WO2022215400A1 - 緩衝器 - Google Patents

緩衝器 Download PDF

Info

Publication number
WO2022215400A1
WO2022215400A1 PCT/JP2022/009346 JP2022009346W WO2022215400A1 WO 2022215400 A1 WO2022215400 A1 WO 2022215400A1 JP 2022009346 W JP2022009346 W JP 2022009346W WO 2022215400 A1 WO2022215400 A1 WO 2022215400A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
check valve
piston
hydraulic fluid
Prior art date
Application number
PCT/JP2022/009346
Other languages
English (en)
French (fr)
Inventor
寛人 石井
治 湯野
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to KR1020237023866A priority Critical patent/KR20230116934A/ko
Priority to CN202280023348.5A priority patent/CN117062996A/zh
Priority to DE112022002051.2T priority patent/DE112022002051T5/de
Priority to JP2023512865A priority patent/JPWO2022215400A1/ja
Publication of WO2022215400A1 publication Critical patent/WO2022215400A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/465Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall using servo control, the servo pressure being created by the flow of damping fluid, e.g. controlling pressure in a chamber downstream of a pilot passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3488Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features intended to affect valve bias or pre-stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Definitions

  • the present invention relates to a shock absorber that controls the flow of hydraulic fluid relative to the stroke of a piston to vary the damping force.
  • Patent Document 1 discloses a damping force adjusting device configured to close an opening 54 (passage opening) of an orifice passage formed in a check valve 13 (disk valve) by a sub-check valve disk 45 (sub-check valve).
  • a shock absorber 1 is disclosed.
  • An object of the present invention is to provide a shock absorber that prevents hydraulic fluid from leaking from between a sub check valve provided at the opening of an orifice passage and a disc valve.
  • the shock absorber of the present invention comprises a cylinder containing a hydraulic fluid, a reservoir containing the hydraulic fluid and gas, and a first chamber and a second chamber slidably inserted into the cylinder. a base valve that separates the second chamber from the reservoir; and a first reverse valve that is provided on the piston and allows hydraulic fluid to flow from the second chamber side to the first chamber side.
  • a stop valve a stop valve, a second check valve provided in the base valve and allowing the hydraulic fluid to flow from the reservoir side to the second chamber side, a passage connecting the first chamber and the reservoir; a damping force adjustment mechanism capable of externally adjusting the damping force from a soft characteristic with a low damping force to a hard characteristic with a high damping force by controlling the flow of the hydraulic fluid in the passage;
  • An orifice passage is provided in parallel with at least one of the valve and the second check valve, and a sub-check valve is provided at a passage opening of the orifice passage, and the sub-check valve is provided in parallel with the orifice passage.
  • the sub-check valve is configured to open at a lower pressure to allow the flow of hydraulic fluid in the same direction, and the sub-check valve has a diameter substantially the same as that of the sub-check valve.
  • a biasing member is provided that biases the sub check valve toward the passage opening.
  • a shock absorber in which an orifice passage is formed in a disc valve stacked on a piston, operation from between a sub-check valve provided at the passage opening of the orifice passage and the disc valve Liquid leakage can be suppressed.
  • FIG. 4 is a plan view of the biasing disc in the first embodiment;
  • FIG. 1st Embodiment Comprising: (A) is a Lissajous waveform in the conventional buffer, (B) is a Lissajous waveform in the buffer based on 1st Embodiment. It is a sectional view of a shock absorber concerning a 2nd embodiment.
  • the damper 1 shown in FIG. 1 is a so-called control valve-mounted damping force adjusting hydraulic damper in which the damping force adjusting mechanism 31 is laterally attached to the side wall of the outer tube 3 .
  • the vertical direction in FIG. 1 is referred to as "vertical direction”.
  • the left direction (left side) in FIG. 2 is referred to as “cylinder direction (cylinder side)”
  • the right direction (right side) is referred to as "counter-cylinder direction (counter-cylinder side)”.
  • the shock absorber 1 has a double-tube structure in which a cylinder 2 is provided inside an outer tube 3, and a reservoir 4 is formed between the cylinder 2 and the outer tube 3.
  • a piston 5 is slidably inserted into the cylinder 2 to divide the inside of the cylinder 2 into two chambers, a first chamber 2A and a second chamber 2B.
  • the shock absorber 1 includes a piston rod 6 whose lower end (one end) is connected to the piston 5 and whose upper end (the other end) extends out of the cylinder 2 through the first chamber 2A.
  • a piston rod 6 is passed through a rod guide 7 attached to the upper end of the cylinder 2 .
  • the first chamber 2 ⁇ /b>A and the outside are sealed by an oil seal 9 joined to a washer 8 .
  • the piston 5 is provided with an extension side passage 11 and a compression side passage 12 that communicate the first chamber 2A and the second chamber 2B.
  • the extension-side passage 11 is provided with a disk valve 121 that opens when the pressure on the side of the first chamber 2A reaches a set pressure to release the pressure on the side of the first chamber 2A to the side of the second chamber 2B.
  • the contraction side passage 12 is provided with a disk valve 14 (first check valve) that allows the hydraulic fluid to flow from the second chamber 2B to the first chamber 2A.
  • the disk valve 121 and the disk valve 14 are pressurized and clamped between the washers 38 and 38 by tightening the nut 13 screwed to the lower end of the piston rod 6 .
  • a base valve 10 that separates the second chamber 2B and the reservoir 4 is provided at the lower end of the cylinder 2 .
  • the base valve 10 is provided with an extension-side passage 15 and a contraction-side passage 16 that communicate the second chamber 2 ⁇ /b>B and the reservoir 4 .
  • the extension-side passage 15 is provided with a check valve 17 (second check valve) that allows the hydraulic fluid to flow from the reservoir 4 side to the second chamber 2B side.
  • the contraction side passage 16 is provided with a disc valve 18 that opens to release the pressure on the second chamber 2B side to the reservoir 4 side when the pressure on the second chamber 2B side reaches a set pressure.
  • the cylinder 2 is filled with hydraulic fluid
  • the reservoir 4 is filled with hydraulic fluid and gas.
  • a separator tube 20 is attached to the outer circumference of the cylinder 2 . Between the cylinder 2 and the separator tube 20, an annular oil passage 21 sealed by a pair of upper and lower seal members 19, 19 is formed. An upper side wall of the cylinder 2 is provided with a passage 22 that communicates between the annular oil passage 21 and the first chamber 2A. The lower side wall of the separator tube 20 is provided with a cylindrical connection port 23 protruding toward the side opposite to the cylinder. A side wall of the outer tube 3 is provided with a mounting hole 24 coaxially with the connection port 23 . A cylindrical case 25 surrounding the mounting hole 24 is provided on the side wall of the outer tube 3 .
  • the damping force adjustment mechanism 31 includes a valve block 33 integrated with valve parts, and a solenoid block 101 integrated with solenoid parts.
  • the valve block 33 has a back pressure type main valve 41 , a pilot valve 61 that controls the valve opening pressure of the main valve 41 , and a fail-safe valve 91 provided downstream of the pilot valve 61 . That is, the damping force adjustment mechanism 31 is a pilot type pressure control valve that controls the opening pressure of the pilot valve 61 .
  • a joint member 28 is inserted through the mounting hole 24 of the outer tube 3 .
  • the joint member 28 includes a cylindrical tubular portion 29 whose end on the cylinder side is inserted into the connection port 23 , and a flange portion 30 provided on the peripheral edge of the opening of the tubular portion 29 on the side opposite to the cylinder and arranged in the case 25 . (outer flange) and The cylindrical portion 29 and the flange portion 30 are covered with a sealing material.
  • the cylinder-side end surface of the flange portion 30 abuts against the end surface of the inner flange portion 26 of the case 25 on the opposite side of the cylinder, and the opposite end surface of the flange portion 30 abuts against the cylinder-side annular end surface (reference numerals omitted) of the main body 42 . touched.
  • the channel 35 on the outer periphery of the valve block 33 and the reservoir 4 are communicated with each other by a plurality of grooves 27 provided in the inner flange portion 26 of the case 25 .
  • the valve block 33 includes an annular main body 42 , an annular pilot body 62 , and a pilot pin 63 connecting the main body 42 and the pilot body 62 together.
  • An annular seat portion 43 is formed on the outer peripheral edge of the end face of the main body 42 on the side opposite to the cylinder and protrudes toward the side opposite to the cylinder. The outer peripheral edge portion of the main disk 44 abuts on the seat portion 43 in a separable manner.
  • the inner peripheral portion of the main disk 44 is clamped between the inner seat portion 45 of the main body 42 and the large diameter portion 64 of the pilot pin 63 .
  • An annular packing 46 is provided on the outer peripheral portion of the main disk 44 on the side opposite to the cylinder.
  • An annular recess 47 is provided in the end face of the main body 42 on the side opposite to the cylinder.
  • an annular passage 48 is formed between the main body 42 and the main disk 44 .
  • the annular passage 48 communicates with the flow path 35 through an orifice 52 formed in the main disk 44 .
  • a recess 49 is formed in the center of the end face of the main body 42 on the cylinder side.
  • the recessed portion 49 and the annular recessed portion 47 (annular passage 48 ) on the side opposite to the cylinder communicate with each other through a plurality of passages 50 (only “two” are shown in FIG. 2 ) formed in the main body 42 .
  • the pilot pin 63 is formed in a bottomed cylindrical shape that is open on the side opposite to the cylinder.
  • An introduction orifice 65 is formed at the bottom of the pilot pin 63 on the cylinder side.
  • the cylinder side of the pilot pin 63 is press-fitted into the shaft hole 51 of the main body 42 .
  • the side of the pilot pin 63 opposite to the cylinder is press-fitted into the shaft hole 66 of the pilot body 62 .
  • a plurality of grooves 67 extending in the axial direction (“horizontal direction” in FIG. 2) are formed in the outer peripheral surface of the pilot pin 63 on the side opposite to the cylinder.
  • the pilot body 62 is formed in a substantially bottomed cylindrical shape that is open on the side opposite to the cylinder.
  • the cylinder side of the pilot body 62 is provided with a flexible disc 69 that is clamped by the inner peripheral portion 68 of the pilot body 62 and the large diameter portion 64 of the pilot pin 63 .
  • a cylindrical portion 70 coaxial with the pilot body 62 is formed on the cylinder-side outer peripheral portion of the pilot body 62 .
  • the packing 46 of the main valve 41 is slidably brought into contact with the inner peripheral surface (reference numeral omitted) of the cylindrical portion 70 .
  • a pilot chamber 71 is defined on the opposite side (back surface) of the main disk 44 to the cylinder. The pressure in the pilot chamber 71 acts on the main disk 44 in the valve closing direction (the direction of pressing it against the seat portion 43).
  • a plurality of passages 72 (only “two" are shown in FIG. 2) extending in the axial direction are provided at regular intervals in the circumferential direction.
  • An annular chamber 74 is formed inside the seat portion 73 by seating the flexible disk 69 on the annular seat portion 73 provided on the end face of the pilot body 62 on the cylinder side.
  • the chamber 74 opens on the cylinder side of the passage 72 .
  • the flexible disk 69 bends under the internal pressure of the pilot chamber 71 to impart bulk elasticity to the pilot chamber 71 .
  • the flexible disk 69 is constructed by laminating a plurality of disks.
  • a notch 75 communicating between the groove 67 and the pilot chamber 71 is provided in the inner peripheral portion of the disk that contacts the large diameter portion 64 of the pilot pin 63 .
  • the hydraulic fluid in the first chamber 2A is introduced into the damping force adjustment mechanism 31 through the passage 22, the annular oil passage 21, and the passage 36 (shaft hole) of the joint member 28, and is introduced into the introduction passage, that is, the introduction orifice. 65 , a shaft hole 76 of the pilot pin 63 , a groove 67 and a notch 75 , and are introduced into the pilot chamber 71 .
  • the first chamber 2A is connected to the reservoir 4 by a passageway.
  • the hydraulic fluid in the first chamber 2A is introduced into the damping force adjusting mechanism 31 through the passage 22, the annular oil passage 21, and the passage 36 (shaft hole) of the joint member 28, and the mounting hole 24 formed in the outer tube 3 to the reservoir 4 .
  • a concave portion 77 is formed on the side of the pilot body 62 opposite to the cylinder.
  • An annular seat portion 79 (valve seat) is formed at the center of the bottom portion of the concave portion 77 so that the valve body 78 can be seated and detached thereon.
  • the seat portion 79 is provided on the periphery of the opening of the shaft hole 66 of the pilot body 62 through which the hydraulic fluid passes.
  • the valve body 78 is formed in a substantially cylindrical shape, and the end on the cylinder side is formed in a tapered shape.
  • An outer flange-shaped spring receiving portion 80 is provided on the opposite side of the valve body 78 to the cylinder. The valve body 78 is urged by the pilot spring 83 in the direction away from the seat portion 79 (the direction opposite to the cylinder).
  • a cylindrical portion 81 is formed on the side of the pilot body 62 opposite to the cylinder.
  • a pilot spring 83 , a spacer 93 , a fail-safe disk 94 , a retainer 95 , a spacer 96 and a washer 97 are stacked on the cylindrical portion 81 in this order from the cylinder side.
  • the laminated parts are covered with a cap 98 attached to the outer circumference of the cylindrical portion 81 .
  • the cap 98 is formed with a notch 99 that serves as a passage that communicates the recess 77 (valve chamber) and the flow path 35 .
  • the solenoid block 101 is integrally formed by incorporating a coil 103, a core 104, a core 105, a plunger 106, and a hollow actuation rod 107 connected to the plunger 106 into a solenoid case 102.
  • a spacer 108 and a cover 109 are inserted into the solenoid case 102 on the side opposite to the cylinder.
  • Axial force is applied to parts inside the solenoid case 102 by plastically working the end edge of the solenoid case 102 on the side opposite to the cylinder.
  • the plunger 106 is axially movably supported by sleeves 113 and 114 provided on the cores 104 and 105 .
  • the plunger 106 generates thrust according to the current value by energizing the coil 103 .
  • the thrust generated by the plunger 106 acts to move the valve body 78 in the direction toward the seat portion 79 (cylinder direction) against the biasing force of the pilot spring 83 .
  • the cylinder side of the solenoid case 102 is inserted into the opening of the case 25 on the side opposite to the cylinder.
  • a sealing member 110 seals between the solenoid case 102 and the case 25 .
  • the cylinder side of the operating rod 107 protrudes into the recess 77 (valve chamber).
  • a valve body 78 is attached to the end of the operating rod 107 on the cylinder side.
  • valve body 78 When the coil 103 is not energized, the valve body 78 is urged in the direction opposite to the cylinder by the pilot spring 83 , and the spring receiving portion 80 of the valve body 78 abuts (seats) on the fail-safe disk 94 .
  • the coil 103 when the coil 103 is energized, a thrust force is generated in the plunger 106 in the cylinder direction, and the operating rod 107 moves in the cylinder direction against the biasing force of the pilot spring 83 . to be seated.
  • the valve opening pressure of the valve body 78 is controlled by changing the current value for energizing the coil 103 (hereinafter referred to as "control current value"). In the soft mode in which the control current value is small, the biasing force of the pilot spring 83 and the thrust of the plunger 106 are balanced, and the pilot valve 61 is opened with a constant valve opening amount.
  • the disk valve 121 includes a plurality of disc valves clamped between the washer 38 and an annular inner seat portion 122 formed on the inner peripheral edge portion of the piston 5 on the second chamber 2B side (“lower side” in FIG. 3). It consists of a disk.
  • the disk valve 121 has a disk 125 which abuts on an annular outer seat portion 123 formed on the outer peripheral edge of the piston 5 on the second chamber side so as to be separable and seatable.
  • a plurality of circular openings 126 (only “one" is shown in FIG. 3) are provided in the disk 125 at regular intervals in the circumferential direction.
  • An annular concave portion 124 is formed between the inner seat portion 122 and the outer seat portion 123 .
  • the disk valve 121 has a disk 127 superimposed on the opposite side of the disk 125 ("lower side” in FIG. 3).
  • Disk 127 has the same outer diameter as disk 125 .
  • a plurality of notches 128 (only “one” is shown in FIG. 3) extending radially inward (“leftward” in FIG. 3) are provided at the outer peripheral edge of the disk 127 at regular intervals in the circumferential direction.
  • the number of notches 128 is the same as the number of openings 126 provided in disk 125, and disk 125 and disk 127 are positioned about the axis so that openings 126 and notches 128 match (communicate). .
  • the disk valve 121 has a plurality of (“six” in the first embodiment) disks 129 stacked on the opposite side of the disk 127 to the piston.
  • Disk 129 has the same outer diameter as disks 125 and 127 .
  • the configuration is described above, but the discs 127 and 125 may have different outer diameters, and the notches 128 may be provided at uneven intervals. Further, although it is desirable to position the discs 125 and 127, they may not be positioned depending on the shape and size of the notch or opening.
  • the disk valve 121 (the plurality of disks stacked on the piston 5) has a plurality of (only one shown in FIG. 3) consisting of the notch 128 of the disk 127 and the opening 126 of the disk 125.
  • An orifice passage 130 is configured.
  • the orifice passage 130 is provided on the second chamber 2B side of the piston 5 and arranged in parallel with the disc valve 14 (first check valve) provided in the first chamber 2A of the piston 5 .
  • Orifice passage 130 allows hydraulic fluid in second chamber 2B to flow through extension side passage 11 to first chamber 2A when the piston speed in the compression stroke is low (0.1 m/s or less, not including 0).
  • the orifice area of orifice passage 130 is the rectangular cross-sectional area of notch 128 .
  • a spacer 131 and a retainer 132 are stacked on the side of the disc 129 opposite to the piston.
  • a disc-shaped sub-check valve 133 is superimposed on the piston side of the disc 125 ("upper side" in FIG. 3).
  • the outer diameter of the sub check valve 133 is set so as to be able to block the opening 126 of the disk 125 and, by extension, the opening 126 (passage opening) of the orifice passage 130 .
  • the outer diameter of the sub check valve 133 is set so that the outer peripheral edge does not contact the piston 5, that is, the opening of the valve (separation from the disk 125) is not hindered.
  • the sub-check valve 133 as a valve element does not allow flow from one direction and completely rejects flow from the other direction, but includes those that slightly allow flow from the other direction.
  • the outer seat portion 123 has a larger amount of protrusion from the piston 5 than the inner seat portion 122 . That is, a certain level difference is formed between the inner sheet portion 122 and the outer sheet portion 123 . Therefore, the disc valve 121 is pushed up by the outer seat portion 123 and bent (elastically deformed), and a set load acts on the disc valve 121 .
  • a biasing disk 135 (biasing member) is provided on the piston side of the sub check valve 133 .
  • the urging disk 135 urges the sub check valve 133 toward the disk valve 121 toward the anti-piston side and presses (closely contacts) the sub check valve 133 against the disk 125, thereby opening 126 ( passage openings).
  • the biasing disk 135 has a shaft hole 136 (insertion hole) through which the piston rod 6 is inserted.
  • An inner peripheral portion 137 that is clamped between the inner seat portion 122 of the piston 5 and the disk valve 121 together with the inner peripheral portion (reference numeral omitted) of the sub-check valve 133 is formed on the peripheral edge of the shaft hole 136 .
  • the urging disk 135 is formed with a projection 138 extending annularly along the outer peripheral edge.
  • the projection 138 is formed in an arcuate cross-section along the axial plane of the biasing disk 135 protruding toward the anti-piston side ("lower side" in FIG. 3).
  • the protrusion 138 is arranged opposite the opening 126 (passage opening) of the orifice passage 130 (disk 125).
  • the outer peripheral portion of the sub check valve 133 is pressed toward the opening 126 of the orifice passage 130 .
  • the biasing disk 135 has substantially the same diameter as the sub check valve 133 .
  • substantially the same diameter means that the diameter of the urging disk 135 is such that the projection 138 can be arranged facing the opening 126 of the orifice passage 130 without hindering the opening of the sub-check valve 133. diameter and includes the same outer diameter as sub-check valve 133 .
  • the urging disk 135 has a plurality of ("four" in the first embodiment) holes 139 formed on the inner peripheral side of the projection 138. As shown in FIG. The holes 139 extend with a constant width along the protrusion 138 and are arranged at regular intervals around the outer periphery of the shaft hole 136 .
  • the biasing force of the biasing disk 135 causes the sub check valve 133 to open at a lower pressure than the disk valve 14 (first check valve) provided on the first chamber 2A side of the piston 5. is set to That is, the sub-check valve 133 opens at a pressure lower than that of the disc valve 14 during the compression stroke, thereby generating a damping force with an orifice characteristic by the orifice passage 130 .
  • the disk valve 14 (first check valve) of the piston 5 closes due to the pressure increase in the first chamber 2A, and before the disk valve 121 opens, the hydraulic fluid in the first chamber 2A is added. pressured.
  • the pressurized hydraulic fluid is introduced into the damping force adjustment mechanism 31 through the passage 22 , the annular oil passage 21 , and the passage 36 (shaft hole) of the joint member 28 .
  • the hydraulic fluid corresponding to the movement of the piston 5 flows from the reservoir 4 into the second chamber 2B by opening the check valve 17 of the base valve 10 .
  • the disk valve 121 of the piston 5 and the check valve 17 (second check valve) of the base valve 10 are closed due to the pressure increase in the second chamber 2B, and the disk valve 18 of the base valve 10 is opened.
  • the hydraulic fluid in the second chamber 2B is pressurized.
  • the piston speed in the compression stroke is low (0.1 m/s or less, not including 0)
  • the hydraulic fluid in the second chamber 2B is sub-checked against the biasing force of the biasing disk 135 (biasing member).
  • the valve 133 is opened, passes through the orifice passage 130 formed in the disc valve 121, the annular recess 124, the extension side passage 11, and the piston orifice 300 formed by coining, and the disc valve 14 is closed. Flow to 1 chamber 2A.
  • the damper 1 generates an orifice characteristic damping force by the orifice passage 130 .
  • the hydraulic fluid introduced into the damping force adjustment mechanism 31 is introduced into the pilot chamber 71 through the introduction passage, that is, the introduction orifice 65, the shaft hole 76 of the pilot pin 63, the groove 67, and the notch 75.
  • the hydraulic fluid introduced into the damping force adjustment mechanism 31 passes through the introduction orifice 65, the shaft hole 76 of the pilot pin 63, and the pilot body 62 before the main valve 41 opens (when the piston speed is in the low speed range).
  • recess 77 valve chamber
  • notch 99 formed in cap 98 flow path 35 on the outer circumference of valve block 33, a plurality of grooves 27 formed in case 25, and mounting holes formed in outer tube 3 24 to reservoir 4 .
  • the hydraulic fluid opens the main valve 41 and causes the flow around the valve block 33 to flow. It flows to the reservoir 4 through the channel 35 , a plurality of grooves 27 formed in the case 25 and the attachment holes 24 formed in the outer tube 3 .
  • the damping force adjustment mechanism 31 allows hydraulic fluid to flow through the introduction orifice before the main valve 41 opens (when the piston speed is in the low speed range) during both the extension stroke and the compression stroke of the piston rod 6.
  • a damping force is generated by passing through 65 and pilot valve 61 .
  • a damping force with valve characteristics corresponding to the opening of the main valve 41 is generated.
  • the biasing force of the pilot spring 83 (which also serves as a fail-safe spring) moves the valve body 78 to the side opposite to the cylinder. , the pilot valve 61 is opened and the spring receiving portion 80 of the valve body 78 is brought into contact with the fail-safe disk 94 to cut off the communication between the flow path (reference numerals omitted) inside the valve block 33 and the flow path 35 outside. do.
  • the valve opening pressure of the fail-safe valve 91 is adjusted, and from the first chamber 2A, the passage, that is, the passage 22, the annular oil passage 21, the passage 36 (shaft hole) of the joint member 28, the damping force adjustment mechanism 31 , a plurality of grooves 27 formed in the case 25, and a mounting hole 24 formed in the outer tube 3 to control the flow of hydraulic fluid to the reservoir 4, thereby generating a constant damping force when a failure occurs.
  • the internal pressure of the pilot chamber 71 and, in turn, the opening pressure of the main valve 41 so that a constant damping force can be obtained even when a failure occurs.
  • a conventional shock absorber hereinafter referred to as "conventional ), the outer seat portion 123 is higher than the inner seat portion 122 (the amount of protrusion from the piston 5 is large), and the sub check valve 133 is not seated on the outer seat portion 123 (outer seat smaller outer diameter than the portion 123). Therefore, in the conventional shock absorber, when the piston speed in the extension stroke is low (0.1 m/s or less, not including 0), the hydraulic fluid in the first chamber 2A is sub-reverse to the disk valve 121 (disk 125). It may leak into the second chamber 2B from between the stop valve 133 and the intended damping force (predetermined damping force) may not be obtained.
  • the sub check valve 133 is biased toward the opening 126 of the orifice passage 130 by the biasing disk 135 (biasing member) having substantially the same diameter as the sub check valve 133 .
  • the shock absorber 1 was constructed in As a result, when the piston speed in the extension stroke is low (0.1 m/s or less, not including 0), the hydraulic fluid in the first chamber 2A flows from between the disk valve 121 and the sub check valve 133 to the second chamber. Leakage to 2B is suppressed, and the intended damping force can be obtained.
  • the annular protrusion 138 formed on the biasing disk 135 biases (presses) the outer peripheral side of the sub check valve 133 in the direction opposite to the piston to bring it into close contact with the disk valve 121. Therefore, it is possible to reliably prevent a gap from being formed between the disc valve 121 and the sub check valve 133 .
  • a plurality of holes 139 extending along the inner periphery of the projection 138 are provided between the projection 138 and the shaft hole 136 (insertion hole) of the urging disk 135.
  • the disk 135 can be made less rigid.
  • the sub check valve 133 is opened before the disc valve 14 (first check valve) provided on the first chamber 2A side of the piston 5 is opened.
  • the orifice passage 130 can provide orifice characteristic damping force.
  • FIG. 5A shows the Lissajous waveform in a conventional shock absorber without the biasing disk 135, and FIG. is.
  • the damping force F0 (see FIG. 5A) generated by the conventional shock absorber when the piston speed in the extension stroke is extremely low (for example, "0.05 m/s") and the A comparison is made with the damping force F1 (see FIG. 5(B)) generated by the shock absorber 1 .
  • the damping force F1 generated by the shock absorber 1 according to the first embodiment is larger than the damping force F0 generated by the conventional shock absorber (F1>F0).
  • the damping force F0 generated by the conventional shock absorber is "1”
  • the damping force F1 generated by the shock absorber 1 according to the first embodiment is approximately "2".
  • the disc valve 121 and the sub check valve 133 are biased toward the opening 126 (passage opening) of the orifice passage 130 by the biasing disc 135 . It can be seen that leakage of hydraulic fluid from between the check valve 133 is suppressed, and the intended damping force is obtained even when the piston speed in the extension stroke is extremely low. Thus, in the first embodiment, it is possible to improve the ride comfort of the vehicle when the piston speed is extremely low.
  • the disc valve 121 and the sub check valve 133 are biased toward the opening 126 (passage opening) of the orifice passage 130 by the biasing disc 135 . Leakage of the hydraulic fluid from between the check valve 133 is suppressed, and when the piston stroke is reversed when the piston speed is low, there is no lack in the waveform S1 and the rise of the damping force is not delayed. It can be seen that a damping force is obtained.
  • the Lissajous waveform of the contraction stroke in the conventional shock absorber is substantially the same. That is, the damping force during the contraction stroke in the shock absorber 1 according to the first embodiment differs from the damping force during the contraction stroke in the conventional shock absorber because the biasing disk 135 is provided in the sub check valve 133. It can be seen that there is no change due to Thus, in the first embodiment, damping force characteristics equivalent to those of the conventional shock absorber can be obtained in the contraction stroke.
  • a valve structure (hereinafter referred to as "the first ) can be provided on the first chamber 2A side of the piston 5 to configure the shock absorber 1. That is, in the first embodiment, the sub check valve 133 is arranged on the second chamber 2B side of the piston 5, but the disk valve 121 is arranged on the first chamber 2A side of the piston 5, and is arranged on the farthest opposite piston side.
  • the shock absorber 1 is configured such that the sub check valve 133 is biased toward the piston side toward the opening 126 (passage opening) of the orifice passage 130 formed in the disc valve 121 by the biasing disc 135 (biasing member). can do.
  • the piston orifice 300 formed by coining is not provided.
  • the hydraulic fluid in the second chamber 2B is prevented from leaking into the first chamber 2A from between the disc valve 121 and the sub-check valve 133, and the intended damping is achieved. power can be obtained.
  • the hydraulic fluid in the second chamber 2B is prevented from leaking into the first chamber 2A from between the disc valve 121 and the sub check valve 133.
  • the present invention may be applied to the contraction stroke.
  • valve structure of the first embodiment can be provided in the base valve 10 to configure the shock absorber 1 . That is, in the first embodiment, the orifice passage 130 is provided in parallel with the disk valve 14 (first check valve) provided in the piston 5, and the opening 126 (passage opening) of the orifice passage 130 is provided with a sub-check valve. Although the valve 135 is provided, the disk valve 121 is provided on the reservoir 4 side of the base valve 10, and the orifice passage 130 is provided in parallel with the check valve 17 (second check valve) provided on the base valve 10.
  • a biasing disc 135 biases the sub check valve 133 toward the opening 126 (passage opening) of the orifice passage 130 formed in the disc valve 121 toward the side opposite to the base valve.
  • a device 1 can be configured. In this case, when the piston speed in the compression stroke is low, the hydraulic fluid in the second chamber 2B is prevented from leaking into the reservoir 4 from between the disc valve 121 and the sub check valve 133, thereby reducing the intended damping force. Obtainable.
  • the valve structure is applied to the shock absorber 1 provided with the damping force adjustment mechanism 31 (pilot type pressure control valve) that adjusts the valve opening pressure of the pilot valve 61 by energizing the coil 103.
  • the valve structure of the first embodiment is replaced by a shock absorber (not shown) having a damping force adjustment mechanism (pilot type flow control valve) that adjusts the valve opening area of the pilot valve 61 by energizing the coil 103. ) can be applied to In this case, effects equivalent to those of the first embodiment described above can be obtained.
  • the damping force adjusting mechanism 31 is attached to the side wall of the outer tube 3 in the double-tube shock absorber 1, that is, the damping force adjusting hydraulic shock absorber of the control valve side-mounted type, as shown in FIG. A valve structure was applied.
  • the valve structure of the first embodiment is applied to the single-tube shock absorber 100. As shown in FIG.
  • the shock absorber 100 has a cylinder 2 filled with hydraulic fluid, a piston 5 slidably inserted into the cylinder 2, and a free piston 117.
  • the piston 5 partitions the interior of the cylinder 2 into a first chamber 2A and a second chamber 2B.
  • the free piston 117 defines a gas chamber 118 at the bottom of the cylinder 2 .
  • a disk valve 14 (first damping valve) is provided on the first chamber 2A side of the piston 5 to allow the hydraulic fluid to flow from the second chamber 2B to the first chamber 2A.
  • a disc valve 121 made up of a plurality of discs is stacked on the second chamber 2B side of the piston 5 .
  • the disc valve 121 is configured with an orifice passage 130 provided in parallel with the disc valve 14 (first damping valve).
  • the opening 126 (passage opening) of the orifice passage 130 is opened at a lower pressure than the disk valve 14 to allow the hydraulic fluid to flow in the same direction (direction from the second chamber 2B to the first chamber 2A).
  • a sub check valve 133 is provided.
  • the sub check valve 133 is provided with a biasing disk 135 (biasing member) that biases the sub check valve 133 toward the opening 126 (passage opening) of the orifice passage 130 .
  • the urging disk 135 is provided separately from the sub-check valve 133.
  • an R portion projecting toward the annular recess 124 is formed at least in the vicinity of the opening 126 of the sub-check valve.
  • an urging seat portion that urges the sub check valve 133 is provided between the inner seat portion 122 and the outer seat portion 123 of the piston 5, and the sub check valve 133 is pushed toward the disk valve 121 by the urging seat portion. It may be configured to be biased. In that case, it is preferable that the urging seat portion is positioned or protruded at a height that does not obstruct the opening of the sub check valve 133 . Also, the urging disk 135 need not be disk-shaped as in the second embodiment, and may be a star spring or a coil spring.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

本発明は、オリフィス通路の通路開口に設けられたサブ逆止弁とディスクバルブとの間からの作動液の漏れを抑止した緩衝器を提供することを課題とする。 サブ逆止弁(133)に対して略同径の付勢ディスク(135)(付勢部材)により、サブ逆止弁(133)をオリフィス通路(130)の開口(126)に向けて付勢した。これにより、伸び行程におけるピストン速度が低速のとき(0を含まない0.1m/s以下)、第1室(2A)の作動液が、ディスクバルブ(121)とサブ逆止弁(133)との間から第2室(2B)へ漏出することが抑止され、意図する減衰力を得ることができる。

Description

緩衝器
 本発明は、ピストンのストロークに対する作動液の流れを制御して減衰力を可変する緩衝器に関する。
 特許文献1には、逆止弁13(ディスクバルブ)に形成されたオリフィス通路の開口54(通路開口)をサブ逆止弁ディスク45(サブ逆止弁)により閉じるように構成された減衰力調整式緩衝器1が開示されている。
特許第5812650号公報
 特許文献1に記載された緩衝器では、サブ逆止弁ディスク45が閉弁している行程のとき、作動液がサブ逆止弁ディスク45とシートディスク46との間に入り込み、オリフィス通路を通過してシリンダ室へ漏出し、意図する減衰力を得られない虞がある。
 本発明は、オリフィス通路の通路開口に設けられたサブ逆止弁とディスクバルブとの間からの作動液の漏れを抑止した緩衝器を提供することを課題とする。
 本発明の緩衝器は、作動液が封入されたシリンダと、作動液及びガスが封入されたリザーバと、前記シリンダ内に摺動可能に挿入され、前記シリンダ内を第1室と第2室とに区画するピストンと、前記第2室と前記リザーバとを区画するベースバルブと、前記ピストンに設けられ、前記第2室側から前記第1室側への作動液の流通を許容する第1逆止弁と、前記ベースバルブに設けられ、前記リザーバ側から前記第2室側への作動液の流通を許容する第2逆止弁と、前記第1室と前記リザーバとを接続する通路と、前記通路の作動液の流れを制御することで、減衰力が低いソフト特性から減衰力が高いハード特性まで、外部から減衰力を調整可能な減衰力調整機構と、を備え、前記第1逆止弁と第2逆止弁との少なくとも一方に対して、並列にオリフィス通路を設け、該オリフィス通路の通路開口にサブ逆止弁を設け、前記サブ逆止弁は、前記オリフィス通路が並列に設けられた逆止弁に対して、より低い圧力で開弁して同じ方向の作動液の流れを許容するように構成され、前記サブ逆止弁には、該サブ逆止弁と略同径な付勢部材であって、該サブ逆止弁を前記通路開口に向けて付勢する前記付勢部材が設けられる、ことを特徴とする。
 本発明の一実施形態によれば、ピストンに積層されたディスクバルブにオリフィス通路が構成された緩衝器において、オリフィス通路の通路開口に設けられたサブ逆止弁とディスクバルブとの間からの作動液の漏れを抑止することができる。
第1実施形態に係る緩衝器の断面図である。 図1における減衰力調整機構を拡大して示す図である。 図1における要部を拡大して示す図である。 第1実施形態における付勢ディスクの平面図である。 第1実施形態の説明図であって、(A)は従来の緩衝器におけるリサージュ波形、(B)は第1実施形態に係る緩衝器におけるリサージュ波形である。 第2実施形態に係る緩衝器の断面図である。
(第1実施形態)
 本発明の第1実施形態を添付した図を参照して説明する。
 図1に示される緩衝器1は、減衰力調整機構31がアウタチューブ3の側壁に横付けされた、所謂、制御弁横付け型の減衰力調整式油圧緩衝器である。便宜上、図1における上下方向を「上下方向」と称する。また、図2における左方向(左側)を「シリンダ方向(シリンダ側)」、右方向(右側)を「反シリンダ方向(反シリンダ側)」と称する。
 緩衝器1は、アウタチューブ3の内側にシリンダ2が設けられた複筒構造をなし、シリンダ2とアウタチューブ3との間にはリザーバ4が形成される。シリンダ2内には、シリンダ2内を第1室2Aと第2室2Bとの2室に区画するピストン5が摺動可能に挿入される。緩衝器1は、下端側(一端側)がピストン5に連結され、上端側(他端側)が第1室2Aを通ってシリンダ2の外部へ延び出るピストンロッド6を備える。ピストンロッド6は、シリンダ2の上端部に取り付けられたロッドガイド7に挿通される。第1室2Aと外部とは、ワッシャ8に接合されたオイルシール9によりシールされる。
 ピストン5には、第1室2Aと第2室2Bとを連通する伸び側通路11及び縮み側通路12が設けられる。伸び側通路11には、第1室2A側の圧力が設定圧力に達したときに開弁して第1室2A側の圧力を第2室2B側へ逃がすディスクバルブ121が設けられる。他方、縮み側通路12には、第2室2Bから第1室2Aへの作動液の流通を許容するディスクバルブ14(第1逆止弁)が設けられる。ディスクバルブ121及びディスクバルブ14は、ピストンロッド6の下端部に螺合されたナット13を締め付けることで、ワッシャ38,38間で加圧されてクランプされる。
 シリンダ2の下端部には、第2室2Bとリザーバ4とを区画するベースバルブ10が設けられる。ベースバルブ10には、第2室2Bとリザーバ4とを連通する伸び側通路15及び縮み側通路16が設けられる。伸び側通路15には、リザーバ4側から第2室2B側への作動液の流通を許容する逆止弁17(第2逆止弁)が設けられる。縮み側通路16には、第2室2B側の圧力が設定圧力に達したときに開弁して第2室2B側の圧力をリザーバ4側へ逃すディスクバルブ18が設けられる。なお、シリンダ2内には作動液が封入され、リザーバ4内には作動液及びガスが封入される。
 シリンダ2の外周には、セパレータチューブ20が取り付けられる。シリンダ2とセパレータチューブ20との間には、上下一対のシール部材19,19によりシールされた環状油路21が形成される。シリンダ2の上部側壁には、環状油路21と第1室2Aとを連通する通路22が設けられる。セパレータチューブ20の下部側壁には、反シリンダ側へ突出する円筒形の接続口23が設けられる。アウタチューブ3の側壁には、接続口23と同軸に取付孔24が設けられる。アウタチューブ3の側壁には、取付孔24を囲む円筒形のケース25が設けられる。
 図2に示されるように、ケース25には、減衰力調整機構31が収容される。減衰力調整機構31は、バルブ部品が一体化されたバルブブロック33と、ソレノイド部品が一体化されたソレノイドブロック101と、を備える。バルブブロック33は、背圧型のメインバルブ41と、メインバルブ41の開弁圧力を制御するパイロット弁61と、パイロット弁61の下流に設けられたフェイルセーフバルブ91と、を有する。即ち、減衰力調整機構31は、パイロット弁61の開弁圧力を制御するパイロット型圧力制御弁である。
 アウタチューブ3の取付孔24には、ジョイント部材28が挿通される。ジョイント部材28は、シリンダ側の端部が接続口23に挿入された円筒形の筒部29と、筒部29の反シリンダ側の開口周縁に設けられてケース25内に配置されたフランジ部30(外フランジ)と、を有する。筒部29及びフランジ部30は、シール材によって被覆される。フランジ部30は、シリンダ側の端面がケース25の内フランジ部26の反シリンダ側の端面に当接され、反シリンダ側の端面がメインボディ42のシリンダ側の環状の端面(符号省略)に当接される。なお、バルブブロック33の外周の流路35とリザーバ4とは、ケース25の内フランジ部26に設けられた複数本の溝27によって連通される。
 バルブブロック33は、環状のメインボディ42と、環状のパイロットボディ62と、メインボディ42とパイロットボディ62とを結合させるパイロットピン63と、を備える。メインボディ42の反シリンダ側の端面の外周縁部には、反シリンダ側へ突出する環状のシート部43が形成される。シート部43には、メインディスク44の外周縁部が離着座可能に当接される。
 メインディスク44の内周部は、メインボディ42の内シート部45とパイロットピン63の大径部64との間でクランプされる。メインディスク44の反シリンダ側の外周部には、環状のパッキン46が設けられる。メインボディ42の反シリンダ側の端面には、環状凹部47が設けられる。メインディスク44がシート部43に着座することで、メインボディ42とメインディスク44との間に環状通路48が形成される。環状通路48は、メインディスク44に形成されたオリフィス52を介して流路35に連通される。メインボディ42のシリンダ側の端面の中央には、凹部49が形成される。凹部49と反シリンダ側の環状凹部47(環状通路48)とは、メインボディ42に形成された複数本(図2に「2本」のみ表示)の通路50によって連通される。
 パイロットピン63は、反シリンダ側が開口する有底円筒形に形成される。パイロットピン63のシリンダ側の底部には、導入オリフィス65が形成される。パイロットピン63のシリンダ側は、メインボディ42の軸孔51に圧入される。パイロットピン63の反シリンダ側は、パイロットボディ62の軸孔66に圧入される。パイロットピン63の反シリンダ側の外周面には、軸方向(図2における「左右方向」)へ延びる複数本の溝67が形成される。
 パイロットボディ62は、反シリンダ側が開口した略有底円筒形に形成される。パイロットボディ62のシリンダ側には、パイロットボディ62の内周部68とパイロットピン63の大径部64とによってクランプされる可撓性ディスク69が設けられる。パイロットボディ62のシリンダ側の外周部には、パイロットボディ62と同軸の円筒部70が形成される。円筒部70の内周面(符号省略)には、メインバルブ41のパッキン46が摺動可能に当接される。これにより、メインディスク44の反シリンダ側(背面)には、パイロット室71が区画される。パイロット室71の圧力は、メインディスク44に対して閉弁方向(シート部43に押し付ける方向)に作用する。
 パイロットボディ62の底部には、軸方向へ延びる複数本(図2に「2本」のみ表示)の通路72が周方向に等間隔で設けられる。パイロットボディ62のシリンダ側の端面に設けられた環状のシート部73に可撓性ディスク69が着座することで、シート部73の内側に環状の室74が形成される。室74には、通路72のシリンダ側が開口する。可撓性ディスク69は、パイロット室71の内圧を受けて撓むことで、パイロット室71に体積弾性を付与する。
 可撓性ディスク69は、複数枚のディスクを積層することで構成される。パイロットピン63の大径部64に当接するディスクの内周部には、溝67とパイロット室71とを連通する切欠き75が設けられる。これにより、第1室2Aの作動液は、通路22、環状油路21、ジョイント部材28の流路36(軸孔)を介して減衰力調整機構31に導入され、導入通路、即ち、導入オリフィス65、パイロットピン63の軸孔76、溝67、及び切欠き75を介してパイロット室71に導入される。他方、第1室2Aは、通路によりリザーバ4に接続される。即ち、第1室2Aの作動液は、通路22、環状油路21、ジョイント部材28の流路36(軸孔)を経て減衰力調整機構31に導入され、さらにケース25に形成された複数個の溝27、及びアウタチューブ3に形成された取付孔24を経てリザーバ4へ流れる。
 パイロットボディ62の反シリンダ側には、凹部77が形成される。凹部77の底部中央には、弁体78が離着座可能に当接される環状のシート部79(弁座)が形成される。シート部79は、作動液が通過するパイロットボディ62の軸孔66の開口周縁に設けられる。弁体78は、略円筒形に形成され、シリンダ側の端部がテーパ状に形成される。弁体78の反シリンダ側には、外フランジ形のばね受け部80が設けられる。弁体78は、パイロットばね83によってシート部79から離れる方向(反シリンダ方向)へ付勢される。
 パイロットボディ62の反シリンダ側には、円筒部81が形成される。円筒部81には、シリンダ側から順に、パイロットばね83、スペーサ93、フェイルセーフディスク94、リテーナ95、スペーサ96、及びワッシャ97が積層される。積層された部品には、円筒部81の外周に取り付けられたキャップ98が被せられる。キャップ98には、凹部77(弁室)と流路35とを連通する通路となる切欠き99が形成される。
 ソレノイドブロック101は、ソレノイドケース102に、コイル103、コア104、コア105、プランジャ106、及びプランジャ106に連結された中空の作動ロッド107を組み込んで一体化させたものである。ソレノイドケース102の反シリンダ側には、スペーサ108及びカバー109が挿入される。ソレノイドケース102の反シリンダ側の端縁部を塑性加工することで、ソレノイドケース102内の部品に軸力が作用される。
 プランジャ106は、コア104及びコア105に設けられたスリーブ113及びスリーブ114により軸方向へ移動可能に支持される。プランジャ106は、コイル103への通電により、電流値に応じた推力を発生する。プランジャ106が発生する推力は、弁体78をパイロットばね83の付勢力に抗してシート部79へ向かう方向(シリンダ方向)へ移動させるように作用する。
 ソレノイドケース102は、シリンダ側が、ケース25の反シリンダ側の開口に挿入される。ソレノイドケース102とケース25との間は、シール部材110によってシールされる。作動ロッド107のシリンダ側は、凹部77(弁室)に突出する。作動ロッド107のシリンダ側の端部には、弁体78が取り付けられる。ケース25に螺合させたナット111を締め付けて環状の止め輪112を圧縮することで、ソレノイドケース102とケース25とが固定され、バルブブロック33とソレノイドブロック101とが結合(一体化)される。
 そして、コイル103への非通電時には、弁体78がパイロットばね83によって反シリンダ方向へ付勢され、弁体78のばね受け部80がフェイルセーフディスク94に当接(着座)される。他方、コイル103への通電時には、プランジャ106にシリンダ方向への推力が発生し、作動ロッド107がパイロットばね83の付勢力に抗してシリンダ方向へ移動することで、弁体78がシート部79に着座される。弁体78の開弁圧力は、コイル103への通電の電流値(以下「制御電流値」と称する)を変化させることで制御される。制御電流値が小さいソフトモード時では、パイロット弁61は、パイロットばね83の付勢力とプランジャ106の推力とが平衡し、一定の開弁量で開弁される。
 次に、図3を参照して第1実施形態の要部を説明する。
 ディスクバルブ121は、ワッシャ38と、ピストン5の第2室2B側(図3における「下側」)の内周縁部に形成された環状の内側シート部122との間でクランプされた複数枚のディスクにより構成される。ディスクバルブ121は、ピストン5の第2室側の外周縁部に形成された環状の外側シート部123に離着座可能に当接されるディスク125を有する。ディスク125には、円形の複数個(図3では「1個」のみ表示)の開口126が周方向へ等間隔で設けられる。なお、内側シート部122と外側シート部123との間には、環状凹部124が形成される。
 ディスクバルブ121は、ディスク125の反ピストン側(図3における「下側」)に重ねられたディスク127を有する。ディスク127は、ディスク125と同一の外径を有する。ディスク127の外周端縁には、径方向内側(図3における「左方向」)へ延びる複数個(図3では「1個」のみ表示)の切欠き128が周方向へ等間隔で設けられる。切欠き128の個数は、ディスク125に設けられた開口126と同じ個数であり、ディスク125とディスク127とは、開口126と切欠き128とが一致(連通)するように軸回りに位置決めされる。また、ディスクバルブ121は、ディスク127の反ピストン側に重ねられた複数枚(第1実施形態では「6枚」)のディスク129を有する。ディスク129は、ディスク125及びディスク127と同一の外径を有する。なお、第1実施形態では、上記構成としたが、ディスク127とディスク125とは外径が異なっていてもよいし、切欠き128は不等間隔に設けられていてもよい。また、ディスク125とディスク127とは、位置決めをしたほうが望ましいが、切欠きや開口の形状や大きさによっては、位置決めをしなくてもよい。
 これにより、ディスクバルブ121(ピストン5に積層された複数枚のディスク)には、ディスク127の切欠き128とディスク125の開口126とからなる複数個(図3では「1個」のみ表示)のオリフィス通路130が構成される。オリフィス通路130は、ピストン5の第2室2B側に設けられ、ピストン5の第1室2Aに設けられたディスクバルブ14(第1逆止弁)に対して並列に配置される。オリフィス通路130は、縮み行程におけるピストン速度が低速のとき(0を含まない0.1m/s以下)、第2室2Bの作動液を、伸び側通路11を経て第1室2Aへ流通させる。オリフィス通路130のオリフィス面積は、切欠き128の矩形断面の面積である。なお、ディスク129の反ピストン側には、スペーサ131及びリテーナ132が積層される。
 ディスク125のピストン側(図3における「上側」)には、ディスク状のサブ逆止弁133が重ねられて設けられる。サブ逆止弁133の外径は、ディスク125の開口126、延いてはオリフィス通路130の開口126(通路開口)を閉塞可能に設定される。また、サブ逆止弁133の外径は、外周端縁がピストン5に接触しないように、即ち、開弁(ディスク125からの離座)が阻害されないように設定される。なお、弁体としてのサブ逆止弁133は、一方向からの流れを許容し、他方向からの流れを完全に許さないものではなく、わずかに他方向からの流れを許容するものを含む。
 ここで、外側シート部123は、内側シート部122に対し、ピストン5からの突出量が大きい。即ち、内側シート部122と外側シート部123との間には、一定の段差が形成される。よって、ディスクバルブ121が外側シート部123に突き上げられて撓み(弾性変形し)、ディスクバルブ121にセット荷重が作用する。
 サブ逆止弁133のピストン側には、付勢ディスク135(付勢部材)が重ねて設けられる。付勢ディスク135は、サブ逆止弁133をディスクバルブ121に向けて反ピストン側へ付勢してサブ逆止弁133をディスク125に押し付ける(密着させる)ことで、オリフィス通路130の開口126(通路開口)を閉塞させる。
 図4に示されるように、付勢ディスク135は、ピストンロッド6が挿通される軸孔136(挿入孔)を有する。軸孔136の周縁には、サブ逆止弁133の内周部(符号省略)とともにピストン5の内側シート部122とディスクバルブ121との間でクランプされる内周部137が形成される。また、付勢ディスク135には、外周端縁に沿って環状に延びる突起138が形成される。
 突起138は、付勢ディスク135の軸平面による断面が、反ピストン側(図3における「下側」)へ突出する弧状に形成される。突起138は、オリフィス通路130(ディスク125)の開口126(通路開口)に対向させて配置される。これにより、サブ逆止弁133の外周部は、オリフィス通路130の開口126に向けて押し付けられる。付勢ディスク135は、サブ逆止弁133と略同径である。ここで、略同径とは、サブ逆止弁133の開弁を阻害することなく、かつ突起138をオリフィス通路130の開口126に対向させて配置することができるような付勢ディスク135の外径を意図しており、サブ逆止弁133と同一の外径を含む。
 付勢ディスク135は、突起138の内周側に形成された複数個(第1実施形態では「4個」)の穴139を有する。穴139は、突起138に沿って一定幅で延び、軸孔136の外周に等間隔で配置される。ここで、付勢ディスク135の付勢力は、サブ逆止弁133が、ピストン5の第1室2A側に設けられたディスクバルブ14(第1逆止弁)に対してより低い圧力で開弁するように設定される。即ち、サブ逆止弁133は、縮み行程のとき、ディスクバルブ14より低い圧力で開弁することで、オリフィス通路130によるオリフィス特性の減衰力を発生させる。
 次に、緩衝器1における作動液の流れを説明する。
 伸び行程では、第1室2A内の圧力上昇によりピストン5のディスクバルブ14(第1逆止弁)が閉弁し、ディスクバルブ121の開弁前には、第1室2Aの作動液が加圧される。加圧された作動液は、通路22、環状油路21、ジョイント部材28の流路36(軸孔)を経て減衰力調整機構31へ導入される。このとき、ピストン5が移動した分の作動液は、リザーバ4から、ベースバルブ10の逆止弁17を開弁させて第2室2Bへ流入する。なお、第1室2Aの圧力がピストン5のディスクバルブ121の開弁圧力に達してディスクバルブ121が開弁されると、第1室2Aの圧力が第2室2Bへリリーフされ、第1室2Aの過度の圧力上昇が回避される。
 縮み行程では、第2室2B内の圧力上昇によりピストン5のディスクバルブ121及びベースバルブ10の逆止弁17(第2逆止弁)が閉弁し、ベースバルブ10のディスクバルブ18の開弁前には、第2室2Bの作動液が加圧される。縮み行程におけるピストン速度が低速のとき(0を含まない0.1m/s以下)、第2室2Bの作動液は、付勢ディスク135(付勢部材)の付勢力に抗してサブ逆止弁133を開弁させ、ディスクバルブ121に形成されたオリフィス通路130、環状凹部124、及び伸び側通路11、コイニングにより形成されたピストンオリフィス300を経て、ディスクバルブ14を閉弁した状態で、第1室2Aへ流れる。これにより、緩衝器1は、オリフィス通路130によるオリフィス特性の減衰力を発生する。
 ピストン5のディスクバルブ14(第1逆止弁)が開弁してピストン下室2Bの作動液が第1室2Aへ流入すると、ピストンロッド6がシリンダ2内に侵入した体積分の作動液が、第1室2Aから、通路22、環状油路21、ジョイント部材28の流路36(軸孔)を経て減衰力調整機構31へ導入される。なお、第2室2Bの圧力がベースバルブ10のディスクバルブ18の開弁圧力に達してディスクバルブ18が開弁されると、第2室2Bの圧力がリザーバ4へリリーフされ、第2室2Bの過度の圧力上昇が回避される。
 減衰力調整機構31に導入された作動液は、導入通路、即ち、導入オリフィス65、パイロットピン63の軸孔76、溝67、及び切欠き75を介してパイロット室71に導入される。他方、減衰力調整機構31に導入された作動液は、メインバルブ41の開弁前(ピストン速度が低速域であるとき)には、導入オリフィス65、パイロットピン63の軸孔76、パイロットボディ62の凹部77(弁室)、キャップ98に形成された切欠き99、バルブブロック33の外周の流路35、ケース25に形成された複数個の溝27、及びアウタチューブ3に形成された取付孔24を経てリザーバ4へ流れる。
 ピストン速度が上昇し、減衰力調整機構31に導入された作動液の圧力がメインバルブ41の開弁圧力に達すると、作動液は、メインバルブ41を開弁させ、バルブブロック33の外周の流路35、ケース25に形成された複数個の溝27、及びアウタチューブ3に形成された取付孔24を経てリザーバ4へ流れる。
 このように、減衰力調整機構31は、ピストンロッド6の伸び行程及び縮み行程の両行程において、メインバルブ41の開弁前(ピストン速度が低速域であるとき)には、作動液が導入オリフィス65及びパイロット弁61を通過することで減衰力を発生する。また、メインバルブ41の開弁後(ピストン速度が中速域であるとき)には、メインバルブ41の開度に応じたバルブ特性の減衰力を発生する。そして、コイル103への通電を制御し、パイロット弁61の開弁圧力を調整することで、減衰力調整機構31が発生する減衰力を直接制御することができる。
 また、コイル103の断線、車載コントローラの故障等のフェイル発生時にプランジャ106の推力が失われた場合、パイロットばね83(フェイルセーフバネを兼ねる)の付勢力により弁体78を反シリンダ側へ移動させ、パイロット弁61を開弁させるとともに弁体78のばね受け部80をフェイルセーフディスク94に当接させてバルブブロック33の内側の流路(符号省略)と外側の流路35との連通を遮断する。
 このとき、フェイルセーフバルブ91の開弁圧力を調整し、第1室2Aから、通路、即ち、通路22、環状油路21、ジョイント部材28の流路36(軸孔)、減衰力調整機構31、ケース25に形成された複数個の溝27、及びアウタチューブ3に形成された取付孔24を経てリザーバ4へ流れる作動液の流れを制御することで、フェイル発生時に、一定の減衰力を発生させることができる。同時に、パイロット室71の内圧、延いてはメインバルブ41の開弁圧力を調整することが可能であり、フェイル発生時においても一定の減衰力を得ることができる。
 ここで、ディスクバルブ121(ピストン5に積層された複数枚のディスク)に構成されたオリフィス通路130の開口126(通路開口)にサブ逆止弁133が設けられた従来の緩衝器(以下「従来の緩衝器」と称する)では、外側シート部123が内側シート部122より高く(ピストン5からの突出量が大きく)、かつサブ逆止弁133が外側シート部123に着座していない(外側シート部123より外径が小さい)。
 このため、従来の緩衝器では、伸び行程におけるピストン速度が低速のとき(0を含まない0.1m/s以下)、第1室2Aの作動液が、ディスクバルブ121(ディスク125)とサブ逆止弁133との間から第2室2Bへ漏出し、意図する減衰力(予め定められた減衰力)が得られない虞がある。
 そこで、第1実施形態では、サブ逆止弁133に対して略同径の付勢ディスク135(付勢部材)により、サブ逆止弁133をオリフィス通路130の開口126に向けて付勢するように緩衝器1を構成した。
 これにより、伸び行程におけるピストン速度が低速のとき(0を含まない0.1m/s以下)、第1室2Aの作動液が、ディスクバルブ121とサブ逆止弁133との間から第2室2Bへ漏出することが抑止され、意図する減衰力を得ることができる。
 また、第1実施形態では、付勢ディスク135に形成された環状の突起138により、サブ逆止弁133の外周側を反ピストン方向へ付勢して(押し付けて)ディスクバルブ121に密着させたので、ディスクバルブ121とサブ逆止弁133との間に隙間が生じることを確実に抑止することができる。
 また、第1実施形態では、付勢ディスク135の、突起138と軸孔136(挿入孔)との間に、突起138の内周に沿って延びる複数個の穴139を設けたので、付勢ディスク135を低剛性化することができる。これにより、縮み行程におけるピストン速度が低速のときには、サブ逆止弁133を、ピストン5の第1室2A側に設けられたディスクバルブ14(第1逆止弁)が開弁するより前に開弁させることが可能であり、オリフィス通路130によるオリフィス特性の減衰力を得ることができる。
 さらに、図5を参照して第1実施形態に用いられる付勢ディスク135(付勢部材)の作用効果を説明する。ここで、図5(A)は付勢ディスク135を備えていない従来の緩衝器におけるリサージュ波形、図5(B)は付勢ディスク135を備えた第1実施形態に係る緩衝器1におけるリサージュ波形である。
 まず、伸び行程におけるピストン速度が極低速(例えば「0.05m/s」)のときの、従来の緩衝器が発生する減衰力F0(図5(A)参照)と、第1実施形態に係る緩衝器1が発生する減衰力F1(図5(B)参照)とを比較する。図5から、第1実施形態に係る緩衝器1が発生する減衰力F1は、従来の緩衝器が発生する減衰力F0より大きい(F1>F0)ことは明らかである。ここで、従来の緩衝器が発生する減衰力F0を「1」とすると、第1実施形態に係る緩衝器1が発生する減衰力F1は概ね「2」である。
 このことから、付勢ディスク135を備えていない従来の緩衝器では、伸び行程におけるピストン速度が低速のとき、第1室2Aの作動液が、ディスクバルブ121(ディスク125)とサブ逆止弁133との間から第2室2Bへ漏出し、減衰力に抜けが発生している(意図する減衰力が得られていない)ものと推測される。
 これに対し、第1実施形態に係る緩衝器1では、付勢ディスク135によりサブ逆止弁133をオリフィス通路130の開口126(通路開口)に向けて付勢することで、ディスクバルブ121とサブ逆止弁133との間からの作動液の漏れが抑止され、伸び行程におけるピストン速度が極低速のときであっても意図する減衰力が得られていることがわかる。このように、第1実施形態では、ピストン速度が極低速時における車両の乗り心地を向上させることができる。
 次に、ピストン速度が低速(例えば「0.5m/s」)のときの、ピストンストローク反転時に、従来の緩衝器が発生する伸び側減衰力の立ち上がり波形S0(図5(A)参照)と、ピストンストローク反転時に、第1実施形態に係る緩衝器1が発生する伸び側減衰力の立ち上がり波形S1(図5(B)参照)とを比較する。
 図5から、ピストンストローク反転時に、従来の緩衝器が発生する伸び側減衰力の立ち上がり波形S0は、欠けていることがわかる。即ち、付勢ディスク135を備えていない従来の緩衝器では、ピストン速度が低速のときのピストンストローク反転時に、第1室2Aの作動液が、ディスクバルブ121(ディスク125)とサブ逆止弁133との間から第2室2Bへ漏出し、伸び側減衰力の立ち上がりが遅れるものと推測される。
 これに対し、第1実施形態に係る緩衝器1では、付勢ディスク135によりサブ逆止弁133をオリフィス通路130の開口126(通路開口)に向けて付勢することで、ディスクバルブ121とサブ逆止弁133との間からの作動液の漏れが抑止され、ピストン速度が低速のときのピストンストローク反転時に、波形S1に欠けが生じることなく、減衰力の立ち上がりが遅れることがなく、意図する減衰力が得られていることがわかる。このように、第1実施形態では、ピストン速度が低速時における車両の乗り心地を向上させることができる。
 次に、従来の緩衝器における縮み行程のリサージュ波形と、第1実施形態に係る緩衝器1における縮み行程のリサージュ波形とを比較すると、従来の緩衝器における縮み行程のリサージュ波形と、第1実施形態に係る緩衝器1における縮み行程のリサージュ波形とは略同一である。即ち、第1実施形態に係る緩衝器1における縮み行程のときの減衰力は、従来の緩衝器における縮み行程のときの減衰力に対し、サブ逆止弁133に付勢ディスク135を設けたことによる変化がないことがわかる。このように、第1実施形態では、縮み行程において、従来の緩衝器と同等の減衰力特性を得ることができる。
 なお、実施形態は、前述した形態に限定されるものではなく、例えば、次のように構成することができる。
 第1実施形態においてピストン5の第2室2B側に設けられた、オリフィス通路130、サブ逆止弁133、及び付勢ディスク135(付勢部材)を含むバルブ構造(以下「第1実施形態のバルブ構造」と称する)を、ピストン5の第1室2A側に設けて緩衝器1を構成することができる。即ち、第1実施形態では、サブ逆止弁133をピストン5の第2室2B側に配置したが、ディスクバルブ121をピストン5の第1室2A側に設け、最も反ピストン側に配置する付勢ディスク135(付勢部材)により、サブ逆止弁133をディスクバルブ121に形成されたオリフィス通路130の開口126(通路開口)に向かってピストン側へ付勢するように、緩衝器1を構成することができる。その際、コイニングにより形成されたピストンオリフィス300は設けない。
 この場合、伸び行程におけるピストン速度が低速のとき、第2室2Bの作動液が、ディスクバルブ121とサブ逆止弁133との間から第1室2Aへ漏出することが抑止され、意図する減衰力を得ることができる。なお、第1実施形態では、伸び行程におけるピストン速度が低速のとき、第2室2Bの作動液が、ディスクバルブ121とサブ逆止弁133との間から第1室2Aへ漏出することが抑止される構成を示したが、縮み行程に本発明を適用するようにしてもよい。
 また、第1実施形態のバルブ構造を、ベースバルブ10に設けて緩衝器1を構成することができる。即ち、第1実施形態では、ピストン5に設けられたディスクバルブ14(第1逆止弁)に対して並列にオリフィス通路130を設け、該オリフィス通路130の開口126(通路開口)にサブ逆止弁135を設けたが、ディスクバルブ121をベースバルブ10のリザーバ4側に設けるとともに、ベースバルブ10に設けられた逆止弁17(第2逆止弁)に対して並列にオリフィス通路130を設け、付勢ディスク135(付勢部材)により、サブ逆止弁133をディスクバルブ121に形成されたオリフィス通路130の開口126(通路開口)に向かって反ベースバルブ側へ付勢するように、緩衝器1を構成することができる。
 この場合、縮み行程におけるピストン速度が低速のとき、第2室2Bの作動液が、ディスクバルブ121とサブ逆止弁133との間からリザーバ4へ漏出することが抑止され、意図する減衰力を得ることができる。
 また、第1実施形態では、当該バルブ構造を、コイル103への通電によりパイロット弁61の開弁圧力を調整する減衰力調整機構31(パイロット型圧力制御弁)を備えた緩衝器1に適用した態様を説明したが、第1実施形態のバルブ構造を、コイル103への通電によりパイロット弁61の開弁面積を調整する減衰力調整機構(パイロット型流量制御弁)を備えた緩衝器(図示省略)に適用することができる。
 この場合、前述した第1実施形態と同等の作用効果を得ることができる。
(第2実施形態)
 次に、図3、図6を参照して第2実施形態を説明する。ここでは、第1実施形態との相違部分を説明する。なお、第1実施形態との共通部分については、同一の称呼及び符号を用いる。
 第1実施形態では、減衰力調整機構31がアウタチューブ3の側壁に横付けされた複筒式の緩衝器1、所謂、制御弁横付け型の減衰力調整式油圧緩衝器に、図3に示されるバルブ構造を適用した。これに対し、第2実施形態では、単筒式の緩衝器100に、第1実施形態のバルブ構造(図3参照)を適用した。
 緩衝器100は、作動液が封入されたシリンダ2と、シリンダ2に摺動可能に挿入されたピストン5及びフリーピストン117と、を有する。ピストン5は、シリンダ2内を第1室2Aと第2室2Bとに区画する。他方、フリーピストン117は、シリンダ2の底部にガス室118を画定する。ピストン5の第1室2A側には、第2室2Bから第1室2Aへの作動液の流れを許容するディスクバルブ14(第1減衰弁)が設けられる。
 また、ピストン5の第2室2B側には、複数枚のディスクからなるディスクバルブ121が積層される。図3に示されるように、ディスクバルブ121には、ディスクバルブ14(第1減衰弁)に対して並列に設けられたオリフィス通路130が構成される。オリフィス通路130の開口126(通路開口)には、ディスクバルブ14に対して、より低い圧力で開口して同じ方向(第2室2Bから第1室2Aへ向かう方向)の作動液の流れを許容するサブ逆止弁133が設けられる。サブ逆止弁133には、サブ逆止弁133をオリフィス通路130の開口126(通路開口)に向けて付勢する付勢ディスク135(付勢部材)が設けられる。
 第2実施形態では、伸び行程におけるピストン速度が低速のとき、第1室2Aの作動液が、ディスクバルブ121とサブ逆止弁133との間から第2室2Bへ漏出することが抑止され、意図する減衰力を得ることが可能であり、前述した第1実施形態と同等の作用効果を得ることができる。
 なお、本実施形態では、サブ逆止弁133とは別に付勢ディスク135を設ける構成としたが、例えば、サブ逆止弁の少なくとも開口126近傍に環状凹部124側に凸となるR部を形成することで、別途付勢ディスクを設けることなく、サブ逆止弁133自体がディスクバルブ121側に向けて付勢力を発生するように構成してもよい。
 また、ピストン5の内側シート部122と外側シート部123の間に、サブ逆止弁133を付勢する付勢シート部を設け、付勢シート部によりサブ逆止弁133をディスクバルブ121側に付勢するように構成してもよい。その場合、付勢シート部は、サブ逆止弁133の開口を妨げない位置や突出高さにすることが好ましい。
 また、付勢ディスク135は、第2実施形態のようにディスク状である必要はなく、星型ばねやコイルスプリングであってもよい。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2021年4月9日付出願の日本国特許出願第2021-066573号に基づく優先権を主張する。2021年4月9日付出願の日本国特許出願第2021-066573号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1 緩衝器、2 シリンダ、2A 第1室、2B 第2室、4 リザーバ、5 ピストン、6 ピストンロッド、10 ベースバルブ、14 ディスクバルブ(第1逆止弁)、17 逆止弁(第2逆止弁)、31 減衰力調整機構、126 開口(通路開口)、130 オリフィス通路、133 サブ逆止弁(弁体)、135 付勢ディスク(付勢部材)

Claims (11)

  1.  作動液が封入されたシリンダと、
     作動液及びガスが封入されたリザーバと、
     前記シリンダ内に摺動可能に挿入され、前記シリンダ内を第1室と第2室とに区画するピストンと、
     前記第2室と前記リザーバとを区画するベースバルブと、
     前記ピストンに設けられ、前記第2室側から前記第1室側への作動液の流通を許容する第1逆止弁と、
     前記ベースバルブに設けられ、前記リザーバ側から前記第2室側への作動液の流通を許容する第2逆止弁と、
     前記第1室と前記リザーバとを接続する通路と、
     前記通路の作動液の流れを制御することで、減衰力が低いソフト特性から減衰力が高いハード特性まで、外部から減衰力を調整可能な減衰力調整機構と、を備え、
     前記第1逆止弁と第2逆止弁との少なくとも一方に対して、並列にオリフィス通路を設け、該オリフィス通路の通路開口にサブ逆止弁を設け、
     前記サブ逆止弁は、前記オリフィス通路が並列に設けられた逆止弁に対して、より低い圧力で開弁して同じ方向の作動液の流れを許容するように構成され、
     前記サブ逆止弁には、該サブ逆止弁と略同径な付勢部材であって、該サブ逆止弁を前記通路開口に向けて付勢する前記付勢部材が設けられることを特徴とする緩衝器。
  2.  作動液が封入されたシリンダと、
     作動液及びガスが封入されたリザーバと、
     前記シリンダ内に摺動可能に挿入され、前記シリンダ内を第1室と第2室とに区画するピストンと、
     前記第2室と前記リザーバとを区画するベースバルブと、
     前記ピストンに設けられ、前記第2室側から前記第1室側への作動液の流通を許容する第1逆止弁と、
     前記ベースバルブに設けられ、前記リザーバ側から前記第2室側への作動液の流通を許容する第2逆止弁と、
     前記第1室と前記リザーバとを接続する通路と、
     前記通路の作動液の流れを制御することで、減衰力が低いソフト特性から減衰力が高いハード特性まで、外部から減衰力を調整可能な減衰力調整機構と、を備え、
     前記第1逆止弁と第2逆止弁との少なくとも一方に対して、並列にオリフィス通路を設け、該オリフィス通路の通路開口にサブ逆止弁を設け、
     前記サブ逆止弁は、前記オリフィス通路が並列に設けられた逆止弁に対して、より低い圧力で開弁して同じ方向の作動液の流れを許容するように構成され、
     前記第1逆止弁は前記第1室に配置され、前記サブ逆止弁は前記第2室に配置され、
     前記サブ逆止弁には、該サブ逆止弁を前記通路開口に向けて付勢する付勢部材が設けられることを特徴とする緩衝器。
  3.  請求項2に記載の緩衝器において、
     前記オリフィス通路は、前記ピストンに積層された複数枚のディスクにより構成され、
     前記付勢部材は、反ピストン側へ付勢力を発生させることを特徴とする緩衝器。
  4.  請求項1乃至3のいずれか1項に記載の緩衝器において、
     前記付勢部材は、環状のディスクであり、前記付勢部材の外周側には前記サブバルブに向けて付勢力を発生させる突起が形成され、該突起の内周側には穴が形成されることを特徴とする緩衝器。
  5.  請求項4に記載の緩衝器において、
     前記突起は、前記付勢部材の外周に沿って環状に延びることを特徴とする緩衝器。
  6.  請求項4又は5に記載の緩衝器において、
     前記付勢部材は、複数個の前記穴を有し、該穴より内周側には、前記ピストンに対してクランプ固定するための挿入孔が設けられることを特徴とする緩衝器。
  7.  請求項1乃至6のいずれか1項に記載の緩衝器において、
     前記減衰力調整機構は、パイロット弁の開弁圧力を制御するパイロット型圧力制御弁であることを特徴とする緩衝器。
  8.  請求項1乃至6のいずれか1項に記載の緩衝器において、
     前記減衰力調整機構は、パイロット弁の開口面積を制御するパイロット型流量制御弁であることを特徴とする緩衝器。
  9.  請求項1乃至8のいずれか1項に記載の緩衝器において、
     前記第1及び第2逆止弁の開弁時のピストン速度は、0を含まない0.1m/s以下であることを特徴とする緩衝器。
  10.  作動液が封入されたシリンダと、
     前記シリンダ内に摺動可能に挿入され、前記シリンダ内を第1室と第2室とに区画するピストンと、
     前記ピストンに設けられ、前記第2室側から前記第1室側への作動液の流通を許容する第1減衰弁と、を備え、
     前記第1減衰弁に対して並列にオリフィス通路を設け、該オリフィス通路は、前記ピストンに積層された複数枚のディスクにより構成され、
     前記オリフィス通路の通路開口に弁体を設け、該弁体は、前記第1減衰弁に対して、より低い圧力で開弁して同じ方向の作動液の流れを許容するように構成され、
     前記第1減衰弁は前記第1室に配置され、前記弁体は前記第2室に配置され、
     前記弁体は、前記通路開口に向けて付勢力が作用されることを特徴とする緩衝器。
  11.  請求項1乃至10のいずれか1項に記載の緩衝器において、
     前記オリフィス通路は、前記ピストンに形成される内側シート、及び外側シートに着座される複数枚の板状部材により構成され、
     前記外側シートは、前記内側シートよりも前記ピストンからの突出量が大きいことを特徴とする緩衝器。
PCT/JP2022/009346 2021-04-09 2022-03-04 緩衝器 WO2022215400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237023866A KR20230116934A (ko) 2021-04-09 2022-03-04 완충기
CN202280023348.5A CN117062996A (zh) 2021-04-09 2022-03-04 缓冲器
DE112022002051.2T DE112022002051T5 (de) 2021-04-09 2022-03-04 Stossdämpfer
JP2023512865A JPWO2022215400A1 (ja) 2021-04-09 2022-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066573 2021-04-09
JP2021-066573 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215400A1 true WO2022215400A1 (ja) 2022-10-13

Family

ID=83545856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009346 WO2022215400A1 (ja) 2021-04-09 2022-03-04 緩衝器

Country Status (5)

Country Link
JP (1) JPWO2022215400A1 (ja)
KR (1) KR20230116934A (ja)
CN (1) CN117062996A (ja)
DE (1) DE112022002051T5 (ja)
WO (1) WO2022215400A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317342U (ja) * 1986-07-19 1988-02-04
JPH0325038U (ja) * 1989-07-24 1991-03-14
JP2013113425A (ja) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd 流体圧緩衝器
JP5812650B2 (ja) * 2011-03-31 2015-11-17 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器
JP2016089898A (ja) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 流体圧緩衝器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812650U (ja) 1981-07-16 1983-01-26 株式会社 森藤機械製作所 集材機における原動機の遠隔式アイドリング制御装置
JP2021066573A (ja) 2019-10-25 2021-04-30 キヤノン株式会社 シート供給装置およびプリント装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317342U (ja) * 1986-07-19 1988-02-04
JPH0325038U (ja) * 1989-07-24 1991-03-14
JP5812650B2 (ja) * 2011-03-31 2015-11-17 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器
JP2013113425A (ja) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd 流体圧緩衝器
JP2016089898A (ja) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 流体圧緩衝器

Also Published As

Publication number Publication date
JPWO2022215400A1 (ja) 2022-10-13
DE112022002051T5 (de) 2024-03-07
KR20230116934A (ko) 2023-08-04
CN117062996A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US10619694B2 (en) Shock absorber
KR101850337B1 (ko) 완충기
US8413774B2 (en) Shock absorber
US9597941B2 (en) Cylinder apparatus
JP6465983B2 (ja) 緩衝器
US20200332855A1 (en) Damping valve and shock absorber
WO2018016132A1 (ja) 減衰力調整式緩衝器
WO2023067941A1 (ja) 緩衝器の製造方法
JP7416672B2 (ja) 減衰力調整式緩衝器及び減衰力調整弁
WO2022215400A1 (ja) 緩衝器
WO2022070642A1 (ja) 減衰バルブおよび緩衝器
JP7182706B2 (ja) 減衰力調整式緩衝器
JP7296268B2 (ja) 減衰力調整式緩衝器
JP7171495B2 (ja) 緩衝器
JP2017096453A (ja) 緩衝器
WO2020149224A1 (ja) 緩衝器
JP7378010B2 (ja) 緩衝器及びバルブ装置
WO2022168817A1 (ja) 緩衝器
WO2023084896A1 (ja) 減衰力調整式緩衝器、減衰バルブ、及びソレノイド
JP7450057B2 (ja) 制御弁装置
JP7129385B2 (ja) 減衰力調整式緩衝器
JP7485579B2 (ja) 減衰バルブおよび緩衝器
JP7129565B2 (ja) 減衰力調整式緩衝器
WO2022249623A1 (ja) 緩衝器及び緩衝器の製造方法
US20220065321A1 (en) Shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512865

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237023866

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18282051

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280023348.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002051

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784385

Country of ref document: EP

Kind code of ref document: A1