WO2024048234A1 - 三次元造形装置及び予熱装置 - Google Patents

三次元造形装置及び予熱装置 Download PDF

Info

Publication number
WO2024048234A1
WO2024048234A1 PCT/JP2023/029156 JP2023029156W WO2024048234A1 WO 2024048234 A1 WO2024048234 A1 WO 2024048234A1 JP 2023029156 W JP2023029156 W JP 2023029156W WO 2024048234 A1 WO2024048234 A1 WO 2024048234A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
preheating
heater
section
region
Prior art date
Application number
PCT/JP2023/029156
Other languages
English (en)
French (fr)
Inventor
健太 塩沼
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2024048234A1 publication Critical patent/WO2024048234A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a three-dimensional printing device and a preheating device.
  • Patent Document 1 discloses a technology related to a three-dimensional printing device.
  • the three-dimensional modeling apparatus disclosed in Patent Document 1 supplies powder material onto a table, preheats the powder material supplied onto the table, and irradiates the preheated powder material with an energy beam to create a three-dimensional model. shape things.
  • the entire powder bed formed of powder material is preheated to a uniform temperature.
  • preheating causes pre-sintered bodies to be generated in areas of the powder bed that do not constitute the modeled object, so it takes time to remove the interim sintered bodies, making it difficult to continue the modeling process of successive objects smoothly. Sometimes it's difficult.
  • the present disclosure describes a three-dimensional modeling device and a preheating device that can efficiently perform modeling processing.
  • a three-dimensional printing apparatus includes a table having a main surface to which powder material is supplied, and a table that is arranged to face the main surface, and forms a plurality of model parts formed from the powder material by stacking them. It includes a forming section that forms an object, and a controller that controls the operation of the forming section.
  • the table rotates relative to the forming part in a predetermined rotation direction about the rotation axis.
  • the forming section includes a supply section that forms a powder bed by supplying powder material to the main surface, and a supply section that is arranged downstream of the supply section in the rotational direction and is capable of preheating each of a plurality of regions in the powder bed at different temperatures.
  • the powder bed includes a preheating section, and an irradiation section that is disposed downstream of the preheating section in the rotational direction and irradiates at least a portion of the preheated powder bed with an energy beam.
  • the controller includes an area dividing unit that divides the powder bed into a plurality of small areas, and a small area that includes a scheduled irradiation portion to be irradiated with an energy beam by an irradiation unit among the plurality of small areas as a first area; an area setting unit that sets at least one small area among other small areas that are not set as one area as a second area; and a preheating unit that sets at least one small area as a second area, and a preheating control section that controls the output of the section.
  • modeling processing can be performed efficiently.
  • FIG. 1 is a diagram showing a cross section of a modeling apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing a forming section included in the modeling apparatus shown in FIG. 1.
  • FIG. 3 is a block diagram showing a controller included in the modeling apparatus shown in FIG. 1.
  • FIG. 4 is a diagram illustrating a powder bed that is preheated by the shaping apparatus shown in FIG. 1.
  • FIG. 5 is a diagram showing a powder bed preheated by a powder bed preheating process according to the first modification.
  • FIG. 6 is a diagram showing a powder bed preheated by a powder bed preheating process according to the first modification.
  • FIG. 7 is a diagram showing a powder bed preheated by a powder bed preheating process according to a second modification.
  • FIG. 8 is a diagram showing a powder bed preheated by the modeling apparatus according to the second embodiment.
  • FIG. 9 is a diagram showing a powder bed preheated by the modeling apparatus according to the third embodiment.
  • a three-dimensional printing apparatus includes a table having a main surface to which powder material is supplied, and a table that is arranged to face the main surface, and forms a plurality of model parts formed from the powder material by stacking them. It includes a forming section that forms an object, and a controller that controls the operation of the forming section.
  • the table rotates relative to the forming part in a predetermined rotation direction about the rotation axis.
  • the forming section includes a supply section that forms a powder bed by supplying powder material to the main surface, and a supply section that is arranged downstream of the supply section in the rotational direction and is capable of preheating each of a plurality of regions in the powder bed at different temperatures.
  • the powder bed includes a preheating section, and an irradiation section that is disposed downstream of the preheating section in the rotational direction and irradiates at least a portion of the preheated powder bed with an energy beam.
  • the controller includes an area dividing unit that divides the powder bed into a plurality of small areas, and a small area that includes a scheduled irradiation portion to be irradiated with an energy beam by an irradiation unit among the plurality of small areas as a first area; an area setting unit that sets at least one small area among other small areas that are not set as one area as a second area; and a preheating unit that sets at least one small area as a second area, and a preheating control section that controls the output of the section.
  • the region dividing section divides the powder bed into a plurality of small regions
  • the region setting section divides the powder bed into a plurality of small regions
  • the region setting section divides the powder bed into a plurality of small regions, which includes a portion to be irradiated with an energy beam by the irradiation section. is set as the first region, at least one of the other small regions not set as the first region is set as the second region, and the preheating control unit sets the first region and the second region to be different from each other. Control the output of the preheating section so that it is preheated at the desired temperature.
  • the three-dimensional modeling apparatus sets a small area including the scheduled irradiation area to be irradiated with the energy beam as the first area, sets a small area that does not include the scheduled irradiation area as the second area, and sets the small area that does not include the scheduled irradiation area as the second area.
  • the region can be preheated to a lower temperature than the first region.
  • the three-dimensional printing apparatus preheats the area to be irradiated with the energy beam (powder material that makes up the modeled object) at a high temperature
  • the area in the powder bed that is not irradiated with the energy beam (the powder material that makes up the modeled object) is preheated to a high temperature.
  • powder materials can be preheated at low temperatures. Therefore, it is difficult for a temporary sintered body to form in the powder material that does not constitute a shaped object, and the time for removing the temporary sintered body can be reduced. Therefore, according to this three-dimensional modeling apparatus, modeling processing can be performed efficiently.
  • the preheating control section of the three-dimensional modeling apparatus described above may control the output of the preheating section so that the first region is preheated at a higher temperature than the second region. According to this configuration, the portion of the powder bed to be irradiated with the energy beam can be preheated more reliably.
  • the preheating control unit of the three-dimensional modeling apparatus described above is configured to preheat so that the first region is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material, and the second region is preheated to a temperature lower than the pre-sintering temperature.
  • the output of the section may also be controlled. According to this configuration, it is possible to more reliably preheat the area of the powder bed that is irradiated with the energy beam (powder material that makes up the modeled object), and the area that is not irradiated with the energy beam (the powder material that does not make up the modeled object) can be preheated more reliably. ) can more reliably suppress the formation of temporary sintered bodies.
  • the region dividing section of the three-dimensional printing apparatus described above may divide the powder bed into a plurality of small regions in the radial direction of a circle centered on the rotation axis.
  • the area irradiated with an energy beam is The area where the energy beam will not be irradiated (powder material that does not constitute the object) is heated to a temperature lower than the pre-sintering temperature. It can be preheated. Therefore, it is possible to more reliably preheat the powder material that constitutes the shaped object, and it is also possible to more reliably suppress the formation of a temporary sintered body in the powder material that does not constitute the shaped object.
  • the region dividing section of the three-dimensional printing apparatus described above may divide the powder bed into a plurality of small regions in the rotation direction around the rotation axis.
  • an area irradiated with an energy beam and an area not irradiated with an energy beam are located side by side in the direction of rotation about the rotation axis, for example, an area irradiated with an energy beam (Powder material that makes up the modeled object) is preheated to a temperature higher than the pre-sintering temperature of the powder material, and areas that are not irradiated with the energy beam (powder material that does not make up the model) are preheated to a temperature lower than the pre-sintering temperature. can do. Therefore, it is possible to more reliably preheat the powder material that constitutes the shaped object, and it is also possible to more reliably suppress the formation of a temporary sintered body in the powder material that does not constitute the shaped object.
  • the preheating section of the three-dimensional printing apparatus described above has a plurality of divided preheating sections arranged in the radial direction of a circle centered on the rotation axis, and the preheating control section controls the output of the divided preheating section while the table rotates once. may be kept constant. According to this configuration, the preheating process performed by the preheating section is simple, so that the processing load on the preheating section and the controller is reduced.
  • the preheating control section of the three-dimensional printing apparatus described above may vary the output of the preheating section while the table makes one rotation. According to this configuration, when the first region and the second region are lined up in the rotation direction around the rotation axis, each of the first region and the second region can be preheated at a suitable temperature.
  • the plurality of modeled parts include a first modeled part and a second modeled part formed on the first modeled part, and the area setting section selects one of the plurality of small areas in the powder bed corresponding to the first modeled part.
  • a small region including a portion that overlaps the scheduled irradiation portion of the powder bed corresponding to the second modeling portion may be set as the first region.
  • a small region including a portion of the powder bed corresponding to the second modeled part that overlaps with the scheduled irradiation part is preheated at a high temperature. can do.
  • the above three-dimensional modeling apparatus may include a temperature detection section that detects the temperature of the powder bed, and the preheating control section may control the output of the preheating section based on the detection result by the temperature detection section. According to this configuration, the powder bed can be heated to a desired temperature more reliably.
  • the preheating section of the three-dimensional printing apparatus described above may be arranged to face the main surface with the powder bed in between. According to this configuration, the powder bed can be preheated more reliably.
  • a preheating device is a preheating device that preheats powder material that is sintered or melted to become a model by being irradiated with an energy beam
  • the preheating device is a preheating device that preheats powder material that is sintered or melted to become a modeled object by being irradiated with an energy beam, the powder material being supplied to the main surface of a table.
  • a preheating section capable of preheating each of a plurality of regions in a powder bed formed by Among the divided portions and the plurality of small regions, a small region including the scheduled irradiation portion to be irradiated with the energy beam is set as the first region, and at least one small region among the other small regions not set as the first region is set. It has a region setting section that sets the region as the second region, and a preheating control section that controls the output of the preheating section so that the first region and the second region are preheated at different temperatures.
  • This preheating device includes the same preheating section and controller as the three-dimensional modeling device described above. As a result, the preheating device sets, for example, a small region including the irradiation scheduled portion to be irradiated with the energy beam as the first region, sets a small region not including the irradiation scheduled portion as the second region, and sets the second region as the second region. Preheating can be performed at a lower temperature than the first region.
  • the preheating device can preheat the area to be irradiated with the energy beam (powder material that makes up the modeled object) to a high temperature.
  • the preheating device can preheat the area of the powder bed that is not irradiated with the energy beam (the powder material that does not make up the modeled object). materials) can be preheated at low temperatures. Therefore, it is difficult for a temporary sintered body to form in the powder material that does not constitute a shaped object, and the time for removing the temporary sintered body can be reduced. Therefore, according to this preheating device, the modeling process can be performed efficiently.
  • a modeling apparatus 1 shown in FIG. 1 is a three-dimensional modeling apparatus that forms a three-dimensional object 2S from a powder material 2.
  • the modeling device 1 is a so-called 3D printer.
  • the powder material 2 is, for example, metal powder.
  • the powder material 2 is, for example, titanium-based metal powder, Inconel powder, or aluminum powder.
  • Powder material 2 is not limited to metal powder.
  • the powder material 2 may be, for example, a resin powder or a powder containing carbon fibers such as CFRP (Carbon Fiber Reinforced Plastics) and a resin.
  • CFRP Carbon Fiber Reinforced Plastics
  • the powder material 2 may be other conductive powder.
  • the powder material 2 is not limited to one having electrical conductivity. For example, when using a laser as the energy beam, the powder material 2 does not need to have electrical conductivity.
  • the shaped object 2S is formed by irradiating the powder material 2 with an electron beam.
  • the modeling device 1 irradiates the powder material 2 with an electron beam.
  • the temperature of the powder material 2 is increased by irradiation with the electron beam.
  • the heated powder material 2 is sintered or melted.
  • the temperature of the powder material 2 decreases.
  • the powder material 2 solidifies.
  • the modeling device 1 applies a new powder material 2 on the solidified powder material 2 (hereinafter referred to as a "modeling part"), and then irradiates the applied powder material 2 with an electron beam to form a new model part.
  • the modeling apparatus 1 repeatedly applies the powder material 2 and irradiates the electron beam, thereby stacking a plurality of molded parts to form the molded object 2S.
  • the shaped object 2S is formed from a plurality of stacked shaped parts.
  • the modeling apparatus 1 performs modeling by irradiating the powder material 2 applied on the rotating table 3 with an electron beam.
  • the modeling apparatus 1 includes a table 3, a forming section 4, a controller 5, a driving section 6, a housing 7, and a temperature detecting section 8.
  • the table 3 has a pair of main surfaces 3a and 3b facing each other.
  • the table 3 has a circular plate shape.
  • the main surface 3a is a flat surface.
  • the powder material 2 and the shaped object 2S are placed on the main surface 3a.
  • the table 3 is rotated in a predetermined rotation direction about a rotation axis C by a drive unit 6, which will be described later. Further, the table 3 moves up and down along the rotation axis C.
  • the rotation axis C is along the vertical direction.
  • the rotation axis C is perpendicular to the main surface 3a.
  • the terms “upper” and “lower” are used with reference to the state in which the rotation axis C is along the vertical direction.
  • member A is placed above member B means that member A is placed farther from the ground than member B
  • member A is placed below member B means that member A is placed farther from the ground than member B.
  • the A member is placed closer to the ground than the B member.
  • a modeling tank 31 is arranged around the table 3.
  • the modeling tank 31 is a container for holding the powder material 2 on the main surface 3a of the table 3.
  • the modeling tank 31 has a wall portion 31a.
  • the wall portion 31a is formed along the outer edge of the table 3 when viewed from the direction along the rotation axis C.
  • the wall portion 31a holds the powder material 2 on the main surface 3a.
  • the forming section 4 is arranged above the table 3.
  • the forming portion 4 is arranged to face the main surface 3a of the table 3 with the powder material 2 in between. “The forming portion 4 faces the main surface 3a” means that at least a portion of the forming portion 4 overlaps the main surface 3a when viewed from the direction along the rotation axis C.
  • the forming unit 4 processes the powder material 2 to form a shaped object 2S.
  • the forming section 4 includes a feeder 41, a heater 42, and a beam source 43.
  • the feeder 41 supplies the powder material 2 to the main surface 3a of the table 3.
  • the heater 42 preheats the supplied powder material 2.
  • the beam source 43 irradiates the preheated powder material 2 with an electron beam to form a shaped part.
  • the feeder 41, heater 42, and beam source 43 are electrically connected to the controller 5.
  • the controller 5 controls the modeling device 1. For example, under the control of the controller 5, the forming section 4 forms the modeled object 2S on the table 3, and the driving section 6 rotates and raises/lowers the table 3.
  • the drive unit 6 includes a rotation unit 61 that rotates the table 3 and a lifting unit 62 that raises and lowers the table 3.
  • the rotation unit 61 and the lifting unit 62 are electrically connected to the controller 5.
  • the rotation unit 61 has a shaft portion 61a and an actuator such as a motor (not shown).
  • the shaft portion 61a extends in a direction perpendicular to the main surface 3a of the table 3.
  • One end of the shaft portion 61a is connected to the main surface 3b of the table 3.
  • the actuator included in the drive section 6 rotates the shaft section 61a about the rotation axis C in a predetermined rotation direction.
  • the table 3 connected to the shaft portion 61a rotates in a predetermined rotation direction with respect to the forming portion 4 about the rotation axis C.
  • the table 3 rotates clockwise when viewed from above the main surface 3a.
  • the elevating unit 62 has an actuator such as a motor (not shown).
  • the actuator included in the lifting unit 62 moves the shaft portion 61a up and down along the rotation axis C.
  • the table 3 connected to the shaft portion 61a moves up and down along the rotation axis C with respect to the forming portion 4. That is, the elevating unit 62 moves the table 3 along the rotation axis C in a direction toward the forming section 4 and a direction away from the forming section 4 .
  • the housing 7 defines a molding space S for forming a molded object 2S.
  • the housing 7 accommodates the table 3 and the forming section 4 on which the powder material 2 and the shaped object 2S are placed.
  • the modeling space S is a depressurizable airtight space in which the forming section 4 forms the modeled object 2S.
  • a window portion 71 is formed in the wall portion 71a of the housing 7.
  • the window portion 71 is a window that allows the temperature in the modeling space S to be detected from the outside of the modeling apparatus 1.
  • the window portion 71 is made of glass or the like, for example.
  • the temperature detection section 8 detects the temperature of the powder material 2 through the window section 71.
  • the temperature detection unit 8 is, for example, a thermography device or a radiation thermometer.
  • the temperature detection section 8 is electrically connected to the controller 5.
  • the temperature detection unit 8 outputs the detection results to a database provided inside or outside the modeling apparatus 1.
  • the detection result of the temperature detection section 8 is used, for example, to control the heater 42.
  • the details of the forming section 4 will be explained with reference to FIG. 2.
  • the feeder 41, the heater 42, and the beam source 43 overlap the main surface 3a of the table 3 when viewed from the direction along the rotation axis C.
  • the feeder 41, heater 42, and beam source 43 are arranged in this order along the rotation direction R of the table 3.
  • the rotation direction R is a clockwise direction when the table 3 is viewed from above the main surface 3a.
  • the heater 42 is arranged downstream of the feeder 41 along the rotation direction R.
  • the beam source 43 is arranged downstream of the heater 42 along the rotation direction R.
  • the feeder 41 is a supply section.
  • the feeder 41 forms a powder bed 21 by supplying the powder material 2 onto the main surface 3 a of the table 3 .
  • Powder bed 21 is a layer of powder material 2 having a predetermined thickness.
  • the feeder 41 includes a raw material tank (not shown) and a leveling section.
  • the raw material tank stores the powder material 2 and supplies the powder material 2 onto the main surface 3a.
  • the smoothing section smoothes the surface of the powder material 2 supplied onto the main surface 3a. Thereby, a powder bed 21 is formed on the main surface 3a.
  • the feeder 41 may have a roller section, a rod-shaped member, or a brush section instead of the leveling section.
  • the feeder 41 forms a supply area 41A on the main surface 3a.
  • the supply area 41A is an area to which the powder material 2 is supplied by the feeder 41. Furthermore, the supply area 41A is also an area where the supplied powder material 2 is leveled. The position of the supply area 41A does not change with respect to the rotation of the table 3. That is, when the table 3 and the supply area 41A are defined by a certain coordinate system, the table 3 rotates with respect to the coordinate system. However, the supply area 41A does not move with respect to the coordinate system.
  • the heater 42 is a preheating section. Heater 42 preheats powder bed 21 formed by feeder 41 .
  • the heater 42 is arranged upwardly apart from the main surface 3a of the table 3. Since the heater 42 is arranged upwardly away from the main surface 3a of the table 3, at least the powder bed and the object 2S that is being formed can be arranged between the main surface 3a of the table 3 and the heater 42. can.
  • the heater 42 constitutes the preheating device 9 together with the controller 5.
  • the shape of the heater 42 is fan-shaped when viewed from the direction along the rotation axis C. “Preheating the powder bed” is a process of heating the powder bed 21 formed by the feeder 41 to a predetermined temperature before being irradiated with the electron beam by the beam source 43.
  • This heat treatment may be, for example, a process of temporarily sintering the powder bed 21 (powder material 2).
  • Preliminary sintering is a state in which the powder materials 2 are diffused and bonded to each other at the minimum point by a diffusion phenomenon.
  • pre-sintering temperature the temperature at which the powder material 2 is pre-sintered will be referred to as "pre-sintering temperature”.
  • the heater 42 heats the powder material 2 to a pre-sintering temperature, for example.
  • the pre-sintering temperature is, for example, a temperature that is half or more of the melting point of the powder material 2. This is based on the fact that the sintering diffusion phenomenon generally becomes active at more than half the melting point.
  • the preliminary sintering temperature is 700°C or more and 800°C or less.
  • the melting point of the titanium alloy is approximately 1500°C or more and 1600°C or less.
  • the powder material 2 is aluminum, the preliminary sintering temperature is 300°C.
  • the melting point of aluminum is approximately 660°C.
  • the heater 42 is placed above the table 3.
  • the heater 42 preheats the powder material 2 using radiant heat, for example.
  • the heater 42 may be, for example, an infrared heater.
  • the heater 42 forms a preheating area 42A on the main surface 3a.
  • the preheating area 42A is an area that is preheated by the heater 42.
  • the position of the preheating area 42A does not change with respect to the rotation of the table 3. That is, when the table 3 and the preheating area 42A are defined by a certain coordinate system, the table 3 rotates with respect to the coordinate system. However, the preheating area 42A does not move with respect to the coordinate system.
  • the heater 42 has a plurality of divided heaters.
  • the multiple divided heaters are multiple divided preheating sections.
  • Each of the plurality of divided heaters is arranged in the radial direction of a circle centered on the rotation axis C.
  • the heater 42 includes four first divided heaters 421 , a second divided heater 422 , a third divided heater 423 , and a fourth divided heater 424 .
  • the first divided heater 421, the second divided heater 422, the third divided heater 423, and the fourth divided heater 424 are arranged in this order outward from the rotation axis C.
  • the first divided heater 421 forms a first preheating region 421A in the powder bed 21 that is preheated by the first divided heater 421.
  • the second divided heater 422 forms a second preheating region 422A in the powder bed 21 that is preheated by the second divided heater 422 .
  • the third divided heater 423 forms a third preheating region 423A in the powder bed 21 that is preheated by the third divided heater 423.
  • the fourth divided heater 424 forms a fourth preheating region 424A in the powder bed 21 that is preheated by the fourth divided heater 424 .
  • the first preheating area 421A, the second preheating area 422A, the third preheating area 423A, and the fourth preheating area 424A are arranged in this order outward from the rotation axis C.
  • the first preheating area 421A, the second preheating area 422A, the third preheating area 423A, and the fourth preheating area 424A constitute a preheating area 42A.
  • the first divided heater 421, second divided heater 422, third divided heater 423, and fourth divided heater 424 they will be collectively referred to as "divided heaters.” There is.
  • Each divided heater is electrically connected to the controller 5 (see FIG. 1).
  • the output of each divided heater can be controlled independently by the controller 5.
  • the controller 5 can make the output of the first divided heater 421 and the fourth divided heater 424 lower than the output of the second divided heater 422 and the third divided heater 423.
  • the region of the powder bed 21 that passes through the first preheating region 421A and the fourth preheating region 424A is preheated at a lower temperature than the region of the powder bed 21 that passes through the second preheating region 422A and the third preheating region 423A.
  • Ru That is, the heater 42 can preheat each of the plurality of regions in the powder bed 21 at different temperatures.
  • the heater 42 can preheat a region passing through the first preheating region 421A at a temperature equal to or higher than the preliminary sintering temperature of the powder material 2. Further, the heater 42 can preheat the region passing through the fourth preheating region 424A at a temperature equal to or higher than the preliminary sintering temperature of the powder material 2. Furthermore, the heater 42 can preheat the region passing through the second preheating region 422A at a temperature lower than the preliminary sintering temperature. Moreover, the heater 42 can preheat the region passing through the third preheating region 423A at a temperature lower than the preliminary sintering temperature.
  • the beam source 43 is an irradiation section. Beam source 43 irradiates powder bed 21 with an electron beam.
  • the beam source 43 is, for example, an electron gun. Beam source 43 generates an electron beam depending on the potential difference generated between the cathode and the anode. The beam source 43 converges the electron beam by adjusting the electric field, and irradiates the powder bed 21 with the electron beam.
  • the beam source 43 forms an irradiation area 43A on the main surface 3a.
  • the irradiation area 43A is an area that can be irradiated with an electron beam by the beam source 43.
  • the position of the irradiation area 43A does not change with respect to the rotation of the table 3. That is, when the table 3 and the irradiation area 43A are defined by a certain coordinate system, the table 3 rotates with respect to the coordinate system. However, the irradiation area 43A does not move with respect to the coordinate system.
  • the beam source 43 irradiates an electron beam along a desired scanning line within the irradiation area 43A.
  • a portion P to be irradiated with the electron beam in the powder bed 21 is indicated by hatching.
  • the shape of the portion irradiated with the electron beam does not have to match the shape of the irradiation area 43A.
  • the beam source 43 irradiates the scheduled irradiation portion P with an electron beam when the scheduled irradiation portion P passes through the irradiation area 43A due to the rotation of the table 3.
  • the portion of the powder bed 21 irradiated with the electron beam is heated to a temperature higher than that after being preheated by the heater 42 .
  • the temperature is raised to the sintering temperature or melting temperature of the powder material 2.
  • the portion of the powder bed 21 that is irradiated with the electron beam is sintered or melted.
  • the temperature of the part irradiated with the electron beam decreases, so that the part solidifies.
  • the time when the electron beam irradiation ends is the time when the electron beam finishes passing through the irradiation area 43A.
  • the solidified portion becomes a shaped part that constitutes the shaped object 2S.
  • the positions of the supply area 41A, the preheating area 42A, and the irradiation area 43A do not change with respect to the rotation of the table 3. Therefore, when a certain point is assumed on the table 3, the point passes through the supply area 41A, the preheating area 42A, and the irradiation area 43A in this order as the table 3 rotates. That is, by arranging the feeder 41, the heater 42, and the beam source 43 along the rotation direction R of the table 3, and rotating the table 3, the formation process of the powder bed 21 and the powder bed are performed on the main surface 3a of the table 3. The preheating process of 21 and the electron beam irradiation process can be performed in this order.
  • the modeling apparatus 1 forms a new powder bed 21 by forming a modeling part on a certain powder bed 21 and then further applying the powder material 2 on the powder bed 21. Then, after preheating the newly formed powder bed 21, the modeling apparatus 1 forms a modeling part by irradiating it with an electron beam. In this manner, the modeling apparatus 1 repeatedly performs the forming process of the powder bed 21, the preheating process of the powder bed 21, and the electron beam irradiation process while rotating the table 3. As a result, a modeled object 2S (see FIG. 1) in which a plurality of modeled parts are stacked is formed.
  • the table 3 descends as the modeling of the object 2S progresses. That is, the rotation unit 61 rotates the table 3. In parallel with this rotation, the lifting unit 62 lowers the table 3.
  • FIG. 3 is a block diagram showing the controller 5.
  • the controller 5 is a computer composed of hardware such as a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory), and software such as programs stored in the ROM.
  • the controller 5 includes, for example, an input signal circuit, an output signal circuit, or a power supply circuit.
  • the controller 5 includes, for example, a calculation section and a memory.
  • the memory can store data necessary for various controls.
  • the controller 5 includes a feeder control section 51, a heater control section 52, a beam control section 53, a rotation control section 54, an elevation control section 55, a region division section 56, a data acquisition section 57, and a region setting section 58.
  • the feeder control unit 51 controls the feeder 41 in order to form the powder bed 21 by supplying the powder material 2 onto the main surface 3a of the table 3. That is, the feeder control section 51 functions as a supply control section.
  • the feeder control unit 51 may control, for example, the timing of supplying the powder material 2 onto the main surface 3a, the supply amount of the powder material 2, the operation of a recoater that is a leveling unit, and the like.
  • the feeder control unit 51 outputs a control signal for controlling the feeder 41 to the feeder 41.
  • the feeder 41 operates based on a control signal received from the feeder control section 51.
  • the heater control unit 52 controls the heater 42 in order to preheat the powder bed 21 formed on the main surface 3a of the table 3. That is, the heater control section 52 functions as a preheating control section.
  • the heater control unit 52 can control the output of each of the first divided heater 421, the second divided heater 422, the third divided heater 423, and the fourth divided heater 424 included in the heater 42.
  • Control of the output of the heater 42 includes control regarding the magnitude of the output.
  • the control of the output of the heater 42 (each divided heater) also includes control regarding on and off of the heater 42 (each divided heater).
  • the heater control unit 52 controls the output of the heater 42 based on setting information received from a region setting unit 58, which will be described later.
  • the heater control unit 52 may control the heater 42 based on, for example, the material of the powder material 2, the type of the powder material 2, and the rotation speed of the table 3. Furthermore, the heater control unit 52 may control the heater 42 based on, for example, temperature data DT of the powder bed 21 received from a data acquisition unit 57 described below. The heater control unit 52 outputs a control signal for controlling the heater 42 to the heater 42. The heater 42 operates based on a control signal received from the heater control section 52.
  • the beam control unit 53 controls the beam source 43 in order to irradiate the powder bed 21 with an electron beam that sinteres or melts the powder material 2. That is, the beam control section 53 functions as an irradiation control section.
  • the beam control unit 53 controls, for example, the irradiation position of the electron beam, the start of irradiation, the stop of irradiation, the irradiation time, and the like.
  • the beam control unit 53 outputs a control signal to the beam source 43 for controlling the beam source 43.
  • Beam source 43 operates based on a control signal received from beam controller 53.
  • the rotation control section 54 controls the rotation unit 61 in order to rotate the table 3.
  • the rotation control unit 54 controls, for example, the rotation speed of the table 3.
  • the rotation control section 54 outputs a control signal for controlling the rotation unit 61 to the rotation unit 61.
  • Rotation unit 61 operates based on a control signal received from rotation control section 54 .
  • the lift control section 55 controls the lift unit 62 in order to raise and lower the table 3.
  • the elevation control unit 55 controls, for example, the descending speed of the table 3.
  • the lift control section 55 outputs a control signal for controlling the lift unit 62 to the lift unit 62.
  • the elevating unit 62 operates based on a control signal received from the elevating controller 55.
  • the area dividing unit 56 divides the powder bed 21 formed on the main surface 3a of the table 3 into a plurality of small areas. "Dividing the powder bed 21 into a plurality of small regions” does not mean physically dividing the powder bed 21, but rather setting a plurality of small regions in the powder bed 21. In other words, "dividing the powder bed 21 into a plurality of small regions” refers to distinguishing a certain region from another region in the powder bed 21. As an example, the region dividing unit 56 divides a plurality of regions preheated by each of the plurality of divided heaters into a plurality of small regions. Details of the region dividing process of the powder bed 21 will be described later with reference to FIG. The region dividing section 56 outputs information indicating the shape and position of each divided small region to the region setting section 58, which will be described later.
  • the data acquisition unit 57 acquires temperature data DT and slice data DS from a database DB provided inside or outside the modeling apparatus 1.
  • the temperature data DT indicates the temperature of the powder bed 21 detected by the temperature detection section 8.
  • the temperature data DT may be, for example, the temperature of the powder bed 21 before being preheated by the heater 42 or the temperature of the powder bed 21 after being preheated by the heater 42.
  • the data acquisition unit 57 outputs the acquired temperature data DT to the heater control unit 52.
  • the slice data DS is data indicating the cross-sectional shape of the object 2S.
  • the slice data DS is data indicating the shape of each shaped part that constitutes the shaped object 2S.
  • the slice data DS is generated based on, for example, three-dimensional CAD (Computer-Aided Design) data of the object 2S.
  • the number of slice data DS corresponding to the number of shaped parts (number of layers) constituting the shaped object 2S is generated.
  • the slice data DS is stored in the database DB.
  • the data acquisition section 57 outputs the acquired slice data DS to the region setting section 58 and the beam control section 53.
  • the region setting unit 58 sets a small region including the scheduled irradiation portion P as a first region among the plurality of small regions divided by the region dividing unit 56. Furthermore, the area setting unit 58 sets at least one small area among the plurality of small areas divided by the area dividing unit 56, which is not set as the first area A1, as the second area A2. do. First, the region setting unit 58 specifies the shape and position of the irradiation scheduled portion P in the powder bed 21 based on the slice data DS. As described above, the part of the powder bed 21 that is irradiated with the electron beam becomes the modeled part. Therefore, the shape and position of the irradiation scheduled portion P match the shape and position of the modeling portion indicated by the slice data DS.
  • the region setting unit 58 can specify the shape and position of the irradiation scheduled portion P in the powder bed 21 based on the slice data DS.
  • the area setting unit 58 sets a small area including the irradiation scheduled portion P as the first area A1 based on the shape and position of the specified irradiation scheduled portion P. Further, the area setting unit 58 sets at least one small area among the other small areas not set as the first area A1 as the second area A2.
  • "setting a small area including the scheduled irradiation portion P as the first area” means that at least a small area including the scheduled irradiation portion P among the plurality of small areas divided by the area dividing unit 56 is set as the first area A1. It is to set it as. That is, the area setting unit 58 sets the small area including the scheduled irradiation portion P as the first area A1.
  • the area setting unit 58 outputs setting information indicating whether each small area is set to the first area or the second area to the heater control unit 52.
  • the region dividing section 56 divides the powder bed 21 formed on the main surface 3a of the table 3 into a plurality of small regions.
  • the region dividing unit 56 divides the powder bed 21 into four small regions 211, 212, 213, and 214 in the radial direction of a circle centered on the rotation axis C.
  • the small area 211 is a circular area centered on the rotation axis C.
  • the small region 212, the small region 213, and the small region 214 are a plurality of annular regions centered on the rotation axis C.
  • the small area 211, the small area 212, the small area 213, and the small area 214 are located in this order outward from the rotation axis C.
  • the outer diameter of the small region 211 matches the inner diameter of the small region 212.
  • the outer diameter of the small region 212 matches the inner diameter of the small region 213.
  • the outer diameter of the small region 213 matches the inner diameter of the small region 214.
  • the four small areas 211, 212, 213, and 214 are each preheated by the corresponding divided heaters. Specifically, the small area 211 is preheated by the first divided heater 421. The small area 212 is preheated by the second divided heater 422 . The small area 213 is preheated by the third divided heater 423. The small area 214 is preheated by the fourth divided heater 424. That is, due to the rotation of the table 3, the small area 211 passes through the first preheating area 421A. The small area 212 passes through the second preheating area 422A. The small area 213 passes through the third preheating area 423A. The small area 214 passes through the fourth preheating area 424A. The region dividing section 56 outputs information indicating the shape and position of each divided small region to the region setting section 58.
  • the area setting unit 58 sets each of the four small areas 211, 212, 213, and 214 divided by the area dividing unit 56 as the first area A1 or the second area A2.
  • the area setting unit 58 sets the small area including the scheduled irradiation portion P as the first area A1.
  • the area setting unit 58 sets a small area that does not include the scheduled irradiation portion P as the second area A2.
  • the region setting section 58 specifies the irradiation scheduled portion P based on the slice data DS received from the data acquisition section 57.
  • the small areas 212 and 213 include a portion P to be irradiated.
  • the area setting unit 58 sets the small areas 212 and 213 as the first area A1.
  • the area setting unit 58 sets the small areas 211 and 214 as the second area A2.
  • the area setting unit 58 outputs setting information indicating which of the first area A1 and the second area A2 each small area is set to, to the heater control unit 52.
  • the heater control unit 52 controls the heater 42 based on the setting information received from the area setting unit 58. Specifically, the output of the heater 42 is controlled so that the first area A1 and the second area A2 in the powder bed 21 are preheated to different temperatures. In the example shown in FIG. 4, the heater control unit 52 controls the output of the heater 42 so that the first area A1 is preheated at a higher temperature than the second area A2. In other words, the heater control unit 52 controls the output of the second divided heater 422 that preheats the small region 212 and the third divided heater 423 that preheats the small region 213 to the output of the first divided heater 421 that preheats the small region 211 and the small region.
  • the output of each divided heater is controlled so that it is higher than the output of the fourth divided heater 424 that preheats the heater 214.
  • the heater control unit 52 may control the output of the heater 42 (each divided heater) so that the first region A1 is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material 2.
  • the heater control unit 52 may control the output of the heater 42 (each divided heater) so that the second region A2 is preheated at a temperature lower than the preliminary sintering temperature of the powder material 2.
  • the heater control unit 52 maintains the output of the heater 42 (each divided heater) constant while the table 3 rotates once. In other words, the heater control unit 52 maintains the output of the heater 42 constant while the powder bed 21 corresponding to one slice data DS is being preheated.
  • the heater control unit 52 may control the output of the heater 42 based on the temperature data DT received from the data acquisition unit 57. In this case, the heater control unit 52 may control the output of the heater 42 based on the temperature of the powder bed 21 before being preheated by the heater 42. The heater control unit 52 may control the output of the heater 42 based on the temperature of the powder bed 21 after being preheated by the heater 42. For example, the heater control unit 52 may perform control to lower the output of the heater 42 when the temperature of the powder bed 21 before being preheated by the heater 42 is higher than the expected temperature. The heater control unit 52 may perform control to increase the output of the heater 42 when the temperature of the powder bed 21 before being preheated is lower than the expected temperature.
  • the heater control unit 52 may perform control to lower the output of the heater 42 when the temperature of the preheated powder bed 21 is higher than a desired temperature.
  • the heater control unit 52 may perform control to increase the output of the heater 42 when the temperature of the preheated powder bed 21 is lower than a desired temperature.
  • the powder bed 21 preheated by the above-described preheating process is moved to the irradiation area 43A by the rotation of the table 3. Thereafter, the portion P to be irradiated is irradiated with the electron beam.
  • the beam control unit 53 that controls the beam source 43 may specify the portion P to be irradiated based on the slice data DS and determine the position to be irradiated with the electron beam.
  • the region dividing section 56 divides the powder bed 21 into a plurality of small regions 211, 212, 213, and 214.
  • the area setting unit 58 sets the small areas 212 and 213, which include the irradiation scheduled portion P to which the electron beam is irradiated by the beam source 43, as the first area A1, among the plurality of small areas 211, 212, 213, and 214.
  • the area setting unit 58 sets other small areas 211 and 214 that are not set as the first area A1 as the second area A2. In other words, the area setting unit 58 sets a small area that is not irradiated with the electron beam as the second area A2.
  • the heater control unit 52 controls the output of the heater 42 (each divided heater) so that the first area A1 and the second area A2 are preheated at different temperatures. Specifically, the heater control unit 52 controls the output of the heater 42 so that the first area A1 is preheated to a higher temperature than the second area A2. Thereby, even if the modeling apparatus 1 preheats the area to be irradiated with the electron beam at a high temperature, the area in the powder bed 21 that is not irradiated with the electron beam can be preheated at a low temperature.
  • the modeling apparatus 1 can preheat the powder material 2 that does not form the modeled object 2S at a low temperature even when the powder material 2 that forms the modeled object 2S is preheated at a high temperature. Therefore, it becomes difficult for a temporary sintered body to form in the powder material 2 that does not constitute the shaped object 2S, so the time for removing the temporary sintered body can be reduced. Therefore, according to this modeling apparatus 1, the modeling process can be performed efficiently.
  • the powder material 2 that does not constitute the shaped object 2S can be reused in the modeling process of other shaped objects. That is, the number of times the powder material 2 can be reused can be increased.
  • the effects of the modeling apparatus 1 described above are particularly advantageous when forming minute objects 2S on the powder bed 21.
  • the heater control unit 52 of the modeling apparatus 1 controls the output of the heater 42 so that the first region A1 is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material 2. Furthermore, the heater control unit 52 controls the output of the heater 42 so that the second region A2 is preheated at a temperature lower than the preliminary sintering temperature.
  • the region of the powder bed 21 that is irradiated with the electron beam can be preheated more reliably.
  • the powder material 2 constituting the shaped object 2S can be preheated more reliably.
  • the region dividing unit 56 of the modeling device 1 divides the powder bed 21 into a plurality of small regions 211, 212, 213, and 214 in the radial direction of a circle centered on the rotation axis C.
  • the area irradiated with the electron beam It is possible to preheat the region to be irradiated with the electron beam to a temperature higher than the pre-sintering temperature of the powder material 2, and to preheat the region not irradiated with the electron beam to a temperature lower than the pre-sintering temperature.
  • the powder material 2 that constitutes the shaped object 2S is preheated at a temperature higher than the pre-sintering temperature of the powder material 2, and the powder material 2 that does not constitute the shaped article 2S is preheated at a temperature lower than the pre-sintering temperature. be able to. Therefore, the powder material 2 constituting the shaped object 2S can be preheated more reliably. Furthermore, it is possible to more reliably suppress the formation of temporary sintered bodies in the powder material 2 that does not constitute the shaped object 2S.
  • the heater 42 of the modeling apparatus 1 includes a plurality of first divided heaters 421, second divided heaters 422, third divided heaters 423, and fourth divided heaters 424 arranged in the radial direction of a circle centered on the rotation axis C.
  • the heater control unit 52 maintains the outputs of the first divided heater 421, the second divided heater 422, the third divided heater 423, and the fourth divided heater 424 constant while the table rotates once. According to this configuration, the preheating process by the heater 42 becomes simple. As a result, the processing burden on the heater 42 and controller 5 is reduced.
  • the modeling apparatus 1 includes a temperature detection section 8 that detects the temperature of the powder bed 21.
  • the heater control unit 52 controls the output of the heater 42 based on temperature data DT that is a detection result by the temperature detection unit 8. According to this configuration, the temperature of the powder bed 21 can be raised to a desired temperature more reliably.
  • the heater 42 of the modeling apparatus 1 is arranged to face the main surface 3a of the table 3 with the powder bed 21 in between. According to this configuration, the powder bed 21 can be preheated more reliably.
  • the shaped object 2S is formed by stacking a plurality of shaped parts.
  • the plurality of shaped parts forming the shaped object 2S include a first shaped part and a second shaped part.
  • the second shaped portion is formed on the first shaped portion.
  • FIG. 5 shows a powder bed 21A for forming the first modeled part.
  • FIG. 6 shows a powder bed 21B for forming a second shaped part formed on the first shaped part.
  • the second shaped portion is formed continuously after the first shaped portion is formed. That is, after forming the first modeling portion on the powder bed 21A, the modeling apparatus 1 forms a new powder bed 21B on the powder bed 21A. The modeling apparatus 1 then forms the second modeling portion in the powder bed 21B.
  • the region dividing unit 56 divides each of the powder beds 21A and 21B into four small regions 211, 212, 213, and 214.
  • the shapes and positions of the small regions 211, 212, 213, and 214 in the first modification are similar to those in the first embodiment (see FIG. 4).
  • the beam source 43 irradiates the irradiation scheduled portion P1 shown in FIG. 5 with an electron beam.
  • the beam source 43 irradiates the irradiation scheduled portion P2 shown in FIG. 6 with an electron beam. That is, the portion of the powder bed 21A corresponding to the scheduled irradiation portion P1 is the first modeling portion.
  • the portion of the powder bed 21B corresponding to the scheduled irradiation portion P2 is the second modeling portion.
  • the irradiation scheduled portion P1 is different in shape from the irradiation scheduled portion P2.
  • the portion indicated by the broken line in the powder bed 21A shown in FIG. 5 is not included in the scheduled irradiation portion P1.
  • the portion indicated by the broken line in the powder bed 21A is hereinafter referred to as "overlapping portion P10.”
  • the area setting unit 58 sets a small area including the scheduled irradiation portion P1 among the four small areas 211, 212, 213, and 214 divided by the area dividing unit 56. Further, a small region of the powder bed 21A that includes a portion that overlaps the scheduled irradiation portion P2 of the powder bed 21B is also set as the first region A1. The portion of the powder bed 21A that overlaps the scheduled irradiation portion P2 of the powder bed 21B is the scheduled irradiation portion P1 and the overlapping portion P10.
  • the irradiation scheduled portion P1 and the overlapping portion P10 overlap the irradiation scheduled portion P2 in the stacking direction of the powder beds 21A and 21B (direction along the rotation axis C). Therefore, in addition to the small areas 212 and 213 including the irradiation scheduled portion P1, the area setting unit 58 sets the small area 214 including the overlapping portion P10 as the first area A1. The area setting unit 58 sets the small area 211, which has not been set as the first area A1, as the second area A2.
  • the area setting unit 58 sets only a small area in the powder bed 21A that does not include the scheduled irradiation portion P1 and does not overlap with the scheduled irradiation portion P2 in the powder bed 21B as the second area A2.
  • the area setting unit 58 outputs setting information indicating which of the first area A1 and the second area A2 each small area in the powder bed 21A is set to, to the heater control unit 52.
  • the heater control unit 52 controls the heater 42 based on the setting information received from the area setting unit 58. Specifically, the output of the heater 42 is controlled so that the first area A1 and the second area A2 are preheated at different temperatures. In the first modification, the heater control unit 52 controls the output of the heater 42 so that the first area A1 is preheated at a higher temperature than the second area A2. In other words, the heater control unit 52 controls the output of the second divided heater 422 for preheating the small area 212, the third divided heater 423 for preheating the small area 213, and the fourth divided heater 424 for preheating the small area 214 to The output of each divided heater is controlled so that it is higher than the output of the first divided heater 421 that preheats the heater 211.
  • the heater control unit 52 may control the output of the heater 42 so that the first region A1 is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material 2. Furthermore, the heater control unit 52 may control the output of the heater 42 so that the second region A2 is preheated at a temperature lower than the preliminary sintering temperature of the powder material 2.
  • the beam source 43 irradiates the irradiation scheduled portion P1 of the powder bed 21A preheated by the heater 42 with an electron beam. As a result, the first shaped portion is formed.
  • the feeder 41 newly forms a powder bed 21B on the powder bed 21A to form the second modeled part (see FIG. 6).
  • the small regions 212, 213 but also the small region 214 of the powder bed 21A are preheated with high power. Therefore, before the formed powder bed 21B is preheated by the heater 42, the temperature of the small regions 212, 213, 214 of the powder bed 21B is increased by the heat from the small regions 212, 213, 214 of the powder bed 21A. Ru.
  • the area setting unit 58 sets each of the small areas 211, 212, 213, and 214 as the first area A1 or the second area A2 in the powder bed 21B.
  • the area setting unit 58 may set the first area A1 and the second area A2 in the powder bed 21B using the same method as the powder bed 21A. That is, when the modeling part formed on the second modeling part is the third modeling part, the area setting unit 58 selects a small area including the scheduled irradiation part P2 among the four small areas 211, 212, 213, and 214. is set as the first area A1.
  • the area setting unit 58 may also set, as the first area A1, a small area in the powder bed 21B that includes a portion that overlaps the scheduled irradiation portion of the powder bed corresponding to the third modeling portion.
  • the area setting unit 58 outputs setting information indicating whether each small area in the powder bed 21B is set to the first area A1 or the second area A2 to the heater control unit 52.
  • the heater control unit 52 controls the heater 42 based on the setting information received from the area setting unit 58.
  • the beam source 43 irradiates the irradiation scheduled portion P2 of the powder bed 21B preheated by the heater 42 with an electron beam. As a result, the second shaped portion is formed on the first shaped portion.
  • the modeling apparatus 1 can obtain the shaped object 2S by forming a plurality of shaped parts on the second shaped part using a similar method.
  • the plurality of shaped parts forming the shaped object 2S include a first shaped part and a second shaped part formed on the first shaped part.
  • the area setting unit 58 selects irradiation that overlaps with the scheduled irradiation portion P2 of the powder bed 21B corresponding to the second modeling portion among the plurality of small areas 211, 212, 213, and 214 in the powder bed 21A corresponding to the first modeling portion.
  • the planned portion P1 is set as the first area A1.
  • the area setting unit 58 adds the small areas 213, 214 including the overlapping part P10 as the first area A1 among the plurality of small areas 211, 212, 213, 214 in the powder bed 21A corresponding to the first modeling part.
  • FIG. 7 shows a powder bed 21C formed on the main surface 3a of the table 3 and a portion P3 to be irradiated in the powder bed 21C.
  • the region dividing unit 56 divides the powder bed 21 into a plurality of small regions not only in the radial direction of a circle centered on the rotation axis C but also in the rotation direction R.
  • the plurality of small regions divided by the region dividing unit 56 include small regions 215 and 216.
  • the small area 215 and the small area 216 are lined up in the rotation direction R.
  • the small regions 215 and 216 are regions preheated by the same fourth divided heater 424. That is, the small regions 215 and 216 pass through the fourth preheating region 424A shown in FIG.
  • the area setting unit 58 sets a small area including the scheduled irradiation portion P3 as the first area A1. Furthermore, the area setting unit 58 sets a small area that does not include the scheduled irradiation portion P3 as the second area A2.
  • the region setting unit 58 may specify the scheduled irradiation portion P3 based on the slice data DS or the divided data.
  • the divided data is data generated by dividing the slice data DS in the circumferential direction (rotation direction R) around the rotation axis C of the table 3. That is, the divided data is generated as data for fan-shaped areas.
  • the division angle of the division data may be a constant angle.
  • the division angle of the division data may be, for example, an angle of 45° or less.
  • the small region 215 includes a scheduled irradiation portion P3.
  • the small area 216 does not include the scheduled irradiation portion P3. Therefore, the area setting unit 58 sets the small area 215 as the first area A1. Further, the area setting unit 58 sets the small area 216 as the second area A2. The area setting unit 58 also sets each of the other small areas as the first area A1 or the second area A2. The area setting unit 58 outputs setting information indicating which of the first area A1 and the second area A2 each small area is set to, to the heater control unit 52.
  • the heater control unit 52 controls the heater 42 based on the setting information received from the area setting unit 58. Specifically, the output of the heater 42 is controlled so that the first area A1 and the second area A2 in the powder bed 21 are preheated to different temperatures. In the second modification, similarly to the first embodiment, the heater control unit 52 controls the output of the heater 42 so that the first area A1 is preheated at a higher temperature than the second area A2. The heater control unit 52 may control the output of the heater 42 so that the first region A1 is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material 2. The heater control unit 52 may control the output of the heater 42 so that the second region A2 is preheated at a temperature lower than the preliminary sintering temperature of the powder material 2.
  • a small area set as the first area A1 and a small area set as the second area A2 are lined up along the rotation direction R, such as the small area 215 and the small area 216. There is. These small areas may then be preheated by the same divided heater. For example, the small area 215 set as the first area A1 and the small area 216 set as the second area A2 are preheated by the same fourth divided heater 424. Therefore, in the second modification, the heater control unit 52 performs control to increase the output of the fourth divided heater 424 when the small region 215 is located in the fourth preheating region 424A of the fourth divided heater 424.
  • the heater control unit 52 performs control to lower the output of the fourth divided heater 424 when the small area 216 is located in the fourth preheating area 424A.
  • the heater control unit 52 also performs control to vary the output of the corresponding divided heater at other locations where the first area A1 and the second area A2 are lined up along the rotation direction R. In this way, the heater control unit 52 according to the second modification varies the output of the heater 42 (each divided heater) while the table 3 rotates once. In other words, the heater control unit 52 varies the output of the heater 42 while the powder bed 21C corresponding to one slice data DS is being preheated.
  • the region dividing unit 56 of the modeling apparatus 1 divides the powder bed 21 into a plurality of small regions 215 and 216 along the rotation direction R centered on the rotation axis C.
  • the electron beam can be preheated to a temperature higher than the pre-sintering temperature of the powder material 2.
  • the powder material 2 constituting the shaped object 2S can be preheated at a temperature equal to or higher than the preliminary sintering temperature of the powder material 2.
  • the region that is not irradiated with the electron beam can be preheated at a temperature lower than the preliminary sintering temperature.
  • the powder material 2 that does not constitute the shaped object 2S can also be preheated at a temperature lower than the temporary sintering temperature. Therefore, the powder material 2 constituting the shaped object 2S can be preheated more reliably. Furthermore, it is also possible to more reliably suppress the formation of temporary sintered bodies in the powder material 2 that does not constitute the shaped object 2S.
  • the heater control unit 52 of the modeling apparatus 1 varies the output of the heater 42 while the table rotates once. According to this configuration, when the first area A1 and the second area A2 are lined up in the rotation direction R centering on the rotation axis C, each of the first area A1 and the second area A2 is heated to a suitable temperature. Can be preheated.
  • the modeling apparatus 100 of the second embodiment includes a forming section 4A.
  • the forming section 4A includes a feeder 41, a heater 142, and a beam source 43.
  • the feeder 41 and beam source 43 of the second embodiment have the same configuration as the feeder 41 and beam source 43 of the first embodiment. Therefore, detailed description of the feeder 41 and beam source 43 of the second embodiment will be omitted.
  • the heater 142 of the second embodiment has a different configuration from the heater 42 of the first embodiment. Specifically, the heater 142 does not include a plurality of divided heaters. Therefore, the entire heater 142 is heated with uniform output.
  • the heater 142 is one continuous heater extending along the radial direction of a circle centered on the rotation axis C.
  • the heater control unit 52 can vary the output of the heater 142. Therefore, by varying the output of the heater 142, the heater control unit 52 can preheat each of the plurality of regions lined up in the rotation direction R in the powder bed 21D to different temperatures.
  • FIG. 8 shows a powder bed 21D formed on the main surface 3a of the table 3 and a portion P4 to be irradiated in the powder bed 21D.
  • the region dividing section 56 does not divide the powder bed 21D in the radial direction of a circle centered on the rotation axis C.
  • the region dividing unit 56 divides the powder bed 21D into a plurality of small regions only in the rotation direction R.
  • the plurality of small regions divided by the region dividing unit 56 include small regions 217 and 218.
  • the small area 217 and the small area 218 are lined up in the rotation direction R.
  • the small areas 217 and 218 are preheated by the same heater 142. That is, the small areas 217 and 218 pass through the preheating area 142A of the heater 142.
  • the area setting unit 58 of the second embodiment sets a small area including the scheduled irradiation portion P4 as the first area A1. Further, the area setting unit 58 of the second embodiment sets a small area that does not include the scheduled irradiation portion P4 as the second area A2. As shown in FIG. 8, the small area 217 includes a portion P4 to be irradiated. On the other hand, the small area 218 does not include the scheduled irradiation portion P4. Therefore, the area setting unit 58 sets the small area 217 as the first area A1. Further, the area setting unit 58 sets the small area 218 as the second area A2. The area setting unit 58 also sets each of the other small areas as the first area A1 or the second area A2. The area setting unit 58 outputs setting information indicating which of the first area A1 and the second area A2 each small area is set to, to the heater control unit 52.
  • the heater control unit 52 controls the heater 142 based on the setting information received from the area setting unit 58. Specifically, the heater control unit 52 controls the output of the heater 142 so that the first area A1 and the second area A2 in the powder bed 21D are preheated at different temperatures. Similar to the first embodiment, the heater control unit 52 of the second embodiment controls the output of the heater 142 so that the first area A1 is preheated at a higher temperature than the second area A2. The heater control unit 52 may control the output of the heater 142 so that the first region A1 is preheated to a temperature equal to or higher than the preliminary sintering temperature of the powder material 2. The output of the heater 142 may be controlled so that the second region A2 is preheated at a temperature lower than the pre-sintering temperature of the powder material 2.
  • the heater control unit 52 of the second embodiment performs control to increase the output of the heater 142 when the small area 217 is located in the preheating area 142A of the heater 142.
  • the heater control unit 52 of the second embodiment performs control to lower the output of the heater 142 when the small area 218 is located in the preheating area 142A.
  • the heater control unit 52 also performs control to appropriately vary the output of the heater 142 at other locations where the first area A1 and the second area A2 are lined up along the rotation direction R.
  • the heater control unit 52 varies the output of the heater 142 while the table 3 rotates once. In other words, the heater control unit 52 varies the output of the heater 142 while the powder bed 21D corresponding to one slice data DS is preheated.
  • the modeling apparatus 100 can preheat the region of the powder bed 21D that is irradiated with the electron beam at a high temperature.
  • the powder material 2 constituting the shaped object 2S can be preheated at a high temperature.
  • the region that is not irradiated with the electron beam can be preheated at a low temperature.
  • the powder material 2 that does not constitute the shaped object 2S can also be preheated at a low temperature. Therefore, it is difficult for a temporary sintered body to form in the powder material 2 that does not constitute the shaped object 2S, and the time for removing the temporary sintered body can be reduced. Therefore, according to the modeling apparatus 100, the modeling process can be performed efficiently.
  • the modeling apparatus 200 of the third embodiment includes a forming section 4B.
  • the forming section 4B includes a feeder 41, a heater 242, and a beam source 43.
  • the feeder 41 and beam source 43 of the third embodiment have the same configuration as the feeder 41 and beam source 43 of the first embodiment. Therefore, detailed description of the feeder 41 and beam source 43 of the third embodiment will be omitted.
  • the heater 242 of the third embodiment has a different configuration from the heater 42 of the first embodiment.
  • the heater 242 has a rectangular shape when viewed from the direction along the rotation axis C.
  • the heater 242 includes a plurality of divided heaters 243 divided into a grid pattern.
  • the plurality of divided heaters 243 are arranged along two directions orthogonal to each other.
  • the heater control unit 52 can independently control each divided heater 243. That is, the heater control unit 52 can make the outputs of the divided heaters 243 different from each other. Therefore, by controlling the output of each divided heater 243, the heater control unit 52 can preheat each of the plurality of regions in the powder bed 21 at different temperatures. That is, the heater control unit 52 controls the heaters 242 (each The output of the divided heater 243) can be controlled.
  • the modeling apparatus 200 can preheat the region to be irradiated with the electron beam at a high temperature.
  • the powder material 2 constituting the shaped object 2S can be preheated at a high temperature.
  • the region of the powder bed 21 that is not irradiated with the electron beam can be preheated at a low temperature.
  • the powder material 2 that does not constitute the shaped object 2S can also be preheated at a low temperature. Therefore, it is difficult for a temporary sintered body to form in the powder material 2 that does not constitute the shaped object 2S, and the time for removing the temporary sintered body can be reduced. Therefore, according to the modeling apparatus 200, the modeling process can be performed efficiently.
  • the three-dimensional printing device and preheating device of the present disclosure have been described in detail.
  • the three-dimensional printing apparatus and preheating apparatus of the present disclosure are not limited to the above embodiments.
  • the three-dimensional printing device and preheating device of the present disclosure can be modified in various ways without departing from the gist thereof.
  • the heater control unit 52 may control the output of the heater 42 so that the first area A1 is preheated at a lower temperature than the second area A2. That is, the heater control unit 52 may set the output of the heater 42 (each divided heater) when preheating the first area A1 to be lower than the output of the heater 42 when preheating the second area A2.
  • the heater 42 may be any heater that can preheat each of the plurality of regions in the powder bed 21 at different temperatures.
  • the shape and number of heaters 42 are not limited.
  • the heater 42 does not have to be an infrared heater.
  • Other heating means such as a gas heater may also be used.
  • the area setting unit 58 may also set a small area of the powder bed 21 that does not include the scheduled irradiation area P as the first area A1 in order to keep the already formed modeling part warm. In other words, a small area that is not irradiated with the electron beam may also be set as the first area A1. Furthermore, the heater control unit 52 may control the heater 42 so that the first area A1 is preheated to a higher temperature than the second area A2.
  • the table 3 rotates and moves up and down, but the table 3 is fixed, the forming part 4 rotates around the rotation axis C, and moves up and down along the rotation axis C. You may. That is, the table 3 only needs to rotate and move up and down relative to the forming section 4.
  • the powder material was sintered or melted by electron beam irradiation.
  • the beam irradiated onto the powder material 2 is not limited to an electron beam.
  • the beam irradiated to the powder material may be a beam of other energy.
  • the beam used in the modeling apparatus 1 may be any energy beam that can supply energy to the powder material 2.
  • it may be a modeling apparatus 1 to which a laser melting method is applied.
  • the beam used in the modeling device 1 may be a laser beam.
  • the beam used in the modeling apparatus 1 may be a charged particle beam, which is a concept that includes an electron beam and an ion beam.
  • the three-dimensional printing device and preheating device of the present disclosure will be described with reference to the provisions listed below. Note that the three-dimensional printing apparatus and preheating apparatus of the present disclosure may include the following clauses in any combination, even if they are not specifically listed.
  • a table having a main surface onto which powdered material is supplied; a forming section that is arranged to face the main surface and that stacks a plurality of shaped parts formed from the powder material to form a shaped object; A controller that controls the operation of the forming section, The table rotates relative to the forming part in a predetermined rotation direction about a rotation axis,
  • the forming part is a supply unit that forms a powder bed by supplying the powder material to the main surface; a preheating section that is disposed downstream of the supply section in the rotation direction and is capable of preheating each of the plurality of regions in the powder bed at different temperatures; an irradiation unit disposed downstream of the preheating unit in the rotation direction and irradiating at least a portion of the preheated powder bed with an energy beam;
  • the controller includes: an area dividing section that divides the powder bed into a plurality of small areas; Among the plurality of small areas, a small area including a scheduled irradiation area
  • the preheating control unit controls the preheating unit so that the first region is preheated to a temperature equal to or higher than the pre-sintering temperature of the powder material, and the second region is preheated to a temperature lower than the pre-sintering temperature.
  • the three-dimensional printing apparatus according to clause 1 or 2, which controls the output of.
  • the preheating section has a plurality of divided preheating sections arranged in a radial direction of a circle centered on the rotation axis,
  • the three-dimensional printing apparatus according to any one of clauses 1 to 5, wherein the preheating control section maintains the output of the divided preheating section constant during one rotation of the table.
  • the plurality of shaped parts include a first shaped part and a second shaped part formed on the first shaped part
  • the area setting unit selects a small area, among the plurality of small areas in the powder bed corresponding to the first modeling part, that includes a part that overlaps with the scheduled irradiation part of the powder bed corresponding to the second modeling part.
  • the three-dimensional printing apparatus according to any one of clauses 1 to 7, which is set as the first area.
  • a preheating device that preheats a powder material that is sintered or melted to become a shaped object by being irradiated with an energy beam, a preheating section capable of preheating each of a plurality of regions in the powder bed formed by the powder material supplied to the main surface of the table at different temperatures;
  • a controller that controls the output of the preheating section, The controller includes: an area dividing section that divides the powder bed into a plurality of small areas; Among the plurality of small areas, a small area including a scheduled irradiation area to be irradiated with the energy beam is set as a first area, and at least one small area among other small areas not set as the first area. an area setting unit that sets the area as a second area;
  • a preheating device comprising: a preheating control section that controls an output of the preheating section so that the first region and the second region are preheated at different temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)

Abstract

造形装置は、テーブルと、造形物を形成する形成部と、形成部の動作を制御するコントローラと、を備える。テーブルは、回転方向に回転する。形成部は、粉末床を形成するフィーダと、粉末床における複数の領域のそれぞれを異なる温度で予熱可能なヒータと、予熱された粉末床にエネルギビームを照射するビーム源と、を有する。コントローラは、粉末床を複数の小領域に分割する領域分割部と、ビーム源によりエネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、第1領域と第2領域とが互いに異なる温度で予熱されるように、ヒータの出力を制御するヒータ制御部と、を含む。

Description

三次元造形装置及び予熱装置
 本開示は、三次元造形装置及び予熱装置に関する。
 特許文献1は、三次元造形装置に関する技術を開示する。特許文献1に開示された三次元造形装置は、テーブルの上に粉末材料を供給し、テーブル上に供給された粉末材料を予熱し、予熱した粉末材料にエネルギビームを照射して三次元の造形物を造形する。
特開2020-84218号公報
 上述したような三次元造形装置では、粉末材料により形成された粉末床の全体が均一な温度で予熱される。この場合、例えば、粉末床における造形物を構成しない領域にも予熱により仮焼結体が生じるため、仮焼結体の除去に時間を要し、連続した造形物の造形処理を円滑に継続し難いことがある。
 本開示は、効率良く造形処理を行うことができる三次元造形装置及び予熱装置を説明する。
 本開示の一態様に係る三次元造形装置は、粉末材料が供給される主面を有するテーブルと、主面と向かい合うように配置され、粉末材料から形成された複数の造形部分を積層させて造形物を形成する形成部と、形成部の動作を制御するコントローラと、を備える。テーブルは、形成部に対して回転軸線を中心として所定の回転方向に相対的に回転する。形成部は、主面に粉末材料を供給することにより粉末床を形成する供給部と、回転方向において供給部よりも下流に配置され、粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、回転方向において予熱部よりも下流に配置され、予熱された粉末床の少なくとも一部にエネルギビームを照射する照射部と、を有する。コントローラは、粉末床を複数の小領域に分割する領域分割部と、複数の小領域のうち、照射部によりエネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、第1領域と第2領域とが互いに異なる温度で予熱されるように、予熱部の出力を制御する予熱制御部と、を含む。
 本開示に係る三次元造形装置及び予熱装置によれば、効率良く造形処理を行うことができる。
図1は、第1実施形態に係る造形装置の断面を示す図である。 図2は、図1に示される造形装置が備える形成部を示す図である。 図3は、図1に示される造形装置が備えるコントローラを示すブロック図である。 図4は、図1に示される造形装置によって予熱される粉末床を示す図である。 図5は、第1変形例に係る粉末床の予熱処理によって予熱される粉末床を示す図である。 図6は、第1変形例に係る粉末床の予熱処理によって予熱される粉末床を示す図である。 図7は、第2変形例に係る粉末床の予熱処理によって予熱される粉末床を示す図である。 図8は、第2実施形態に係る造形装置によって予熱される粉末床を示す図である。 図9は、第3実施形態に係る造形装置によって予熱される粉末床を示す図である。
 本開示の一態様に係る三次元造形装置は、粉末材料が供給される主面を有するテーブルと、主面と向かい合うように配置され、粉末材料から形成された複数の造形部分を積層させて造形物を形成する形成部と、形成部の動作を制御するコントローラと、を備える。テーブルは、形成部に対して回転軸線を中心として所定の回転方向に相対的に回転する。形成部は、主面に粉末材料を供給することにより粉末床を形成する供給部と、回転方向において供給部よりも下流に配置され、粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、回転方向において予熱部よりも下流に配置され、予熱された粉末床の少なくとも一部にエネルギビームを照射する照射部と、を有する。コントローラは、粉末床を複数の小領域に分割する領域分割部と、複数の小領域のうち、照射部によりエネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、第1領域と第2領域とが互いに異なる温度で予熱されるように、予熱部の出力を制御する予熱制御部と、を含む。
 この三次元造形装置では、領域分割部が粉末床を複数の小領域に分割し、領域設定部が、複数の小領域のうち、照射部によりエネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定し、予熱制御部が第1領域と第2領域とが互いに異なる温度で予熱されるように、予熱部の出力を制御する。これにより、三次元造形装置は、例えば、エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、照射予定部分を含まない小領域を第2領域として設定し、第2領域を第1領域よりも低い温度で予熱することができる。すなわち、三次元造形装置は、エネルギビームが照射される領域(造形物を構成する粉末材料)を高い温度で予熱する場合であっても、粉末床におけるエネルギビームが照射されない領域(造形物を構成しない粉末材料)を低い温度で予熱することができる。そのため、造形物を構成しない粉末材料に仮焼結体が生じ難く、仮焼結体の除去時間を削減することができる。よって、この三次元造形装置によれば、効率良く造形処理を行うことができる。
 上記の三次元造形装置の予熱制御部は、第1領域が第2領域よりも高い温度で予熱されるように、予熱部の出力を制御してもよい。この構成によれば、粉末床におけるエネルギビームが照射される照射予定部分をより確実に予熱することができる。
 上記の三次元造形装置の予熱制御部は、第1領域が粉末材料の仮焼結温度以上の温度で予熱され、第2領域が仮焼結温度よりも低い温度で予熱されるように、予熱部の出力を制御してもよい。この構成によれば、粉末床におけるエネルギビームが照射される領域(造形物を構成する粉末材料)をより確実に予熱することができると共に、エネルギビームが照射されない領域(造形物を構成しない粉末材料)に仮焼結体が生じることをより確実に抑制することができる。
 上記の三次元造形装置の領域分割部は、回転軸線を中心とする円の径方向において、粉末床を複数の小領域に分割してもよい。この構成によれば、回転軸線を中心とする円の径方向において、エネルギビームが照射される領域とエネルギビームが照射されない領域とが並んで位置している場合に、例えば、エネルギビームが照射される領域(造形物を構成する粉末材料)を粉末材料の仮焼結温度以上の温度で予熱し、エネルギビームが照射されない領域(造形物を構成しない粉末材料)を仮焼結温度よりも低い温度で予熱することができる。したがって、造形物を構成する粉末材料をより確実に予熱することができると共に、造形物を構成しない粉末材料に仮焼結体が生じることをより確実に抑制することができる。
 上記の三次元造形装置の領域分割部は、回転軸線を中心とする回転方向において、粉末床を複数の小領域に分割してもよい。この構成によれば、回転軸線を中心とする回転方向において、エネルギビームが照射される領域とエネルギビームが照射されない領域とが並んで位置している場合に、例えば、エネルギビームが照射される領域(造形物を構成する粉末材料)を粉末材料の仮焼結温度以上の温度で予熱し、エネルギビームが照射されない領域(造形物を構成しない粉末材料)を仮焼結温度よりも低い温度で予熱することができる。したがって、造形物を構成する粉末材料をより確実に予熱することができると共に、造形物を構成しない粉末材料に仮焼結体が生じることをより確実に抑制することができる。
 上記の三次元造形装置の予熱部は、回転軸線を中心とする円の径方向に並んだ複数の分割予熱部を有し、予熱制御部は、テーブルが一回転する間、分割予熱部の出力を一定に維持してもよい。この構成によれば、予熱部による予熱処理が単純なものとなるため、予熱部及びコントローラの処理負担が軽減される。
 上記の三次元造形装置の予熱制御部は、テーブルが一回転する間、予熱部の出力を変動させてもよい。この構成によれば、回転軸線を中心とする回転方向に第1領域と第2領域とが並んでいる場合に、第1領域及び第2領域のそれぞれを好適な温度で予熱することができる。
 複数の造形部分は、第1造形部分と、第1造形部分上に形成される第2造形部分とを含み、領域設定部は、第1造形部分に対応する粉末床における複数の小領域のうち、第2造形部分に対応する粉末床の照射予定部分に重畳する部分を含む小領域を第1領域として設定してもよい。この構成によれば、例えば、第1造形部分に対応する粉末床の予熱を行う際に、第2造形部分に対応する粉末床の照射予定部分に重畳する部分を含む小領域を高い温度で予熱することができる。これにより、第2造形部分に対応する粉末床の予熱を行う際に、第2造形部分に対応する粉末床の照射予定部分を所望の温度までより確実に昇温させることができる。
 上記の三次元造形装置は、粉末床の温度を検出する温度検出部を備え、予熱制御部は、温度検出部による検出結果に基づいて、予熱部の出力を制御してもよい。この構成によれば、粉末床を所望の温度までより確実に昇温させることができる。
 上記の三次元造形装置の予熱部は、粉末床を挟んで主面と向かい合うように配置されていてもよい。この構成によれば、粉末床の予熱をより確実に行うことができる。
 本開示の一態様に係る予熱装置は、エネルギビームが照射されることにより焼結又は溶融して造形物となる粉末材料を予熱する予熱装置であって、テーブルの主面に供給された粉末材料により形成された粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、予熱部の出力を制御するコントローラと、を備え、コントローラは、粉末床を複数の小領域に分割する領域分割部と、複数の小領域のうち、エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、第1領域と第2領域とが互いに異なる温度で予熱されるように、予熱部の出力を制御する予熱制御部と、を有する。
 この予熱装置は、上記三次元造形装置と同様の予熱部及びコントローラを備える。これにより、予熱装置は、例えば、エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、照射予定部分を含まない小領域を第2領域として設定し、第2領域を第1領域よりも低い温度で予熱することができる。すなわち、予熱装置は、エネルギビームが照射される領域(造形物を構成する粉末材料)を高い温度で予熱する場合であっても、粉末床におけるエネルギビームが照射されない領域(造形物を構成しない粉末材料)を低い温度で予熱することができる。そのため、造形物を構成しない粉末材料に仮焼結体が生じ難く、仮焼結体の除去時間を削減することができる。よって、この予熱装置によれば、効率良く造形処理を行うことができる。
 以下、添付図面を参照しながら本開示を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[第1実施形態]
 図1に示される造形装置1は、粉末材料2から三次元の造形物2Sを形成する三次元造形装置である。造形装置1は、いわゆる3Dプリンタである。粉末材料2は、例えば、金属の粉末である。粉末材料2は、例えば、チタン系金属粉末、インコネル粉末、アルミニウム粉末である。粉末材料2は、金属粉末に限定されない。粉末材料2は、例えば、樹脂粉末、CFRP(Carbon Fiber Reinforced Plastics)等の炭素繊維と樹脂とを含む粉末であってもよい。粉末材料2は、導電性を有するその他の粉末であってもよい。粉末材料2は、導電性を有するものには限定されない。例えば、エネルギビームとしてレーザを用いる場合には、粉末材料2は導電性を有しなくてもよい。
 造形物2Sは、粉末材料2に電子ビームが照射されることにより形成される。具体的には、造形装置1が粉末材料2に対して電子ビームを照射する。電子ビームの照射によって粉末材料2の温度が昇温する。昇温した粉末材料2は、焼結又は溶融する。電子ビームの照射が終了すると、粉末材料2の温度が低下する。その結果、粉末材料2は凝固する。造形装置1は、凝固した粉末材料2(以下「造形部分」という)上に新たな粉末材料2を塗布した後に、塗布した粉末材料2に電子ビームを照射して新たな造形部分を形成する。このように、造形装置1は、粉末材料2の塗布及び電子ビームの照射を繰り返し実行することにより、複数の造形部分を積層させて造形物2Sを形成する。換言すると、造形物2Sは、積層された複数の造形部分から形成される。この例では、造形装置1は、回転するテーブル3上に塗布された粉末材料2に電子ビームを照射して造形を行う。
 造形装置1は、テーブル3と、形成部4と、コントローラ5と、駆動部6と、ハウジング7と、温度検出部8と、を備えている。テーブル3は、互いに対向する一対の主面3a,3bを有する。テーブル3は、円形板状を呈している。主面3aは、平坦な面である。主面3aには、粉末材料2及び造形物2Sが載置される。テーブル3は、後述する駆動部6により、回転軸線Cを中心として所定の回転方向に回転する。さらに、テーブル3は、回転軸線Cに沿って昇降する。この例では、回転軸線Cは、鉛直方向に沿っている。回転軸線Cは、主面3aに直交している。以下の説明において、「上方」及び「下方」との言葉は、回転軸線Cが鉛直方向に沿った状態を基準として用いられる。例えば、「A部材がB部材の上方に配置されている」とは、A部材がB部材よりも地面から離れて配置されていることを意味し、「A部材がB部材の下方に配置されている」とは、A部材がB部材よりも地面の近くに配置されていることを意味する。
 テーブル3の周囲には、造形タンク31が配置されている。造形タンク31は、テーブル3の主面3a上に粉末材料2を保持するための容器である。造形タンク31は、壁部31aを有している。壁部31aは、回転軸線Cに沿う方向からみて、テーブル3の外縁に沿うように形成されている。壁部31aは、粉末材料2を主面3a上に保持する。
 形成部4は、テーブル3の上方に配置されている。形成部4は、粉末材料2を挟んでテーブル3の主面3aと向かい合うように配置されている。「形成部4が主面3aと向かい合う」とは、回転軸線Cに沿う方向から見て、形成部4の少なくとも一部が主面3aに重なっていることをいう。形成部4は、粉末材料2を処理して造形物2Sを形成する。形成部4は、フィーダ41と、ヒータ42と、ビーム源43と、を有している。フィーダ41は、テーブル3の主面3aに粉末材料2を供給する。ヒータ42は、供給された粉末材料2を予熱する。ビーム源43は、予熱された粉末材料2に電子ビームを照射して造形部分を形成する。フィーダ41、ヒータ42及びビーム源43は、コントローラ5に電気的に接続されている。
 コントローラ5は、造形装置1の制御を行う。例えば、コントローラ5の制御に基づいて、形成部4がテーブル3上に造形物2Sを形成すると共に、駆動部6がテーブル3を回転及び昇降させる。
 駆動部6は、テーブル3を回転させる回転ユニット61と、テーブル3を昇降させる昇降ユニット62とを有している。回転ユニット61及び昇降ユニット62は、コントローラ5に電気的に接続されている。回転ユニット61は、軸部61aと、図示しないモータ等のアクチュエータとを有している。軸部61aは、テーブル3の主面3aと直交する方向に延在している。軸部61aの一端はテーブル3の主面3bに接続されている。駆動部6が有するアクチュエータは、軸部61aを、回転軸線Cを中心として所定の回転方向に回転させる。これにより、軸部61aに接続されたテーブル3が、形成部4に対して回転軸線Cを中心として所定の回転方向に回転する。この例では、テーブル3は、主面3a上から見た場合に時計回りに回転する。昇降ユニット62は、図示しないモータ等のアクチュエータを有している。昇降ユニット62が有するアクチュエータは、軸部61aを回転軸線Cに沿って昇降させる。これにより、軸部61aに接続されたテーブル3が、形成部4に対して回転軸線Cに沿って昇降する。すなわち、昇降ユニット62は、テーブル3を回転軸線Cに沿って形成部4に近づく方向及び形成部4から離れる方向に移動させる。
 ハウジング7は、造形物2Sを形成するための造形空間Sを画定する。ハウジング7は、粉末材料2及び造形物2Sが載置されたテーブル3及び形成部4を収容している。造形空間Sは、形成部4による造形物2Sの形成を行うための減圧可能な気密空間である。ハウジング7の壁部71aには、窓部71が形成されている。窓部71は、造形装置1の外部から造形空間S内の温度を検出可能な窓である。窓部71は、例えばガラス等によって形成されている。
 温度検出部8は、窓部71を介して粉末材料2の温度を検出する。温度検出部8は、例えば、サーモグラフィ装置又は放射温度計である。温度検出部8は、コントローラ5に電気的に接続されている。温度検出部8は、造形装置1の内部又は外部に設けられたデータベースに検出結果を出力する。温度検出部8の検出結果は、例えば、ヒータ42の制御に用いられる。
 図2を参照して、形成部4の詳細について説明する。フィーダ41、ヒータ42及びビーム源43は、回転軸線Cに沿う方向から見て、テーブル3の主面3aに重なっている。フィーダ41、ヒータ42及びビーム源43は、テーブル3の回転方向Rに沿ってこの順で配置されている。この例では、回転方向Rは、主面3a上からテーブル3を見た場合における時計回り方向である。ヒータ42は、回転方向Rに沿ってフィーダ41よりも下流に配置されている。ビーム源43は回転方向Rに沿ってヒータ42よりも下流に配置されている。
 フィーダ41は、供給部である。フィーダ41は、テーブル3の主面3a上に粉末材料2を供給することにより粉末床21を形成する。粉末床21は、所定の厚みを有する粉末材料2の層である。例えば、フィーダ41は、図示しない原料タンクと、ならし部とを有している。原料タンクは、粉末材料2を貯留すると共に、主面3a上に粉末材料2を供給する。ならし部は、主面3a上に供給された粉末材料2の表面をならす。これにより、主面3a上に粉末床21が形成される。フィーダ41は、ならし部に代えて、ローラー部、棒状部材、又は刷毛部を有していてもよい。フィーダ41は、主面3a上に供給領域41Aを形成する。供給領域41Aは、フィーダ41によって粉末材料2が供給される領域である。さらに、供給領域41Aは、供給された粉末材料2がならされる領域でもある。供給領域41Aの位置は、テーブル3の回転に対して変化しない。すなわち、テーブル3及び供給領域41Aをある座標系によって規定したとき、テーブル3は当該座標系に対して回転する。しかし、供給領域41Aは当該座標系に対して移動しない。
 ヒータ42は、予熱部である。ヒータ42は、フィーダ41によって形成された粉末床21を予熱する。ヒータ42は、テーブル3の主面3aから上方に離れて配置されている。ヒータ42がテーブル3の主面3aから上方に離れて配置されているので、テーブル3の主面3aとヒータ42との間には、少なくとも粉末床及び造形途中の造形物2Sを配置することができる。ヒータ42は、コントローラ5と共に予熱装置9を構成する。この例では、ヒータ42の形状は、回転軸線Cに沿う方向から見た場合に扇状である。「粉末床を予熱する」とは、フィーダ41によって形成された粉末床21を、ビーム源43によって電子ビームが照射される前に所定の温度まで加熱する処理である。この加熱処理は、例えば、粉末床21(粉末材料2)を仮焼結させる処理であってもよい。「仮焼結」とは、粉末材料2同士が拡散現象によって最小点で拡散して接合した状態である。以下、粉末材料2が仮焼結する温度を「仮焼結温度」という。ヒータ42は、一例として、粉末材料2の仮焼結温度まで加熱する。仮焼結温度は、例えば粉末材料2の融点の半分以上の温度である。これは、焼結の拡散現象が活発になるのが、一般的に融点の半分以上であることに基づく。例えば、粉末材料2がチタンである場合、仮焼結温度は、700℃以上800℃以下である。チタン合金の融点は約1500℃以上1600℃以下である。粉末材料2がアルミニウムである場合、仮焼結温度は、300℃である。アルミニウムの融点は約660℃である。
 ヒータ42は、テーブル3の上方に配置される。ヒータ42は、例えば、放射熱によって粉末材料2を予熱する。ヒータ42は、例えば、赤外線ヒータであってもよい。ヒータ42は、主面3a上に予熱領域42Aを形成する。予熱領域42Aは、ヒータ42によって予熱される領域である。予熱領域42Aは、テーブル3の回転に対して位置が変化しない。すなわち、テーブル3及び予熱領域42Aをある座標系によって規定したとき、テーブル3は当該座標系に対して回転する。しかし、予熱領域42Aは、当該座標系に対して移動しない。
 ヒータ42は、複数の分割ヒータを有している。複数の分割ヒータは、複数の分割予熱部である。複数の分割ヒータのそれぞれは、回転軸線Cを中心とする円の径方向に並ぶ。この例では、ヒータ42は、四つの第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424を有している。第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424は、回転軸線Cから外側に向かってこの順に並んでいる。
 第1分割ヒータ421は、第1分割ヒータ421によって予熱される第1予熱領域421Aを粉末床21に形成する。第2分割ヒータ422は、第2分割ヒータ422によって予熱される第2予熱領域422Aを粉末床21に形成する。第3分割ヒータ423は、第3分割ヒータ423によって予熱される第3予熱領域423Aを粉末床21に形成する。第4分割ヒータ424は、第4分割ヒータ424によって予熱される第4予熱領域424Aを粉末床21に形成する。
 第1予熱領域421A、第2予熱領域422A、第3予熱領域423A及び第4予熱領域424Aは、回転軸線Cから外側に向かってこの順に並んでいる。第1予熱領域421A、第2予熱領域422A、第3予熱領域423A及び第4予熱領域424Aは、予熱領域42Aを構成している。以下の説明において、第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424を互いに区別する必要がない場合には、これらを総称して「分割ヒータ」ということがある。
 各分割ヒータは、コントローラ5(図1参照)に電気的に接続されている。各分割ヒータの出力は、コントローラ5によって独立して制御可能である。例えば、コントローラ5は、第1分割ヒータ421及び第4分割ヒータ424の出力を、第2分割ヒータ422及び第3分割ヒータ423の出力よりも低くすることができる。この場合、粉末床21における第1予熱領域421A及び第4予熱領域424Aを通過する領域は、粉末床21における第2予熱領域422A及び第3予熱領域423Aを通過する領域よりも低い温度で予熱される。すなわち、ヒータ42は、粉末床21における複数の領域のそれぞれを異なる温度で予熱することができる。一例として、ヒータ42は、第1予熱領域421Aを通過する領域を粉末材料2の仮焼結温度以上の温度で予熱することができる。また、ヒータ42は、第4予熱領域424Aを通過する領域を粉末材料2の仮焼結温度以上の温度で予熱することができる。さらに、ヒータ42は、第2予熱領域422Aを通過する領域を仮焼結温度よりも低い温度で予熱することができる。そのうえ、ヒータ42は、第3予熱領域423Aを通過する領域を仮焼結温度よりも低い温度で予熱することができる。
 ビーム源43は、照射部である。ビーム源43は、電子ビームを粉末床21に照射する。ビーム源43は、例えば電子銃である。ビーム源43は、カソードとアノードとの間に生じる電位差に応じた電子ビームを発生する。そして、ビーム源43は、電界調整により電子ビームを収束させ、その電子ビームを粉末床21に照射する。ビーム源43は、主面3a上に照射領域43Aを形成する。照射領域43Aは、ビーム源43によって電子ビームを照射可能な領域である。照射領域43Aは、テーブル3の回転に対して位置が変化しない。すなわち、テーブル3及び照射領域43Aをある座標系によって規定したとき、テーブル3は当該座標系に対して回転する。しかし、照射領域43Aは、当該座標系に対して移動しない。
 ビーム源43は、照射領域43A内の所望の走査ラインに沿って電子ビームを照射する。図2に示される例では、粉末床21において電子ビームが照射される照射予定部分Pがハッチングにより示されている。図2に示されるように、電子ビームが照射される部分の形状は、照射領域43Aの形状と一致していなくてもよい。ビーム源43は、テーブル3の回転によって照射予定部分Pが照射領域43Aを通過する際に、照射予定部分Pに対して電子ビームを照射する。粉末床21における電子ビームが照射された部分は、ヒータ42によって予熱された後の温度よりも高い温度まで昇温する。具体的には、粉末材料2の焼結温度又は融解温度まで昇温される。粉末床21における電子ビームが照射された部分は、焼結又は溶融する。電子ビームの照射が終了すると、電子ビームが照射された部分の温度が低下するので、当該部分が凝固する。電子ビームの照射が終了するときとは、照射領域43Aを通過し終えるときであるとも言える。凝固した部分は、造形物2Sを構成する造形部分となる。
 上述したように、供給領域41A、予熱領域42A及び照射領域43Aは、テーブル3の回転に対して位置が変化しない。そのため、テーブル3において、ある点を仮定したとき、当該点は、テーブル3の回転に伴って、供給領域41A、予熱領域42A及び照射領域43Aの順に通過する。すなわち、フィーダ41、ヒータ42及びビーム源43をテーブル3の回転方向Rに沿って配置し、テーブル3を回転させることにより、テーブル3の主面3a上において、粉末床21の形成処理、粉末床21の予熱処理、及び電子ビームの照射処理をこの順で実行することができる。造形装置1は、ある粉末床21において造形部分を形成した後に、当該粉末床21上に更に粉末材料2を塗布することによって、新たな粉末床21を形成する。そして、造形装置1は、新たに形成した粉末床21を予熱した後、電子ビームを照射することによって造形部分を形成する。このように、造形装置1は、テーブル3を回転させながら粉末床21の形成処理、粉末床21の予熱処理、及び電子ビームの照射処理を繰り返し実行する。その結果、複数の造形部分を積層させた造形物2S(図1参照)が形成される。テーブル3は、造形物2Sの造形が進むに連れて降下する。すなわち、回転ユニット61はテーブル3を回転させる。この回転と並行して、昇降ユニット62はテーブル3を降下させる。
 図3は、コントローラ5を示すブロック図である。コントローラ5は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアとから構成されたコンピュータである。コントローラ5は、例えば、入力信号回路、出力信号回路又は電源回路を含んでいる。コントローラ5は、例えば、演算部及びメモリを含んでいる。メモリは、各種制御に必要なデータを保存することができる。
 コントローラ5は、フィーダ制御部51、ヒータ制御部52、ビーム制御部53、回転制御部54、昇降制御部55、領域分割部56、データ取得部57及び領域設定部58を有している。
 フィーダ制御部51は、テーブル3の主面3a上に粉末材料2を供給することによって粉末床21を形成するために、フィーダ41を制御する。すなわち、フィーダ制御部51は供給制御部として機能する。フィーダ制御部51は、例えば、粉末材料2を主面3a上に供給するタイミング、粉末材料2の供給量、ならし部であるリコータの動作等を制御してもよい。フィーダ制御部51は、フィーダ41を制御するための制御信号をフィーダ41に出力する。フィーダ41は、フィーダ制御部51から受け取った制御信号に基づいて動作する。
 ヒータ制御部52は、テーブル3の主面3a上に形成された粉末床21を予熱するために、ヒータ42を制御する。すなわち、ヒータ制御部52は予熱制御部として機能する。ヒータ制御部52は、ヒータ42が有する第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424それぞれの出力を制御可能である。ヒータ42(各分割ヒータ)の出力の制御には、出力の大きさに関する制御を含む。さらに、ヒータ42(各分割ヒータ)の出力の制御には、ヒータ42(各分割ヒータ)のオン及びオフに関する制御も含む。ヒータ制御部52は、後述する領域設定部58から受け取った設定情報に基づいてヒータ42の出力を制御する。設定情報に基づくヒータ42の制御処理の詳細については図4を参照して後述する。また、ヒータ制御部52は、例えば、粉末材料2の材質、粉末材料2の種類、テーブル3の回転速度に基づいて、ヒータ42の制御を行ってもよい。さらに、ヒータ制御部52は、例えば、後述するデータ取得部57から受け取った粉末床21の温度データDTに基づいて、ヒータ42の制御を行ってもよい。ヒータ制御部52は、ヒータ42を制御するための制御信号をヒータ42に出力する。ヒータ42は、ヒータ制御部52から受け取った制御信号に基づいて動作する。
 ビーム制御部53は、粉末材料2を焼結又は溶融させる電子ビームを粉末床21に対して照射するために、ビーム源43を制御する。すなわち、ビーム制御部53は照射制御部として機能する。ビーム制御部53は、例えば、電子ビームの照射位置、照射の開始、照射の停止、照射時間等を制御する。ビーム制御部53は、ビーム源43を制御するための制御信号をビーム源43に出力する。ビーム源43は、ビーム制御部53から受け取った制御信号に基づいて動作する。
 回転制御部54は、テーブル3を回転させるために、回転ユニット61を制御する。回転制御部54は、例えば、テーブル3の回転速度等を制御する。回転制御部54は、回転ユニット61を制御するための制御信号を回転ユニット61に出力する。回転ユニット61は、回転制御部54から受け取った制御信号に基づいて動作する。
 昇降制御部55は、テーブル3を昇降させるために、昇降ユニット62を制御する。昇降制御部55は、例えば、テーブル3の降下速度等を制御する。昇降制御部55は、昇降ユニット62を制御するための制御信号を昇降ユニット62に出力する。昇降ユニット62は、昇降制御部55から受け取った制御信号に基づいて動作する。
 領域分割部56は、テーブル3の主面3a上に形成された粉末床21を複数の小領域に分割する。「粉末床21を複数の小領域に分割する」とは、粉末床21を物理的に分割することではなく、粉末床21において複数の小領域を設定することをいう。換言すると、「粉末床21を複数の小領域に分割する」とは、粉末床21におけるある領域と他の領域とを区別することをいう。一例として、領域分割部56は、複数の分割ヒータのそれぞれによって予熱される複数の領域を、複数の小領域として分割する。粉末床21の領域分割処理の詳細については図4を参照して後述する。領域分割部56は、分割した各小領域の形状及び位置を示す情報を後述する領域設定部58に出力する。
 データ取得部57は、造形装置1の内部又は外部に設けられたデータベースDBから温度データDT及びスライスデータDSを取得する。温度データDTは、温度検出部8によって検出された粉末床21の温度を示す。温度データDTは、例えば、ヒータ42によって予熱される前の粉末床21の温度、又はヒータ42によって予熱された後の粉末床21の温度であってもよい。データ取得部57は、取得した温度データDTをヒータ制御部52に出力する。
 スライスデータDSは、造形物2Sの断面の形状を示すデータである。換言すると、スライスデータDSは、造形物2Sを構成する各造形部分の形状を示すデータである。スライスデータDSは、例えば、造形物2Sの三次元CAD(Computer-Aided Design)データに基づいて生成される。造形物2Sを構成する造形部分の数(層数)に応じた数のスライスデータDSが生成される。スライスデータDSは、データベースDBに格納されている。データ取得部57は、取得したスライスデータDSを領域設定部58及びビーム制御部53に出力する。
 領域設定部58は、領域分割部56によって分割された複数の小領域のうち、照射予定部分Pを含む小領域を第1領域として設定する。さらに、領域設定部58は、領域分割部56によって分割された複数の小領域のうち、第1領域A1として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域A2として設定する。まず、領域設定部58は、スライスデータDSに基づいて、粉末床21における照射予定部分Pの形状及び位置を特定する。上述したとおり、粉末床21における電子ビームが照射された部分は造形部分となる。そのため、照射予定部分Pの形状及び位置は、スライスデータDSが示す造形部分の形状及び位置と一致している。したがって、領域設定部58は、スライスデータDSに基づいて粉末床21における照射予定部分Pの形状及び位置を特定することができる。領域設定部58は、特定した照射予定部分Pの形状及び位置に基づいて、照射予定部分Pを含む小領域を第1領域A1として設定する。さらに、領域設定部58は、第1領域A1として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域A2として設定する。なお、「照射予定部分Pを含む小領域を第1領域として設定する」とは、少なくとも領域分割部56によって分割された複数の小領域のうち照射予定部分Pを含む小領域を第1領域A1として設定することである。つまり、領域設定部58は、照射予定部分Pを含む小領域を第1領域A1として設定する。領域設定部58は、各小領域が第1領域及び第2領域のいずれに設定されているかを示す設定情報をヒータ制御部52に出力する。
 図4を参照して、造形装置1による粉末床21の予熱処理の一例を説明する。まず、領域分割部56は、テーブル3の主面3a上に形成された粉末床21を複数の小領域に分割する。図4に示される例では、領域分割部56は、回転軸線Cを中心とする円の径方向において、粉末床21を四つの小領域211,212,213,214に分割する。小領域211は、回転軸線Cを中心とする円形状の領域である。小領域212、小領域213及び小領域214は、回転軸線Cを中心とする複数の環状領域である。小領域211、小領域212、小領域213及び小領域214は、回転軸線Cから外側に向かってこの順に位置している。小領域211の外径は小領域212の内径に一致する。小領域212の外径は小領域213の内径に一致する。小領域213の外径は小領域214の内径に一致している。
 四つの小領域211,212,213,214は、対応する分割ヒータによってそれぞれ予熱される。具体的には、小領域211は第1分割ヒータ421によって予熱される。小領域212は第2分割ヒータ422によって予熱される。小領域213は第3分割ヒータ423によって予熱される。小領域214は第4分割ヒータ424によって予熱される。すなわち、テーブル3の回転によって、小領域211は第1予熱領域421Aを通過する。小領域212は第2予熱領域422Aを通過する。小領域213は第3予熱領域423Aを通過する。小領域214は第4予熱領域424Aを通過する。領域分割部56は、分割した各小領域の形状及び位置を示す情報を領域設定部58に出力する。
 領域設定部58は、領域分割部56が分割した四つの小領域211,212,213,214のそれぞれを、第1領域A1又は第2領域A2として設定する。図4に示される例では、領域設定部58は、照射予定部分Pを含む小領域を第1領域A1として設定する。領域設定部58は、照射予定部分Pを含まない小領域を第2領域A2として設定する。このとき、領域設定部58は、データ取得部57から受け取ったスライスデータDSに基づいて、照射予定部分Pを特定する。小領域212,213は照射予定部分Pを含んでいる。一方、小領域211,214は照射予定部分Pを含んでいない。そのため、領域設定部58は、小領域212,213を第1領域A1として設定する。領域設定部58は、小領域211,214を第2領域A2として設定する。領域設定部58は、各小領域が第1領域A1及び第2領域A2のいずれに設定されているかを示す設定情報をヒータ制御部52に出力する。
 ヒータ制御部52は、領域設定部58から受け取った設定情報に基づいて、ヒータ42を制御する。具体的には、粉末床21における第1領域A1と第2領域A2とが互いに異なる温度で予熱されるように、ヒータ42の出力を制御する。図4に示される例では、ヒータ制御部52は、第1領域A1が第2領域A2よりも高い温度で予熱されるように、ヒータ42の出力を制御する。換言すると、ヒータ制御部52は、小領域212を予熱する第2分割ヒータ422及び小領域213を予熱する第3分割ヒータ423の出力が、小領域211を予熱する第1分割ヒータ421及び小領域214を予熱する第4分割ヒータ424の出力よりも高くなるように、各分割ヒータの出力を制御する。ヒータ制御部52は、第1領域A1が粉末材料2の仮焼結温度以上の温度で予熱されるように、ヒータ42(各分割ヒータ)の出力を制御してもよい。ヒータ制御部52は、第2領域A2が粉末材料2の仮焼結温度よりも低い温度で予熱されるように、ヒータ42(各分割ヒータ)の出力を制御してもよい。ヒータ制御部52は、テーブル3が一回転する間、ヒータ42(各分割ヒータ)の出力を一定に維持する。換言すると、ヒータ制御部52は、一つのスライスデータDSに対応する粉末床21が予熱される間、ヒータ42の出力を一定に維持する。
 ヒータ制御部52は、データ取得部57から受け取った温度データDTに基づいて、ヒータ42の出力を制御してもよい。この場合、ヒータ制御部52は、ヒータ42によって予熱される前の粉末床21の温度に基づいて、ヒータ42の出力を制御してもよい。ヒータ制御部52は、ヒータ42によって予熱された後の粉末床21の温度に基づいて、ヒータ42の出力を制御してもよい。ヒータ制御部52は、例えば、ヒータ42によって予熱される前の粉末床21の温度が想定していた温度よりも高温であるときにはヒータ42の出力を低くする制御を行ってもよい。ヒータ制御部52は、予熱される前の粉末床21の温度が想定していた温度よりも低温であるときにはヒータ42の出力を高くする制御を行ってもよい。また、ヒータ制御部52は、予熱された後の粉末床21の温度が所望の温度よりも高温であるときにはヒータ42の出力を低くする制御を行ってもよい。ヒータ制御部52は、予熱された後の粉末床21の温度が所望の温度よりも低温であるときにはヒータ42の出力を高くする制御を行ってもよい。
 上述した予熱処理によって予熱された粉末床21は、テーブル3の回転によって照射領域43Aへと移動する。その後、照射予定部分Pに対して電子ビームが照射される。ビーム源43を制御するビーム制御部53は、スライスデータDSに基づいて照射予定部分Pを特定し、電子ビームを照射する位置を決定してもよい。
 以下、造形装置1の作用効果について説明する。
 造形装置1では、領域分割部56が粉末床21を複数の小領域211,212,213,214に分割する。領域設定部58は、複数の小領域211,212,213,214のうち、ビーム源43により電子ビームが照射される照射予定部分Pを含む小領域212,213を第1領域A1として設定する。領域設定部58は、第1領域A1として設定されていない他の小領域211,214を第2領域A2として設定する。換言すると、領域設定部58は、電子ビームが照射されない小領域を第2領域A2として設定する。ヒータ制御部52は、第1領域A1と第2領域A2とが互いに異なる温度で予熱されるように、ヒータ42(各分割ヒータ)の出力を制御する。具体的には、ヒータ制御部52は、第1領域A1が第2領域A2よりも高い温度で予熱されるように、ヒータ42の出力を制御する。これにより、造形装置1は、電子ビームが照射される領域を高い温度で予熱する場合であっても、粉末床21における電子ビームが照射されない領域を低い温度で予熱することができる。換言すると、造形装置1は、造形物2Sを構成する粉末材料2を高い温度で予熱する場合であっても、造形物2Sを構成しない粉末材料2を低い温度で予熱することができる。そのため、造形物2Sを構成しない粉末材料2に仮焼結体が生じ難くなるので、仮焼結体を除去する時間を削減することができる。よって、この造形装置1によれば、効率良く造形処理を行うことができる。
 さらに、造形物2Sを構成しない粉末材料2を低い温度で予熱することにより当該粉末材料2の酸化を抑制することができる。そのため、造形物2Sを構成しない粉末材料2を他の造形物の造形処理に再利用することができる。すなわち、粉末材料2の再利用可能な回数を増やすことができる。上述した造形装置1の作用効果は、粉末床21に対して微小な造形物2Sを形成する場合に特に有利である。
 造形装置1のヒータ制御部52は、第1領域A1が粉末材料2の仮焼結温度以上の温度で予熱されるように、ヒータ42の出力を制御する。さらに、ヒータ制御部52は、第2領域A2が仮焼結温度よりも低い温度で予熱されるように、ヒータ42の出力を制御する。この構成によれば、粉末床21における電子ビームが照射される領域をより確実に予熱することができる。換言すると、造形物2Sを構成する粉末材料2をより確実に予熱することができる。さらに、電子ビームが照射されない領域に仮焼結体が生じることをより確実に抑制することができる。換言すると、造形物2Sを構成しない粉末材料2に仮焼結体が生じることをより確実に抑制することができる。
 造形装置1の領域分割部56は、回転軸線Cを中心とする円の径方向において、粉末床21を複数の小領域211,212,213,214に分割する。この構成によれば、回転軸線Cを中心とする円の径方向において、電子ビームが照射される領域と電子ビームが照射されない領域とが並んで位置している場合に、例えば、電子ビームが照射される領域を粉末材料2の仮焼結温度以上の温度で予熱すると共に、電子ビームが照射されない領域を仮焼結温度よりも低い温度で予熱することができる。換言すると、造形物2Sを構成する粉末材料2を粉末材料2の仮焼結温度以上の温度で予熱すると共に、造形物2Sを構成しない粉末材料2を仮焼結温度よりも低い温度で予熱することができる。したがって、造形物2Sを構成する粉末材料2をより確実に予熱することができる。さらに、造形物2Sを構成しない粉末材料2に仮焼結体が生じることをより確実に抑制することができる。
 造形装置1のヒータ42は、回転軸線Cを中心とする円の径方向に並んだ複数の第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424を有する。ヒータ制御部52は、テーブルが一回転する間、第1分割ヒータ421、第2分割ヒータ422、第3分割ヒータ423及び第4分割ヒータ424の出力を一定に維持する。この構成によれば、ヒータ42による予熱処理が単純なものとなる。その結果、ヒータ42及びコントローラ5の処理負担が軽減される。
 造形装置1は、粉末床21の温度を検出する温度検出部8を備える。ヒータ制御部52は、温度検出部8による検出結果である温度データDTに基づいて、ヒータ42の出力を制御する。この構成によれば、粉末床21を所望の温度までより確実に昇温させることができる。
 造形装置1のヒータ42は、粉末床21を挟んでテーブル3の主面3aと向かい合うように配置されている。この構成によれば、粉末床21の予熱をより確実に行うことができる。
[第1変形例]
 図5及び図6を参照して、造形装置1による粉末床の予熱処理の第1変形例を説明する。上述したように、造形物2Sは、複数の造形部分が積層されることによって形成される。造形物2Sを形成する複数の造形部分は、第1造形部分と第2造形部分とを有する。第2造形部分は、第1造形部分の上に形成される。図5は、第1造形部分を形成するための粉末床21Aを示している。図6は、第1造形部分の上に形成される第2造形部分を形成するための粉末床21Bを示している。第2造形部分は、第1造形部分が形成された後に連続して形成される。すなわち、造形装置1は、粉末床21Aにおいて第1造形部分の形成を行った後に、粉末床21A上に新たな粉末床21Bを形成する。そして、造形装置1は、粉末床21Bにおいて第2造形部分の形成を行う。
 図5及び図6に示されるように、領域分割部56は、粉末床21A,21Bのそれぞれを四つの小領域211,212,213,214に分割する。第1変形例の小領域211,212,213,214の形状及び位置は、上記第1実施形態(図4参照)と同様である。粉末床21Aでは、ビーム源43が図5に示される照射予定部分P1に対して電子ビームを照射する。粉末床21Bでは、ビーム源43が図6に示される照射予定部分P2に電子ビームを照射する。すなわち、粉末床21Aにおける照射予定部分P1に対応する部分は、第1造形部分である。粉末床21Bにおける照射予定部分P2に対する部分は、第2造形部分である。第1変形例では、照射予定部分P1は照射予定部分P2の形状と異なっている。具体的には、図5に示される粉末床21Aにおいて破線で示される部分が照射予定部分P1に含まれていない。粉末床21Aにおいて破線で示される部分は、以下、「重畳部分P10」という。
 以上を前提として、粉末床21Aの予熱処理について説明する。まず、領域設定部58は、領域分割部56が分割した四つの小領域211,212,213,214のうち、照射予定部分P1を含む小領域として設定する。さらに、粉末床21Aにおいて粉末床21Bの照射予定部分P2に重畳する部分を含む小領域も第1領域A1として設定する。粉末床21Aにおいて粉末床21Bの照射予定部分P2に重畳する部分は、照射予定部分P1及び重畳部分P10である。照射予定部分P1及び重畳部分P10は、粉末床21A,21Bの積層方向(回転軸線Cに沿う方向)において、照射予定部分P2に重畳している。したがって、領域設定部58は、照射予定部分P1を含む小領域212,213に加えて、重畳部分P10を含む小領域214を第1領域A1として設定する。領域設定部58は、第1領域A1として設定されていない小領域211を第2領域A2として設定する。換言すると、領域設定部58は、粉末床21Aにおいて、照射予定部分P1を含まず、且つ、粉末床21Bにおける照射予定部分P2と重畳しない小領域のみを第2領域A2として設定する。領域設定部58は、粉末床21Aにおける各小領域が第1領域A1及び第2領域A2のいずれに設定されているかを示す設定情報を、ヒータ制御部52に出力する。
 ヒータ制御部52は、領域設定部58から受け取った設定情報に基づいて、ヒータ42を制御する。具体的には、第1領域A1と第2領域A2とが互いに異なる温度で予熱されるように、ヒータ42の出力を制御する。第1変形例では、ヒータ制御部52は、第1領域A1が第2領域A2よりも高い温度で予熱されるように、ヒータ42の出力を制御する。換言すると、ヒータ制御部52は、小領域212を予熱する第2分割ヒータ422と小領域213を予熱する第3分割ヒータ423と小領域214を予熱する第4分割ヒータ424の出力が、小領域211を予熱する第1分割ヒータ421の出力よりも高くなるように、各分割ヒータの出力を制御する。
 ヒータ制御部52は、第1領域A1が粉末材料2の仮焼結温度以上の温度で予熱されるようにヒータ42の出力を制御してもよい。さらに、ヒータ制御部52は、第2領域A2が粉末材料2の仮焼結温度よりも低い温度で予熱されるように、ヒータ42の出力を制御してもよい。ヒータ42による予熱処理が終了した後、ビーム源43は、ヒータ42によって予熱された粉末床21Aの照射予定部分P1に対して電子ビームを照射する。これにより、第1造形部分が形成される。
 続いて、フィーダ41は、第2造形部分を形成するために粉末床21A上に新たに粉末床21Bを形成する(図6参照)。この例では、粉末床21Aの小領域212,213だけでなく小領域214も予め高い出力で予熱されている。そのため、形成された粉末床21Bがヒータ42によって予熱される前に、粉末床21Aの小領域212,213,214からの熱によって粉末床21Bの小領域212,213,214の温度が昇温される。
 領域設定部58は、粉末床21Bにおいて、小領域211,212,213,214のそれぞれを第1領域A1又は第2領域A2として設定する。領域設定部58は、粉末床21Aと同様の手法により、粉末床21Bにおいて第1領域A1及び第2領域A2を設定してもよい。すなわち、第2造形部分上に形成される造形部分を第3造形部分とした場合、領域設定部58は、四つの小領域211,212,213,214のうち、照射予定部分P2を含む小領域を第1領域A1として設定する。さらに、領域設定部58は、粉末床21Bにおいて第3造形部分に対応する粉末床の照射予定部分に重畳する部分を含む小領域も第1領域A1として設定してもよい。
 領域設定部58は、粉末床21Bにおける各小領域が第1領域A1及び第2領域A2のいずれに設定されているかを示す設定情報を、ヒータ制御部52に出力する。ヒータ制御部52は、領域設定部58から受け取った設定情報に基づいて、ヒータ42を制御する。ビーム源43は、ヒータ42によって予熱された粉末床21Bの照射予定部分P2に対して電子ビームを照射する。これにより、第1造形部分の上に第2造形部分が形成される。造形装置1は、同様の手法により第2造形部分の上に複数の造形部分を形成することにより、造形物2Sを得ることができる。
 第1変形例では、造形物2Sを形成する複数の造形部分は、第1造形部分と、第1造形部分上に形成される第2造形部分とを含む。領域設定部58は、第1造形部分に対応する粉末床21Aにおける複数の小領域211,212,213,214のうち、第2造形部分に対応する粉末床21Bの照射予定部分P2に重畳する照射予定部分P1を第1領域A1として設定する。さらに、領域設定部58は、第1造形部分に対応する粉末床21Aにおける複数の小領域211,212,213,214のうち、重畳部分P10を含む小領域213,214を第1領域A1として追加的に設定する。この構成によれば、例えば、第1造形部分に対応する粉末床21Aの予熱を行う際に、照射予定部分P1及び重畳部分P10を含む小領域212,213,214を高い温度で予熱することができる。そのため、粉末床21Bがヒータ42によって予熱される前に、粉末床21Aの小領域212,213,214からの熱によって粉末床21Bの小領域212,213,214の温度が予め昇温される。これにより、第2造形部分に対応する粉末床21Bの予熱を行う際に、照射予定部分P2を所望の温度までより確実に昇温させることができる。換言すると、第2造形部分に対応する粉末床21Bの予熱を行う際に、照射予定部分P2を所望の温度を保って均一に加熱することができる。
[第2変形例]
 図7を参照して、造形装置1による粉末床の予熱処理の第2変形例を説明する。図7には、テーブル3の主面3a上に形成された粉末床21C及び粉末床21Cにおける照射予定部分P3が示されている。第2変形例では、領域分割部56は、回転軸線Cを中心とする円の径方向だけでなく、回転方向Rにおいて、粉末床21を複数の小領域に分割する。第2変形例において、領域分割部56によって分割された複数の小領域は、小領域215,216を含んでいる。小領域215と小領域216とは、回転方向Rにおいて並んでいる。小領域215,216は、同じ第4分割ヒータ424によって予熱される領域である。すなわち、小領域215,216は、図2に示される第4予熱領域424Aを通過する。
 第2変形例では、領域設定部58は、照射予定部分P3を含む小領域を第1領域A1として設定する。さらに、領域設定部58は、照射予定部分P3を含まない小領域を第2領域A2として設定する。このとき、領域設定部58は、スライスデータDS又は分割データに基づいて、照射予定部分P3を特定してもよい。分割データは、テーブル3の回転軸線Cを中心としてスライスデータDSを周方向(回転方向R)に分割して生成されるデータである。つまり、分割データは、扇状の領域に対するデータとして生成される。分割データの分割角度は、一定の角度であってもよい。分割データの分割角度は、例えば45°以下の角度であってもよい。図7に示されるように、小領域215は照射予定部分P3を含んでいる。一方、小領域216は照射予定部分P3を含んでいない。そのため、領域設定部58は、小領域215を第1領域A1として設定する。さらに、領域設定部58は、小領域216を第2領域A2として設定する。領域設定部58は、他の小領域のそれぞれについても第1領域A1又は第2領域A2として設定する。領域設定部58は、各小領域が第1領域A1及び第2領域A2のいずれに設定されているかを示す設定情報をヒータ制御部52に出力する。
 ヒータ制御部52は、領域設定部58から受け取った設定情報に基づいて、ヒータ42を制御する。具体的には、粉末床21における第1領域A1と第2領域A2とが互いに異なる温度で予熱されるように、ヒータ42の出力を制御する。第2変形例では、上記第1実施形態と同様に、ヒータ制御部52は、第1領域A1が第2領域A2よりも高い温度で予熱されるように、ヒータ42の出力を制御する。ヒータ制御部52は、第1領域A1が粉末材料2の仮焼結温度以上の温度で予熱されるように、ヒータ42の出力を制御してもよい。ヒータ制御部52は、第2領域A2が粉末材料2の仮焼結温度よりも低い温度で予熱されるように、ヒータ42の出力を制御してもよい。
 第2変形例では、小領域215及び小領域216のように、第1領域A1として設定された小領域と、第2領域A2として設定された小領域とが、回転方向Rに沿って並んでいる。そして、これらの小領域は、同じ分割ヒータによって予熱される場合がある。例えば、第1領域A1として設定された小領域215と、第2領域A2として設定された小領域216とは、同じ第4分割ヒータ424によって予熱される。そのため、第2変形例において、ヒータ制御部52は、小領域215が第4分割ヒータ424の第4予熱領域424Aに位置するときには第4分割ヒータ424の出力を高くする制御を行う。さらに、ヒータ制御部52は、小領域216が第4予熱領域424Aに位置するときには第4分割ヒータ424の出力を低くする制御を行う。ヒータ制御部52は、回転方向Rに沿って第1領域A1と第2領域A2とが並んでいる他の箇所においても、対応する分割ヒータの出力を変動させる制御を行う。このように、第2変形例に係るヒータ制御部52は、テーブル3が一回転する間、ヒータ42(各分割ヒータ)の出力を変動させる。換言すると、ヒータ制御部52は、一つのスライスデータDSに対応する粉末床21Cが予熱される間、ヒータ42の出力を変動させる。
 第2変形例に係る造形装置1の領域分割部56は、回転軸線Cを中心とする回転方向Rに沿って、粉末床21を複数の小領域215,216に分割する。この構成によれば、回転軸線Cを中心とする回転方向Rに沿って、電子ビームが照射される領域と電子ビームが照射されない領域とが並んで位置している場合に、例えば、電子ビームが照射される領域を粉末材料2の仮焼結温度以上の温度で予熱することができる。換言すると、造形物2Sを構成する粉末材料2を粉末材料2の仮焼結温度以上の温度で予熱することができる。さらに、電子ビームが照射されない領域を仮焼結温度よりも低い温度で予熱することもできる。換言すると、造形物2Sを構成しない粉末材料2を仮焼結温度よりも低い温度で予熱することもできる。したがって、造形物2Sを構成する粉末材料2をより確実に予熱することができる。さらに、造形物2Sを構成しない粉末材料2に仮焼結体が生じることをより確実に抑制することもできる。
 第2変形例に係る造形装置1のヒータ制御部52は、テーブルが一回転する間、ヒータ42の出力を変動させる。この構成によれば、回転軸線Cを中心とする回転方向Rに第1領域A1と第2領域A2とが並んでいる場合に、第1領域A1及び第2領域A2のそれぞれを好適な温度で予熱することができる。
[第2実施形態]
 図8を参照して、第2実施形態に係る造形装置100について説明する。第2実施形態の造形装置100は、形成部4Aを備えている。形成部4Aは、フィーダ41と、ヒータ142と、ビーム源43とを有している。第2実施形態のフィーダ41及びビーム源43は、上記第1実施形態のフィーダ41及びビーム源43と同様の構成を有している。従って、第2実施形態のフィーダ41及びビーム源43の詳細な説明は省略する。
 一方、第2実施形態のヒータ142は、第1実施形態のヒータ42と異なる構成を有している。具体的には、ヒータ142は、複数の分割ヒータを有していない。そのため、ヒータ142の全体が均一な出力で加熱される。ヒータ142は、回転軸線Cを中心とする円の径方向に沿って延在している連続した一つのヒータである。ヒータ制御部52は、ヒータ142の出力を変動することができる。そのため、ヒータ制御部52は、ヒータ142の出力を変動させることにより、粉末床21Dにおいて回転方向Rに並んだ複数の領域のそれぞれを異なる温度で予熱することができる。
 図8には、テーブル3の主面3a上に形成された粉末床21D及び粉末床21Dにおける照射予定部分P4が示されている。第2実施形態では、領域分割部56は、回転軸線Cを中心とする円の径方向において粉末床21Dを分割しない。領域分割部56は、回転方向Rにおいてのみ粉末床21Dを複数の小領域に分割する。第2実施形態において、領域分割部56によって分割された複数の小領域は、小領域217,218を含んでいる。小領域217と小領域218とは、回転方向Rにおいて並んでいる。小領域217,218は、同じヒータ142によって予熱される。すなわち、小領域217,218は、ヒータ142の予熱領域142Aを通過する。
 第1実施形態と同様に、第2実施形態の領域設定部58は、照射予定部分P4を含む小領域を第1領域A1として設定する。さらに、第2実施形態の領域設定部58は、照射予定部分P4を含まない小領域を第2領域A2として設定する。図8に示されるように、小領域217は照射予定部分P4を含んでいる。一方、小領域218は照射予定部分P4を含んでいない。そのため、領域設定部58は、小領域217を第1領域A1として設定する。さらに領域設定部58は、小領域218を第2領域A2として設定する。領域設定部58は、他の小領域のそれぞれについても第1領域A1又は第2領域A2として設定する。領域設定部58は、各小領域が第1領域A1及び第2領域A2のいずれに設定されているかを示す設定情報をヒータ制御部52に出力する。
 ヒータ制御部52は、領域設定部58から受け取った設定情報に基づいて、ヒータ142を制御する。具体的には、ヒータ制御部52は、粉末床21Dにおける第1領域A1と第2領域A2とが互いに異なる温度で予熱されるように、ヒータ142の出力を制御する。上記第1実施形態と同様に、第2実施形態のヒータ制御部52は、第1領域A1が第2領域A2よりも高い温度で予熱されるように、ヒータ142の出力を制御する。ヒータ制御部52は、第1領域A1が粉末材料2の仮焼結温度以上の温度で予熱されるように、ヒータ142の出力を制御してもよい。第2領域A2が粉末材料2の仮焼結温度よりも低い温度で予熱されるように、ヒータ142の出力を制御してもよい。
 第2実施形態では、小領域217及び小領域218のように、第1領域A1として設定された小領域と、第2領域A2として設定された小領域とが、回転方向Rに沿って並んでいる。そのため、第2実施形態のヒータ制御部52は、小領域217がヒータ142の予熱領域142Aに位置するときにはヒータ142の出力を高くする制御を行う。第2実施形態のヒータ制御部52は、小領域218が予熱領域142Aに位置するときにはヒータ142の出力を低くする制御を行う。ヒータ制御部52は、回転方向Rに沿って第1領域A1と第2領域A2とが並んでいる他の箇所においても、ヒータ142の出力を適宜変動させる制御を行う。このように、第2実施形態に係るヒータ制御部52は、テーブル3が一回転する間、ヒータ142の出力を変動させる。換言すると、ヒータ制御部52は、一つのスライスデータDSに対応する粉末床21Dが予熱される間、ヒータ142の出力を変動させる。
 第2実施形態に係る造形装置100によっても、第1実施形態に係る造形装置1と同様に、粉末床21Dにおける電子ビームが照射される領域を高い温度で予熱することができる。換言すると、造形物2Sを構成する粉末材料2を高い温度で予熱することができる。さらに、電子ビームが照射されない領域を低い温度で予熱することもできる。換言すると、造形物2Sを構成しない粉末材料2を低い温度で予熱することもできる。そのため、造形物2Sを構成しない粉末材料2に仮焼結体が生じ難く、仮焼結体の除去時間を削減することができる。よって、造形装置100によれば、効率良く造形処理を行うことができる。
[第3実施形態]
 図9を参照して、第3実施形態に係る造形装置200について説明する。第3実施形態の造形装置200は、形成部4Bを備えている。形成部4Bは、フィーダ41と、ヒータ242と、ビーム源43とを有している。第3実施形態のフィーダ41及びビーム源43は、第1実施形態のフィーダ41及びビーム源43と同様の構成を有している。従って、第3実施形態のフィーダ41及びビーム源43の詳細な説明は省略する。
 一方、第3実施形態のヒータ242は、第1実施形態のヒータ42と異なる構成を有している。例えば、ヒータ242は、回転軸線Cに沿う方向から見た場合に長方形状を呈している。ヒータ242は、格子状に分割された複数の分割ヒータ243を有している。複数の分割ヒータ243は、互いに直交する二つの方向に沿って配列されている。
 ヒータ制御部52は、各分割ヒータ243を独立して制御可能である。つまり、ヒータ制御部52は、各分割ヒータ243の出力を互いに異ならせることができる。したがって、ヒータ制御部52は、各分割ヒータ243の出力を制御することにより、粉末床21における複数の領域のそれぞれを異なる温度で予熱することができる。すなわち、ヒータ制御部52は、領域設定部58によって設定された粉末床21における第1領域A1と第2領域A2(図4参照)とが互いに異なる温度で予熱されるように、ヒータ242(各分割ヒータ243)の出力を制御することができる。
 第3実施形態に係る造形装置200によっても、第1実施形態に係る造形装置1と同様に、電子ビームが照射される領域を高い温度で予熱することができる。換言すると、造形物2Sを構成する粉末材料2を高い温度で予熱することができる。さらに、粉末床21における電子ビームが照射されない領域を低い温度で予熱することもできる。換言すると、造形物2Sを構成しない粉末材料2を低い温度で予熱することもできる。そのため、造形物2Sを構成しない粉末材料2に仮焼結体が生じ難く、仮焼結体の除去時間を削減することができる。よって、造形装置200によれば、効率良く造形処理を行うことができる。
 以上、本開示の三次元造形装置及び予熱装置を詳細に説明した。しかし、本開示の三次元造形装置及び予熱装置は上記実施形態に限定されるものではない。本開示の三次元造形装置及び予熱装置は、その要旨を逸脱しない範囲で様々な変形が可能である。
 例えば、ヒータ制御部52は、第1領域A1が第2領域A2よりも低い温度で予熱されるように、ヒータ42の出力を制御してもよい。すなわち、ヒータ制御部52は、第1領域A1を予熱する際のヒータ42(各分割ヒータ)の出力を、第2領域A2を予熱する際のヒータ42の出力よりも低くしてもよい。
 ヒータ42は、粉末床21における複数の領域のそれぞれを異なる温度で予熱可能なヒータであればよい。ヒータ42の形状及び個数は限定されない。ヒータ42は、赤外線ヒータでなくてもよい。ガスヒータ等の他の加熱手段であってもよい。
 領域設定部58は、既に形成された造形部分の保温のために、粉末床21における照射予定部分Pを含まない小領域についても第1領域A1として設定してもよい。換言すると、電子ビームが照射されない小領域についても第1領域A1として設定してもよい。さらに、ヒータ制御部52は第1領域A1が第2領域A2よりも高い温度で予熱されるようにヒータ42を制御してもよい。
 上述した各実施形態では、テーブル3が回転及び昇降する構成を例に説明したが、テーブル3が固定され、形成部4が回転軸線Cを中心として回転し、且つ、回転軸線Cに沿って昇降してもよい。すなわち、テーブル3が形成部4に対して相対的に回転及び昇降すればよい。
上記の実施形態では、電子ビームの照射によって粉末材料を焼結又は溶融した。しかし、粉末材料2に照射されるビームは、電子ビームに限定されない。つまり、粉末材料に照射されるビームは、その他のエネルギビームでもよい。換言すると、造形装置1に用いられるビームは、粉末材料2に対してエネルギを供給できるエネルギビームであればよい。例えばレーザ溶融法が適用された造形装置1であってもよい。造形装置1に用いられるビームは、レーザビームであってもよい。造形装置1に用いられるビームは、電子ビーム及びイオンビームを含む概念である荷電粒子ビームであってもよい。
 以下に列挙する条項を参照して、本開示の三次元造形装置及び予熱装置を説明する。なお、本開示の三次元造形装置及び予熱装置は、具体的な列挙がなくても、以下の条項を任意の組み合わせで含んでいてもよい。
1.粉末材料が供給される主面を有するテーブルと、
 前記主面と向かい合うように配置され、前記粉末材料から形成された複数の造形部分を積層させて造形物を形成する形成部と、
 前記形成部の動作を制御するコントローラと、を備え、
 前記テーブルは、前記形成部に対して回転軸線を中心として所定の回転方向に相対的に回転し、
 前記形成部は、
 前記主面に前記粉末材料を供給することにより粉末床を形成する供給部と、
 前記回転方向において前記供給部よりも下流に配置され、前記粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、
 前記回転方向において前記予熱部よりも下流に配置され、予熱された前記粉末床の少なくとも一部にエネルギビームを照射する照射部と、を有し、
 前記コントローラは、
 前記粉末床を複数の小領域に分割する領域分割部と、
 前記複数の小領域のうち、前記照射部により前記エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、前記第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、
 前記第1領域と前記第2領域とが互いに異なる温度で予熱されるように、前記予熱部の出力を制御する予熱制御部と、を含む、三次元造形装置。
2.前記予熱制御部は、前記第1領域が前記第2領域よりも高い温度で予熱されるように、前記予熱部の出力を制御する、条項1に記載の三次元造形装置。
3.前記予熱制御部は、前記第1領域が前記粉末材料の仮焼結温度以上の温度で予熱され、前記第2領域が前記仮焼結温度よりも低い温度で予熱されるように、前記予熱部の出力を制御する、条項1又は2に記載の三次元造形装置。
4.前記領域分割部は、前記回転軸線を中心とする円の径方向において、前記粉末床を複数の小領域に分割する、条項1~3のいずれか一項に記載の三次元造形装置。
5.前記領域分割部は、前記回転軸線を中心とする前記回転方向において、前記粉末床を複数の小領域に分割する、条項1~4のいずれか一項に記載の三次元造形装置。
6.前記予熱部は、前記回転軸線を中心とする円の径方向に並んだ複数の分割予熱部を有し、
 前記予熱制御部は、前記テーブルが一回転する間、前記分割予熱部の出力を一定に維持する、条項1~5のいずれか一項に記載の三次元造形装置。
7.前記予熱制御部は、前記テーブルが一回転する間、前記予熱部の出力を変動させる、条項1~5のいずれか一項に記載の三次元造形装置。
8.前記複数の造形部分は、第1造形部分と、前記第1造形部分上に形成される第2造形部分とを含み、
 前記領域設定部は、前記第1造形部分に対応する粉末床における前記複数の小領域のうち、前記第2造形部分に対応する前記粉末床の前記照射予定部分に重畳する部分を含む小領域を前記第1領域として設定する、条項1~7のいずれか一項に記載の三次元造形装置。
9.前記粉末床の温度を検出する温度検出部を備え、
 前記予熱制御部は、前記温度検出部による検出結果に基づいて、前記予熱部の出力を制御する、条項1~8のいずれか一項に記載の三次元造形装置。
10.前記予熱部は、前記粉末床を挟んで前記主面と向かい合うように配置されている、条項1~9のいずれか一項に記載の三次元造形装置。
11.エネルギビームが照射されることにより焼結又は溶融して造形物となる粉末材料を予熱する予熱装置であって、
 テーブルの主面に供給された前記粉末材料により形成された粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、
 前記予熱部の出力を制御するコントローラと、を備え、
 前記コントローラは、
 前記粉末床を複数の小領域に分割する領域分割部と、
 前記複数の小領域のうち、前記エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、前記第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、
 前記第1領域と前記第2領域とが互いに異なる温度で予熱されるように、前記予熱部の出力を制御する予熱制御部と、を有する、予熱装置。
1,100,200 造形装置
2 粉末材料
2S 造形物
3 テーブル
3a,3b 主面
4,4A,4B 形成部
5 コントローラ
6 駆動部
7 ハウジング
8 温度検出部
9 予熱装置
21,21A,21B,21C,21D 粉末床
31 造形タンク
31a 壁部
41 フィーダ(供給部)
41A 供給領域
42,142,242 ヒータ(予熱部)
42A,142A 予熱領域
43 ビーム源(照射部)
43A 照射領域
51 フィーダ制御部
52 ヒータ制御部
53 ビーム制御部(予熱制御部)
54 回転制御部
55 昇降制御部
56 領域分割部
57 データ取得部
58 領域設定部
61 回転ユニット
61a 軸部
62 昇降ユニット
71 窓部
71a 壁部
211,212,213,214,215,216,217,218 小領域
243 分割ヒータ
421 第1分割ヒータ(分割予熱部)
421A 第1予熱領域
422 第2分割ヒータ(分割予熱部)
422A 第2予熱領域
423 第3分割ヒータ(分割予熱部)
423A 第3予熱領域
424 第4分割ヒータ(分割予熱部)
424A 第4予熱領域
A1 第1領域
A2 第2領域
C 回転軸線
DB データベース
DS スライスデータ
DT 温度データ
P,P1,P2,P3,P4 照射予定部分
P10 重畳部分
R 回転方向
S 造形空間

 

Claims (11)

  1.  粉末材料が供給される主面を有するテーブルと、
     前記主面と向かい合うように配置され、前記粉末材料から形成された複数の造形部分を積層させて造形物を形成する形成部と、
     前記形成部の動作を制御するコントローラと、を備え、
     前記テーブルは、前記形成部に対して回転軸線を中心として所定の回転方向に相対的に回転し、
     前記形成部は、
     前記主面に前記粉末材料を供給することにより粉末床を形成する供給部と、
     前記回転方向において前記供給部よりも下流に配置され、前記粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、
     前記回転方向において前記予熱部よりも下流に配置され、予熱された前記粉末床の少なくとも一部にエネルギビームを照射する照射部と、を有し、
     前記コントローラは、
     前記粉末床を複数の小領域に分割する領域分割部と、
     前記複数の小領域のうち、前記照射部により前記エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、前記第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、
     前記第1領域と前記第2領域とが互いに異なる温度で予熱されるように、前記予熱部の出力を制御する予熱制御部と、を含む、三次元造形装置。
  2.  前記予熱制御部は、前記第1領域が前記第2領域よりも高い温度で予熱されるように、前記予熱部の出力を制御する、請求項1に記載の三次元造形装置。
  3.  前記予熱制御部は、前記第1領域が前記粉末材料の仮焼結温度以上の温度で予熱され、前記第2領域が前記仮焼結温度よりも低い温度で予熱されるように、前記予熱部の出力を制御する、請求項1又は2に記載の三次元造形装置。
  4.  前記領域分割部は、前記回転軸線を中心とする円の径方向において、前記粉末床を複数の小領域に分割する、請求項1又は2に記載の三次元造形装置。
  5.  前記領域分割部は、前記回転軸線を中心とする前記回転方向において、前記粉末床を複数の小領域に分割する、請求項1又は2に記載の三次元造形装置。
  6.  前記予熱部は、前記回転軸線を中心とする円の径方向に並んだ複数の分割予熱部を有し、
     前記予熱制御部は、前記テーブルが一回転する間、前記分割予熱部の出力を一定に維持する、請求項1又は2に記載の三次元造形装置。
  7.  前記予熱制御部は、前記テーブルが一回転する間、前記予熱部の出力を変動させる、請求項1又は2に記載の三次元造形装置。
  8.  前記複数の造形部分は、第1造形部分と、前記第1造形部分上に形成される第2造形部分とを含み、
     前記領域設定部は、前記第1造形部分に対応する粉末床における前記複数の小領域のうち、前記第2造形部分に対応する前記粉末床の前記照射予定部分に重畳する部分を含む小領域を前記第1領域として設定する、請求項1又は2に記載の三次元造形装置。
  9.  前記粉末床の温度を検出する温度検出部を備え、
     前記予熱制御部は、前記温度検出部による検出結果に基づいて、前記予熱部の出力を制御する、請求項1又は2に記載の三次元造形装置。
  10.  前記予熱部は、前記粉末床を挟んで前記主面と向かい合うように配置されている、請求項1又は2に記載の三次元造形装置。
  11.  エネルギビームが照射されることにより焼結又は溶融して造形物となる粉末材料を予熱する予熱装置であって、
     テーブルの主面に供給された前記粉末材料により形成された粉末床における複数の領域のそれぞれを異なる温度で予熱可能な予熱部と、
     前記予熱部の出力を制御するコントローラと、を備え、
     前記コントローラは、
     前記粉末床を複数の小領域に分割する領域分割部と、
     前記複数の小領域のうち、前記エネルギビームが照射される照射予定部分を含む小領域を第1領域として設定し、前記第1領域として設定されていない他の小領域のうち少なくとも一つの小領域を第2領域として設定する領域設定部と、
     前記第1領域と前記第2領域とが互いに異なる温度で予熱されるように、前記予熱部の出力を制御する予熱制御部と、を有する、予熱装置。

     
PCT/JP2023/029156 2022-08-31 2023-08-09 三次元造形装置及び予熱装置 WO2024048234A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137716 2022-08-31
JP2022137716 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048234A1 true WO2024048234A1 (ja) 2024-03-07

Family

ID=90099365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029156 WO2024048234A1 (ja) 2022-08-31 2023-08-09 三次元造形装置及び予熱装置

Country Status (1)

Country Link
WO (1) WO2024048234A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081937A (ja) * 2017-10-31 2019-05-30 株式会社Ihi 粉末節約装置および粉末節約方法
JP2021121509A (ja) * 2014-07-13 2021-08-26 ストラタシス リミテッド 回転式の3dプリンティングのための方法およびシステム
JP2021142695A (ja) * 2020-03-11 2021-09-24 株式会社Ihi 三次元造形装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121509A (ja) * 2014-07-13 2021-08-26 ストラタシス リミテッド 回転式の3dプリンティングのための方法およびシステム
JP2019081937A (ja) * 2017-10-31 2019-05-30 株式会社Ihi 粉末節約装置および粉末節約方法
JP2021142695A (ja) * 2020-03-11 2021-09-24 株式会社Ihi 三次元造形装置

Similar Documents

Publication Publication Date Title
JP6053745B2 (ja) 照射システムを制御する方法及び制御装置
TWI774785B (zh) 使用多鏡掃描器的積層製造
JP2004306612A (ja) サーマルイメージ・フィードバックを用いた焼結
JP6939423B2 (ja) 粉末節約装置および粉末節約方法
JP7264236B2 (ja) 三次元造形装置
US20180264549A1 (en) Lamp configuration for Additive Manufacturing
CN104781022A (zh) 用于加成制造的粉末预处理
JP7196918B2 (ja) 三次元造形装置
CN110666354A (zh) 箔材熔合增材制造系统和方法
JP6904429B2 (ja) 三次元積層造形物製造装置及び三次元積層造形物製造方法
JP2023502502A (ja) 熱管理用の熱源を備えた粉末床融合リコーター
WO2024048234A1 (ja) 三次元造形装置及び予熱装置
JP7155919B2 (ja) 三次元造形装置
JP2003321704A (ja) 積層造形法およびそれに用いる積層造形装置
JP6870579B2 (ja) 三次元積層造形装置
JP7205268B2 (ja) 三次元造形装置
JP7159103B2 (ja) 積層造形装置及びその改造方法
JP7320084B2 (ja) マルチマテリアルワークピースの製造方法並びに製造装置
WO2022215410A1 (ja) 回転積層造形装置及び制御装置
JP2022169075A (ja) 三次元造形装置
JP7107146B2 (ja) 積層造形装置
CN111278589B (zh) 金属部件的制造方法
KR20200080398A (ko) 다축 관절 로봇을 이용하여 의료용 보형물의 하부를 구성하는 지지체의 형상을 격자 내지 메쉬 구조로 형성하는 방법
JP7207067B2 (ja) 金属部材の作製方法
JP2023076047A (ja) 粉末塗布装置及び三次元造形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860000

Country of ref document: EP

Kind code of ref document: A1