JP7196918B2 - 三次元造形装置 - Google Patents

三次元造形装置 Download PDF

Info

Publication number
JP7196918B2
JP7196918B2 JP2020527605A JP2020527605A JP7196918B2 JP 7196918 B2 JP7196918 B2 JP 7196918B2 JP 2020527605 A JP2020527605 A JP 2020527605A JP 2020527605 A JP2020527605 A JP 2020527605A JP 7196918 B2 JP7196918 B2 JP 7196918B2
Authority
JP
Japan
Prior art keywords
preheating
powder material
section
region
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527605A
Other languages
English (en)
Other versions
JPWO2020004507A1 (ja
Inventor
幹 品川
雄一朗 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2020004507A1 publication Critical patent/JPWO2020004507A1/ja
Application granted granted Critical
Publication of JP7196918B2 publication Critical patent/JP7196918B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/226Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本開示は、三次元造形装置に関する。
特許文献1~8は、三次元造形に関する技術を開示する。例えば、特許文献1は、粉末材料にレーザ又はビームを照射することによって三次元造形物を製造する技術を開示する。特許文献2は、回転する製作テーブルの周囲において連続的に造形を行う技術を開示する。特許文献3は、環状に配置された複数のビルドチャンバを含む粉末床を有し、それぞれのビルドチャンバに対して回転駆動するリコータブレードから材料を供給する技術を開示する。特許文献4、5は、2つのビームを互いに異なる場所に同時に照射する技術を開示する。特許文献6は、加工物を移動させながらレーザ照射する加工技術を開示する。
特表2009-544501号公報 特表2007-503342号公報 特表2015-533650号公報 特表2016-529389号公報 特表2016-526098号公報 特開2016-179500号公報 特表2005-534543号公報 特表2018-507957号公報
当該技術分野においては、造形時間の短縮化が望まれている。例えば、特許文献7、8は、造形時間の短縮化に注目した技術を開示する。そこで、本開示は、造形時間のさらなる短縮が可能な三次元造形装置を説明する。
本開示の一態様に係る三次元造形装置は、粉末材料及び粉末材料により構成された造形物を支持するテーブルと、テーブルに対面するように配置され、粉末材料を処理して造形物を得る処理部と、テーブル及び処理部の一方を他方に対して回転軸線のまわりに相対的に回転させる回転駆動部と、を備える。処理部は、回転軸線のまわりに配置された複数の処理ユニットを有する。処理ユニットは、テーブルに粉末材料を供給し、供給された粉末材料を予熱し、予熱された粉末材料にエネルギビームを照射する。
本開示に係る三次元造形装置によれば、造形時間を短縮できる。
図1は、第1実施形態に係る三次元造形装置の断面を示す図である。 図2は、図1の三次元造形装置が備える処理部を示す図である。 図3は、三次元造形装置の動作を説明するための模式図である。 図4は、第2実施形態に係る三次元造形装置が備える処理部を示す図である。 図5は、図4の三次元造形装置における処理領域を示す図である。 図6は、第3実施形態に係る三次元造形装置が備える処理部を示す図である。 図7は、図6の造形装置における処理領域を示す図である。 図8は、変形例に係る三次元造形装置が備える処理領域を示す図である。 図9は、別の変形例に係る三次元造形装置が備える処理領域を示す図である。
以下、添付図面を参照しながら本開示の三次元造形装置の形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
本開示の一態様に係る三次元造形装置は、粉末材料及び粉末材料により構成された造形物を支持するテーブルと、テーブルに対面するように配置され、粉末材料を処理して造形物を得る処理部と、テーブル及び処理部の一方を他方に対して回転軸線のまわりに相対的に回転させる回転駆動部と、を備える。処理部は、回転軸線のまわりに配置された複数の処理ユニットを有する。処理ユニットは、テーブルに粉末材料を供給し、供給された粉末材料を予熱し、予熱された粉末材料にエネルギビームを照射する。
この装置の処理ユニットは、粉末材料をテーブルに供給し、粉末材料を予熱し、粉末材料にエネルギビームを照射する。そして、これらの動作を行う処理ユニットは、回転軸線のまわりに複数配置されている。その結果、一の処理ユニットによる供給動作と、別の処理ユニットによる供給動作とを並行して実施することが可能である。同様に、一の処理ユニットによる予熱動作と、別の処理ユニットによる予熱動作とを並行して実施することが可能である。さらに、一の処理ユニットによる造形動作と、別の処理ユニットによる造形動作とを並行して実施することが可能である。従って、造形時間をさらに短縮することができる。
上記の三次元造形装置の処理ユニットは、エネルギビームを提供する第1ビーム提供部及び第2ビーム提供部を含んでもよい。回転軸線から第2ビーム提供部までの距離は、回転軸線から第1ビーム提供部までの距離よりも短くてもよい。この構成によれば、回転軸線を基準として造形物を外周部分と内周部分とに分けて造形することができる。
上記の三次元造形装置の第1ビーム提供部は、回転駆動部が提供する回転方向に沿って、第2ビーム提供部よりも上流に配置されてもよい。この構成によれば、造形物における外周側の部分が先に造形される。つまり、内周部分よりも前に外周部分の温度が上昇する。その結果、外周部分の温度が高温に保たれる時間が長くなる。従って、造形物の温度低下を抑制しやすくなる。
上記の三次元造形装置の処理ユニットは、粉末材料を予熱する第1予熱部及び第2予熱部を有してもよい。回転駆動部が提供する回転方向に沿って、第1予熱部及び第1ビーム提供部の順に配置されてもよい。回転駆動部が提供する回転方向に沿って、第2予熱部及び第2ビーム提供部の順に配置されてもよい。この構成によれば、第1ビーム提供部に提供される粉末材料を第1予熱部によって確実に予熱することができる。同様に、第2ビーム提供部に提供される粉末材料を第2予熱部によって確実に予熱することができる。
上記の三次元造形装置の処理ユニットは、造形物を後熱する第1後熱部及び第2後熱部を有してもよい。回転駆動部が提供する回転方向に沿って、第1ビーム提供部及び第1後熱部の順に配置されてもよい。回転駆動部が提供する回転方向に沿って、第2ビーム提供部及び第2後熱部の順に配置されてもよい。この構成によれば、第1後熱部及び第2後熱部によって造形物の温度が維持される。従って、造形物の上にさらに供給される粉末材料の温度の低下を抑制することができる。
上記の三次元造形装置において、第1予熱部によって予熱された粉末材料の温度は、第1後熱部によって後熱された造形物の温度と等しくてもよい。この構成によれば、粉末材料の温度と造形物の温度との間の温度差を小さくすることができる。
上記の三次元造形装置において、第1予熱部によって予熱された粉末材料の温度は、第1後熱部によって後熱された造形物の温度と異なってもよい。この構成によれば、粉末材料の温度と造形物の温度との温度差を所望の値に設定することができる。
上記の三次元造形装置において、第2予熱部によって予熱された粉末材料の温度は、第2後熱部によって加熱された造形物の温度と等しくてもよい。この構成によれば、粉末材料の温度と造形物の温度との間の温度差を小さくすることができる。
上記の三次元造形装置において、第2予熱部によって予熱された粉末材料の温度は、第2後熱部によって加熱された造形物の温度と異なってもよい。この構成によれば、粉末材料の温度と造形物の温度との温度差を所望の値に設定することができる。
上記の三次元造形装置は、処理部及び回転駆動部を制御する制御部をさらに備えてもよい。処理ユニットは、テーブルの主面に設定される供給領域に対して、粉末材料を供給する材料供給部と、テーブルの主面において、供給領域よりも回転駆動部が提供する回転方向に沿って下流に設定される造形領域にエネルギビームを照射するビーム提供部と、を有してもよい。制御部は、回転駆動部を制御して、テーブル及び処理部の一方を他方に対して相対的に回転させる回転動作を行い、材料供給部を制御して、供給領域に粉末材料を供給する供給動作を行い、ビーム提供部を制御して、造形領域にエネルギビームを照射する造形動作を行ってもよい。この構成によれば、造形物の造形のための各動作が互いに別の領域で行われる。従って、各動作を並行して実行することが可能になる。その結果、各動作を順次実施して造形物を造形する場合に比べて、造形時間を短縮することができる。
上記の三次元造形装置の制御部は、回転動作、供給動作及び造形動作を並行して行ってもよい。この構成によれば、造形時間を好適に短縮することができる。
上記の三次元造形装置は、テーブルと処理部との間の距離を相対的に変化させる直線駆動部をさらに備えてもよい。制御部は、直線駆動部を制御して、テーブルから処理部までの回転軸線に沿った距離を大きくする離間動作を行ってもよい。テーブル上では、粉末材料が処理されながら積層される。その結果、造形物の高さが高くなっていく。この構成によれば、処理を要する粉末材料と造形部との距離を一定に保つことが可能になる。従って、造形部を容易に制御することができる。
上記の三次元造形装置の制御部は、回転動作、供給動作、造形動作及び離間動作を並行して行ってもよい。この構成によれば、らせん状に積層された造形物の造形に要する造形時間を短縮することができる。
上記の三次元造形装置の制御部は、回転動作、供給動作及び造形動作を並行して行った後に、離間動作を行ってもよい。この構成によれば、円板状の複数層により構成された造形物の造形に要する造形時間を短縮することができる。
[第1実施形態]
図1に示す三次元積層造形物製造装置は、粉末材料101から造形物101Sを製造するいわゆる3Dプリンタである。以下の説明において、三次元積層造形物製造装置は、単に「三次元造形装置1」と称する。粉末材料101は、金属の粉末である。粉末材料101は、例えばチタン系金属粉末、インコネル粉末、アルミニウム粉末等である。粉末材料101は、金属粉末に限定されない。粉末材料101は、例えばCFRP(Carbon Fiber Reinforced Plastics)など、炭素繊維と樹脂とを含む粉末であってもよい。粉末材料101は、導電性を有するその他の粉末でもよい。なお、本開示の三次元造形装置1に用いられる粉末材料は、導電性を有するものには限定されない。例えばエネルギビームとしてレーザを用いる場合には、粉末材料は導電性を有しなくてもよい。
三次元造形装置1は、粉末材料101にエネルギを付与する。換言すると、三次元造形装置1は、粉末材料101の温度を上昇させる。その結果、粉末材料101は溶融又は焼結する。そして、三次元造形装置1がエネルギの付与を停止すると、粉末材料101の温度が下がる。その結果、粉末材料101は、凝固する。つまり、三次元造形装置1は、エネルギの付与と停止とを複数回繰り返すことにより、造形物101Sを製造する。造形物101Sは、例えば機械部品である。なお、造形物101Sは、その他の構造物であってもよい。
三次元造形装置1は、駆動部3と、制御部4と、処理部6と、ハウジング8と、を有する。駆動部3は、造形に要する種々の動作を実現する。処理部6は、粉末材料101を処理する。この処理の結果、造形物101Sが得られる。具体的には、粉末材料101の処理とは、粉末材料101の供給処理と、粉末材料101の予熱処理と、粉末材料101の造形処理と、を含む。ハウジング8は、複数のコラム7によって支持されている。ハウジング8は、造形空間Sを形成する。造形空間Sは、粉末材料101を収容する。造形空間Sは、処理部6による粉末材料101の処理を行うための空間である。造形空間Sは、減圧可能な気密空間である。
造形空間Sには、テーブル13と造形タンク14とが配置されている。テーブル13は、造形処理が行われる処理台である。テーブル13の形状は、例えば円盤である。テーブル13には、造形物101Sの原料である粉末材料101が配置される。テーブル13の中心軸線は、ハウジング8の中心軸線と重複する。テーブル13には、駆動部3が接続されている。テーブル13は、駆動部3によって、回転と、回転軸線に沿った直線移動と、を行う。
駆動部3は、テーブル13を回転及び昇降させる。駆動部3は、回転ユニット15(回転駆動部)と、昇降ユニット16(直線駆動部)と、を有する。回転ユニット15は、テーブル13を回転させる。回転ユニット15は、駆動源(例えばモータ)を含む。昇降ユニット16の上端は、テーブル13に連結されている。昇降ユニット16は、テーブル13を造形タンク14に対して相対的に昇降させる。この昇降は、回転ユニット15の回転軸線に沿っている。なお、駆動部3は、テーブル13を回転及び昇降させることができる機構であればよい。駆動部3は、上記の機構に限定されない。
図2は、造形処理に用いられる主要な部品を拡大して示す。テーブル13の上方には、処理部6が配置されている。つまり、処理部6は、テーブル13の造形面13a(主面)に対面する。処理部6は、複数の処理ユニットとして、処理ユニット27A、27Bを含む。処理ユニット27A、27Bは、回転軸線Aのまわりに等間隔(180度)に配置されている。換言すると、処理ユニット27A、27Bは、例えば、円周方向に等配置である。この配置によれば、次の処理領域までの回転角度に応じて粉末材料101の積層厚さを揃えることができる。なお、上述した処理ユニット27A、27Bの配置は、例示である。処理ユニット27A、27Bの配置は、当該構成に限定されない。例えば、処理ユニット27A、27Bの配置は、円周方向に異なる角度を持って配置されてもよい。
例えば、回転軸線Aを原点としたXY座標系を規定したとき、処理ユニット27Aは、第1象限及び第4象限に配置される。処理ユニット27Bは、第2象限及び第3象限に配置される。つまり、処理ユニット27A、27Bは、円周方向に等配置とした場合には、Y軸を基準として点対称に配置される。なお、処理ユニット27A、27Bが等配置でない場合は、点対称となる配置でなくてもよい。
処理ユニット27A、27Bは、配置される位置が互いに異なる。処理ユニット27A、27Bの具体的な構成要素は、共通する。なお、処理ユニット27A、27Bの構成要素は、互いに異なっていてもよい。例えば、処理ユニット27A、27Bは、それらの一方の構成要素のうち、他方がその一部を省略したものであってもよい。以下、処理ユニット27Aについて詳細に説明する。処理ユニット27Bは、必要に応じて説明を追加する。
処理ユニット27Aは、フィーダ28(材料供給部)と、ヒータ29と、ビーム源31(第1ビーム提供部)と、を含む。フィーダ28は、粉末材料101の供給処理を行う。ヒータ29は、粉末材料101の予熱処理を行う。ビーム源31は、粉末材料101の造形処理を行う。
フィーダ28は、粉末材料101を、テーブル13に供給する。フィーダ28は、図示しない原料タンクと均し部とを有する。原料タンクは、粉末材料101を貯留する。また、原料タンクは、テーブル13に粉末材料101を供給する。均し部は、テーブル13に供給された粉末材料101の表面を均す。なお、三次元造形装置1は、均し部に替えて、ローラー部、棒状部材、刷毛部などを有してもよい。
ヒータ29は、放射熱によって粉末材料101の温度を上昇させる。ヒータ29として、例えば赤外線ヒータを用いてもよい。ヒータ29として、例えばガスヒータを用いてもよい。
ビーム源31は、電子ビームを発生させる。当該電子ビームは、粉末材料101に照射される。ビーム源31は、例えば電子銃である。電子銃は、カソードとアノードとの間に生じる電位差に応じた電子ビームを発生させる。
フィーダ28、ヒータ29及びビーム源31は、テーブル13の回転方向に沿って、この順に配置されている。テーブル13の回転方向は、反時計方向である。以下の説明において、「上流」及び「下流」とは、テーブル13の回転方向を基準とする。例えば、回転軸線Aを原点としたXY座標系を規定したとき、処理ユニット27Aのフィーダ28及びヒータ29は、第4象限に配置される。ビーム源31は第1象限に配置される。処理ユニット27Bのフィーダ28及びヒータ29は、第2象限に配置される。ビーム源31(第2ビーム提供部)は第3象限に配置される。
フィーダ28、ヒータ29及びビーム源31は、造形面13aにおいて、処理領域32A、32Bを形成する。処理領域32A、32Bは、テーブル13に対して相対的に公転する。つまり、三次元造形装置1は、複数の処理領域を有する。ここでいう「テーブル13に対して相対的に公転する」とは、テーブル13の回転に対して処理領域32A、32Bの位置が変化しないことを意味する。つまり、テーブル13及び処理領域32A、32Bをある座標系によって規定したとき、テーブル13は当該座標系に対して回転する。しかし、処理領域32A、32Bは、当該座標系に対して移動しない。
処理領域32Aは、供給領域33と、予熱領域34と、造形領域36と、を含む。フィーダ28は、供給領域33を形成する。ヒータ29は、予熱領域34を形成する。ビーム源31は、造形領域36を形成する。供給領域33、予熱領域34及び造形領域36の位置関係は、フィーダ28、ヒータ29及びビーム源31の位置関係に対応する。回転軸線Aを原点としたXY座標系を規定したとき、処理ユニット27Aの供給領域33及び予熱領域34は、第4象限に配置される。造形領域36は、第1象限に配置される。処理ユニット27Bの供給領域33及び予熱領域34は、第2象限に配置される。造形領域36は、第3象限に配置される。
なお、供給領域33、予熱領域34及び造形領域36は、回転方向に沿ってこの順に形成されていればよい。従って、処理ユニット27Aが配置される第1象限及び第4象限において、供給領域33、予熱領域34及び造形領域36のそれぞれが占める領域は、適宜変更してよい。例えば、予熱領域34は、第4象限から第1象限に渡って設定され、且つ、造形領域36は、第1象限に設定されてもよい。予熱領域34は、第4象限に設定され、且つ、造形領域36は、第4象限から第1象限に渡って設定されてもよい。
テーブル13は、反時計方向CCWに回転する。テーブル13において、ある点を仮定したとき、当該点は、テーブル13の回転に伴って、供給領域33、予熱領域34及び造形領域36の順に通過する。
供給領域33は、フィーダ28の下に形成される。供給領域33の形状は、例えば、テーブル13の直径方向(半径方向)を長手方向とする矩形状である。なお、供給領域33の形状は、矩形状に限定されない。供給領域33の形状は、フィーダ28の構成などに応じて、種々の形状を採用してよい。例えば、供給領域33の形状は、正方形、多角形、円形、楕円形などであってもよい。また、例えば、供給領域33は、テーブル13の中心からテーブル13の円周縁に至る。供給領域33の形状は、フィーダ28を平面視した形状と一致する必要はない。供給領域33の形状は、フィーダ28が有する構成部品に応じて適宜設定してよい。供給領域33には、フィーダ28から粉末材料101がテーブル13に供給される。供給された粉末材料101は、所定の厚みを有するように均される。供給領域33は、粉末材料101が供給される領域のみを意味してもよい。供給領域33は、粉末材料101が均される領域のみを意味してもよい。さらに、供給領域33は、粉末材料101が供給される領域と粉末材料101が均される領域とを含むものとしてもよい。
予熱領域34は、供給領域33の下流側に形成される。予熱領域34の形状は、扇状である。具体的には、テーブル13の回転軸線Aの近傍に頂部が配置される。円弧部は、テーブル13の外周縁に沿って配置される。予熱領域34の中心角は、例えば90度である。予熱領域34の半径は、供給領域33の長手方向における長さとおおむね一致する。なお、予熱領域34の半径は、供給領域33の長手方向における長さよりも長くてもよい。なお、予熱領域34の形状は、扇形に限定されない。予熱領域34の形状は、その他の形状を採用してもよい。例えば、予熱領域34の形状は、円形としてもよい。
予熱領域34は、粉末材料101の温度を上昇させる領域である。ここでいう予熱とは、予熱領域34における粉末材料101の温度が供給領域33における粉末材料101よりも高くなるように加熱する処理である。このような加熱処理は、例えば、粉末材料101を仮焼結する処理であってもよい。仮焼結とは、粉末材料101同士が拡散現象によって最小点で拡散して接合した状態である。粉末材料101の温度は、一例として、粉末材料101の融点の1/2以上である。粉末材料101の温度が、当該粉末材料101の融点の1/2以上であるとき、焼結の拡散現象が活発になるためである。例えば、粉末材料101がチタンである場合、チタン合金の融点は約1500℃以上1600℃以下である。従って、仮焼結温度は、700℃以上800℃以下である。また、粉末材料101がアルミニウムである場合、アルミニウムの融点は約660℃である。従って、仮焼結温度は、300℃である。
造形領域36は、予熱領域34の下流側に形成される。造形領域36の形状は、円形である。造形領域36の形状は、ビーム源31の照射範囲(照射可能範囲)と一致する。造形領域36は、粉末材料101の温度を上昇させる領域である。造形領域36における粉末材料101の温度は、予熱領域34における粉末材料101の温度よりも高い。造形領域36における粉末材料101の温度は、造形物101Sを形成可能な温度である。造形物101Sを形成可能な温度とは、焼結温度または融解温度である。ビーム源31は、造形領域36内の所望の部分において電子ビームが走査するように照射する。なお、造形領域の形状は、ビーム源の照射可能範囲の形状と一致していなくてもよい。例えば、ビーム源の照射可能範囲が円形であるのに対して、造形領域は、ビームが走査される所望の部分であるものとしてもよい。換言すると、造形領域は、照射可能範囲に包含される所望の形状の領域としてもよい。
以下、図3を参照しながら、三次元造形装置1の動作について詳細に説明する。三次元造形装置1の動作は、第1供給動作と、第2供給動作と、第1予熱動作と、第2予熱動作と、第1造形動作と、第2造形動作と、回転動作と、下降動作と、を含む。
図3において、処理部6は、固定されている。つまり、処理領域32A、32Bは、固定されている。処理領域32A、32Bは、回転しない。一方、テーブル13は、反時計方向CCWに回転する。説明の便宜上、テーブル13にはいくつかの領域を設定する。いくつかの領域は、第1領域37a、第2領域37b、第3領域37c、第4領域37d、第5領域37e、第6領域37fを含む。図3では、これらの領域を点によって示す。
制御部4は、回転ユニット15を制御する。その結果、テーブル13が反時計方向CCWに一定の回転速度をもって回転する。この回転速度は、予熱領域34における温度上昇幅及び造形領域36における温度上昇幅に基づいて決定してよい。例えば、予熱前の粉末材料101の温度を予熱後には所定の温度まで上昇させるために要するエネルギ量を得る。次に、当該エネルギ量を粉末材料101に与えるために要する所要時間が決まる。そして、当該所要時間と、予熱領域34を通過する際に通過する軌跡の長さと、によれば、回転速度が得られる。
制御部4は、昇降ユニット16を制御する。その結果、テーブル13が時間の経過とともに連続的に下方に移動する。この動作を離間動作と称する。テーブル13の移動速度は、テーブル13が一回転するごとに形成される層の厚みにより決定してよい。
図3の(a)部に示す第1の状態であるとき、第1領域37aは、供給領域33において第1供給動作を受ける。第2領域37bは、予熱領域34において第1予熱動作を受ける。第3領域37cは、造形領域36において第1造形動作を受ける。第4領域37dは、供給領域33において第2供給動作を受ける。第5領域37eは、予熱領域34において第2予熱動作を受ける。第6領域37fは、造形領域36において第2造形動作を受ける。
第1の状態であるとき、処理ユニット27Aは、第1領域37aに対する第1供給動作と並行して、第2領域37bに対する第1予熱動作を行う。また、第1の状態であるとき、処理ユニット27Aは、第1領域37aに対する第1供給動作と並行して、第3領域37cに対する第1造形動作を行う。さらに、処理ユニット27Bは、第4領域37dに対する第2供給動作と並行して、第5領域37eに対する第2予熱動作を行う。また、処理ユニット27Bは、第4領域37dに対する第2供給動作と並行して、第6領域37fに対する第2造形動作を行う。
時間の経過によって、テーブル13が所定の角度だけ回転する。その結果、図3の(b)部に示す第2の状態となる。第2の状態であるとき、第1領域37aは、予熱領域34において第1予熱動作を受ける。第2領域37bは、造形領域36において第1造形動作を受ける。第3領域37cは、供給領域33において第2供給動作を受ける。第4領域37dは、予熱領域34において第2予熱動作を受ける。第5領域37eは、造形領域36において第2造形動作を受ける。第6領域37fは、供給領域33において第1供給動作を受ける。
第2の状態であるとき、処理ユニット27Aは、第1領域37aに対する第1予熱動作と並行して、第2領域37bに対する第1造形動作を行う。また、処理ユニット27Aは、第1領域37aに対する第1予熱動作と並行して、第6領域37fに対する第1供給動作を行う。さらに、処理ユニット27Bは、第4領域37dに対する第2予熱動作と並行して、第5領域37eに対する第2造形動作を行う。処理ユニット27Bは、第4領域37dに対する第2予熱動作と並行して、第1領域37aに対する第2供給動作を行う。
さらに時間の経過によって、テーブル13が所定の角度だけ回転する。その結果、図3の(c)部に示す第3の状態となる。第3の状態であるとき、第1領域37aは、造形領域36において第1造形動作を受ける。第2領域37bは、供給領域33において第2供給動作を受ける。第3領域37cは、予熱領域34において第2予熱動作を受ける。第4領域37dは、造形領域36において第2造形動作を受ける。第5領域37eは、供給領域33において第1供給動作を受ける。第6領域37fは、予熱領域34において第1予熱動作を受ける。
第3の状態であるとき、処理ユニット27Aは、第1領域37aに対する第1造形動作と並行して、第5領域37eに対する第1供給動作を行う。処理ユニット27Aは、第1領域37aに対する第1造形動作と並行して、第6領域37fに対する第1予熱動作を行う。さらに、処理ユニット27Bは、第4領域37dに対する第2造形動作と並行して、第2領域37bに対する第2供給動作を行う。処理ユニット27Bは、第4領域37dに対する第2造形動作と並行して、第3領域37cに対する第2予熱動作を行う。
以下、三次元造形装置1の作用効果について説明する。
三次元造形装置1の処理ユニット27A、27Bは、粉末材料101をテーブル13に敷き均し、粉末材料101を予熱し、粉末材料101に電子ビームを照射する。これらの動作を行う処理ユニット27A、27Bは、回転軸線Aのまわりに複数配置されている。その結果、処理ユニット27Aによる供給動作と、処理ユニット27Bによる供給動作と、を並行して実施することが可能である。同様に、処理ユニット27Aによる予熱動作と、処理ユニット27Bによる予熱動作と、を並行して実施することが可能である。さらに、処理ユニット27Aによる造形動作と、処理ユニット27Bによる造形動作とを並行して実施することが可能である。従って、造形時間をさらに短縮することができる。
三次元造形装置1のさらなる作用効果について説明する。
三次元造形装置1は、造形物101Sの造形のための供給動作、予熱動作及び造形動作を互いに別の領域において行う。その結果、各動作を並行して実行することが可能になる。従って、各動作を順次実施することにより造形物101Sを造形する場合に比べて、造形時間を短縮することができる。
三次元造形装置1は、処理部6及び回転ユニット15を制御する制御部4をさらに有する。制御部4は、回転ユニット15を制御して、テーブル13を処理部6に対して回転させる回転動作を行う。制御部4は、2個のフィーダ28を制御して、2か所の供給領域33に粉末材料101を供給させる供給動作を行う。さらに、制御部4は、2個のビーム源31を制御して、2か所の造形領域36に電子ビームを照射させる造形動作を行う。この構成によれば、造形時間を好適に短縮することができる。
三次元造形装置1は、テーブル13と処理部6との間の距離を相対的に変化させる昇降ユニット16をさらに有する。制御部4は、昇降ユニット16を制御して、テーブル13から処理部6までの回転軸線Aに沿った距離を大きくする下降動作を行う。造形面13aでは、粉末材料101が処理されながら積層される。その結果、造形物101Sの高さが高くなっていく。この構成によれば、処理を要する粉末材料101から処理部6までの距離を一定に保つことが可能になる。従って、処理部6の制御を容易にすることができる。
三次元造形装置1の造形面13aには、テーブル13に対して回転軸線Aのまわりに相対的に公転すると共に、フィーダ28に対して下流側であり且つビーム源31の上流側に設定される予熱領域34が形成される。処理部6は、予熱領域34に存在する粉末材料101を加熱するヒータ29をさらに有する。
三次元造形装置1の制御部4は、供給動作、予熱動作、造形動作、回転動作及び下降動作を並行して行う。この制御態様によれば、らせん状に積層された造形物101Sの造形に要する造形時間を短縮することができる。換言すると、三次元造形装置1は、タクトタイムを短縮できる。
ここで、各動作に要する時間を例示しつつ、造形時間の短縮について説明する。例えば、造形物101Sの一層分を造形するために要する時間を想定する。供給動作はt1である。予熱動作はt2である。造形動作はt3である。下降動作はt5である。それぞれの時間における大小関係は、t1≒t5<t2≒t3である。ここで、各動作を順次行った場合には、造形物101Sの一層分を造形するために要する時間は、それぞれの時間の和である。つまり、造形時間はt1+t2+t3+t5である。一方、三次元造形装置1のように、各動作を並行して行うと、造形時間はt2又はt3である。つまり、動作を並行して行う場合、造形時間は、最も時間を要する動作によって決まる。従って、各動作を順次行う場合と比べると、造形時間を短縮することができる。特に、時間を要する動作を2以上含む場合に、時間短縮の効果が高い。時間を要する動作とは、例えば予熱動作及び造形動作が例示される。
さらに、並行処理によれば、エネルギロスを低減できる。例えば、各動作を順次行うとき、供給動作の実行中及び下降動作の実行中には、電子ビームの照射が行われない。換言すると、供給動作の実行中及び下降動作の実行中には、加熱処理が行われない。つまり、テーブル13上では、加熱を伴う動作と加熱を伴わない動作とが繰り返される。その結果、加熱を伴う動作から加熱を伴わない動作に切り替わると、例えば造形面13aの温度環境が変化する。具体的には、造形面13aの温度が低下する。そうすると、再び加熱を伴う動作に切り替わったときに、低下した分の温度を高めるためのエネルギを要する。
一方、並行処理によれば、予熱領域34では、常に予熱動作が行われている。つまり、ヒータによる加熱処理が行われている。従って、予熱領域34では、加熱及び非加熱が繰り返されることがない。その結果、非加熱時に生じる温度低下も抑制される。そうすると、低下した分の温度を高めるためのエネルギを要しないので、エネルギロスを低減できる。造形領域36についても同様である。
三次元造形装置1は、固定されたヒータ29及びビーム源31に対して造形面13aが移動する。従って、造形面13aの全面を照射範囲とする大規模なヒータ29及びビーム源31を準備する必要がない。そうすると、ヒータ29及びビーム源31に要する高価な電子銃の数を低減できる。その結果、コストの低減も図ることができる。
[第2実施形態]
図4及び図5を参照して、第2実施形態の三次元造形装置1Aについて説明する。第2実施形態の三次元造形装置1Aは、処理部6Aを有する。処理部6Aは、処理ユニット38A、38Bを有する。テーブル13に対する処理ユニット38A、38Bの位置は、第1実施形態の処理ユニット27A、27Bと同じである。以下、処理ユニット38Aの構成について詳細に説明し、処理ユニット38Aと共通する処理ユニット38Bの説明は省略する。
以下の説明において「外周側の領域」とは、平面視して円形状または円環状に敷き均された粉末材料101を半径方向において分割したときの外側の領域をいう。また、「内周側の領域」とは、平面視して円形状または円環状に敷き均された粉末材料101を半径方向において分割したときの内側の領域をいう。そして、外周側の領域を外周領域101aと呼ぶ。内周側の領域を内周領域101bと呼ぶ。例えば、外周領域101aの形状円環であり、内周領域101bを囲んでいる。例えば、外周領域101aの内周縁は、内周領域101bの外周縁と接している。なお、外周領域101aと内周領域101bとの関係は、互いに接するもののほかに、外周領域101aと内周領域101bとが部分的に重複してもよい。外周領域101aと内周領域101bとが互いに重複しないものであってもよい。また、外周領域101aと内周領域101bとの関係は、上述したように3つの態様が例示されるが、これらの態様は粉末層ごとに異なっていてもよい。例えば、ある粉末層では、外周領域101aと内周領域101bとが互いに接しており、別の粉末層では外周領域101aと内周領域101bとが部分的に重複していてもよい。また、外周領域101aと内周領域101bとの関係は、造形物の形状に応じて適宜設定されてよい。さらに、外周領域101aの外周縁は、粉末材料101の外周縁と共通であってもよい。外周領域101aの外周縁は、粉末材料101の外周縁よりも内側に形成されてもよい。内周領域101bの形状は、円環または円形であり、外周領域101aに囲まれる。
処理ユニット38A、38Bは、フィーダ28と、ヒータ39と、外側ビーム源41と、内側ビーム源42と、を有する。処理ユニット38Aは、図5に示す処理領域40Aを構成する。また、処理ユニット38Bは、図5に示す処理領域40Bを構成する。処理領域40A、40Bは、供給領域33と、外周予熱領域44と、内周予熱領域46と、外周造形領域47と、内周造形領域48と、を含む。
ヒータ39は、外周予熱領域44及び内周予熱領域46を形成する。外周予熱領域44及び内周予熱領域46を含む領域を総合予熱領域50と称する。ヒータ39の総合予熱領域50の形状は、第1実施形態のヒータ29の予熱領域34の形状とは異なる。第4象限に形成される総合予熱領域50は、扇状の形状を有する。総合予熱領域50の中心角度は、一例として90度であってもよいし、90度より大きくてもよいし、90度より小さくてもよい。例えば、総合予熱領域50の中心角度は、90度としてもよい。さらに詳細には、ヒータ39は、第1予熱部51と、第2予熱部52と、を含む。第1予熱部51は、外周予熱領域44を形成する。第2予熱部52は、内周予熱領域46を形成する。
外側ビーム源41は外周造形領域47を形成する。外側ビーム源41は、テーブル13の外周側に位置する粉末材料101に対して電子ビームを提供する。また、内側ビーム源42は、内周造形領域48を形成する。内側ビーム源42は、テーブル13の内周側に位置する粉末材料101に対して電子ビームを提供する。
外側ビーム源41は、内側ビーム源42よりも外周側に配置されている。例えば、回転軸線Aから外側ビーム源41までの距離は、回転軸線Aから内側ビーム源42までの距離よりも長い。換言すると、回転軸線Aから内側ビーム源42までの距離は、回転軸線Aから外側ビーム源41までの距離よりも短い。さらに、外側ビーム源41は、内側ビーム源42よりも上流に配置されている。換言すると、円周方向において、外周予熱領域44から外側ビーム源41までの距離は、内周予熱領域46から内側ビーム源42までの距離よりも短い。例えば、外側ビーム源41は第4象限に配置されてもよい。内側ビーム源42は第1象限に配置されてもよい。
外側ビーム源41における電子ビームの照射可能範囲は、外周造形領域47である。外側ビーム源41は、外周造形領域47内の所望の部分に電子ビームを走査するように照射する。同様に、内側ビーム源42における電子ビームの照射可能範囲は、内周造形領域48である。内側ビーム源42は、内周造形領域48内の所望の部分に電子ビームを走査するように照射する。
外周造形領域47の面積は、内周造形領域48よりも大きくてもよいし、同じであってもよいし、小さくてもよい。また、外周造形領域47の形状は、円形状であってもよいし、その他の形状であってもよい。さらに、外周造形領域47と内周造形領域48との関係は、種々の態様を取り得る。つまり、外周造形領域47と内周造形領域48との関係は、互いに接する態様であってもよいし、一部が重複する関係であってもよいし、重複しない関係であってもよい。
例えば、外周造形領域47は、内周造形領域48に対して重複させなくてもよい。この構成によれば、上述したように、外側ビーム源41が内側ビーム源42よりも上流に配置される。従って、外周造形領域47は、内周造形領域48に重複しない。その結果、外側ビーム源41の電子ビームと、内側ビーム源42の電子ビームとの相互干渉を防止できる。従って、外側ビーム源41及び内側ビーム源42の制御を簡易にすることができる。
回転軸線Aを中心とする仮想的な基準円を設定したとき、外周予熱領域44及び外周造形領域47は、共通する基準円上に設定される。その結果、外周予熱領域44を通過した粉末材料101は、外周造形領域47に提供される。同様に、内周予熱領域46及び内周造形領域48も、共通する基準円上に設定される。内周予熱領域46を通過した粉末材料101は、内周造形領域48に提供される。
上記の三次元造形装置1Aの処理ユニット38A、38Bは、電子ビームを提供する外側ビーム源41及び内側ビーム源42を含む。回転軸線Aから内側ビーム源42までの距離は、回転軸線Aから外側ビーム源41までの距離よりも短い。この構成によれば、回転軸線Aを基準として造形物101Sを外周部分と内周部分とに分けて造形することができる。
上記の三次元造形装置1Aの外側ビーム源41は、駆動部3が提供する回転方向に沿って、内側ビーム源42よりも上流に配置される。この構成によれば、造形物101Sにおける外周側の部分が先に造形される。つまり、内周部分よりも前に外周部分の温度が上昇する。その結果、外周部分の温度が高温に保たれる時間が長い。その結果、造形物101Sの温度の低下を抑制しやすくなる。
上記の三次元造形装置1Aの処理ユニット38A、38Bは、粉末材料101を予熱する第1予熱部51及び第2予熱部52を有する。処理ユニット38A、38Bは、駆動部3が提供する回転方向に沿って、第1予熱部51及び外側ビーム源41の順に配置される。駆動部3が提供する回転方向に沿って、第2予熱部52及び内側ビーム源42の順に配置される。この構成によれば、外側ビーム源41に提供される粉末材料101を第1予熱部51によって確実に予熱することができる。同様に、内側ビーム源42に提供される粉末材料101を第2予熱部52によって確実に予熱することができる。
[第3実施形態]
図6及び図7を参照して、第3実施形態の三次元造形装置1Bについて説明する。第3実施形態の三次元造形装置1Bは、処理部6Bを有する。処理部6Bは、処理ユニット49A、49Bを含む。以下、処理ユニット49Aの構成について詳細に説明する。処理ユニット49Aと共通する処理ユニット49Bの説明は省略する。
処理ユニット49Aは、処理領域53Aを形成する。処理ユニット49Bは、処理領域53Bを形成する。処理ユニット49Aは、フィーダ28と、上流ヒータ54と、下流ヒータ55と、外側ビーム源41と、内側ビーム源42と、を有する。つまり、第3実施形態の処理ユニット49Aは、2個のヒータを備えている。上流ヒータ54は、第2実施形態のヒータ39と同様の構成を有する。下流ヒータ55は、回転軸線Aを中心とする円周方向において、外側ビーム源41と内側ビーム源42との間に配置されている。
上流ヒータ54は、第1予熱部56と、第2予熱部57とを有する。第1予熱部56は、外周予熱領域58を形成する。第2予熱部57は、上流内周予熱領域59を形成する。外周予熱領域58及び上流内周予熱領域59は、上流加熱領域60を構成する。外周予熱領域58は、第2実施形態の外周予熱領域44と同様の構成を有する。上流内周予熱領域59は、第2実施形態の内周予熱領域46と同様の構成を有する。
下流ヒータ55は、第1後熱部61と、第3予熱部62とを有する。ここで、「後熱」とは、「予熱」と対になる用語として用いる。具体的には、「予熱」とは、ビーム源31による造形処理の前に行われる処理を意味する。「後熱」とは、ビーム源31による造形処理の後に行われる処理を意味する。従って、三次元造形装置1Aの処理の流れは、供給処理、予熱処理、造形処理、後熱処理、の順に行われる。
第1後熱部61は、外周後熱領域63を形成する。第3予熱部62は、下流内周予熱領域64を形成する。外周後熱領域63及び下流内周予熱領域64は、下流加熱領域66を構成する。下流ヒータ55は、外側ビーム源41をよりも下流に配置されている。一方、下流ヒータ55は、内側ビーム源42よりも上流に配置されている。そうすると、下流ヒータ55の処理対象は、外側ビーム源41によって造形処理された部分と、内側ビーム源42によって未だ造形処理されていない部分と、を含む。外周後熱領域63は、外側ビーム源41によって造形処理された部分を加熱する。下流内周予熱領域64は、内側ビーム源42によって未だ造形処理されていない部分を加熱する。
粉末材料101は、外周予熱領域58、外周造形領域47及び外周後熱領域63をこの順に通過する部分と、上流内周予熱領域59、下流内周予熱領域64及び内周造形領域48をこの順に通過する部分と、を含む。
上記の三次元造形装置1Bの処理ユニット49A、49Bは、造形物101Sを加熱する下流ヒータ55を有する。駆動部3が提供する回転方向に沿って、外側ビーム源41及び下流ヒータ55の順に配置される。この構成によれば、下流ヒータ55によって造形物101Sの温度が維持される。従って、処理ユニット49Aによって処理された造形物101Sの上に、処理ユニット49Bからさらに供給される新たな粉末材料101の温度の低下を抑制することができる。
[変形例]
本開示の三次元造形装置は、上記実施形態に限定されない。本開示の三次元造形装置の実施において各構成要素は、請求項の主旨を逸脱しない範囲において、その形状及び配置などを適宜変更することができる。
上述の実施形態では、複数の予熱部及び複数のビーム提供部を同時に動作させる態様を例に、三次元造形装置の動作を説明した。例えば、複数の予熱部及び複数のビーム提供部は、上述のように同時に動作させてもよいし、造形物の形状に応じて、必要な構成要素のみ動作させてもよい。不要な構成要素は、動作を停止させてもよい。つまり、造形物の形状に応じて、複数の予熱部、複数のビーム提供部のいずれを用いるかを選択してもよいし、すべてを用いる状態に切り替えてもよい。
例えば、外周領域101aにおける予熱および溶融と、内周領域101bにおける予熱および溶融とは、造形物の形状によっては、同じ粉末層に対して必ずしも両方とも行わなくてもよい。造形物の形状によっては、ある粉末層において、内周領域および外周領域のいずれか一方にのみ、粉末の溶融を行うべき領域が存在することが想定される。粉末の溶融を行うべき領域とは、造形物の断面である。例えば、筒状の造形物であって外径が異なる部分があるものを造形する場合を想定する。このような形状として、例えば円錐台面状などが例示できる。この場合に、造形物の外径が大きい部分では、内周領域101bに造形すべき部分が存在せず、外周領域101aに造形すべき部分が存在する場合があり得る。そして、造形物の外径が小さい部分では、内周領域101bに造形すべき部分が存在し、外周領域101aに造形すべき部分が存在しない場合があり得る。そのような造形物を造形する場合には、造形物の外径が大きい部分では、内周領域101bでの造形は行わず、外周領域101aでの造形を行ってもよい。換言すると、造形物の外径が大きい部分では、第2予熱部52及び内側ビーム源42の動作を停止させた状態として、外周領域101aでの造形を行ってもよい。そして、造形物の外径が小さい部分では、内周領域101bにおける造形を行い、外周領域101aにおける造形を行わないようにしてもよい。換言すると、造形物の外径が小さい部分では、内周領域101bにおける造形を行い、第1予熱部51及び外側ビーム源41の動作を停止させてもよい。
例えば、図8に示すように、変形例1の三次元造形装置1Cは、処理部6Cを有してもよい。処理部6Cは、処理領域67A、67Bを形成する。処理領域67A、67Bは、供給領域33と、外周予熱領域68と、外周造形領域69と、外周後熱領域71とを含むとともに、内周予熱領域72と、内周造形領域73と、内周後熱領域74とを含んでもよい。
処理領域67A、67Bを形成する場合に、ヒータの構成は特に限定されない。例えば、テーブル13の全面を加熱可能な1個のヒータによって、外周予熱領域68と、外周後熱領域71と、内周予熱領域72と、内周後熱領域74とを形成してもよい。つまり、1個のヒータにより提供される加熱領域が、二か所の外周予熱領域68、二か所の外周後熱領域71、二か所の内周予熱領域72及び二か所の内周後熱領域74を含むものとしてもよい。
図8に示すように、複数のヒータによって、各領域を形成してもよい。つまり、第1のヒータ82によって処理領域67Aの外周予熱領域68を形成してもよい。第2のヒータ83によって処理領域67Aの外周後熱領域71を形成してもよい。第3のヒータ84によって処理領域67Aの内周予熱領域72を形成してもよい。第4のヒータ86によって処理領域67Aの内周後熱領域74を形成してもよい。同様に、第5のヒータ87によって処理領域67Bの外周予熱領域68を形成してもよい。第6のヒータ88(第1後熱部)によって処理領域67Bの外周後熱領域71を形成してもよい。第7のヒータ89によって処理領域67Bの内周予熱領域72を形成してもよい。第8のヒータ91(第2後熱部)によって処理領域67Bの内周後熱領域74を形成してもよい。
この構成において、第1のヒータ82によって予熱された粉末材料101の温度(T1)と、外側ビーム源41によって加熱された粉末材料101の温度(T2)と、第2のヒータ83によって後熱された粉末材料101の温度(T3)との関係の一例は、例えば、T2>T1=T3である。つまり、外周予熱領域68における粉末材料101の温度(T1)と外周後熱領域71における造形物101Sの温度(T3)とは、互いに等しい。そして、外周造形領域69における粉末材料101及び造形物101Sの温度は、それらの温度(T1、T3)よりも高い。ここでいう温度とは、第1のヒータ82、外側ビーム源41及び第2のヒータ83の目標温度としてもよい。また、温度とは、粉末材料10を実際に測定して得た温度としてもよい。さらに、温度とは、造形物101Sを実際に測定して得た温度としてもよい。この構成によれば、粉末材料101の温度と造形物101Sの温度との間の温度差を小さくすることができる。
上記の温度の関係は一例であるので、別の構成としてもよい。例えば、予熱の温度(T1)と、後熱の温度(T3)とを異ならせてもよい(T2>T1≠T3)。一例として、予熱の温度(T1)は、後熱の温度(T3)よりも高くてもよい(T2>T1>T3)。その逆に、予熱の温度(T1)は、後熱の温度(T3)よりも低くてもよい(T2>T3>T1)。この構成によれば、粉末材料101の温度と造形物101Sの温度との温度差を所望の値に設定することができる。
上記の温度の関係は、内周側においても同様である。つまり、第3のヒータ84によって予熱された粉末材料101の温度(T4)と、内側ビーム源42によって加熱された粉末材料101の温度(T5)と、第4のヒータ86によって後熱された粉末材料101の温度(T6)との関係は、例えば、T5>T4=T6であってもよいし、T5>T4>T6であってもよいし、T5>T6>T4であってもよい。
図9に示すように、変形例2の三次元造形装置1Dは、3組の処理領域を形成してもよい。処理部6Dは、処理領域76A、76B、76Cを形成する。これらの処理領域は、等間隔(120度)に配置されている。例えば、処理領域76Aは、第2実施形態の処理領域40Aと同様の供給領域77と、予熱領域78と、外周造形領域79と、内周造形領域81を有している。なお、処理領域76Aの構成は、第1実施形態の処理領域32Aと同様の構成としてもよい。処理領域76Aの構成は、第3実施形態の処理領域53Aと同様の構成としてもよい。これらのような構成によっても、供給動作、予熱動作及び造形動作を並行して行うことができる。従って、造形時間を短縮することができる。
後熱を行う構成においても、予熱部、ビーム提供部、及び後熱部は、造形物の形状に応じて、必要な構成要素のみ動作させて、不要な構成要素の動作は停止させてもよい。後熱を行う構成とは、例えば、図6、図7に示す三次元造形装置1Bおよび図8に示す三次元造形装置1Cなどが含む構成である。つまり、造形物の形状に応じて、複数の予熱部、複数のビーム提供部、後熱部のいずれを用いるかを選択してもよい。すべてを用いる状態に切り替えてもよい。例えば、外周領域101aにおける予熱、溶融、後熱と、内周領域101bにおける予熱、溶融、後熱とは、造形物の形状によっては、同じ粉末層に対して必ずしも両方とも行わなくてもよい。
図6、図7に示す三次元造形装置1Bにおいても、造形物の外径が大きい部分では、内周領域101bでの造形は行わず、外周領域101aでの造形を行ってもよい。換言すると、造形物の外径が大きい部分では、第2予熱部57、内側ビーム源42及び第3予熱部62の動作を停止させ、外周領域101aでの造形を行ってもよい。そして、造形物の外径が小さい部分では、内周領域101bでの造形を行い、外周領域101aでの造形を行わないようにしてもよい。換言すると、造形物の外径が小さい部分では、内周領域101bでの造形を行い、第1予熱部56、外側ビーム源41及び第1後熱部61の動作を停止させてもよい。
図8に示す三次元造形装置1Cにおいても、造形物の外径が大きい部分では、内周領域101bでの造形は行わず、外周領域101aでの造形を行ってもよい。換言すると、造形物の外径が大きい部分では、予熱用の第3のヒータ84、第7のヒータ89、内側ビーム源42、後熱用の第4のヒータ86及び第8のヒータ91の動作を停止させ、外周領域101aでの造形を行ってもよい。そして、造形物の外径が小さい部分では、内周領域101bでの造形を行い、外周領域101aでの造形を行わないようにしてもよい。換言すると、造形物の外径が小さい部分では、予熱用の第1のヒータ82、第5のヒータ87、外側ビーム源41、後熱用の第2のヒータ83及び第6のヒータ88の動作を停止させてもよい。
また、例えば、ビーム源31は、テーブル13の直径方向に移動可能に設けられていてもよい。この構成では、ビーム源31は、外周領域を加熱する位置と、内周領域を加熱する位置とに、相互に移動可能に構成されてもよい。ビーム源31の位置は、例えば、造形物の形状に応じて選択してよい。つまり、造形物の形状に応じて、ビーム源31を移動させ、ビーム源31の径方向における位置を粉末層ごとに調節してもよい。
また、例えば、下降動作は、予熱動作及び造形動作と並行して行われなくともよい。制御部4は、供給動作、予熱動作及び造形動作及び回転動作を並行して行う。一方、下降動作は、供給動作、予熱動作及び造形動作及び回転動作とは並行して行われない。この制御によれば、薄い円板を積層させたような構造を有する造形物を得ることができる。
三次元造形装置を構成する各要素は、要求される機能を奏し得る別の構成要素に代えてもよい。例えば、予熱動作のために、電子ビームまたはレーザを利用してもよい。例えば、予熱部において、ヒータ29、39などに代えて、電子銃またはレーザ発生装置を利用してもよい。後熱動作のために、電子ビームまたはレーザを利用してもよい。例えば、後熱部において、下流ヒータ55、後熱用の第2のヒータ83、第4のヒータ86、第6のヒータ88、第8のヒータ91などに代えて、電子銃またはレーザ発生装置を利用してもよい。
上記の実施形態では、電子ビームの照射によって粉末材料を溶融した。しかし、粉末材料に照射されるビームは、電子ビームに限定されない。つまり、粉末材料に照射されるビームは、その他のエネルギビームでもよい。換言すると、三次元積層造形装置に用いられるビームは、粉末材料101に対してエネルギを供給し得るエネルギビームであればよい。例えばレーザ溶融法が適用された造形装置であってもよい。三次元積層造形装置に用いられるビームは、レーザビームであってもよい。三次元積層造形装置に用いられるビームは、電子ビームおよびイオンビームを含む概念である荷電粒子ビームであってもよい。
上記の実施形態では、テーブル13の回転方向が半時計方向である構成を例示した。テーブル13の回転方向は、半時計方向に限定されない。例えば、テーブル13の回転方向は、時計方向であってもよい。
1,1A,1B,1C,1D 三次元造形装置
3 駆動部
4 制御部
6 処理部
6A,6B,6C,6D 処理部
7 コラム
8 ハウジング
13 テーブル
13a 造形面(主面)
14 造形タンク
15 回転ユニット(回転駆動部)
16 昇降ユニット(直線駆動部)
27A,27B 処理ユニット
28 フィーダ(材料供給部)
29 ヒータ
31 ビーム源(第1ビーム提供部、第2ビーム提供部)
32A,32B 処理領域
33 供給領域
34 予熱領域
36 造形領域
37a 第1領域
37b 第2領域
37c 第3領域
37d 第4領域
37e 第5領域
37f 第6領域
38A,38B 処理ユニット
39 ヒータ
41 外側ビーム源
42 内側ビーム源
40A,40B 処理領域
44 外周予熱領域
46 内周予熱領域
47 外周造形領域
48 内周造形領域
49A,49B 処理ユニット
50 総合予熱領域
51 第1予熱部
52 第2予熱部
53A,53B 処理領域
54 上流ヒータ
55 下流ヒータ
56 第1予熱部
57 第2予熱部
58 外周予熱領域
59 上流内周予熱領域
60 上流加熱領域
61 第1後熱部
62 第3予熱部
63 外周後熱領域
64 下流内周予熱領域
66 下流加熱領域
67A,67B 処理領域
68 外周予熱領域
69 外周造形領域
71 外周後熱領域
72 内周予熱領域
73 内周造形領域
74 内周後熱領域
76A,76B,76C 処理領域
77 供給領域
78 予熱領域
79 外周造形領域
81 内周造形領域
101 粉末材料
101S 造形物
101a 外周領域
101b 内周領域
A 回転軸線
CCW 反時計方向
S 造形空間

Claims (11)

  1. 粉末材料及び前記粉末材料により構成された造形物を支持するテーブルと、
    前記テーブルに対面するように配置され、前記粉末材料を処理して前記造形物を得る処理部と、
    前記テーブルを前記処理部に対して前記テーブルの軸線を回転軸線として、前記回転軸線のまわりに相対的に回転させる回転駆動部と、を備え、
    前記処理部は、前記回転軸線のまわりに配置された複数の処理ユニットを有し、
    前記処理ユニットは、前記テーブルに前記粉末材料を供給し、供給された前記粉末材料を予熱し、前記予熱された前記粉末材料にエネルギビームを照射し、
    前記処理ユニットは、前記エネルギビームを提供すると共に前記造形物の形状に応じて選択される第1ビーム提供部及び第2ビーム提供部と、前記粉末材料を予熱すると共に前記造形物の形状に応じて選択される第1予熱部及び第2予熱部と、を有し、
    前記回転軸線から前記第2ビーム提供部までの距離は、前記回転軸線から前記第1ビーム提供部までの距離よりも短く、
    前記第1ビーム提供部は、前記回転駆動部が提供する回転方向に沿って、前記第2ビーム提供部よりも上流に配置され、
    前記第1ビーム提供部が前記エネルギビームを照射することによって形成される第1造形領域の面積は、前記第2ビーム提供部が前記エネルギビームを照射することによって形成される第2造形領域の面積よりも、大きく、
    前記回転駆動部が提供する回転方向に沿って、前記第1予熱部及び前記第1ビーム提供部の順に配置され、
    前記回転駆動部が提供する回転方向に沿って、前記第2予熱部及び前記第2ビーム提供部の順に配置されている、三次元造形装置。
  2. 前記処理ユニットは、前記造形物を後熱する第1後熱部及び第2後熱部を有し、
    前記回転駆動部が提供する回転方向に沿って、前記第1ビーム提供部及び第1後熱部の順に配置され、
    前記回転駆動部が提供する回転方向に沿って、前記第2ビーム提供部及び第2後熱部の順に配置されている、請求項に記載の三次元造形装置。
  3. 前記第1予熱部によって予熱された前記粉末材料の温度は、前記第1後熱部によって加熱された前記造形物の温度と等しい、請求項に記載の三次元造形装置。
  4. 前記第1予熱部によって予熱された前記粉末材料の温度は、前記第1後熱部によって加熱された前記造形物の温度と異なる、請求項に記載の三次元造形装置。
  5. 前記第2予熱部によって予熱された前記粉末材料の温度は、前記第2後熱部によって加熱された前記造形物の温度と等しい、請求項又はに記載の三次元造形装置。
  6. 前記第2予熱部によって予熱された前記粉末材料の温度は、前記第2後熱部によって加熱された前記造形物の温度と異なる、請求項又はに記載の三次元造形装置。
  7. 前記処理部及び前記回転駆動部を制御する制御部をさらに備え、
    前記処理ユニットは、
    前記テーブルの主面に設定される供給領域に対して、前記粉末材料を供給する材料供給部と、
    前記テーブルの主面において、前記供給領域よりも前記回転駆動部が提供する回転方向に沿って下流に設定される造形領域に前記エネルギビームを照射するビーム提供部と、を有し、
    前記制御部は、
    前記回転駆動部を制御して、前記テーブル及び前記処理部の一方を他方に対して相対的に回転させる回転動作を行い、
    前記材料供給部を制御して、前記供給領域に前記粉末材料を供給する供給動作を行い、
    前記ビーム提供部を制御して、前記造形領域に前記エネルギビームを照射する造形動作を行う、請求項1に記載の三次元造形装置。
  8. 前記制御部は、前記回転動作、前記供給動作及び前記造形動作を並行して行う、請求項に記載の三次元造形装置。
  9. 前記テーブルと前記処理部との間の距離を相対的に変化させる直線駆動部をさらに備え、
    前記制御部は、前記直線駆動部を制御して、前記テーブルから前記処理部までの前記回転軸線に沿った距離を大きくする離間動作を行う、請求項又はに記載の三次元造形装置。
  10. 前記制御部は、前記回転動作、前記供給動作、前記造形動作及び前記離間動作を並行して行う、請求項に記載の三次元造形装置。
  11. 前記制御部は、前記回転動作、前記供給動作及び前記造形動作を並行して行った後に、前記離間動作を行う、請求項に記載の三次元造形装置。
JP2020527605A 2018-06-26 2019-06-26 三次元造形装置 Active JP7196918B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018120674 2018-06-26
JP2018120674 2018-06-26
PCT/JP2019/025482 WO2020004507A1 (ja) 2018-06-26 2019-06-26 三次元造形装置

Publications (2)

Publication Number Publication Date
JPWO2020004507A1 JPWO2020004507A1 (ja) 2021-07-15
JP7196918B2 true JP7196918B2 (ja) 2022-12-27

Family

ID=68986590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527605A Active JP7196918B2 (ja) 2018-06-26 2019-06-26 三次元造形装置

Country Status (4)

Country Link
US (1) US11524338B2 (ja)
EP (1) EP3815818A4 (ja)
JP (1) JP7196918B2 (ja)
WO (1) WO2020004507A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001878A1 (ja) * 2019-07-01 2021-01-07 株式会社ニコン 造形装置
JP7276259B2 (ja) * 2020-06-18 2023-05-18 トヨタ自動車株式会社 積層造形方法、及び積層造形装置
JPWO2022215410A1 (ja) * 2021-04-05 2022-10-13

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533680A (ja) 2012-08-29 2015-11-26 カーピーズ エスアーエスCarpyz Sas 層ごとの追加によって円形製品を生産するための機械
JP2018507957A (ja) 2014-12-15 2018-03-22 ア−カム アーベー 付加製造のための改良された方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235434A1 (de) * 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
US7291002B2 (en) * 2003-05-23 2007-11-06 Z Corporation Apparatus and methods for 3D printing
KR101271243B1 (ko) 2006-07-27 2013-06-07 아르켐 에이비 3차원 물체 생성방법 및 장치
TWI472427B (zh) * 2012-01-20 2015-02-11 財團法人工業技術研究院 粉體鋪層裝置與方法及其積層製造方法
WO2014018100A1 (en) 2012-07-27 2014-01-30 Pratt & Whitney Rocketdyne, Inc. Solid axisymmetric powder bed for selective laser melting
US9415443B2 (en) * 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
US9468973B2 (en) * 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
US9808886B2 (en) 2014-01-24 2017-11-07 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US10464168B2 (en) 2014-01-24 2019-11-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US20150209910A1 (en) 2014-01-24 2015-07-30 Lincoln Global, Inc. Method And System For Additive Manufacturing Of Cooling Passages Using High Energy Source
US10046419B2 (en) 2014-01-24 2018-08-14 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US9839978B2 (en) 2014-01-24 2017-12-12 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US9937580B2 (en) 2014-01-24 2018-04-10 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
US9833862B2 (en) 2014-01-24 2017-12-05 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
DE102014221885A1 (de) * 2014-10-28 2016-04-28 Koenig & Bauer Ag Vorrichtung zum schichtweisen Aufbau von mindestens einem dreidimensionalen Werkstück
WO2016096407A1 (en) 2014-12-15 2016-06-23 Arcam Ab Method and apparatus for additive manufacturing using a two dimensional angular coordinate system
JP6750953B2 (ja) 2015-03-23 2020-09-02 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. 高エネルギー源とホットワイヤを用いた付加製造のための方法とシステム
EP3156153B1 (en) * 2015-10-16 2019-05-22 SLM Solutions Group AG Apparatus for producing a three-dimensional work piece which includes a heating system
ITUA20163108A1 (it) * 2016-05-03 2017-11-03 3D New Tech S R L Apparecchiatura per additive manufacturing per la costruzione di oggetti in leghe intermetalliche ad elevata temperatura di fusione
JP6751595B2 (ja) * 2016-06-02 2020-09-09 株式会社ミマキエンジニアリング 造形装置及び造形方法
DE102016214249A1 (de) * 2016-08-02 2018-02-08 Technische Universität Dresden Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett
WO2019070070A1 (ja) * 2017-10-06 2019-04-11 株式会社Ihi 粉末供給装置および三次元積層造形装置
EP3732024A4 (en) * 2017-12-28 2022-07-27 Nikon Corporation ROTATING ENERGY BEAM FOR A THREE-DIMENSIONAL PRINTER
JP7120121B2 (ja) * 2019-03-29 2022-08-17 新東工業株式会社 付加製造装置及び付加製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533680A (ja) 2012-08-29 2015-11-26 カーピーズ エスアーエスCarpyz Sas 層ごとの追加によって円形製品を生産するための機械
JP2018507957A (ja) 2014-12-15 2018-03-22 ア−カム アーベー 付加製造のための改良された方法

Also Published As

Publication number Publication date
US11524338B2 (en) 2022-12-13
EP3815818A1 (en) 2021-05-05
WO2020004507A1 (ja) 2020-01-02
US20210187619A1 (en) 2021-06-24
JPWO2020004507A1 (ja) 2021-07-15
EP3815818A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP7196918B2 (ja) 三次元造形装置
JP6053745B2 (ja) 照射システムを制御する方法及び制御装置
CN107848032A (zh) 利用预热的增材制造
JP2021508615A (ja) 回転式粉体床を備えた積層造形システム
US20160067923A1 (en) Articulating build platform for laser additive manufacturing
TWI780163B (zh) 使用單元處理配方的積層製造的設備、方法及電腦程式產品
US20190143406A1 (en) Additive manufacturing apparatus and method for large components
US11179890B2 (en) Additive manufacturing device and additive manufacturing method
CN107708970A (zh) 增材制造中的选择性粉末沉积
WO2018170117A1 (en) Additive manufacturing having energy beam and lamp array
TWI657914B (zh) Multilayer manufacturing heating module and its application
JP7264236B2 (ja) 三次元造形装置
JP7155919B2 (ja) 三次元造形装置
US11364544B2 (en) Method and device for performing additive manufacturing while rotating a spindle
CN111497238B (zh) 一种阵列式激光旋转打印增材制造设备及打印方法
JP2019081936A (ja) 三次元積層造形装置
JP7259494B2 (ja) 積層造形装置
JP7205268B2 (ja) 三次元造形装置
WO2024048234A1 (ja) 三次元造形装置及び予熱装置
JP2020125509A (ja) 三次元造形装置
EP3566854B1 (en) Apparatus for additively manufacturing three-dimensional objects
US20210387265A1 (en) Surface processing device and method, and three-dimensional deposition device
JP5500511B2 (ja) 加熱用フィラメントランプ
JP6171139B2 (ja) コーティング方法
JP7124659B2 (ja) 積層造形装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221024

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151