞鋼板の試料、Suは静置面を示す。
 一方、300mm角の試料から、凸部の長手方向中央部で、凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面(具体的には、図3A中、F-F断面に相当する切断面)が観察面となる試料を採取する。
 次に、試料を樹脂埋め込みして、光学顕微鏡により倍率25倍で試料の観察面を観察する(図1参照)。
 次に、凸部の幅方向中央部での素地縞鋼板の板厚、平坦部の幅方向中央部での素地縞鋼板の板厚を各々測定する。
 そして、この操作を、3つの試料に対して実施し、得られた「凸部の幅方向中央部での素地縞鋼板の板厚」及び「平坦部の幅方向中央部での素地縞鋼板の板厚」の最大値を、各々、凸部での素地縞鋼板の板厚T、平坦部での素地縞鋼板の板厚tとし、その差分を縞高さT-tとする。
(めっき縞鋼板の製造方法)
 以下、本開示のめっき縞鋼板の製造方法の一例について説明する。
 本開示のめっき縞鋼板の製造方法は、例えば、素地縞鋼板を、めっき浴の温度+20℃以上850℃以下まで、加熱速度5~20℃/sで加熱して保持した後、めっき浴の温度以上めっき浴の温度+10℃以下の範囲まで冷却速度5~20℃/sで冷却し、冷却した前記素地縞鋼板を、めっき浴に浸漬して、めっき浴から引き上げた後、めっき浴の温度が500℃超の場合、500℃まで冷却速度5~20℃/sで冷却して、めっき縞鋼板を製造する。
 ここで、めっきは、例えば、ゼンジミア法のような連続式溶融金属めっき法を実施する。
 具体的な製造方法の一例は、次の通りである。
 まず、縞高さT-tが式1を満たす素地縞鋼板を準備する。
 次に、素地縞鋼板を酸洗した後、素地縞鋼板を加熱し、加熱到達温度で保持する。
 ここで、酸洗後、加熱前に、素地縞鋼板に、プレめっき(例えば、プレNiめっき)を施してもよい。
 加熱到達温度は、めっき浴の温度+20℃以上850℃以下とする。加熱到達温度を850℃以下とすることで、素地縞鋼板の変形を抑制し、平坦度が向上する。
 加熱速度は、5~20℃/sとする。加熱速度20℃/s以下で緩やかに加熱することで、素地縞鋼板の凸部と平坦部とが均一に昇温し、凸部と平坦部との熱膨張差による変形が抑制される。その結果、更なる平坦度の悪化が抑制される。
 一方、過度に加熱速度を緩やかにすると、素地縞鋼板の凸部と平坦部とが均一に昇温し難く、凸部と平坦部との熱膨張差による変形が生じやすくなる。よって、加熱速は5℃/sとする。
 プレめっきをしない場合、加熱保持時間は、10~120秒とする。加熱保持時間を10~120秒とすることで、表面の酸化被膜を還元してめっき性を良好にすることができる。
 素地縞鋼板の加熱は、例えば、通電加熱、無酸化直火加熱、輻射加熱で実施する。
 次に、めっき浴の温度以上めっき浴の温度+10以下の範囲まで、素地縞鋼板を冷却する。
 冷却速度は、5~20℃/sとする。冷却速度20℃/s以下で緩やかに冷却することで、素地縞鋼板の凸部と平坦部とが均一に冷却し、凸部と平坦部との熱収縮差による変形が抑制される。その結果、更なる平坦度の悪化が抑制される。
 一方、過度に冷却速度を緩やかにすると、素地縞鋼板の凸部と平坦部とが均一に冷却し難く、凸部と平坦部との熱収縮差による変形が生じやすくなる。よって、冷却速度は5℃/sとする。
 素地縞鋼板の冷却は、例えば、窒素ガス冷却で実施する。
 以上のように、めっき前の素地縞鋼板に対し、加熱及び冷却が実施されることで、平坦度の悪化が抑制されるため、隙間高さxが式2を満たすめっき縞鋼板が得られる。
 次に、冷却した素地縞鋼板を、上記本開示のめっき縞鋼板におけるめっき層の化学組成と同等の化学組成を有するめっき浴に浸漬する。
 次に、素地縞鋼板を、めっき浴から引き上げた後、ワイピングによりめっき付着量を調整して、冷却する。
 めっき浴の温度が500℃以下の場合、めっき後の冷却条件については特に制限はない。一方、めっき浴の温度が500℃超の場合、めっき後、500℃までの冷却速度は、5~20℃/sとする。冷却速度20℃/s以下で緩やかに冷却することで、素地縞鋼板の凸部と平坦部とが均一に冷却し、凸部と平坦部との熱膨張差による変形が抑制される。その結果、更なる平坦度の悪化が抑制される。
 一方、過度に冷却速度を緩やかにすると、素地縞鋼板の凸部と平坦部とが均一に冷却し難く、凸部と平坦部との熱膨張差による変形が生じやすくなる。よって、冷却速度は5℃/sとする。
 なお、500℃以下の冷却条件については、特に制限はない。
 めっき後の冷却は、例えば、空冷、窒素ガス冷却で実施する。
 ここで、素地縞鋼板の平坦度が悪いと、めっき後のワイピング時に、ワイピングノズルと素地縞鋼板との距離が場所により変化するため、めっき層が局所的に薄い個所及び厚い個所が生じ、平坦部間でめっき層の層厚にばらつきが生じる。
 また、ガス冷却する場合も、冷却ノズルと素地縞鋼板との距離が場所により変化するため、めっき層が局所的に薄い個所及び厚い個所が生じ、平坦部間でめっき層の層厚にばらつきが生じる。
 特に、Zn-Al-Mg系めっき浴は、Zn系めっき浴に比べ、粘度が低いため、めっき層の層厚にばらつきが生じ易い。
 しかし、上述のように、めっき浴浸漬前の加熱及び冷却時に、素地縞鋼板が更なる平坦度の悪化が抑制されているため、Zn-Al-Mg系めっきしても、平坦部間でめっき層の層厚にばらつきが生じ難く、凸部の左右における、平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)が上記範囲を満たすZn-Al-Mg系めっき縞鋼板が得られる。
 以下、本開示のめっき縞鋼板に適用できる後処理について説明する。
 本開示のめっき縞鋼板には、めっき層上に皮膜を形成してもよい。皮膜は、1層または2層以上を形成することができる。めっき層直上の皮膜の種類としては、例えば、クロメート皮膜、りん酸塩皮膜、クロメートフリー皮膜が挙げられる。これら皮膜を形成する、クロメート処理、りん酸塩処理、クロメートフリー処理は既知の方法で行うことができる。
 クロメート処理には、電解によってクロメート皮膜を形成する電解クロメート処理、素材との反応を利用して皮膜を形成させ、その後余分な処理液を洗い流す反応型クロメート処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメート処理がある。いずれの処理を採用してもよい。
 電解クロメート処理としては、クロム酸、シリカゾル、樹脂(アクリル樹脂、ビニルエステル樹脂、酢酸ビニルアクリルエマルション、カルボキシル化スチレンブタジエンラテックス、ジイソプロパノールアミン変性エポキシ樹脂等)、および硬質シリカを使用する電解クロメート処理を例示することができる。
 りん酸塩処理としては、例えば、りん酸亜鉛処理、りん酸亜鉛カルシウム処理、りん酸マンガン処理を例示することができる。
 クロメートフリー処理は、特に、環境に負荷がなく好適である。クロメートフリー処理には、電解によってクロメートフリー皮膜を形成する電解型クロメートフリー処理、素材との反応を利用して皮膜を形成させ、その後、余分な処理液を洗い流す反応型クロメートフリー処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメートフリー処理がある。いずれの処理を採用してもよい。
 さらに、めっき層直上の皮膜の上に、有機樹脂皮膜を1層もしくは2層以上有してもよい。有機樹脂としては、特定の種類に限定されず、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリオレフィン樹脂、又はこれらの樹脂の変性体等を挙げられる。ここで変性体とは、これらの樹脂の構造中に含まれる反応性官能基に、その官能基と反応し得る官能基を構造中に含む他の化合物(モノマーや架橋剤など)を反応させた樹脂のことを指す。
 このような有機樹脂としては、1種又は2種以上の有機樹脂(変性していないもの)を混合して用いてもよいし、少なくとも1種の有機樹脂の存在下で、少なくとも1種のその他の有機樹脂を変性することによって得られる有機樹脂を1種又は2種以上混合して用いてもよい。また有機樹脂皮膜中には任意の着色顔料や防錆顔料を含んでもよい。水に溶解又は分散することで水系化したものも使用することができる。
 
 本開示の実施例について説明するが、実施例での条件は、本開示の実施可能性及び効果を確認するために採用した一条件例であり、本開示は、この一条件例に限定されるものではない。本開示は、本開示の要旨を逸脱せず、本開示の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実施例)
 表1~表2に示す化学組成のめっき層が得られるように、所定量の純金属インゴットを使用して、インゴットを溶解した後、大気中でめっき浴を建浴した。めっき縞鋼板の作製には、バッチ式溶融めっき装置を使用した。
 そして、表1~表2に示す条件で、めっき縞鋼板を作製した。具体的には、次の通りである。
 素地縞鋼板を、N-H(5%)(露点-40℃以下、酸素濃度25ppm未満)環境下、室温から通電加熱で昇温し、60秒保持した後、Nガス吹き付けにて、めっき浴温+10℃まで冷却し、直ちにめっき浴に浸漬した。その後、めっき浴から素地縞鋼板を引き上げ、Nガスワイピング圧力を調整し、凸部及び平坦部が設けられた板面のめっき付着量が250g/m程度になるようにとなるようにして、めっき縞鋼板を作製した。
 なお、素地縞鋼板として、凸部の板厚T、平坦部の板厚tが異なる種々の熱延縞鋼板を使用した。
 使用した素地縞鋼板の形状は、図3A~図3Cと同等であった。図中では、A、B、C、D、E、Hは、それぞれ、以下のとおりである。
 A:圧延方向に対する凸部の配列角度。
 B:凸部1つ分の長さ。
 C:凸部1つ分の最大幅。
 D:凸部1つ分の最小幅。
 E:凸部の配列ピッチ。
 H:凸部の高さ(つまり、縞高さ)。
 この縞鋼板は、熱延Alキルド鋼であり、角度A=45°、長さB=25.3mm、最大幅C=5.1mm、最小幅D=2.5mm、ピッチE=28.6mmであった。また、凸部の面積占有率は40%であった。
 ただし、凸部の高さH(つまり、縞高さT-t)は、表1に示す通りとした。
 また、いくつかの例では、素地縞鋼板としては、上記熱延縞鋼板にプレNiめっきを施したプレNiめっき縞鋼板を使用した。Ni付着量は1g/m~3g/mとした。なお、素地縞鋼板として、プレNiめっき縞鋼板を使用した例は、表中の「素地縞鋼板」の欄に「プレNi」と表記した。
-各種の測定-
 得られためっき縞鋼板について、既述の方法にしたがって、下記事項を測定した。
・凸部の左右における、平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)
・凸部での素地縞鋼板の板厚T(表中、「凸部板厚T」と表記)
・平坦部での素地縞鋼板の板厚t(表中、「平坦部板厚T」と表記)
・隙間高さx
-平坦度-
 平坦度を比較するために、平坦な台に試料を設置し、上から試料を押してがたつきの程度を評価した。がたつきがない場合を「A+」、若干がたつく場合を「A」、がたつきが大きい場合を「NG」評価とした。
-耐食性-
 耐食性を比較するため、製造サンプルを腐食促進試験(JASO M609-91)に30サイクル供して、赤錆発生面積率の平均値を評価した。赤錆発生面積率が3.0%以下を「A+」評価、5.0%以下を「A」評価、7.0%以下を「B」評価、7.0%超以上を「NG」評価とした。
-加工性-
 めっき層の加工性を評価するために、めっき縞鋼板を、凸部及び平坦部が設けられた板面を山側にして90°V曲げし、V曲げ山部に幅24mmのセロハンテープを押し当てて引き離した。押し当てたセロハンテープの面積に対する、めっき縞鋼板から引き離してセロハンテープに付着しためっき層の面積率が3.0%以下を「A+」評価、5.0%以下を「A」評価、10.0%以下を「B」評価、10.0%超以上を「NG」評価とした。
 実施例について表1~表2に一覧にして示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記結果から、本開示のめっき縞鋼板に該当する実施例は、比較例に比べ、平坦度、耐食性及び加工性に優れることがわかる。
 また、試験No.97(比較例)はめっき前の加熱到達温度が850℃以上と高い例である。
 試験No.98(比較例)は、めっき前の加熱速度が30℃/sと高い例である。
 試験No.99(比較例)は、めっき前の加熱後の冷却速度が30℃/sと高い例である。
 試験No.100(比較例)は、めっき前の加熱速度及びめっき前の加熱後の冷却速度が30℃/sと高い例である。
 試験No.101(比較例)は、めっき後の冷却速度が30℃/sと高い例である。
 試験No.102(比較例)は、T-tが板厚t以上と大きい例である。
 試験例No.103(比較例)~No.105(比較例)は、めっき前の加熱速度、めっき前の加熱後の冷却速度、めっき後の冷却速度が遅い例である。
 これら、試験No.97~103は、いずれも、本開示のめっき層の組成を満たしているが、平坦部のめっき層の層厚比及び「x/(T-t)」値が大きく、平坦度、耐食性、及び加工性が劣化した。
 以上、添付図面を参照しながら本開示の好適な実施形態及び実施例について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、日本国特許出願第2021-064721号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (3)

  1.  一方の板面に凸部及び平坦部が設けられた素地縞鋼板と、前記素地縞鋼板の凸部及び平坦部が設けられた板面に配されたZn-Al-Mg合金層を含むめっき層と、を有するZn-Al-Mg系めっき縞鋼板であって、
     前記めっき層が、質量%で、
     Zn:65.0%超、
     Al:1.0%超~25.0%未満、
     Mg:1.0%超~12.5%未満、
     Sn:0%~5.0%、
     Bi:0%~5.0%未満、
     In:0%~2.0%未満、
     Ca:0%~3.00%、
     Y :0%~0.5%、
     La:0%~0.5%未満、
     Ce:0%~0.5%未満、
     Si:0%~2.5%未満、
     Cr:0%~0.25%未満、
     Ti:0%~0.25%未満、
     Zr:0%~0.25%未満、
     Mo:0%~0.25%未満、
     W :0%~0.25%未満、
     Ag:0%~0.25%未満、
     P :0%~0.25%未満、
     Ni:0%~0.25%未満、
     Co:0%~0.25%未満、
     V :0%~0.25%未満、
     Nb:0%~0.25%未満、
     Cu:0%~0.25%未満、
     Mn:0%~0.25%未満、
     Li:0%~0.25%未満、
     Na:0%~0.25%未満、
     K :0%~0.25%未満、
     Fe:0%~5.0%、
     Sr:0%~0.5%未満、
     Sb:0%~0.5%未満、
     Pb:0%~0.5%未満、
     B :0%~0.5%未満、及び
     不純物からなる化学組成を有し、
     前記凸部の長手方向中央部で、前記凸部の長手方向と直交し、かつ板厚方向に沿って切断した切断面を観察したとき、前記凸部の左右における、前記平坦部のめっき層の層厚比(左側めっき層の層厚/右側めっき層の層厚)が0.2以上5.0以下であり、
     前記凸部での前記素地縞鋼板の板厚をT、前記平坦部での前記素地縞鋼板の板厚をtとしたときの縞高さT-tと、めっき縞鋼板を静置したとき、静置面と前記静置面に対向するめっき縞鋼板の板面との隙間高さxと、が下記式1及び式2を満たすZn-Al-Mg系めっき縞鋼板。
     式1:x/(T-t)≦1.5
     式2:0.5<T-t≦t
     式1及び式2中の、素地縞鋼板の板厚T、t、隙間高さxの単位は、「mm」である。
  2.  前記Alの濃度が5.0%超~25.0%未満であり、Mgの濃度が3.0%超~12.5%未満である請求項1に記載のZn-Al-Mg系めっき縞鋼板。
  3.  前記めっき層が、前記素地縞鋼板と前記Zn-Al-Mg合金層との間に、Al-Fe合金層を含む請求項1又は請求項2に記載のZn-Al-Mg系めっき縞鋼板。
PCT/JP2022/017109 2021-04-06 2022-04-05 Zn-Al-Mg系めっき縞鋼板 WO2022215694A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2023513023A JPWO2022215694A1 (ja) 2021-04-06 2022-04-05
MX2023011623A MX2023011623A (es) 2021-04-06 2022-04-05 Chapa de acero con patrón de relieves enchapada en zn-al-mg.
KR1020237034268A KR20230155533A (ko) 2021-04-06 2022-04-05 Zn-Al-Mg계 도금 줄무늬 강판
CN202280024852.7A CN117062935A (zh) 2021-04-06 2022-04-05 Zn-Al-Mg系镀覆网纹钢板
AU2022254564A AU2022254564A1 (en) 2021-04-06 2022-04-05 Zn-al-mg plated checkered steel plate
US18/553,206 US20240183018A1 (en) 2021-04-06 2022-04-05 Zn-al-mg plated checkered steel plate
EP22784676.3A EP4321643A1 (en) 2021-04-06 2022-04-05 Zn-al-mg plated checkered steel plate
CA3213891A CA3213891A1 (en) 2021-04-06 2022-04-05 Zn-al-mg plated checkered steel plate
BR112023020234A BR112023020234A2 (pt) 2021-04-06 2022-04-05 Chapa de aço xadrez revestida com liga de zn-al-mg
CONC2023/0013405A CO2023013405A2 (es) 2021-04-06 2023-10-09 Chapa de acero con patrón de relieves enchapada en zn-al-mg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064721 2021-04-06
JP2021064721 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022215694A1 true WO2022215694A1 (ja) 2022-10-13

Family

ID=83546378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017109 WO2022215694A1 (ja) 2021-04-06 2022-04-05 Zn-Al-Mg系めっき縞鋼板

Country Status (13)

Country Link
US (1) US20240183018A1 (ja)
EP (1) EP4321643A1 (ja)
JP (1) JPWO2022215694A1 (ja)
KR (1) KR20230155533A (ja)
CN (1) CN117062935A (ja)
AU (1) AU2022254564A1 (ja)
BR (1) BR112023020234A2 (ja)
CA (1) CA3213891A1 (ja)
CL (1) CL2023002955A1 (ja)
CO (1) CO2023013405A2 (ja)
EC (1) ECSP23075001A (ja)
MX (1) MX2023011623A (ja)
WO (1) WO2022215694A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743774B2 (ja) 1993-06-29 1998-04-22 株式会社神戸製鋼所 帯状縞鋼板の連続溶融金属めっき方法
JPH11279732A (ja) * 1998-03-30 1999-10-12 Nisshin Steel Co Ltd 耐傷付性、耐摩耗性および耐食性に優れた溶融Zn基めっき縞鋼板
JP2005273019A (ja) * 2005-04-20 2005-10-06 Nisshin Steel Co Ltd 耐傷付性、耐摩耗性および耐食性に優れた溶融Zn基めっき縞鋼板
JP2018053288A (ja) * 2016-09-27 2018-04-05 新日鐵住金株式会社 凸条付き溶融亜鉛系めっき鋼板およびその製造方法と、ホットスタンプ成形体
WO2019054483A1 (ja) 2017-09-15 2019-03-21 新日鐵住金株式会社 溶融めっき縞鋼板とその製造方法
JP2021064721A (ja) 2019-10-16 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743774B2 (ja) 1993-06-29 1998-04-22 株式会社神戸製鋼所 帯状縞鋼板の連続溶融金属めっき方法
JPH11279732A (ja) * 1998-03-30 1999-10-12 Nisshin Steel Co Ltd 耐傷付性、耐摩耗性および耐食性に優れた溶融Zn基めっき縞鋼板
JP2005273019A (ja) * 2005-04-20 2005-10-06 Nisshin Steel Co Ltd 耐傷付性、耐摩耗性および耐食性に優れた溶融Zn基めっき縞鋼板
JP2018053288A (ja) * 2016-09-27 2018-04-05 新日鐵住金株式会社 凸条付き溶融亜鉛系めっき鋼板およびその製造方法と、ホットスタンプ成形体
WO2019054483A1 (ja) 2017-09-15 2019-03-21 新日鐵住金株式会社 溶融めっき縞鋼板とその製造方法
JP2021064721A (ja) 2019-10-16 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Also Published As

Publication number Publication date
ECSP23075001A (es) 2023-11-30
CO2023013405A2 (es) 2023-11-10
US20240183018A1 (en) 2024-06-06
CN117062935A (zh) 2023-11-14
CA3213891A1 (en) 2022-10-13
EP4321643A1 (en) 2024-02-14
KR20230155533A (ko) 2023-11-10
JPWO2022215694A1 (ja) 2022-10-13
AU2022254564A1 (en) 2023-11-02
BR112023020234A2 (pt) 2023-11-14
MX2023011623A (es) 2023-11-10
CL2023002955A1 (es) 2024-03-08

Similar Documents

Publication Publication Date Title
JP6687175B1 (ja) めっき鋼材
CN111542640B (zh) 表面质量和耐蚀性优异的锌合金镀覆钢材及其制造方法
EP2957648B1 (en) Hot-dip al-zn alloy coated steel sheet and method for producing same
US10822685B2 (en) Hot-dip Al alloy coated steel sheet and method of producing same
CN117026132A (zh) 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法
WO2020179148A1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
TWI724674B (zh) 熔融Al-Zn-Mg-Si-Sr鍍覆鋼板及其製造方法
AU2021365696B2 (en) Plated steel material
KR102670414B1 (ko) 도금 강재
WO2022215694A1 (ja) Zn-Al-Mg系めっき縞鋼板
CN116685706B (zh) 镀覆钢材
JP7475162B2 (ja) 塗装鋼板及び塗装鋼板の製造方法
TWI836516B (zh) Zn-Al-Mg系鍍敷網紋鋼板
WO2018181392A1 (ja) 溶融Al系めっき鋼板とその製造方法
WO2024047883A1 (ja) めっき鋼材及びめっき鋼材の製造方法
WO2023176075A1 (ja) めっき鋼材及びめっき鋼材の製造方法
JP7464849B2 (ja) めっき鋼材、およびめっき鋼材の製造方法
WO2024048665A1 (ja) めっき縞鋼板
JP2001294977A (ja) 合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024852.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 002733-2023

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 3213891

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18553206

Country of ref document: US

Ref document number: MX/A/2023/011623

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301006469

Country of ref document: TH

Ref document number: 2023513023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: P6002552/2023

Country of ref document: AE

ENP Entry into the national phase

Ref document number: 20237034268

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034268

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023020234

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022254564

Country of ref document: AU

Ref document number: AU2022254564

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 805008

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2022254564

Country of ref document: AU

Date of ref document: 20220405

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022784676

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784676

Country of ref document: EP

Effective date: 20231106

ENP Entry into the national phase

Ref document number: 112023020234

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231002

WWE Wipo information: entry into national phase

Ref document number: 523451029

Country of ref document: SA