WO2022215410A1 - 回転積層造形装置及び制御装置 - Google Patents

回転積層造形装置及び制御装置 Download PDF

Info

Publication number
WO2022215410A1
WO2022215410A1 PCT/JP2022/009785 JP2022009785W WO2022215410A1 WO 2022215410 A1 WO2022215410 A1 WO 2022215410A1 JP 2022009785 W JP2022009785 W JP 2022009785W WO 2022215410 A1 WO2022215410 A1 WO 2022215410A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
powder material
information
control signal
outputs
Prior art date
Application number
PCT/JP2022/009785
Other languages
English (en)
French (fr)
Inventor
健太 塩沼
雄一朗 中山
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US18/285,277 priority Critical patent/US20240173774A1/en
Priority to CN202280021464.3A priority patent/CN116997428A/zh
Priority to EP22784395.0A priority patent/EP4321283A1/en
Priority to JP2023512870A priority patent/JPWO2022215410A1/ja
Publication of WO2022215410A1 publication Critical patent/WO2022215410A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present disclosure relates to a rotary additive manufacturing apparatus and a control apparatus.
  • Patent Document 1 discloses that, regarding an apparatus for manufacturing a three-dimensional object, changes in the temperature of the powder layer during manufacturing affect the quality of the product. Therefore, the manufacturing apparatus of Patent Literature 1 selects an area of the powder bed and designs an operation plan to maintain the temperature of the selected area.
  • Patent Document 2 discloses a three-dimensional modeling apparatus.
  • the three-dimensional modeling apparatus of Patent Literature 2 resumes the operation of modeling the three-dimensional object after temporarily stopping the operation of modeling the three-dimensional object. More specifically, the three-dimensional modeling apparatus of Patent Literature 2 controls ejection of the binder based on the situation after the operation is temporarily stopped.
  • the molding quality of parts molded by a rotary additive manufacturing device is affected by various factors during the molding operation. For example, build quality is affected by the temperature distribution of the powder material. Build quality is also affected by the condition of the surface of the powder material irradiated with the energy beam. In order to obtain the desired build quality, it is necessary to maintain the powder material in a given state. However, during the modeling operation, a situation may arise in which the modeling operation should not be continued for some reason. In situations where the modeling operation should not be continued, it becomes difficult to maintain a state in which desired modeling quality can be obtained. As a result, it has been difficult to obtain a modeled object that satisfies desired modeling quality.
  • the present disclosure describes a control device for a rotary additive manufacturing layer and a rotary additive manufacturing apparatus that can obtain a modeled object that satisfies a desired modeling quality.
  • a rotary additive manufacturing apparatus includes a table that rotationally supports a powder material, a supply unit that supplies the powder material to the table, a heating unit that heats the powder material arranged on the table, and a heating unit that heats the powder material arranged on the table.
  • State information acquisition for outputting abnormal state information indicating a state in which irradiation of the energy beam should be stopped, including information on the state of the irradiating unit that irradiates the energy beam to the powder material placed on the table and the state of the powder material arranged on the table and a control unit that controls at least the irradiation unit based on the abnormal state information.
  • the control unit includes a stop operation unit that outputs a first control signal for stopping irradiation of the energy beam due to the input of the abnormal state information, and a determination as to whether or not the abnormal state information is information regarding the state of the powder material. and a return operation unit that outputs a second control signal for controlling at least one of the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit when the abnormal state information is information related to the state of the powder material. and have
  • a rotary layered manufacturing device and a control device can obtain a modeled object that satisfies desired modeling quality.
  • FIG. 1 is a diagram showing the configuration of a rotary layered manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the positional relationship among the processing section, the temperature information acquiring section, and the table.
  • FIG. 2(a) shows the state before the table is rotated.
  • FIG. 2(b) shows the state after the table is rotated.
  • FIG. 3 is a block diagram showing the rotary layered manufacturing apparatus according to the first embodiment.
  • FIG. 4 is a timing chart for explaining the modeling retry.
  • FIG. 5 is a flowchart showing an example of processing when an abnormality occurs in the rotary additive manufacturing apparatus according to the first embodiment.
  • FIG. 6 is a diagram showing the configuration of a rotary layered manufacturing apparatus according to the second embodiment.
  • FIG. 7 is a block diagram showing a rotary additive manufacturing apparatus according to the second embodiment.
  • FIG. 8 is a flowchart showing an example of processing when an abnormality occurs in the rotary additive manufacturing apparatus according to the second embodiment.
  • FIG. 9 is a diagram showing the configuration of a rotary layered manufacturing apparatus according to the third embodiment.
  • FIG. 10 is a block diagram showing a rotary additive manufacturing apparatus according to the third embodiment.
  • FIG. 11 is a flowchart showing an example of processing when an abnormality occurs in the rotary additive manufacturing apparatus according to the third embodiment.
  • a rotary additive manufacturing apparatus includes a table that rotationally supports a powder material, a supply unit that supplies the powder material to the table, a heating unit that heats the powder material arranged on the table, and a heating unit that heats the powder material arranged on the table.
  • State information acquisition for outputting abnormal state information indicating a state in which irradiation of the energy beam should be stopped, including information on the state of the irradiating unit that irradiates the energy beam to the powder material placed on the table and the state of the powder material arranged on the table and a control unit that controls at least the irradiation unit based on the abnormal state information.
  • the control unit includes a stop operation unit that outputs a first control signal for stopping irradiation of the energy beam due to the input of the abnormal state information, and a determination as to whether or not the abnormal state information is information regarding the state of the powder material. and a return operation unit that outputs a second control signal for controlling at least one of the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit when the abnormal state information is information related to the state of the powder material. and have
  • a control device is a three-dimensional modeling apparatus that heats powder material supplied from a supply unit onto a rotating table with a heating unit and irradiates an energy beam to form a three-dimensional object. to control.
  • the control device includes information about the state of the powder material placed on the table, and a first control signal for stopping the irradiation of the energy beam due to input of abnormal state information indicating a state in which the irradiation of the energy beam should be stopped.
  • a stop operation unit that outputs a table rotation operation and a heating unit that determines whether or not the abnormal state information is information related to the state of the powder material, and if the abnormal state information is information related to the state of the powder material a return operation unit that outputs a second control signal that controls at least one of the heating operation and the supply operation of the supply unit.
  • the rotary additive manufacturing device and the control device heat the powder material while rotating the table, and irradiate the powder material with an energy beam.
  • the rotary additive manufacturing apparatus and the control device stop the irradiation of the energy beam due to the input of the abnormal state information.
  • the rotary additive manufacturing apparatus and the control apparatus control at least one of the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit when the abnormal state information is information about the state of the powder material.
  • at least one of the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit is controlled when the irradiation of the energy beam should be stopped.
  • the state information acquisition unit may include a smoke information acquisition unit that outputs smoke information for determining the presence or absence of scattered powder material to the control unit as information on the state of the powder material.
  • the return operation unit When the smoke information constituting the abnormal state information received from the state information acquisition unit indicates the occurrence of smoke, the return operation unit outputs a signal for controlling the rotating operation of the table and the heating operation of the heating unit as the second control signal. may be output.
  • the rotating operation of the table and the heating operation of the heating unit are controlled. This makes it possible to obtain the desired state of the powder material in order to obtain the desired build quality even when the build operation is stopped due to smoke. Therefore, it is possible to obtain a modeled object that satisfies desired modeling quality.
  • the state information acquisition unit may include an unevenness information acquisition unit that outputs to the control unit, as information on the state of the powder material, unevenness information indicating the unevenness state of the surface of the powder material that is irradiated with the energy beam.
  • the return operation unit controls the rotation operation of the table and the supply operation of the supply unit as a second control signal when the unevenness information forming the abnormal state information received from the status information acquisition unit does not satisfy a predetermined unevenness condition. signal may be output.
  • the rotation operation of the table and the supply operation of the supply unit are controlled. This makes it possible to obtain the required state of the powder material in order to obtain the desired build quality even when the build operation is stopped. Therefore, it is possible to obtain a modeled object that satisfies desired modeling quality.
  • the stop operation unit may output a third control signal for further stopping the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit due to the input of the abnormal state information.
  • the return operation unit outputs a fourth control signal for restarting at least one of the rotation operation of the table, the heating operation of the heating unit, and the supply operation of the supply unit when the abnormal state information is information related to the state of the powder material.
  • the control unit may further include a restart operation unit that outputs a fifth control signal for starting irradiation of the energy beam when the abnormal state information satisfies a predetermined condition.
  • a restart operation unit that outputs a fifth control signal for starting irradiation of the energy beam when the abnormal state information satisfies a predetermined condition.
  • FIG. 1 is a diagram showing the configuration of a rotary layered modeling apparatus (three-dimensional modeling apparatus) 1 according to the first embodiment.
  • the rotary lamination modeling apparatus 1 is a so-called 3D printer.
  • a rotary lamination modeling apparatus 1 manufactures a three-dimensional model (three-dimensional model) 3 from a powder material 2 .
  • the powder material 2 is metal powder.
  • the powder material 2 is, for example, titanium-based metal powder, Inconel powder, or aluminum powder.
  • the powder material 2 is not limited to metal powder.
  • the powder material 2 may be, for example, resin powder or powder containing carbon fiber and resin such as CFRP (Carbon Fiber Reinforced Plastics).
  • CFRP Carbon Fiber Reinforced Plastics
  • the powder material 2 may be any other electrically conductive powder.
  • the powder material 2 in the present disclosure is not limited to those having electrical conductivity. For example, if a laser is used as the energy beam, the powder material 2 does not have to be electrically conductive.
  • the rotary additive manufacturing apparatus 1 employs a powder bed method in which modeling is performed by irradiating an electron beam to the evenly spread powder material 2 .
  • the rotary additive manufacturing apparatus 1 applies energy to the powder material 2 by irradiating the powder material 2 with an electron beam.
  • the rotary additive manufacturing apparatus 1 imparts energy to the powder material 2
  • the temperature of the powder material 2 increases.
  • the powder material 2 is melted or sintered.
  • the rotary additive manufacturing apparatus 1 stops applying energy the temperature of the powder material 2 decreases. As a result, the powder material 2 solidifies.
  • the rotary lamination modeling apparatus 1 repeats applying and stopping energy a plurality of times to form a three-dimensional object 3 .
  • the rotary additive manufacturing apparatus 1 includes a driving section (driving member) 4 , a control section (control device, controller) 5 , a processing section (processing member) 6 , a state information acquiring section 7 and a housing 8 .
  • the drive unit 4 realizes various operations required for modeling.
  • the control unit 5 controls the entire apparatus of the rotary layered manufacturing apparatus 1 .
  • the processing unit 6 processes the powder material 2 to obtain the modeled object 3 .
  • the processing of the powder material 2 includes feeding processing of the powder material 2 , preheating of the powder material 2 , and shaping processing of the powder material 2 .
  • the state information acquisition unit 7 acquires information indicating various states regarding modeling.
  • the housing 8 forms a modeling space S. As shown in FIG.
  • the modeling space S is a decompressible airtight space for processing the powder material 2 by the processing unit 6 .
  • Housing 8 is supported by a plurality of columns 9 .
  • a table 10 and a modeling tank 11 are arranged in the modeling space S.
  • Table 10 rotatably supports powder material 2 .
  • the table 10 presents, for example, a disc.
  • the table 10 is arranged so that the central axis of the table 10 overlaps the central axis of the housing 8 .
  • the table 10 has a modeling surface (main surface or upper surface) 10a and a back surface 10b.
  • a powder material 2, which is a raw material for the modeled object 3, is placed on the modeling surface 10a.
  • the drive unit 4 is connected to the back surface 10b.
  • the modeling tank 11 is a container that stores the powder material 2 .
  • the modeling tank 11 is arranged so as to surround the table 10 .
  • the drive unit 4 rotates and raises/lowers the table 10 .
  • the driving section 4 has a rotating unit 12 and a lifting unit 13 .
  • the rotation unit 12 rotates the table 10 with the central axis of the table 10 as the rotation axis.
  • a top end of the rotating unit 12 is connected to the table 10 .
  • a drive source (for example, a motor) is attached to the lower end of the rotation unit 12 .
  • the lifting unit 13 lifts and lowers the table 10 relative to the modeling tank 11 .
  • the elevation and descent of the table 10 are along the rotation axis of the rotation unit 12 .
  • the driving unit 4 is not limited to the mechanism described above as long as it is a mechanism capable of rotating, raising, and lowering the table 10 .
  • the control unit 5 controls the operations of the driving unit 4 and the processing unit 6.
  • the control unit 5 receives the abnormal state information from the state information acquisition unit 7 .
  • the processing unit 6 is arranged so as to face the table 10 .
  • the processing unit 6 is arranged above the table 10 and faces the modeling surface 10a of the table 10 .
  • the processing section 6 has a feeder 14 , a heater (heating section) 15 and a beam source (irradiation section) 16 .
  • the feeder 14 performs the feeding process of the powder material 2 .
  • the heater 15 preheats the powder material 2 .
  • the beam source 16 performs the shaping process of the powder material 2 .
  • the feeder 14 functions as a supply unit that supplies the powder material 2 to the table 10.
  • the feeder 14 has a raw material tank and a leveling section.
  • the raw material tank stores the powder material 2 .
  • a raw material tank supplies the powder material 2 to the table 10 .
  • the smoothing section smoothes the surface of the powder material 2 on the table 10 .
  • the rotary laminate molding apparatus 1 may have a roller section, a rod-like member, a brush section, etc. instead of the leveling section.
  • the heater 15 functions as a heating unit that heats the powder material 2 placed on the table 10 .
  • the heater 15 preheats the powder material 2 before being irradiated with the electron beam.
  • the heater 15 raises the temperature of the powder material 2 by radiant heat.
  • the heater 15 may heat by other methods, such as an infrared heater.
  • the beam source 16 functions as an irradiation unit that irradiates the powder material 2 placed on the table 10 with an electron beam.
  • the beam source 16 is, for example, an electron gun.
  • the electron gun generates electron beams according to the potential difference between the cathode and anode.
  • a beam source 16 irradiates the powder material 2 with an electron beam.
  • the state information acquisition unit 7 outputs abnormal state information indicating a state in which electron beam irradiation should be stopped.
  • the abnormal state information includes information regarding the state of the powder material 2 placed on the table 10.
  • FIG. The state information acquisition section 7 has a smoke information acquisition section 71 , a device information acquisition section 73 and a temperature information acquisition section 74 .
  • the smoke information acquisition unit 71 outputs smoke information ⁇ 1 to the control unit 5 as information regarding the state of the powder material 2 .
  • the smoke information ⁇ 1 is used to determine the presence or absence of the powder material 2 in a scattered state.
  • the powder material 2 is charged by electron beam irradiation. Due to the charging of the powder material 2, the powder material 2 may be misted up. A phenomenon in which the powder material 2 rises like a mist is called smoke.
  • the smoke information ⁇ 1 indicates whether or not the powder material 2 is scattered to the extent that it affects the molding operation.
  • the smoke information ⁇ 1 may be information that clearly indicates whether or not smoke is generated.
  • the smoke information ⁇ 1 may be a measured value that can be used as a criterion for determining whether or not smoke is generated.
  • the smoke information acquisition unit 71 may be an optical sensor.
  • the smoke information acquisition section 71 may acquire the light intensity of a specific wavelength among the light emitted from the powder material 2 as the smoke information ⁇ 1.
  • the smoke information acquisition section 71 may be a sensor that detects electromagnetic waves of a specific wavelength.
  • the smoke information ⁇ 1 output by the smoke information acquisition unit 71 includes information (1) indicating that smoke has occurred and information (0) indicating that smoke has not occurred.
  • the smoke information acquisition section 71 outputs information (0) indicating that smoke is not generated. Then, when smoke occurs at a certain timing, the smoke information acquisition section 71 outputs information (1) indicating that smoke is occurring.
  • the smoke information acquisition section 71 may measure the characteristic values of the powder material 2 and output the measured values obtained by the measurement.
  • the smoke information ⁇ 1 is a measured value. Measurements do not directly indicate whether smoke is occurring or not. However, by comparing the measured value with a preset threshold value, it is possible to determine whether or not smoke is generated. The determination as to whether or not smoke is generated may be made by the smoke information acquisition section 71, or may be made by another component. When another component determines whether or not smoke is generated, the smoke information acquisition section 71 outputs the measured value as the smoke information ⁇ 1.
  • the smoke information acquisition unit 71 is not limited to the configuration described above as long as it can acquire the smoke information ⁇ 1.
  • the device information acquisition unit 73 detects a failure of the rotary additive manufacturing apparatus 1.
  • the device information acquisition unit 73 outputs failure information ⁇ 3 to the control unit 5 as information about failure.
  • the failure information ⁇ 3 includes, for example, abnormal pressure in the modeling space S, failure of the drive unit 4, failure of the processing unit 6, and other abnormalities that should stop the continuation of the modeling process.
  • the temperature information acquisition unit 74 measures the temperature of the modeling surface 10a.
  • the temperature information acquisition unit 74 outputs temperature information ⁇ 4 to the control unit 5 as information about temperature.
  • the temperature information acquisition section 74 may be a thermocouple.
  • the temperature information acquisition unit 74 may be attached to the back surface 10b of the table 10 .
  • the temperature information acquisition unit 74 may acquire the temperature information ⁇ 4 by another method.
  • the temperature information acquisition unit 74 may measure the temperature distribution of the modeling surface 10a using, for example, an infrared camera.
  • the temperature information acquisition unit 74 may acquire temperature information ⁇ 4 regarding a plurality of measurement points.
  • the temperature information ⁇ 4 may be a plurality of temperature values relating to a plurality of measurement points.
  • the temperature information ⁇ 4 may be a representative value obtained based on a plurality of temperature values.
  • the lifting unit 13 moves the table 10 upward.
  • the table 10 is arranged at a position above the modeling tank 11 .
  • the rotation unit 12 rotates the table 10 .
  • the feeder 14 supplies the powder material 2 to the table 10.
  • the surface of the supplied powder material 2 is leveled by a recoater.
  • the powder material 2 supplied by the feeder 14 moves as the table 10 rotates.
  • the heater 15 preheats the powder material 2 before being irradiated with the electron beam.
  • the powder material 2 is heated while rotating with the table 10 .
  • the powder material 2 preheated by the heater 15 moves as the table 10 rotates.
  • the beam source 16 irradiates the powder material 2 with an electron beam. As a result, the powder material 2 is melted or sintered, and the modeled object 3 is formed.
  • the table 10 descends as the modeling of the modeled object 3 progresses. That is, the lifting unit 13 lowers the table 10 .
  • the lowering of table 10 may be synchronized with the rotation of table 10, but need not be perfectly synchronized.
  • FIG. 2 is a schematic diagram for explaining the positional relationship among the processing section 6, the temperature information acquiring section 74, and the table 10.
  • FIG. FIG. 2(a) shows the state before the table 10 is rotated.
  • the table 10 rotates in the rotation direction CW.
  • the direction of rotation CW is clockwise.
  • the feeder 14 , heater 15 and beam source 16 are arranged above the table 10 in this order along the rotation direction CW of the table 10 .
  • the feeder 14 forms a supply area on the modeling surface 10a.
  • the feed area is the area where the powdered material 2 is fed to the table 10 and leveled.
  • the supply area has, for example, a rectangular shape whose longitudinal direction is the diameter direction (radial direction) of the table 10, but is not limited to this.
  • the heater 15 forms a preheating area on the modeling surface 10a.
  • the preheating area is an area where the temperature of the powder material 2 is raised.
  • the heater 15 heats the powder material 2 in the preheating area so that the temperature of the powder material 2 in the supply area is higher than that of the powder material 2 in the supply area.
  • Such heat treatment may be, for example, a process of pre-sintering the powder material 2 .
  • Temporary sintering is a state in which the powder materials 2 are diffused and bonded to each other at the minimum point by a diffusion phenomenon.
  • the temporary sintering temperature is, for example, half or more of the melting point of the powder material 2 . This is based on the fact that the diffusion phenomenon of the powder material 2 generally becomes active at half or more of the melting point.
  • the preliminary sintering temperature is 700° C. or higher and 800° C. or lower.
  • the melting point of the titanium alloy is about 1500°C or higher and 1600°C or lower.
  • the powder material 2 is aluminum, the preliminary sintering temperature is 300°C.
  • the melting point of aluminum is about 660°C.
  • the preheating area has, for example, a fan-like shape, but is not limited to this.
  • the beam source 16 forms a modeling area on the modeling surface 10a.
  • the shaping area is an area where the temperature of the powder material 2 is raised.
  • the temperature of the powder material 2 heated in the building area is higher than the temperature of the powder material 2 present in the preheating area.
  • the temperature of the powder material 2 present in the modeling area is the temperature (sintering temperature or melting temperature) at which the modeled object 3 can be formed.
  • the beam source 16 scans and irradiates the electron beam to a desired portion within the modeling area.
  • the shape of the modeling area is, for example, circular, but is not limited to this.
  • the modeling region may or may not match the irradiation range (irradiable range) of the beam source 16 .
  • the positional relationship of the supply area, preheating area and modeling area corresponds to the positional relationship of the feeder 14, the heater 15 and the beam source 16.
  • the supply area, preheating area, and modeling area may be formed in this order along the rotation direction CW.
  • the areas occupied by the supply area, the preheating area, and the shaping area may be changed as appropriate.
  • the modeling surface 10a of the table 10 virtually includes four areas.
  • the four areas are divided areas A1, A2, A3 and A4. That is, the rotary layered manufacturing apparatus 1 has a plurality of divided areas.
  • the divided areas A1, A2, A3 and A4 move as the table 10 rotates.
  • the temperature information acquisition units 74 may be attached to a plurality of locations on the rear surface 10b of the table 10.
  • the temperature information acquisition section 74 has thermocouples 74a, 74b, 74c and 74d.
  • Thermocouples 74a, 74b, 74c and 74d measure the temperature of segmented areas A1, A2, A3 and A4, respectively.
  • the thermocouple 74a is provided in the divided area A1.
  • Thermocouple 74a measures the temperature of divided area A1.
  • the thermocouple 74b is provided in the divided area A2.
  • Thermocouple 74b measures the temperature of divided area A2.
  • the thermocouple 74c is provided in the divided area A3.
  • Thermocouple 74c measures the temperature of divided area A3.
  • a thermocouple 74d is provided in the divided area A4.
  • a thermocouple 74d measures the temperature of the divided area A4.
  • the temperature information acquisition section 74 is fixed to the table 10 . Therefore, the temperature information acquiring section 74 moves as the table 10 rotates.
  • Thermocouples 74 a , 74 b , 74 c and 74 d are fixed to the back surface 10 b of table 10 . Therefore, the temperature output by thermocouples 74a, 74b, 74c and 74d is the temperature of back surface 10b of table 10.
  • the rotary additive manufacturing apparatus 1 of this embodiment uses the temperature of the back surface 10b of the table 10 as the temperature of the powder material 2 arranged thereabove.
  • the rotary additive manufacturing apparatus 1 may use the temperatures obtained by the thermocouples 74 a , 74 b , 74 c and 74 d themselves as the temperature of the powder material 2 .
  • the rotary additive manufacturing apparatus 1 may use the temperatures obtained by the thermocouples 74a, 74b, 74c, and 74d and convert them into the temperature of the powder material 2 using a previously obtained relational expression.
  • FIG. 2(b) shows the state after the table 10 has rotated.
  • the positions of feeder 14, heater 15 and beam source 16 do not change as table 10 rotates.
  • the position of the temperature information acquisition section 74 changes as the table 10 rotates.
  • FIG. 3 is a block diagram showing the control unit (control device) 5 included in the rotary layered manufacturing apparatus 1 according to the first embodiment.
  • the control unit 5 is a computer composed of hardware such as a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory), and software such as programs stored in the ROM.
  • the control unit 5 includes an input signal circuit, an output signal circuit, a power supply circuit, and the like.
  • the control unit 5 includes an arithmetic unit and a memory.
  • the memory can store data necessary for various controls.
  • the controller 5 may be electrically connected to the rotating unit 12, the lifting unit 13, the feeder 14, the heater 15, and the beam source 16.
  • the controller 5 controls at least the beam source 16 based on the abnormal state information.
  • the control unit 5 can generate various control signals.
  • the control unit 5 has a beam control unit 51 , a feeder control unit 52 , a heater control unit 53 , an elevation control unit 54 , a rotation control unit 55 , a stop operation unit 56 , a return operation unit 57 and a restart operation unit 58 .
  • the beam control unit 51 performs electron beam irradiation control for melting or sintering the powder material 2 .
  • the beam control unit 51 determines the start of electron beam irradiation, the stop of electron beam irradiation, the timing of electron beam irradiation, the position of electron beam irradiation, and the like.
  • the beam controller 51 outputs an irradiation control signal ⁇ 1 for controlling irradiation to the beam source 16 .
  • the beam source 16 operates according to the irradiation control signal ⁇ 1.
  • the feeder control unit 52 performs supply control for supplying the powder material 2 to the table 10 .
  • the feeder control unit 52 determines the timing of supplying the powder material 2 onto the table 10, the amount of supply of the powder material 2, the operation of the recoater that is the leveling unit, and the like.
  • the feeder control unit 52 may control the force with which the recoater is pressed against the powder material 2, the angle of the recoater with respect to the surface of the powder material 2, and the like.
  • the feeder control unit 52 outputs a supply control signal ⁇ 2 for controlling supply to the feeder 14 .
  • the feeder 14 operates according to the supply control signal ⁇ 2.
  • the heater control unit 53 performs heating control for heating the powder material 2 placed on the table 10 .
  • the heater control unit 53 determines the amount of heat to be applied to the powder material 2 and the like.
  • the operation of the heater control section 53 may be defined by the amount of heat generated by the heater.
  • the operation of the heater control section 53 may be defined by the temperature of the heater itself.
  • the amount of heat given to the powder material 2 may be determined according to the material or type of the powder material 2, the rotational speed of the table 10, and the like.
  • the heater control unit 53 outputs a heating control signal ⁇ 3 for performing heating control to the heater 15 .
  • Heater 15 operates according to heating control signal ⁇ 3.
  • the elevation control unit 54 performs elevation control for raising or lowering the table 10 .
  • the elevation control unit 54 determines the descending speed of the table 10 and the like.
  • the elevation control section 54 outputs an elevation control signal ⁇ 4 for performing elevation control to the elevation unit 13 .
  • the lift unit 13 operates according to the lift control signal ⁇ 4.
  • the rotation control unit 55 performs rotation control for rotating the table 10 .
  • the rotation control unit 55 determines the rotation speed of the table 10 and the like.
  • the rotation control section 55 outputs a rotation control signal ⁇ 5 for controlling rotation to the rotation unit 12 .
  • the rotation unit 12 operates according to the rotation control signal ⁇ 5.
  • the stop operation unit 56 outputs the first control signal ⁇ 1 for stopping the electron beam irradiation to the beam control unit 51 .
  • the beam controller 51 stops electron beam irradiation according to the first control signal ⁇ 1.
  • the stop operation unit 56 outputs the sixth control signal ⁇ 6 for stopping the lifting and lowering of the table 10 to the elevation control unit 54 .
  • the elevation control unit 54 stops the elevation and descent of the table 10 according to the sixth control signal ⁇ 6.
  • the recovery operation unit 57 determines whether or not the abnormal state information is information regarding the state of the powder material 2 .
  • the return operation unit 57 outputs a second control signal that controls at least one of the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 when the abnormal state information is information about the state of the powder material 2. Output ⁇ 2.
  • the return operation unit 57 may output the second control signal ⁇ 2 for continuing the rotation operation of the table 10 to the rotation control unit 55 .
  • the rotation control unit 55 continues the rotation operation of the table 10 according to the second control signal ⁇ 2.
  • the return operation unit 57 may continue the rotation operation of the table 10 by not outputting the second control signal ⁇ 2 for stopping the rotation operation of the table 10 .
  • the return operation unit 57 may output the second control signal ⁇ 2 for continuing the heating operation of the heater 15 to the heater control unit 53 .
  • the heater control unit 53 continues the heating operation of the heater 15 according to the second control signal ⁇ 2.
  • the return operation unit 57 may continue the heating operation of the heater 15 by not outputting the second control signal ⁇ 2 for stopping the heating operation of the heater 15 .
  • the return operation unit 57 may output to the feeder control unit 52 the second control signal ⁇ 2 that stops the supply operation of the feeder 14 .
  • the feeder control unit 52 stops the feeding operation of the feeder 14 according to the second control signal ⁇ 2.
  • the return operation unit 57 When the smoke information ⁇ 1 forming the abnormal state information received from the state information acquisition unit 7 indicates the generation of smoke, the return operation unit 57 outputs the second control signal ⁇ 2 to rotate the table 10 and heat the heater 15. outputs a signal that controls the The determination of whether or not the smoke information ⁇ 1 indicates the generation of smoke may be made by any of the smoke information acquisition section 71, the stop operation section 56, or the return operation section 57.
  • the restart operation unit 58 outputs a fifth control signal ⁇ 5 for starting electron beam irradiation to the beam control unit 51 when the abnormal state information satisfies a predetermined condition.
  • the beam controller 51 starts electron beam irradiation according to the fifth control signal ⁇ 5. A case where the abnormal state information satisfies a predetermined condition will be described later.
  • the restart operation unit 58 outputs a seventh control signal ⁇ 7 for starting the lifting or lowering of the table 10 to the elevation control unit 54 when the abnormal state information satisfies a predetermined condition.
  • the elevation control unit 54 starts raising or lowering the table 10 according to the seventh control signal ⁇ 7.
  • the stop operation unit 56 may output a third control signal ⁇ 3 for further stopping the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 due to the input of the abnormal state information.
  • the stop operation section 56 may output the third control signal ⁇ 3 to the rotation control section 55 .
  • the rotation control section 55 stops the rotation of the table 10 according to the third control signal ⁇ 3.
  • the stop operation section 56 may output the third control signal ⁇ 3 to the heater control section 53 .
  • the heater control unit 53 that has received the third control signal ⁇ 3 stops the heating operation of the heater 15 according to the third control signal ⁇ 3.
  • the stop operation section 56 may output the third control signal ⁇ 3 to the feeder control section 52 .
  • the feeder control section 52 that has received the third control signal ⁇ 3 stops the feeding operation of the feeder 14 according to the third control signal ⁇ 3.
  • the recovery operation unit 57 may output the fourth control signal ⁇ 4 when the abnormal state information is information regarding the state of the powder material 2.
  • the fourth control signal ⁇ 4 restarts at least one of the rotating operation of the table 10, the heating operation of the heater 15, and the feeding operation of the feeder 14.
  • the return operation unit 57 may output to the rotation control unit 55 the fourth control signal ⁇ 4 for restarting the rotation operation of the table 10 .
  • the rotation controller 55 restarts the rotation of the table 10 according to the fourth control signal ⁇ 4.
  • the return operation unit 57 may output to the heater control unit 53 the fourth control signal ⁇ 4 for restarting the heating operation of the heater 15 .
  • the heater control unit 53 restarts the heating operation of the heater 15 according to the fourth control signal ⁇ 4.
  • the return operation unit 57 may output to the feeder control unit 52 a fourth control signal ⁇ 4 for restarting the supply operation of the feeder 14 .
  • the feeder control unit 52 restarts the feeding operation of the feeder 14 according to the fourth control signal ⁇ 4.
  • FIG. 4 is a timing chart for explaining the molding retry.
  • a modeling retry is a process performed to restart the modeling process.
  • FIG. 4 shows an example of changes over time in the state of the apparatus, the area during modeling, the rotational position of the modeling plate, the rotational speed of the modeling plate, the vertical position of the modeling plate, and the temperature of the modeling surface.
  • the state of the device is the operating state of the rotary additive manufacturing device 1 .
  • the area during modeling is a divided area that is passing through the modeling area.
  • the rotational position of the modeling plate is the rotational angle of the table 10 .
  • the rotation speed of the modeling plate is the rotation speed of the table 10 .
  • the elevation position of the modeling plate is the elevation position of the table 10 .
  • the temperature of the modeling surface is the temperature of the modeling surface 10a.
  • the rotation speed of the table 10 is constant. As the table 10 rotates, the divided areas A1, A2, A3, and A4 enter the modeling area in this order and become an area during modeling.
  • the divided area A1 enters the modeling area and becomes an area during modeling.
  • the table 10 is continuously lowered while the powder material 2 in the divided area A1 is being irradiated with the electron beam.
  • the divided area A2 enters the modeling area and becomes the modeling area.
  • an abnormality (smoke) occurs in the rotary additive manufacturing apparatus 1 while the divided area A2 is passing through the modeling area.
  • the control unit 5 receives the abnormal state information from the state information acquisition unit 7 .
  • the controller 5 outputs an irradiation control signal ⁇ 1 to the beam source 16 to stop irradiation of the electron beam.
  • the control unit 5 outputs an elevation control signal ⁇ 4 to the elevation unit 13 to stop the elevation of the table 10 .
  • the control unit 5 starts modeling retry when the smoke information ⁇ 1 forming the abnormal state information indicates the occurrence of smoke.
  • the stop operation unit 56 described above does not determine the content of the input abnormal state information.
  • the recovery operation unit 57 determines what kind of abnormality the input abnormal state information indicates. Specifically, it is determined whether or not the input abnormal state information is an abnormality related to the powder material 2 . If the powder material 2 is abnormal, there is a possibility that the abnormal state can be recovered by operating at least one of the feeder 14, the heater 15, the lifting unit 13, and the rotating unit 12. In this case, the controller 5 performs a modeling retry operation, which will be described later.
  • the modeling retry operation refers to an operation to make it possible to resume the modeling operation.
  • the control unit 5 stops the operation of the entire rotary lamination molding apparatus 1 as shown in steps S32, S34, and S35 which will be described later.
  • the return operation unit 57 performs modeling retry by controlling the heater 15 and the rotation unit 12 .
  • the return operation unit 57 determines the heating operation of the heater 15 and the rotation operation of the table 10 so that the temperature information ⁇ 4 falls within the modeling restart temperature range.
  • the molding restart temperature range may be the temporary sintering temperature of the powder material 2 .
  • the molding restart temperature range is a temporary sintering temperature of 700° C. or higher and 800° C. or lower.
  • smoke is less likely to occur.
  • the temporary sintering temperature it can be determined that the smoke has been eliminated.
  • the temperature information ⁇ 4 may be temperatures regarding a plurality of measurement points.
  • the return operation unit 57 may determine the operation of the heater 15 and the table 10 so that part or all of the temperature information ⁇ 4 falls within the modeling restart temperature range.
  • the temperature of heater 15 and the rotational speed of table 10 may be maintained during modeling.
  • the temperature of the heater 15 during modeling and the rotation speed of the table 10 may be changed and set to different values.
  • the beam source 16 stops irradiating the electron beam.
  • the heating operation of the heater 15 and the rotating operation of the table 10 are continued.
  • the divided areas A3 and A4 enter the modeling area in this order.
  • the divided area A1 enters the modeling area again.
  • the control unit 5 restarts the modeling process when the abnormal state information satisfies a predetermined condition.
  • the predetermined conditions include, for example, that the temperature of the modeling surface 10a is maintained at the modeling restart temperature, or that the area where smoke is generated (here, the divided area A2) has entered the modeling area again.
  • the controller 5 outputs an irradiation control signal ⁇ 1 to the beam source 16 to start electron beam irradiation.
  • the control unit 5 outputs an elevation control signal ⁇ 4 to the elevation unit 13 to start lowering the table 10 .
  • the control unit 5 may output the irradiation control signal ⁇ 1 and the elevation control signal ⁇ 4 at the same time, or at different timings.
  • FIG. 5 is a flow chart showing an example of processing when an abnormality occurs, which is executed by the rotary layered manufacturing apparatus 1 according to the first embodiment.
  • the control unit 5 receives the abnormal state information from the state information acquisition unit 7 (step S10).
  • the control unit 5 stops electron beam irradiation (step S12).
  • the controller 5 outputs an irradiation control signal ⁇ 1 to the beam source 16 .
  • the beam source 16 that has received the irradiation control signal ⁇ 1 stops the electron beam irradiation.
  • the control unit 5 stops the lifting or lowering of the table 10 (step S14).
  • the control section 5 outputs an elevation control signal ⁇ 4 to the elevation unit 13 .
  • the lifting unit 13 that has received the lifting control signal ⁇ 4 stops lowering the table 10 .
  • the control unit 5 stops the supply of the powder material 2 (step S16).
  • the controller 5 outputs a supply control signal ⁇ 2 to the feeder 14 .
  • the feeder 14 that has received the supply control signal ⁇ 2 stops supplying the powder material 2 .
  • the control unit 5 determines whether or not modeling retry is possible (step S18).
  • the control unit 5 determines that the molding retry is possible when the abnormal state information is the smoke information ⁇ 1.
  • the control unit 5 determines that the modeling retry is impossible when the abnormal state information is the failure information ⁇ 3. If modeling retry is possible (YES in step S18), the process proceeds to step S20. If the modeling retry is not possible (NO in step S18), the process proceeds to step S32.
  • the control unit 5 starts up the electron gun (step S20).
  • the controller 5 outputs an irradiation control signal ⁇ 1 to the beam source 16 to start up the electron gun.
  • To activate the electron gun means to put the electron beam into a state in which the electron beam can be emitted from the electron gun. That is, in step S20, the beam source 16 does not irradiate the electron beam.
  • the control unit 5 controls the heating operation of the heater 15 and the rotating operation of the table 10 (step S22).
  • the controller 5 outputs a rotation control signal ⁇ 5 to the rotation unit 12 .
  • the rotation unit 12 that receives the rotation control signal ⁇ 5 continues rotating the table 10 .
  • the controller 5 outputs a heating control signal ⁇ 3 to the heater 15 .
  • the heater 15 that has received the heating control signal ⁇ 3 continues the heating operation.
  • the control unit 5 determines whether or not the molding surface temperature satisfies the molding restart condition (step S24). In one example, the control unit 5 determines that the modeling resumption condition is met when the temperature information ⁇ 4 is included in the modeling resumption temperature range. When the temperature information ⁇ 4 is not included in the temperature range for resuming modeling, the control unit 5 determines that the conditions for resuming modeling are not met. If the molding restart condition is met (YES in step S24), the process proceeds to step S26. If the molding restart condition is not met (NO in step S24), the process returns to step S22.
  • the control unit 5 restarts the supply of the powder material 2 (step S26).
  • the controller 5 outputs a supply control signal ⁇ 2 to the feeder 14 .
  • the feeder 14 that has received the supply control signal ⁇ 2 resumes supplying the powder material 2 .
  • the control unit 5 restarts electron beam irradiation (step S28).
  • the controller 5 outputs an irradiation control signal ⁇ 1 to the beam source 16 .
  • the beam source 16 that has received the irradiation control signal ⁇ 1 resumes irradiation of the electron beam.
  • the control unit 5 restarts the elevation of the table 10 (step S30).
  • the control section 5 outputs an elevation control signal ⁇ 4 to the elevation unit 13 .
  • the lifting unit 13 that has received the lifting control signal ⁇ 4 resumes lifting the table 10 .
  • the control unit 5 stops the rotation of the table 10 (step S32).
  • the controller 5 outputs a rotation control signal ⁇ 5 to the rotation unit 12 .
  • the rotation unit 12 that has received the rotation control signal ⁇ 5 stops the rotation of the table 10 .
  • the control unit 5 stops the heating operation of the heater 15 (step S34).
  • the controller 5 outputs a heating control signal ⁇ 3 to the heater 15 .
  • the heater 15 that has received the heating control signal ⁇ 3 stops the heating operation.
  • the control unit 5 interrupts the modeling process (step S36).
  • the rotary additive manufacturing apparatus 1 and the control unit 5 heat the powder material 2 while rotating the table 10 and irradiate the powder material 2 with an electron beam.
  • the rotary additive manufacturing apparatus 1 and the control unit 5 stop electron beam irradiation due to the input of the abnormal state information.
  • the abnormal state information is information about the state of the powder material 2
  • the rotary layered manufacturing apparatus 1 and the control unit 5 control at least one of the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14. .
  • the rotary layered manufacturing apparatus 1 and the control unit 5 control at least one of the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14. .
  • at least one of the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 is controlled even in a state in which the electron beam irradiation should be stopped.
  • the state information acquisition unit 7 includes a smoke information acquisition unit 71 that outputs smoke information ⁇ 1 for determining the presence or absence of the powder material 2 in a scattered state to the control unit 5 as information on the state of the powder material 2 .
  • the return operation unit 57 outputs the second control signal ⁇ 2 to rotate the table 10 and heat the heater 15. outputs a signal that controls the According to such a configuration, the rotation operation of the table 10 and the heating operation of the heater 15 are controlled when smoke is generated. Thereby, it is possible to suppress the temperature difference of the powder material 2 from increasing while the modeling is stopped. Furthermore, the modeling operation can be resumed in a state in which the smoke is eliminated.
  • the stop operation unit 56 outputs a third control signal ⁇ 3 for further stopping the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 due to the input of the abnormal state information.
  • the return operation unit 57 outputs a fourth control signal for restarting at least one of the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 when the abnormal state information is information regarding the state of the powder material 2.
  • Output ⁇ 4 According to such a configuration, the rotation operation of the table 10, the heating operation of the heater 15, and the supply operation of the feeder 14 are also stopped in a state in which the irradiation of the electron beam should be stopped. If the abnormal condition information is information about the condition of the powder material 2, at least one of these operations is resumed. This allows starting only the operations necessary to resume modeling. Furthermore, it is possible to suppress an increase in the temperature difference of the powder material 2 while the modeling is stopped.
  • the control unit 5 further includes a restart operation unit 58 that outputs a fifth control signal ⁇ 5 for starting electron beam irradiation when the abnormal state information satisfies a predetermined condition.
  • FIG. 6 is a diagram showing a cross section of a rotary layered manufacturing apparatus 1A according to the second embodiment.
  • a rotary layer forming apparatus 1A according to the second embodiment differs from the rotary layer forming apparatus 1 according to the first embodiment in that an irregularity information acquisition section 72 is provided instead of the smoke information acquisition section 71 and the temperature information acquisition section 74 .
  • the state information acquisition unit 7A has an unevenness information acquisition unit 72 and a device information acquisition unit 73.
  • the unevenness information acquisition unit 72 outputs unevenness information ⁇ 2 as information about the state of the powder material 2 to the control unit 5A.
  • the unevenness information ⁇ 2 indicates the unevenness of the surface of the powder material 2 irradiated with the electron beam.
  • the unevenness information acquisition unit 72 may be a camera.
  • the unevenness information acquisition unit 72 captures an image of the surface layer (coating surface) of the powder material 2 and acquires the roughness of the surface layer as the unevenness information ⁇ 2.
  • the unevenness information acquisition unit 72 is not limited to the configuration described above as long as it can acquire the unevenness information ⁇ 2.
  • FIG. 7 is a block diagram showing a control unit (control device) 5A according to the second embodiment.
  • the return operation unit 57 When the irregularity information ⁇ 2 forming the abnormal state information received from the state information acquisition unit 7A does not satisfy a predetermined irregularity condition, the return operation unit 57 outputs the second control signal ⁇ 2 to rotate the table 10 and feed the feeder 14. Outputs a signal that controls the supply operation. Any of the unevenness information acquisition unit 72, the stop operation unit 56, and the return operation unit 57 may determine whether the unevenness information ⁇ 2 satisfies the predetermined unevenness condition.
  • the return operation unit 57 determines the rotation operation of the table 10 and the supply operation of the feeder 14 so that the unevenness information ⁇ 2 satisfies a predetermined unevenness condition.
  • the predetermined irregularity condition is that the roughness of the surface layer of the powder material 2 is smaller than the thickness of one layer, but is not limited to this.
  • the return operation unit 57 determines the supply amount of the powder material 2 . Then, the return operation unit 57 adjusts the supply amount of the powder material 2 while continuing the rotation operation of the table 10 . As a result, the roughness of the surface layer of the powder material 2 is adjusted.
  • FIG. 8 is a flowchart showing an example of processing when an abnormality occurs in the rotary layered manufacturing apparatus 1A according to the second embodiment.
  • the processing flow of the rotary layered manufacturing apparatus 1A according to the second embodiment differs from the processing flow of the rotary layered manufacturing apparatus 1 according to the first embodiment in that the determination in step S18 is different.
  • the processing flow of the rotary layered manufacturing apparatus 1A according to the second embodiment includes steps S23, S25 and S27 instead of steps S24 and S26. different from In FIG. 8, the description of the same steps as in the processing flow of the rotary layered manufacturing apparatus 1 according to the first embodiment will be omitted.
  • the control unit 5A determines whether or not modeling retry is possible (step S18).
  • the control unit 5A determines that the modeling retry is possible when the abnormal state information is the unevenness information ⁇ 2.
  • the control unit 5A determines that the modeling retry is impossible when the abnormal state information is the failure information ⁇ 3. If modeling retry is possible (YES in step S18), the process proceeds to step S20. If the modeling retry is not possible (NO in step S18), the process proceeds to step S32.
  • the control unit 5A restarts the supply of the powder material 2 (step S23).
  • the controller 5A outputs a supply control signal ⁇ 2 to the feeder 14.
  • the feeder 14 that has received the supply control signal ⁇ 2 resumes supplying the powder material 2 .
  • the control unit 5A adjusts the supply amount of the powder material 2 (step S25).
  • the controller 5A outputs a supply control signal ⁇ 2 to the feeder 14.
  • the feeder 14 that has received the supply control signal ⁇ 2 adjusts the supply amount of the powder material 2 .
  • the control unit 5A determines whether or not the surface layer of the powder material 2 meets the molding restart condition (step S27). In one example, the control unit 5A determines that the modeling restart condition is met when the unevenness information ⁇ 2 is less than the thickness of one layer. A layer thickness may be defined as the build thickness that increases during one revolution of the table 10 . When the unevenness information ⁇ 2 is equal to or greater than the thickness of one layer, the control unit 5A determines that the molding restart condition is not met. If the molding restart condition is met (YES in step S27), the process proceeds to step S28. If the molding restart condition is not met (NO in step S27), the process returns to step S25.
  • the rotary layered manufacturing apparatus 1A adjusts the uneven state of the powder material 2 while rotating the table 10 while the modeling is stopped.
  • the state information acquisition section 7A includes an unevenness information acquisition section 72 .
  • the unevenness information acquisition unit 72 outputs unevenness information ⁇ 2 indicating the unevenness state of the surface of the powder material 2 irradiated with the electron beam as information on the state of the powder material 2 to the control unit 5A.
  • the return operation unit 57 outputs the second control signal ⁇ 2 to rotate the table 10 and feed the feeder 14. Outputs a signal that controls the supply operation.
  • the rotating operation of the table 10 and the feeding operation of the feeder 14 are controlled when the unevenness of the surface of the powder material 2 does not satisfy the predetermined unevenness condition. Thereby, it can suppress that the temperature difference of the powder material 2 expands while modeling is stopped. Furthermore, the uneven state of the surface of the powder material 2 can be adjusted.
  • FIG. 9 is a diagram showing a cross section of a rotary layered manufacturing apparatus 1B according to the third embodiment.
  • the state information acquisition section 7B includes a smoke information acquisition section 71, an unevenness information acquisition section 72, a device information acquisition section 73, and a temperature information acquisition section 74.
  • FIG. 10 is a block diagram showing a control section (control device) 5B according to the third embodiment.
  • the return operation unit 57 outputs the second control signal ⁇ 2 in accordance with the information indicated by the smoke information ⁇ 1 or the unevenness information ⁇ 2.
  • FIG. 11 is a flowchart showing an example of processing when an abnormality occurs in the rotary layered manufacturing apparatus 1B according to the third embodiment.
  • the rotary layered manufacturing apparatus 1B according to the third embodiment adjusts at least one of the temperature of the modeling surface 10a and the roughness of the surface layer of the powder material 2.
  • FIG. 11 the rotary lamination modeling apparatus 1B according to the third embodiment executes steps S25 and S27 after steps S22, S24 and S26.
  • description of steps that are the same as those of the processing flow of the rotary layered manufacturing apparatus 1 or 1A according to the first embodiment or the second embodiment will be omitted.
  • the control unit 5B determines whether or not modeling retry is possible (step S18).
  • the control unit 5B determines that the modeling retry is possible when the abnormal state information is the smoke information ⁇ 1 or the unevenness information ⁇ 2.
  • the control unit 5B determines that the modeling retry is impossible when the abnormal state information is the failure information ⁇ 3. If modeling retry is possible (YES in step S18), the process proceeds to step S20. If the modeling retry is not possible (NO in step S18), the process proceeds to step S32.
  • the control unit 5B controls the heating operation of the heater 15 and the rotating operation of the table 10 (step S22).
  • the controller 5B outputs a rotation control signal ⁇ 5 to the rotation unit 12.
  • FIG. The rotation unit 12 that receives the rotation control signal ⁇ 5 continues rotating the table 10 .
  • Control unit 5B outputs heating control signal ⁇ 3 to heater 15 .
  • the heater 15 that has received the heating control signal ⁇ 3 continues the heating operation of the heater 15 .
  • the control unit 5B determines whether or not the molding surface temperature meets the molding restart condition (step S24). In one example, the control unit 5B determines that the modeling resumption condition is met when the temperature information ⁇ 4 is within the modeling resumption temperature range. If the temperature information ⁇ 4 does not fall within the modeling resumption temperature range, the control unit 5B determines that the modeling resumption condition is not met. If the molding restart condition is met (YES in step S24), the process proceeds to step S26. If the molding restart condition is not met (NO in step S24), the process returns to step S22.
  • the control unit 5B restarts the supply of the powder material 2 (step S26).
  • the control section 5B outputs a supply control signal ⁇ 2 to the feeder 14 .
  • the feeder 14 that has received the supply control signal ⁇ 2 resumes supplying the powder material 2 .
  • the controller 5B adjusts the supply amount of the powder material 2 (step S25).
  • the control section 5B outputs a supply control signal ⁇ 2 to the feeder 14 .
  • the feeder 14 that has received the supply control signal ⁇ 2 adjusts the supply amount of the powder material 2 .
  • the control unit 5B determines whether or not the surface layer of the powder material 2 meets the molding restart condition (step S27). In one example, when the unevenness information ⁇ 2 is less than the thickness of one layer, the control unit 5B determines that the modeling restart condition is met. When the unevenness information ⁇ 2 is equal to or greater than the thickness of one layer, the control unit 5B determines that the molding restart condition is not satisfied. If the molding restart condition is met (YES in step S27), the process proceeds to step S28. If the molding restart condition is not met (NO in step S27), the process returns to step S25.
  • the rotary layered modeling apparatus 1B according to the third embodiment adjusts the temperature of the modeling surface 10a and the roughness of the surface layer of the powder material 2. Also in the rotary lamination-modeling apparatus 1B according to the third embodiment, the same effects as those of the rotary lamination-modeling apparatuses 1 and 1A according to the first embodiment or the second embodiment can be obtained.
  • the table 10 rotates once during a molding retry has been described.
  • the table 10 may be rotated any number of times until the conditions for resuming modeling are satisfied.
  • the powder material 2 was heated by the heater 15 during the build retry.
  • An electron beam may be used as a heating source.
  • the condition for resuming modeling is the temperature of the modeling surface 10a or the roughness of the surface layer of the powder material 2 .
  • the modeling restart condition may be the heating time of the modeling surface 10a.
  • Rotating additive manufacturing device three-dimensional modeling device
  • 2 powder material 3 modeled object 4 drive unit
  • control unit 6 processing unit
  • state information acquisition unit 8 housing 9 column 10 table 11 modeling tank 10a modeling surface 10b rear surface 12 rotating unit 13 lifting unit 14 feeder (supply unit) 15 heater (heating part) 16 beam source (irradiation unit) 51 beam control unit 52 feeder control unit 53 heater control unit 54 elevation control unit 55 rotation control unit 56 stop operation unit 57 return operation unit 58 restart operation unit 71 smoke information acquisition unit 72 unevenness information acquisition unit 73 device information acquisition unit 74 temperature information Acquisition units A1, A2, A3, A4 Division area CW Rotational direction S Molding space ⁇ 1 Smoke information ⁇ 2 Unevenness information ⁇ 3 Obstacle information ⁇ 4 Temperature information ⁇ 1 Irradiation control signal ⁇ 2 Supply control signal ⁇ 3 Heating control signal ⁇ 4 Lifting control signal ⁇ 5 Rotation control signal ⁇ 1 First control signal ⁇ 2 Second control signal ⁇ 3 Third control signal ⁇ 4 Fourth control signal ⁇ 5 Fifth control signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)

Abstract

回転積層造形装置は、テーブルと、フィーダと、ヒータと、ビーム源と、状態情報取得部と、制御部と、を備える。制御部は、異常状態情報の入力に起因して、電子ビームの照射を停止させる第一制御信号を出力する停止動作部と、異常状態情報が粉末材料の状態に関する情報であるか否かを判定し、異常状態情報が粉末材料の状態に関する情報である場合に、テーブルの回転動作、ヒータの加熱動作及びフィーダの供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を有する。

Description

回転積層造形装置及び制御装置
 本開示は、回転積層造形装置及び制御装置に関する。
 特許文献1は、三次元の物体を製造する装置について、製造中における粉末層の温度の変化が製品の品質に影響を及ぼすことを開示する。そこで、特許文献1の製造装置は、粉末層の区域を選択し、選択した区域の温度を維持する操作計画を設計する。
 特許文献2は、三次元造形装置を開示する。特許文献2の三次元造形装置は、三次元の物体を造形する動作を一時的に停止した後、三次元の物体を造形する動作を再開する。より詳細には、特許文献2の三次元造形装置は、動作を一時停止した後の状況に基づいてバインダーの吐出を制御する。
特許第4639087号公報 特開2017-119350号公報
 回転積層造形装置によって造形される部品の造形品質は、造形動作中の様々な影響を受ける。例えば、造形品質は、粉末材料の温度分布の影響を受ける。造形品質は、エネルギビームが照射される粉末材料の表面の状態の影響も受ける。所望の造形品質を得るためには、粉末材料を所定の状態に維持する必要がある。しかし、造形動作中において、何らかの理由により造形動作を継続すべきでない状況も生じ得る。造形動作を継続すべきでない状況では、所望の造形品質を得ることができる状態を維持し難くなる。その結果、所望の造形品質を満たす造形物を得ることが難しかった。
 本開示は、所望の造形品質を満たす造形物を得ることが可能な回転積層造形層及び回転積層造形装置の制御装置を説明する。
 本開示の一態様に係る回転積層造形装置は、粉末材料を回転支持するテーブルと、テーブルに粉末材料を供給する供給部と、テーブルに配置された粉末材料を加熱する加熱部と、テーブルに配置された粉末材料に対してエネルギビームを照射する照射部と、テーブルに配置された粉末材料の状態に関する情報を含み、エネルギビームの照射を停止すべき状態を示す異常状態情報を出力する状態情報取得部と、異常状態情報に基づいて、少なくとも照射部を制御する制御部と、を備える。制御部は、異常状態情報の入力に起因して、エネルギビームの照射を停止させる第一制御信号を出力する停止動作部と、異常状態情報が粉末材料の状態に関する情報であるか否かを判定し、異常状態情報が粉末材料の状態に関する情報である場合に、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を有する。
 本開示の一態様に係る回転積層造形装置及び制御装置は、所望の造形品質を満たす造形物を得ることができる。
図1は、第1実施形態に係る回転積層造形装置の構成を示す図である。 図2は、処理部、温度情報取得部及びテーブルの位置関係を説明するための模式図である。図2(a)は、テーブルの回転前の状態を示す。図2(b)は、テーブルの回転後の状態を示す。 図3は、第1実施形態に係る回転積層造形装置を示すブロック図である。 図4は、造形リトライを説明するためのタイミングチャートである。 図5は、第1実施形態に係る回転積層造形装置における異常発生時の処理の一例を示すフローチャートである。 図6は、第2実施形態に係る回転積層造形装置の構成を示す図である。 図7は、第2実施形態に係る回転積層造形装置を示すブロック図である。 図8は、第2実施形態に係る回転積層造形装置における異常発生時の処理の一例を示すフローチャートである。 図9は、第3実施形態に係る回転積層造形装置の構成を示す図である。 図10は、第3実施形態に係る回転積層造形装置を示すブロック図である。 図11は、第3実施形態に係る回転積層造形装置における異常発生時の処理の一例を示すフローチャートである。
 本開示の一態様に係る回転積層造形装置は、粉末材料を回転支持するテーブルと、テーブルに粉末材料を供給する供給部と、テーブルに配置された粉末材料を加熱する加熱部と、テーブルに配置された粉末材料に対してエネルギビームを照射する照射部と、テーブルに配置された粉末材料の状態に関する情報を含み、エネルギビームの照射を停止すべき状態を示す異常状態情報を出力する状態情報取得部と、異常状態情報に基づいて、少なくとも照射部を制御する制御部と、を備える。制御部は、異常状態情報の入力に起因して、エネルギビームの照射を停止させる第一制御信号を出力する停止動作部と、異常状態情報が粉末材料の状態に関する情報であるか否かを判定し、異常状態情報が粉末材料の状態に関する情報である場合に、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を有する。
 本開示の一態様に係る制御装置は、供給部から回転するテーブル上に供給された粉末材料を加熱部によって加熱すると共に、エネルギビームを照射することによって三次元造形物を造形する三次元造形装置を制御する。制御装置は、テーブルに配置された粉末材料の状態に関する情報を含み、エネルギビームの照射を停止すべき状態を示す異常状態情報の入力に起因して、エネルギビームの照射を停止させる第一制御信号を出力する停止動作部と、異常状態情報が粉末材料の状態に関する情報であるか否かを判定し、異常状態情報が粉末材料の状態に関する情報である場合に、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を備える。
 回転積層造形装置及び制御装置は、テーブルを回転させながら粉末材料を加熱すると共に、粉末材料にエネルギビームを照射する。回転積層造形装置及び制御装置は、異常状態情報の入力に起因して、エネルギビームの照射を停止する。回転積層造形装置及び制御装置は、異常状態情報が粉末材料の状態に関する情報である場合、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つを制御する。このような構成によれば、エネルギビームの照射を停止すべき状態であるときに、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つが制御される。これにより、エネルギビームの照射が停止された状態にあっても、所望の造形品質を得るために、粉末材料に求められる状態を得ることが可能である。従って、所望の造形品質を満たす造形物を得ることができる。
 状態情報取得部は、粉末材料の状態に関する情報として、飛散した状態の粉末材料の有無を判断するためのスモーク情報を制御部に出力するスモーク情報取得部を含んでもよい。復帰動作部は、状態情報取得部から受けた異常状態情報を構成するスモーク情報がスモークの発生を示すときに、第二制御信号として、テーブルの回転動作及び加熱部の加熱動作を制御する信号を出力してもよい。このような構成によれば、スモークが発生している場合、テーブルの回転動作及び加熱部の加熱動作が制御される。これにより、スモークが発生して、造形動作が停止された場合であっても、所望の造形品質を得るために、粉末材料に求められる状態を得ることが可能である。従って、所望の造形品質を満たす造形物を得ることができる。
 状態情報取得部は、粉末材料の状態に関する情報として、エネルギビームの照射を受ける粉末材料の面の凹凸状態を示す凹凸情報を制御部に出力する凹凸情報取得部を含んでもよい。復帰動作部は、状態情報取得部から受けた異常状態情報を構成する凹凸情報が所定の凹凸条件を満たさないときに、第二制御信号として、テーブルの回転動作及び供給部の供給動作を制御する信号を出力してもよい。このような構成によれば、粉末材料の面に形成された凹凸の状態が所定の凹凸の条件を満たさない場合、テーブルの回転動作及び供給部の供給動作が制御される。これにより、造形動作が停止された場合であっても、所望の造形品質を得るために、粉末材料に求められる状態を得ることが可能である。従って、所望の造形品質を満たす造形物を得ることができる。
 停止動作部は、異常状態情報の入力に起因して、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作をさらに停止させる第三制御信号を出力してもよい。復帰動作部は、異常状態情報が粉末材料の状態に関する情報であるときに、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作の少なくとも一つを再開する第四制御信号を出力してもよい。このような構成によれば、エネルギビームの照射を停止すべき状態において、テーブルの回転動作、加熱部の加熱動作及び供給部の供給動作もさらに停止することができる。
 制御部は、異常状態情報が所定の条件を満たした場合に、エネルギビームの照射を開始させる第五制御信号を出力する再開動作部をさらに有してもよい。この構成によれば、所望の造形品質を得るために、粉末材料に求められる状態が確保されたことを確認したうえで、造形動作を再開することが可能になる。従って、所望の造形品質を満たす造形物を得ることができる。
 以下、本開示の回転積層造形装置及び制御装置について、図面を参照しながら詳細に説明する。各図において同一部分又は相当部分には同一の符号を付し、重複する説明は省略する。
[第1実施形態]
 図1は、第1実施形態に係る回転積層造形装置(三次元造形装置)1の構成を示す図である。回転積層造形装置1は、いわゆる3Dプリンタである。回転積層造形装置1は、粉末材料2から三次元の造形物(三次元造形物)3を製造する。粉末材料2は、金属の粉末である。粉末材料2は、例えばチタン系金属粉末、インコネル粉末、又はアルミニウム粉末等である。粉末材料2は、金属粉末に限定されない。粉末材料2は、例えば樹脂粉末、又はCFRP(Carbon Fiber Reinforced Plastics)などの炭素繊維と樹脂とを含む粉末であってもよい。粉末材料2は、導電性を有するその他の粉末でもよい。本開示における粉末材料2は、導電性を有するものには限定されない。例えばエネルギビームとしてレーザを用いる場合には、粉末材料2は導電性を有しなくてもよい。
 回転積層造形装置1は、敷き均した粉末材料2に対し電子ビームを照射することにより、造形を行うパウダーベッド方式を採用する。回転積層造形装置1は、粉末材料2に電子ビームを照射することにより、粉末材料2にエネルギを付与する。回転積層造形装置1が粉末材料2にエネルギを付与すると、粉末材料2の温度が上昇する。その結果、粉末材料2が溶融又は焼結する。回転積層造形装置1がエネルギの付与を停止すると、粉末材料2の温度が下がる。その結果、粉末材料2が凝固する。回転積層造形装置1は、エネルギの付与と停止とを複数回繰り返すことにより、三次元の造形物3を造形する。
 回転積層造形装置1は、駆動部(駆動部材)4、制御部(制御装置、コントローラ)5、処理部(処理部材)6、状態情報取得部7及びハウジング8を備える。駆動部4は、造形に要する種々の動作を実現する。制御部5は、回転積層造形装置1の装置全体の制御を司る。処理部6は、粉末材料2を処理して造形物3を得る。粉末材料2の処理は、粉末材料2の供給処理と、粉末材料2の予熱処理と、粉末材料2の造形処理と、を含む。状態情報取得部7は、造形に関する種々の状態を示す情報を取得する。ハウジング8は、造形空間Sを形成する。造形空間Sは、処理部6による粉末材料2の処理を行うための減圧可能な気密空間である。ハウジング8は、複数のコラム9によって支持されている。
 造形空間Sには、テーブル10と造形タンク11とが配置されている。テーブル10は、粉末材料2を回転可能に支持する。テーブル10は、例えば円盤を呈する。テーブル10は、テーブル10の中心軸線がハウジング8の中心軸線と重複するように配置される。テーブル10は、造形面(主面又は上面)10aと、背面10bと、を有する。造形面10aには、造形物3の原料である粉末材料2が配置される。背面10bには、駆動部4が接続されている。造形タンク11は、粉末材料2を収容する容器である。造形タンク11は、テーブル10を囲うように配置される。
 駆動部4は、テーブル10を回転及び昇降させる。駆動部4は、回転ユニット12及び昇降ユニット13を有する。回転ユニット12は、テーブル10の中心軸線を回転軸線としてテーブル10を回転させる。回転ユニット12の上端は、テーブル10に連結されている。回転ユニット12の下端には、駆動源(例えばモータ)が取り付けられている。昇降ユニット13は、テーブル10を造形タンク11に対して相対的に上昇及び下降させる。テーブル10の上昇及び下降は、回転ユニット12の回転軸線に沿っている。駆動部4は、テーブル10を回転と、上昇及び下降と、をさせることができる機構であればよく、上述した機構に限定されない。
 制御部5は、駆動部4及び処理部6の動作を制御する。制御部5は、状態情報取得部7から異常状態情報を受信する。
 処理部6は、テーブル10に対面するように配置されている。例えば、処理部6は、テーブル10の上方に配置され、テーブル10の造形面10aに対面している。処理部6は、フィーダ14、ヒータ(加熱部)15、及びビーム源(照射部)16を有する。フィーダ14は、粉末材料2の供給処理を行う。ヒータ15は、粉末材料2の予熱処理を行う。ビーム源16は、粉末材料2の造形処理を行う。
 フィーダ14は、テーブル10に粉末材料2を供給する供給部として機能する。例えば、フィーダ14は、原料タンクと均し部とを有する。原料タンクは、粉末材料2を貯留する。原料タンクは、テーブル10に粉末材料2を供給する。均し部は、テーブル10上の粉末材料2の表面を均す。例えば、テーブル10上の粉末材料2の表面層は、テーブル10の回転に伴って均し部に当接して敷き均される。回転積層造形装置1は、均し部に替えて、ローラー部、棒状部材、刷毛部などを有してもよい。
 ヒータ15は、テーブル10に配置された粉末材料2を加熱する加熱部として機能する。ヒータ15は、電子ビームが照射される前の粉末材料2に対して予備加熱を行う。例えば、ヒータ15は、放射熱によって粉末材料2の温度を上昇させる。ヒータ15は、他の方式により加熱するものであってもよく、例えば赤外線ヒータであってもよい。
 ビーム源16は、テーブル10に配置された粉末材料2に対して電子ビームを照射する照射部として機能する。ビーム源16は、例えば電子銃である。電子銃はカソードとアノードとの間に生じる電位差に応じた電子ビームを発生させる。ビーム源16は、電子ビームを粉末材料2に照射する。
 状態情報取得部7は、電子ビームの照射を停止すべき状態を示す異常状態情報を出力する。異常状態情報は、テーブル10に配置された粉末材料2の状態に関する情報を含んでいる。状態情報取得部7は、スモーク情報取得部71、機器情報取得部73、及び温度情報取得部74を有する。
 スモーク情報取得部71は、粉末材料2の状態に関する情報として、スモーク情報θ1を制御部5に出力する。スモーク情報θ1は、飛散した状態の粉末材料2の有無を判断するために用いられる。粉末材料2は、電子ビームの照射によって帯電する。粉末材料2の帯電によって、粉末材料2が霧状に舞い上がる場合がある。粉末材料2が霧状に舞い上がる現象はスモークと呼ばれる。スモーク情報θ1は、造形動作に影響する程度の粉末材料2の飛散が生じているか否かを示す。スモーク情報θ1は、スモークが発生しているか否かを明示する情報であってもよい。スモーク情報θ1は、スモークが発生しているか否かを判定するための、判断材料となり得る計測値であってもよい。
 例えば、スモーク情報取得部71は、光センサであってもよい。スモーク情報取得部71は、粉末材料2から発せられた光のうち、特定の波長の光強度をスモーク情報θ1として取得してもよい。
 スモークが発生すると特定の波長を有する電磁波(X線)が発生する。スモーク情報取得部71は、特定の波長の電磁波を検出するセンサであってもよい。例えば、スモーク情報取得部71が出力するスモーク情報θ1は、スモークが発生したことを示す情報(1)と、スモークが発生していなことを示す情報(0)と、を含む。造形動作中、スモーク情報取得部71は、スモークが発生していないことを示す情報(0)を出力している。そして、あるタイミングにおいてスモークが発生したとき、スモーク情報取得部71は、スモークが発生していることを示す情報(1)を出力する。
 スモークの発生には、粉末材料2に関する種々の物理的な特性が影響を与える。このような特性として、粉末材料2の静電容量又は粉末材料2の電気抵抗値が挙げられる。スモーク情報取得部71は、粉末材料2の特性値を計測し、計測によって得た計測値を出力するものであってもよい。この場合には、スモーク情報θ1は、計測値である。計測値は、スモークが発生しているか否かを直接に明示しない。しかし、計測値を予め設定する閾値と比較することにより、スモークの発生の有無を判定できる。スモークの発生の有無の判定は、スモーク情報取得部71が行ってもよいし、別の構成要素が行ってもよい。別の構成要素がスモークの発生の有無の判定を行う場合には、スモーク情報取得部71は、スモーク情報θ1として計測値を出力する。
 スモーク情報取得部71は、スモーク情報θ1を取得できればよく、上述した構成に限られない。
 機器情報取得部73は、回転積層造形装置1の障害を検知する。機器情報取得部73は、障害に関する情報として、障害情報θ3を制御部5に出力する。障害情報θ3としては、例えば造形空間Sの圧力の異常、駆動部4の故障、処理部6の故障、その他造形処理の継続を停止すべき異常等が挙げられる。
 温度情報取得部74は、造形面10aの温度を測定する。温度情報取得部74は、温度に関する情報として、温度情報θ4を制御部5に出力する。例えば、温度情報取得部74は、熱電対であってもよい。温度情報取得部74は、テーブル10の背面10bに取り付けられてもよい。温度情報取得部74は、他の方式により温度情報θ4を取得してもよい。温度情報取得部74は、例えば赤外線カメラを用いて造形面10aの温度分布を測定してもよい。温度情報取得部74は、複数の測定箇所に関する温度情報θ4を取得してもよい。温度情報θ4は、複数の測定箇所に関する複数の温度の値であってもよい。温度情報θ4は、複数の温度の値に基づいて得た代表値であってもよい。
 図1を参照して、回転積層造形装置1における造形の際の動作について説明する。昇降ユニット13は、テーブル10を上方へ移動させる。テーブル10は、造形タンク11の上部の位置に配置される。回転ユニット12は、テーブル10を回転させる。
 フィーダ14は、テーブル10に粉末材料2を供給する。供給された粉末材料2は、リコータによって表面が均される。フィーダ14によって供給された粉末材料2は、テーブル10の回転に伴って移動する。
 ヒータ15は、電子ビームが照射される前の粉末材料2を予備加熱する。粉末材料2は、テーブル10と共に回転しながら加熱される。ヒータ15によって予備加熱された粉末材料2は、テーブル10の回転に伴って移動する。
 ビーム源16は、粉末材料2に対して電子ビームを照射する。これにより、粉末材料2が溶融又は焼結され、造形物3が造形されていく。
 テーブル10は、造形物3の造形が進むに連れて降下する。すなわち、昇降ユニット13は、テーブル10を降下させる。テーブル10の降下は、テーブル10の回転と同期させてもよいが、完全には同期させなくてもよい。
 そして、全ての層について造形が完了した後に、造形物3の造形が完了する。
 図2は、処理部6、温度情報取得部74及びテーブル10の位置関係を説明するための模式図である。図2(a)は、テーブル10の回転前の状態を示す。テーブル10は、回転方向CWに回転する。回転方向CWは時計回りである。フィーダ14、ヒータ15及びビーム源16は、テーブル10の回転方向CWに沿って、この順でテーブル10の上方に配置されている。
 フィーダ14は、造形面10aに供給領域を形成する。供給領域は、粉末材料2がテーブル10に供給されると共に均される領域である。供給領域は、例えば、テーブル10の直径方向(半径方向)を長手方向とする矩形状の形状を呈するが、これに限定されない。
 ヒータ15は、造形面10aに予熱領域を形成する。予熱領域は、粉末材料2の温度を上昇させる領域である。ヒータ15は、予熱領域に存在する粉末材料2の温度が、供給領域に存在する粉末材料2の温度よりも高くなるように加熱する。このような加熱処理は、例えば、粉末材料2を仮焼結する処理であってもよい。仮焼結とは、粉末材料2同士が拡散現象によって最小点で拡散して接合した状態である。仮焼結温度は、一例として、粉末材料2の融点の半分以上である。これは、粉末材料2の拡散現象が活発になるのが、一般的に融点の半分以上であることに基づく。例えば、粉末材料2がチタンである場合、仮焼結温度は、700℃以上800℃以下である。チタン合金の融点は約1500℃以上1600℃以下である。粉末材料2がアルミニウムである場合、仮焼結温度は、300℃である。アルミニウムの融点は約660℃である。予熱領域は、例えば扇状の形状を呈するが、これに限定されない。
 ビーム源16は、造形面10aに造形領域を形成する。造形領域は、粉末材料2の温度を上昇させる領域である。造形領域において加熱された粉末材料2の温度は予熱領域に存在する粉末材料2の温度よりも高い。造形領域に存在する粉末材料2の温度は、造形物3を形成可能な温度(焼結温度又は融解温度)である。ビーム源16は、造形領域内の所望の部分に電子ビームを走査しながら、照射する。造形領域の形状は、例えば円形であるが、これに限定されない。造形領域は、ビーム源16の照射範囲(照射可能範囲)と一致してもよいし、一致していなくてもよい。
 供給領域、予熱領域及び造形領域の位置関係は、フィーダ14、ヒータ15及びビーム源16の位置関係に対応する。供給領域、予熱領域及び造形領域は、回転方向CWに沿ってこの順に形成されていればよい。供給領域、予熱領域及び造形領域のそれぞれ占める領域は、適宜変更されてよい。
 テーブル10の造形面10aは、仮想的に4つの領域を含む。4つの領域とは、分割領域A1、A2、A3及びA4である。つまり、回転積層造形装置1は、複数の分割された領域を有する。分割領域A1、A2、A3及びA4は、テーブル10の回転に伴って移動する。
 テーブル10の背面10bには、温度情報取得部74が複数の箇所に取り付けられていてもよい。例えば、温度情報取得部74は、熱電対74a、74b、74c及び74dを有する。熱電対74a、74b、74c及び74dは、分割領域A1、A2、A3及びA4の温度をそれぞれ測定する。熱電対74aは、分割領域A1に設けられている。熱電対74aは、分割領域A1の温度を測定する。熱電対74bは、分割領域A2に設けられている。熱電対74bは、分割領域A2の温度を測定する。熱電対74cは、分割領域A3に設けられている。熱電対74cは、分割領域A3の温度を測定する。熱電対74dは、分割領域A4に設けられている。熱電対74dは、分割領域A4の温度を測定する。温度情報取得部74は、テーブル10に固定されている。従って、温度情報取得部74は、テーブル10の回転に伴って移動する。熱電対74a、74b、74c及び74dは、テーブル10の背面10bに固定されている。従って、熱電対74a、74b、74c及び74dが出力する温度は、テーブル10の背面10bの温度である。しかし、本実施形態の回転積層造形装置1は、テーブル10の背面10bの温度を、その上方に配置された粉末材料2の温度として利用する。例えば、回転積層造形装置1は、熱電対74a、74b、74c及び74dで得た温度そのものを、粉末材料2の温度として利用してもよい。回転積層造形装置1は、熱電対74a、74b、74c及び74dで得た温度を利用して、予め得た関係式を用いて粉末材料2の温度に換算してもよい。
 図2(b)は、テーブル10が回転した後の状態を示す。フィーダ14、ヒータ15及びビーム源16の位置は、テーブル10の回転に伴って変化しない。温度情報取得部74の位置は、テーブル10の回転に伴って変化する。
 図3は、第1実施形態に係る回転積層造形装置1が備える制御部(制御装置)5を示すブロック図である。制御部5は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアとから構成されたコンピュータである。制御部5は、入力信号回路、出力信号回路、電源回路などを含む。制御部5は、演算部及びメモリを含む。メモリは、各種の制御に必要なデータを保存できる。
 制御部5は、回転ユニット12、昇降ユニット13、フィーダ14、ヒータ15、及びビーム源16と電気的に接続されていてもよい。制御部5は、異常状態情報に基づいて、少なくともビーム源16を制御する。制御部5は、各種制御信号を生成できる。制御部5は、ビーム制御部51、フィーダ制御部52、ヒータ制御部53、昇降制御部54、回転制御部55、停止動作部56、復帰動作部57、及び再開動作部58を有する。
 ビーム制御部51は、粉末材料2を溶融又は焼結させるための電子ビームの照射制御を行う。例えば、ビーム制御部51は、電子ビームの照射の開始、電子ビームの照射の停止、電子ビームを照射する時期、電子ビームを照射する位置等を決定する。ビーム制御部51は、照射制御を行うための照射制御信号φ1をビーム源16に出力する。ビーム源16は、照射制御信号φ1に従って動作する。
 フィーダ制御部52は、テーブル10に粉末材料2を供給する供給制御を行う。例えば、フィーダ制御部52は、粉末材料2をテーブル10上に供給するタイミング、粉末材料2の供給量、均し部であるリコータの動作等を決定する。例えば、フィーダ制御部52は、リコータを粉末材料2に押圧する力、粉末材料2の表面に対するリコータの角度などを制御してもよい。フィーダ制御部52は、供給制御を行うための供給制御信号φ2をフィーダ14に出力する。フィーダ14は、供給制御信号φ2に従って動作する。
 ヒータ制御部53は、テーブル10に配置された粉末材料2を加熱する加熱制御を行う。例えば、ヒータ制御部53は、粉末材料2に与える熱量等を決定する。ヒータ制御部53の動作は、ヒータが発する熱量によって規定されてもよい。ヒータ制御部53の動作は、ヒータそのものの温度によって規定されてもよい。粉末材料2に与える熱量は、粉末材料2の材質又は種類、テーブル10の回転速度などに応じて決定されてもよい。ヒータ制御部53は、加熱制御を行うための加熱制御信号φ3をヒータ15に出力する。ヒータ15は、加熱制御信号φ3に従って動作する。
 昇降制御部54は、テーブル10を上昇又は降下させる昇降制御を行う。例えば、昇降制御部54は、テーブル10の降下速度等を決定する。昇降制御部54は、昇降制御を行うための昇降制御信号φ4を昇降ユニット13に出力する。昇降ユニット13は、昇降制御信号φ4に従って動作する。
 回転制御部55は、テーブル10を回転させる回転制御を行う。例えば、回転制御部55は、テーブル10の回転速度等を決定する。回転制御部55は、回転制御を行うための回転制御信号φ5を回転ユニット12に出力する。回転ユニット12は、回転制御信号φ5に従って動作する。
 停止動作部56は、異常状態情報の入力に起因して、電子ビームの照射を停止させる第一制御信号Δ1をビーム制御部51に出力する。ビーム制御部51は、第一制御信号Δ1に従って、電子ビームの照射を停止させる。
 停止動作部56は、異常状態情報の入力に起因して、テーブル10の上昇及び降下を停止させる第六制御信号Δ6を昇降制御部54に出力する。昇降制御部54は、第六制御信号Δ6に従って、テーブル10の上昇及び降下を停止させる。
 復帰動作部57は、異常状態情報が粉末材料2の状態に関する情報であるか否かを判定する。復帰動作部57は、異常状態情報が粉末材料2の状態に関する情報である場合に、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作の少なくとも一つを制御する第二制御信号Δ2を出力する。
 例えば、復帰動作部57は、テーブル10の回転動作を継続させる第二制御信号Δ2を回転制御部55に出力してもよい。回転制御部55は、第二制御信号Δ2に従って、テーブル10の回転動作を継続させる。復帰動作部57は、テーブル10の回転動作を停止させる第二制御信号Δ2を出力しないことによって、テーブル10の回転動作を継続させてもよい。
 例えば、復帰動作部57は、ヒータ15の加熱動作を継続させる第二制御信号Δ2をヒータ制御部53に出力してもよい。ヒータ制御部53は、第二制御信号Δ2に従って、ヒータ15の加熱動作を継続させる。復帰動作部57は、ヒータ15の加熱動作を停止させる第二制御信号Δ2を出力しないことによって、ヒータ15の加熱動作を継続させてもよい。
 例えば、復帰動作部57は、フィーダ14の供給動作を停止させる第二制御信号Δ2をフィーダ制御部52に出力してもよい。フィーダ制御部52は、第二制御信号Δ2に従って、フィーダ14の供給動作を停止させる。
 復帰動作部57は、状態情報取得部7から受けた異常状態情報を構成するスモーク情報θ1がスモークの発生を示すときに、第二制御信号Δ2として、テーブル10の回転動作及びヒータ15の加熱動作を制御する信号を出力する。スモーク情報θ1がスモークの発生を示すか否かの判定は、スモーク情報取得部71、停止動作部56、又は復帰動作部57のいずれによって行われてもよい。
 再開動作部58は、異常状態情報が所定の条件を満たした場合に、電子ビームの照射を開始させる第五制御信号Δ5をビーム制御部51に出力する。ビーム制御部51は、第五制御信号Δ5に従って、電子ビームの照射を開始させる。異常状態情報が所定の条件を満たした場合については、後に説明する。
 再開動作部58は、異常状態情報が所定の条件を満たした場合に、テーブル10の上昇又は降下を開始させる第七制御信号Δ7を昇降制御部54に出力する。昇降制御部54は、第七制御信号Δ7に従って、テーブル10の上昇又は降下を開始させる。
 停止動作部56は、異常状態情報の入力に起因して、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作をさらに停止させる第三制御信号Δ3を出力してもよい。例えば、停止動作部56は、第三制御信号Δ3を回転制御部55に出力してもよい。第三制御信号Δ3を受けた回転制御部55は、第三制御信号Δ3に従って、テーブル10の回転動作を停止させる。停止動作部56は、第三制御信号Δ3をヒータ制御部53に出力してもよい。第三制御信号Δ3を受けたヒータ制御部53は、第三制御信号Δ3に従って、ヒータ15の加熱動作を停止させる。停止動作部56は、第三制御信号Δ3をフィーダ制御部52に出力してもよい。第三制御信号Δ3を受けたフィーダ制御部52は、第三制御信号Δ3に従って、フィーダ14の供給動作を停止させる。
 復帰動作部57は、異常状態情報が粉末材料2の状態に関する情報であるときに、第四制御信号Δ4を出力してもよい。第四制御信号Δ4は、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作の少なくとも一つを再開する。
 例えば、復帰動作部57は、テーブル10の回転動作を再開する第四制御信号Δ4を回転制御部55に出力してもよい。回転制御部55は、第四制御信号Δ4に従って、テーブル10の回転動作を再開させる。
 例えば、復帰動作部57は、ヒータ15の加熱動作を再開する第四制御信号Δ4をヒータ制御部53に出力してもよい。ヒータ制御部53は、第四制御信号Δ4に従って、ヒータ15の加熱動作を再開させる。
 例えば、復帰動作部57は、フィーダ14の供給動作を再開する第四制御信号Δ4をフィーダ制御部52に出力してもよい。フィーダ制御部52は、第四制御信号Δ4に従って、フィーダ14の供給動作を再開させる。
 図4は、造形リトライを説明するためのタイミングチャートである。造形リトライとは、造形処理を再開するために行われる処理である。図4は、装置の状態、造形中エリア、造形プレートの回転位置、造形プレートの回転速度、造形プレートの昇降位置、及び造形面の温度のそれぞれについて、時間の経過に伴う変化の一例を示す。装置の状態とは、回転積層造形装置1の動作状態である。造形中エリアとは、造形領域を通過中の分割領域である。造形プレートの回転位置とは、テーブル10の回転角である。造形プレートの回転速度とは、テーブル10の回転速度である。造形プレートの昇降位置とは、テーブル10の昇降位置である。造形面の温度とは、造形面10aの温度である。
 テーブル10の回転速度は、一定である。テーブル10の回転に伴って、分割領域A1、A2、A3及びA4は、この順に造形領域に進入し、造形中エリアとなる。
 最初に、分割領域A1が造形領域に進入し、造形中エリアとなる。分割領域A1における粉末材料2に電子ビームが照射されている間、テーブル10は連続的に降下する。
 続いて、分割領域A2が造形領域に進入し、造形中エリアとなる。一例として、分割領域A2が造形領域を通過している間に、回転積層造形装置1に異常(スモーク)が発生したと仮定する。制御部5は、状態情報取得部7から異常状態情報を受信する。制御部5は、照射制御信号φ1をビーム源16に出力し、電子ビームの照射を停止させる。制御部5は、昇降制御信号φ4を昇降ユニット13に出力し、テーブル10の昇降を停止させる。この場合には、状態情報取得部7が出力した異常状態情報が、どのような異常を示すものであるかは判定しない。つまり、制御部5の停止動作部56が異常状態情報を受信したことを条件として、制御部5は、電子ビームの照射を停止させる。
 制御部5は、異常状態情報を構成するスモーク情報θ1がスモークの発生を示すときに、造形リトライを開始する。前述した停止動作部56では、入力された異常状態情報の内容について判定しない。復帰動作部57は、入力された異常状態情報がどのような異常を示すものであるかを判定する。具体的には、入力された異常状態情報が粉末材料2に関する異常であるか否かを判定する。粉末材料2の異常である場合には、フィーダ14、ヒータ15、昇降ユニット13及び回転ユニット12のうちの少なくとも一つの動作によって、異常状態を回復できる可能性がある。この場合において、制御部5は、後述する造形リトライ動作を行う。造形リトライ動作とは、造形動作の再開が可能である状態にする動作をいう。粉末材料2の異常でない場合には、フィーダ14、ヒータ15、昇降ユニット13及び回転ユニット12のうちの少なくとも一つの動作によって、異常状態を回復できる可能性が低い。従って、この場合には、制御部5は、後述するステップS32、S34、S35に示すように回転積層造形装置1の全体の動作を停止させる。
 例えば、復帰動作部57は、ヒータ15及び回転ユニット12を制御することにより、造形リトライを行う。一例として、復帰動作部57は、温度情報θ4が造形再開温度範囲に収まるように、ヒータ15の加熱動作及びテーブル10の回転動作を決定する。造形再開温度範囲とは、粉末材料2の仮焼結温度であってもよい。例えば、粉末材料2がチタンである場合、造形再開温度範囲は、700℃以上800℃以下の仮焼結温度である。仮焼結温度に達すると、スモークが発生し難くなる。仮焼結温度に達した場合には、スモークが解消されたと判定できる。温度情報θ4は、複数の測定箇所に関する温度であってもよい。この場合、復帰動作部57は、一部又は全部の温度情報θ4が造形再開温度範囲に収まるように、ヒータ15の動作及びテーブル10の動作を決定してもよい。例えば、造形中のヒータ15の温度及びテーブル10の回転速度を維持してもよい。造形中のヒータ15の温度及びテーブル10の回転速度を変化させて、別の値に設定してもよい。
 造形リトライ中において、ビーム源16は、電子ビームの照射を停止している。これに対し、ヒータ15の加熱動作及びテーブル10の回転動作は継続している。テーブル10の回転に伴って、分割領域A3、A4がこの順に造形領域に進入する。テーブル10が一回転すると、分割領域A1が造形領域に再び進入する。
 制御部5は、異常状態情報が所定の条件を満たした場合に、造形処理を再開する。所定の条件としては、例えば造形面10aの温度が造形再開温度に維持されていること、又はスモークが発生した領域(ここでは分割領域A2)が再び造形領域に進入したこと等が挙げられる。制御部5は、照射制御信号φ1をビーム源16に出力し、電子ビームの照射を開始させる。制御部5は、昇降制御信号φ4を昇降ユニット13に出力し、テーブル10の下降を開始させる。制御部5は、照射制御信号φ1と昇降制御信号φ4とを同時に出力してもよいし、異なるタイミングで出力してもよい。
 図5は、第1実施形態に係る回転積層造形装置1が実行する異常発生時の処理の一例を示すフローチャートである。
 制御部5は、状態情報取得部7から異常状態情報を受信する(ステップS10)。
 制御部5は、電子ビームの照射を停止させる(ステップS12)。制御部5は、照射制御信号φ1をビーム源16に出力する。照射制御信号φ1を受けたビーム源16は、電子ビームの照射を停止する。
 制御部5は、テーブル10の上昇又は降下を停止させる(ステップS14)。制御部5は、昇降制御信号φ4を昇降ユニット13に出力する。昇降制御信号φ4を受けた昇降ユニット13は、テーブル10の降下を停止する。
 制御部5は、粉末材料2の供給を停止させる(ステップS16)。制御部5は、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給を停止する。
 制御部5は、造形リトライが可能であるか否かを判定する(ステップS18)。制御部5は、異常状態情報がスモーク情報θ1である場合に造形リトライが可能であると判定する。制御部5は、異常状態情報が障害情報θ3である場合に造形リトライが不可能であると判定する。造形リトライが可能である場合(ステップS18においてYES)、処理はステップS20に進む。造形リトライが不可能である場合(ステップS18においてNO)、処理はステップS32に進む。
 制御部5は、電子銃を立ち上げる(ステップS20)。制御部5は、照射制御信号φ1をビーム源16に出力し、電子銃を立ち上げる。電子銃を立ち上げるとは、電子銃から電子ビームを照射可能な状態にすることをいう。つまり、ステップS20では、ビーム源16から電子ビームを照射しない。
 制御部5は、ヒータ15の加熱動作及びテーブル10の回転動作を制御する(ステップS22)。制御部5は、回転制御信号φ5を回転ユニット12に出力する。回転制御信号φ5を受けた回転ユニット12は、テーブル10の回転動作を継続する。制御部5は、加熱制御信号φ3をヒータ15に出力する。加熱制御信号φ3を受けたヒータ15は、加熱動作を継続する。
 制御部5は、造形面温度が造形再開条件を満たすか否かを判定する(ステップS24)。一例では、制御部5は、温度情報θ4が造形再開温度範囲に含まれる場合、造形再開条件に合致すると判定する。制御部5は、温度情報θ4が造形再開温度範囲に含まれない場合、造形再開条件に合致しないと判定する。造形再開条件に合致する場合(ステップS24においてYES)、処理はステップS26に進む。造形再開条件に合致しない場合(ステップS24においてNO)、処理はステップS22に戻る。
 制御部5は、粉末材料2の供給を再開させる(ステップS26)。制御部5は、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給を再開する。
 制御部5は、電子ビームの照射を再開させる(ステップS28)。制御部5は、照射制御信号φ1をビーム源16に出力する。照射制御信号φ1を受けたビーム源16は、電子ビームの照射を再開する。
 制御部5は、テーブル10の昇降を再開させる(ステップS30)。制御部5は、昇降制御信号φ4を昇降ユニット13に出力する。昇降制御信号φ4を受けた昇降ユニット13は、テーブル10の昇降を再開する。
 制御部5は、テーブル10の回転を停止させる(ステップS32)。制御部5は、回転制御信号φ5を回転ユニット12に出力する。回転制御信号φ5を受けた回転ユニット12は、テーブル10の回転を停止させる。
 制御部5は、ヒータ15の加熱動作を停止させる(ステップS34)。制御部5は、加熱制御信号φ3をヒータ15に出力する。加熱制御信号φ3を受けたヒータ15は、加熱動作を停止する。
 制御部5は、造形処理を中断する(ステップS36)。
 回転積層造形装置1及び制御部5は、テーブル10を回転させながら粉末材料2を加熱すると共に粉末材料2に電子ビームを照射する。回転積層造形装置1及び制御部5は、異常状態情報の入力に起因して、電子ビームの照射を停止する。回転積層造形装置1及び制御部5は、異常状態情報が粉末材料2の状態に関する情報である場合、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作の少なくとも一つを制御する。このような構成によれば、電子ビームの照射を停止すべき状態においても、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作の少なくとも一つが制御される。これにより、造形停止中において粉末材料2の温度差が拡大することを抑制することができる。その結果、所望の造形品質を得るために、粉末材料2に求められる状態を得ることが可能である。つまり、所望の造形品質を得るために粉末材料2に求められる温度の均一性を確保することができる。その結果、所望の造形品質を満たす造形物3を得ることができる。
 状態情報取得部7は、粉末材料2の状態に関する情報として、飛散した状態の粉末材料2の有無を判断するためのスモーク情報θ1を制御部5に出力するスモーク情報取得部71を含む。復帰動作部57は、状態情報取得部7から受けた異常状態情報を構成するスモーク情報θ1がスモークの発生を示すときに、第二制御信号Δ2として、テーブル10の回転動作及びヒータ15の加熱動作を制御する信号を出力する。このような構成によれば、スモークが発生している場合、テーブル10の回転動作及びヒータ15の加熱動作が制御される。これにより、造形停止中において粉末材料2の温度差が拡大することを抑制することができる。さらに、スモークが解消された状態で造形動作を再開することができる。
 停止動作部56は、異常状態情報の入力に起因して、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作をさらに停止させる第三制御信号Δ3を出力する。復帰動作部57は、異常状態情報が粉末材料2の状態に関する情報であるときに、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作の少なくとも一つを再開する第四制御信号Δ4を出力する。このような構成によれば、電子ビームの照射を停止すべき状態において、テーブル10の回転動作、ヒータ15の加熱動作及びフィーダ14の供給動作もさらに停止される。異常状態情報が粉末材料2の状態に関する情報である場合、これらの動作のうち少なくとも一つが再開される。これにより、造形を再開するために必要な動作のみを開始することができる。さらに、造形停止中において粉末材料2の温度差が拡大することを抑制することができる。
 制御部5は、異常状態情報が所定の条件を満たした場合に、電子ビームの照射を開始させる第五制御信号Δ5を出力する再開動作部58をさらに有する。これにより、造形物3の品質への影響を抑制した状態で造形を再開することができる。
[第2実施形態]
 図6は、第2実施形態に係る回転積層造形装置1Aの断面を示す図である。第2実施形態に係る回転積層造形装置1Aは、スモーク情報取得部71及び温度情報取得部74の代わりに凹凸情報取得部72を備える点で、第1実施形態の回転積層造形装置1と異なる。
 状態情報取得部7Aは、凹凸情報取得部72及び機器情報取得部73を有する。凹凸情報取得部72は、粉末材料2の状態に関する情報として、凹凸情報θ2を制御部5Aに出力する。凹凸情報θ2は、電子ビームの照射を受ける粉末材料2の面の凹凸状態を示す。例えば、凹凸情報取得部72は、カメラであってもよい。凹凸情報取得部72は、粉末材料2の表面層(塗布面)を撮像し、表面層の粗さを凹凸情報θ2として取得する。凹凸情報取得部72は、凹凸情報θ2を取得できればよく、上述した構成に限られない。
 図7は、第2実施形態に係る制御部(制御装置)5Aを示すブロック図である。復帰動作部57は、状態情報取得部7Aから受けた異常状態情報を構成する凹凸情報θ2が所定の凹凸条件を満たさないときに、第二制御信号Δ2として、テーブル10の回転動作及びフィーダ14の供給動作を制御する信号を出力する。凹凸情報θ2が所定の凹凸条件を満たすか否かの判定は、凹凸情報取得部72、停止動作部56、又は復帰動作部57のいずれによって行われてもよい。
 例えば、復帰動作部57は、凹凸情報θ2が所定の凹凸条件を満たすように、テーブル10の回転動作及びフィーダ14の供給動作を決定する。所定の凹凸条件とは、粉末材料2の表面層の粗さが一層分の厚さよりも小さいことであるが、これに限られない。一例として、復帰動作部57は、粉末材料2の供給量を決定する。そして、復帰動作部57は、テーブル10の回転動作を継続させながら、粉末材料2の供給量を調整する。その結果、粉末材料2の表面層の粗さが調整される。
 図8は、第2実施形態に係る回転積層造形装置1Aにおける異常発生時の処理の一例を示すフローチャートである。第2実施形態に係る回転積層造形装置1Aの処理フローは、ステップS18の判定が異なる点で、第1実施形態に係る回転積層造形装置1の処理フローと異なる。さらに、第2実施形態に係る回転積層造形装置1Aの処理フローは、ステップS24及びS26の代わりにステップS23、S25及びS27を含む点でも、第1実施形態に係る回転積層造形装置1の処理フローと異なる。図8において、第1実施形態に係る回転積層造形装置1の処理フローと同じステップについては、説明を省略する。
 制御部5Aは、造形リトライが可能であるか否かを判定する(ステップS18)。制御部5Aは、異常状態情報が凹凸情報θ2である場合に造形リトライが可能であると判定する。制御部5Aは、異常状態情報が障害情報θ3である場合に造形リトライが不可能であると判定する。造形リトライが可能である場合(ステップS18においてYES)、処理はステップS20に進む。造形リトライが不可能である場合(ステップS18においてNO)、処理はステップS32に進む。
 制御部5Aは、粉末材料2の供給を再開させる(ステップS23)。制御部5Aは、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給を再開する。
 制御部5Aは、粉末材料2の供給量を調整する(ステップS25)。制御部5Aは、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給量を調整する。
 制御部5Aは、粉末材料2の表面層が造形再開条件に合致するか否かを判定する(ステップS27)。一例では、制御部5Aは、凹凸情報θ2が一層分の厚さ未満である場合、造形再開条件に合致すると判定する。一層分の厚さとは、テーブル10が1回転する間に増加する造形物の厚さであると定義してもよい。制御部5Aは、凹凸情報θ2が一層分の厚さ以上である場合、造形再開条件に合致しないと判定する。造形再開条件に合致する場合(ステップS27においてYES)、処理はステップS28に進む。造形再開条件に合致しない場合(ステップS27においてNO)、処理はステップS25に戻る。
 第2実施形態に係る回転積層造形装置1Aは、造形停止中にテーブル10を回転させながら粉末材料2の凹凸状態を調整する。状態情報取得部7Aは、凹凸情報取得部72を含む。凹凸情報取得部72は、粉末材料2の状態に関する情報として、電子ビームの照射を受ける粉末材料2の面の凹凸状態を示す凹凸情報θ2を制御部5Aに出力する。復帰動作部57は、状態情報取得部7Aから受けた異常状態情報を構成する凹凸情報θ2が所定の凹凸条件を満たさないときに、第二制御信号Δ2として、テーブル10の回転動作及びフィーダ14の供給動作を制御する信号を出力する。このような構成によれば、粉末材料2の面の凹凸状態が所定の凹凸条件を満たさない場合、テーブル10の回転動作及びフィーダ14の供給動作が制御される。これにより、造形停止中において粉末材料2の温度差が拡大することを抑制できる。さらに、粉末材料2の面の凹凸状態を調整することができる。
 このような第2実施形態に係る回転積層造形装置1Aにおいても、第1実施形態に係る回転積層造形装置1と同様の作用効果を奏する。
[第3実施形態]
 図9は、第3実施形態に係る回転積層造形装置1Bの断面を示す図である。第3実施形態に係る回転積層造形装置1Bは、状態情報取得部7Bが、スモーク情報取得部71、凹凸情報取得部72、機器情報取得部73、及び温度情報取得部74を備える。
 図10は、第3実施形態に係る制御部(制御装置)5Bを示すブロック図である。復帰動作部57は、スモーク情報θ1又は凹凸情報θ2が示す情報に対応して、第二制御信号Δ2を出力する。
 図11は、第3実施形態に係る回転積層造形装置1Bにおける異常発生時の処理の一例を示すフローチャートである。第3実施形態に係る回転積層造形装置1Bは、造形面10aの温度、及び粉末材料2の表面層の粗さのうち少なくとも一つを調整する。例えば、第3実施形態に係る回転積層造形装置1Bは、ステップS22、S24及びS26の後、ステップS25及びS27を実行する。図11において、第1実施形態又は第2実施形態に係る回転積層造形装置1、1Aの処理フローと同じステップについては、説明を省略する。
 制御部5Bは、造形リトライが可能であるか否かを判定する(ステップS18)。制御部5Bは、異常状態情報がスモーク情報θ1又は凹凸情報θ2である場合に造形リトライが可能であると判定する。制御部5Bは、異常状態情報が障害情報θ3である場合に造形リトライが不可能であると判定する。造形リトライが可能である場合(ステップS18においてYES)、処理はステップS20に進む。造形リトライが不可能である場合(ステップS18においてNO)、処理はステップS32に進む。
 制御部5Bは、ヒータ15の加熱動作及びテーブル10の回転動作を制御する(ステップS22)。制御部5Bは、回転制御信号φ5を回転ユニット12に出力する。回転制御信号φ5を受けた回転ユニット12は、テーブル10の回転動作を継続する。制御部5Bは、加熱制御信号φ3をヒータ15に出力する。加熱制御信号φ3を受けたヒータ15は、ヒータ15の加熱動作を継続する。
 制御部5Bは、造形面温度が造形再開条件に合致するか否かを判定する(ステップS24)。一例では、制御部5Bは、温度情報θ4が造形再開温度範囲に収まっている場合、造形再開条件に合致すると判定する。制御部5Bは、温度情報θ4が造形再開温度範囲に収まっていない場合、造形再開条件に合致しないと判定する。造形再開条件に合致する場合(ステップS24においてYES)、処理はステップS26に進む。造形再開条件に合致しない場合(ステップS24においてNO)、処理はステップS22に戻る。
 制御部5Bは、粉末材料2の供給を再開させる(ステップS26)。制御部5Bは、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給を再開する。
 制御部5Bは、粉末材料2の供給量を調整する(ステップS25)。制御部5Bは、供給制御信号φ2をフィーダ14に出力する。供給制御信号φ2を受けたフィーダ14は、粉末材料2の供給量を調整する。
 制御部5Bは、粉末材料2の表面層が造形再開条件に合致するか否かを判定する(ステップS27)。一例では、制御部5Bは、凹凸情報θ2が一層分の厚さ未満である場合、造形再開条件に合致すると判定する。制御部5Bは、凹凸情報θ2が一層分の厚さ以上である場合、造形再開条件に合致しないと判定する。造形再開条件に合致する場合(ステップS27においてYES)、処理はステップS28に進む。造形再開条件に合致しない場合(ステップS27においてNO)、処理はステップS25に戻る。
 第3実施形態に係る回転積層造形装置1Bは、造形面10aの温度、及び粉末材料2の表面層の粗さを調整する。このような第3実施形態に係る回転積層造形装置1Bにおいても、第1実施形態又は第2実施形態に係る回転積層造形装置1、1Aと同様の作用効果を奏する。
 本開示は、前述した実施形態に限定されず、本開示の要旨を逸脱しない範囲で下記のような種々の変形が可能である。
 図4において、造形リトライ中にテーブル10が1回転した例を説明した。テーブル10は、造形再開条件が成立するまで何回でも回転してよい。実施形態において、造形リトライ中にヒータ15によって粉末材料2を加熱した。加熱源として電子ビームを使用してもよい。実施形態において、造形再開条件を造形面10aの温度又は粉末材料2の表面層の粗さとした。造形再開条件は、造形面10aの加熱時間としてもよい。
1 回転積層造形装置(三次元造形装置)
2 粉末材料
3 造形物
4 駆動部
5 制御部(制御装置)
6 処理部
7 状態情報取得部
8 ハウジング
9 コラム
10 テーブル
11 造形タンク
10a 造形面
10b 背面
12 回転ユニット
13 昇降ユニット
14 フィーダ(供給部)
15 ヒータ(加熱部)
16 ビーム源(照射部)
51 ビーム制御部
52 フィーダ制御部
53 ヒータ制御部
54 昇降制御部
55 回転制御部
56 停止動作部
57 復帰動作部
58 再開動作部
71 スモーク情報取得部
72 凹凸情報取得部
73 機器情報取得部
74 温度情報取得部
A1,A2,A3,A4 分割領域
CW 回転方向
S 造形空間
θ1 スモーク情報
θ2 凹凸情報
θ3 障害情報
θ4 温度情報
φ1 照射制御信号
φ2 供給制御信号
φ3 加熱制御信号
φ4 昇降制御信号
φ5 回転制御信号
Δ1 第一制御信号
Δ2 第二制御信号
Δ3 第三制御信号
Δ4 第四制御信号
Δ5 第五制御信号
Δ6 第六制御信号
Δ7 第七制御信号

 

Claims (6)

  1.  粉末材料を回転支持するテーブルと、
     前記テーブルに前記粉末材料を供給する供給部と、
     前記テーブルに配置された前記粉末材料を加熱する加熱部と、
     前記テーブルに配置された前記粉末材料に対してエネルギビームを照射する照射部と、
     前記テーブルに配置された前記粉末材料の状態に関する情報を含み、前記エネルギビームの照射を停止すべき状態を示す異常状態情報を出力する状態情報取得部と、
     前記異常状態情報に基づいて、少なくとも前記照射部を制御する制御部と、を備え、
     前記制御部は、
      前記異常状態情報の入力に起因して、前記エネルギビームの照射を停止させる第一制御信号を出力する停止動作部と、
      前記異常状態情報が前記粉末材料の状態に関する情報であるか否かを判定し、前記異常状態情報が前記粉末材料の状態に関する情報である場合に、前記テーブルの回転動作、前記加熱部の加熱動作及び前記供給部の供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を有する、回転積層造形装置。
  2.  前記状態情報取得部は、前記粉末材料の状態に関する情報として、飛散した状態の前記粉末材料の有無を判断するためのスモーク情報を前記制御部に出力するスモーク情報取得部を含み、
     前記復帰動作部は、前記状態情報取得部から受けた前記異常状態情報を構成する前記スモーク情報が前記スモークの発生を示すときに、前記第二制御信号として、前記テーブルの回転動作及び前記加熱部の加熱動作を制御する信号を出力する、請求項1に記載の回転積層造形装置。
  3.  前記状態情報取得部は、前記粉末材料の状態に関する情報として、前記エネルギビームの照射を受ける前記粉末材料の面の凹凸状態を示す凹凸情報を前記制御部に出力する凹凸情報取得部を含み、
     前記復帰動作部は、前記状態情報取得部から受けた前記異常状態情報を構成する前記凹凸情報が所定の凹凸条件を満たさないときに、前記第二制御信号として、前記テーブルの回転動作及び前記供給部の供給動作を制御する信号を出力する、請求項1に記載の回転積層造形装置。
  4.  前記停止動作部は、前記異常状態情報の入力に起因して、前記テーブルの回転動作、前記加熱部の加熱動作及び前記供給部の供給動作をさらに停止させる第三制御信号を出力し、
     前記復帰動作部は、前記異常状態情報が前記粉末材料の状態に関する情報であるときに、前記テーブルの回転動作、前記加熱部の加熱動作及び前記供給部の供給動作の少なくとも一つを再開する第四制御信号を出力する、請求項1~3のいずれか一項に記載の回転積層造形装置。
  5.  前記制御部は、前記異常状態情報が所定の条件を満たした場合に、前記エネルギビームの照射を開始させる第五制御信号を出力する再開動作部をさらに有する、請求項1~4の何れか一項に記載の回転積層造形装置。
  6.  供給部から回転するテーブル上に供給された粉末材料を加熱部によって加熱すると共に、エネルギビームを照射することによって三次元造形物を造形する三次元造形装置を制御する制御装置であって、
     前記テーブルに配置された前記粉末材料の状態に関する情報を含み、前記エネルギビームの照射を停止すべき状態を示す異常状態情報の入力に起因して、前記エネルギビームの照射を停止させる第一制御信号を出力する停止動作部と、
     前記異常状態情報が前記粉末材料の状態に関する情報であるか否かを判定し、前記異常状態情報が前記粉末材料の状態に関する情報である場合に、前記テーブルの回転動作、前記加熱部の加熱動作及び前記供給部の供給動作の少なくとも一つを制御する第二制御信号を出力する復帰動作部と、を備える、制御装置。

     
PCT/JP2022/009785 2021-04-05 2022-03-07 回転積層造形装置及び制御装置 WO2022215410A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/285,277 US20240173774A1 (en) 2021-04-05 2022-03-07 Rotating additive manufacturing device and control device
CN202280021464.3A CN116997428A (zh) 2021-04-05 2022-03-07 旋转层叠造形装置以及控制装置
EP22784395.0A EP4321283A1 (en) 2021-04-05 2022-03-07 Rotating additive manufacturing device and control device
JP2023512870A JPWO2022215410A1 (ja) 2021-04-05 2022-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064046 2021-04-05
JP2021064046 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215410A1 true WO2022215410A1 (ja) 2022-10-13

Family

ID=83546348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009785 WO2022215410A1 (ja) 2021-04-05 2022-03-07 回転積層造形装置及び制御装置

Country Status (5)

Country Link
US (1) US20240173774A1 (ja)
EP (1) EP4321283A1 (ja)
JP (1) JPWO2022215410A1 (ja)
CN (1) CN116997428A (ja)
WO (1) WO2022215410A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639087B2 (ja) 2002-12-19 2011-02-23 アルカム アーベー 三次元製品の製造装置及び製造方法
JP2017119350A (ja) 2015-12-28 2017-07-06 ローランドディー.ジー.株式会社 三次元造形装置および三次元造形方法
WO2019088091A1 (ja) * 2017-10-31 2019-05-09 株式会社Ihi 三次元造形装置及び三次元造形方法
WO2019141501A1 (en) * 2018-01-16 2019-07-25 Siemens Aktiengesellschaft Method of removing an excess material from a cavity, additive manufacturing method and part
WO2020004507A1 (ja) * 2018-06-26 2020-01-02 株式会社Ihi 三次元造形装置
JP2021041568A (ja) * 2019-09-09 2021-03-18 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639087B2 (ja) 2002-12-19 2011-02-23 アルカム アーベー 三次元製品の製造装置及び製造方法
JP2017119350A (ja) 2015-12-28 2017-07-06 ローランドディー.ジー.株式会社 三次元造形装置および三次元造形方法
WO2019088091A1 (ja) * 2017-10-31 2019-05-09 株式会社Ihi 三次元造形装置及び三次元造形方法
WO2019141501A1 (en) * 2018-01-16 2019-07-25 Siemens Aktiengesellschaft Method of removing an excess material from a cavity, additive manufacturing method and part
WO2020004507A1 (ja) * 2018-06-26 2020-01-02 株式会社Ihi 三次元造形装置
JP2021041568A (ja) * 2019-09-09 2021-03-18 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法

Also Published As

Publication number Publication date
EP4321283A1 (en) 2024-02-14
CN116997428A (zh) 2023-11-03
US20240173774A1 (en) 2024-05-30
JPWO2022215410A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
TWI781202B (zh) 增材製造方法和設備
JP3955556B2 (ja) 三次元物体の製造方法及び装置
EP3044008B1 (en) Method and apparatus for controlling heating of a surface of a layer of build material in additive manufacturing of an object
CN107206698B (zh) 制造三维物体的方法、设备和温度控制器
EP3445566B1 (en) Heater for 3d printer auger screw
US20130101729A1 (en) Real time cap flattening during heat treat
CN111201101B (zh) 三维层叠造形物制造装置以及三维层叠造形物制造方法
JP2023502502A (ja) 熱管理用の熱源を備えた粉末床融合リコーター
CN111182984B (zh) 三维造型装置以及三维造型方法
EP3950181A1 (en) Three-dimensional manufacturing apparatus
WO2022215410A1 (ja) 回転積層造形装置及び制御装置
US11872755B2 (en) Method for manufacturing product, and additive manufacturing apparatus
JP7196918B2 (ja) 三次元造形装置
US10668662B2 (en) Forming a three-dimensional object
JP7155919B2 (ja) 三次元造形装置
JP7110889B2 (ja) 積層造形装置、及び積層造形物の製造方法
US20200384688A1 (en) Additive manufacturing using light source arrays to provide multiple light beams to a build medium via a rotatable reflector
WO2024048234A1 (ja) 三次元造形装置及び予熱装置
JP7107146B2 (ja) 積層造形装置
JP2023032489A (ja) 三次元造形装置及び異常検知装置
JP7205268B2 (ja) 三次元造形装置
JP2023039032A (ja) 三次元造形方法及び三次元造形装置
JP2023007774A (ja) 積層造形装置及び粉末床形成装置
JP2022169075A (ja) 三次元造形装置
JP2023076047A (ja) 粉末塗布装置及び三次元造形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021464.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023512870

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285277

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784395

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784395

Country of ref document: EP

Effective date: 20231106