WO2022213961A1 - 等离子体增强原子层沉积设备及方法 - Google Patents

等离子体增强原子层沉积设备及方法 Download PDF

Info

Publication number
WO2022213961A1
WO2022213961A1 PCT/CN2022/085234 CN2022085234W WO2022213961A1 WO 2022213961 A1 WO2022213961 A1 WO 2022213961A1 CN 2022085234 W CN2022085234 W CN 2022085234W WO 2022213961 A1 WO2022213961 A1 WO 2022213961A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
gas
process chambers
air
precursor
Prior art date
Application number
PCT/CN2022/085234
Other languages
English (en)
French (fr)
Inventor
秦海丰
郑波
史小平
兰云峰
张文强
王昊
任晓艳
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2023560057A priority Critical patent/JP2024511818A/ja
Priority to KR1020237034803A priority patent/KR20230155000A/ko
Priority to EP22784027.9A priority patent/EP4321648A1/en
Publication of WO2022213961A1 publication Critical patent/WO2022213961A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to the field of semiconductor manufacturing, in particular, to a plasma enhanced atomic layer deposition apparatus and method.
  • Atomic Layer Deposition as a method of film deposition, has the advantages of good conformality, precise thickness control and excellent coverage of high aspect ratio pattern structures.
  • the plasma enhanced atomic layer deposition (Plasma Enhanced Atomic Layer Deposition, hereinafter referred to as PEALD) can avoid the use of higher process temperature, and the choice of precursors is wider, which is a good supplement to the ALD method.
  • both ALD equipment and PEALD equipment have prominent problems of low productivity.
  • an existing method is to use two process chambers to process two wafers at the same time.
  • two process chambers are also Process repeatability between chambers (including film thickness and thickness uniformity, film densification performance, etc.) puts forward requirements, for example, the difference in film thicknesses deposited simultaneously between two process chambers should be less than a specified threshold (for example, less than 1 Angstrom) .
  • the chamber pressure and RF-related parameters of the two process chambers cannot be individually controlled, resulting in limitations in process debugging.
  • the above differences cannot be eliminated by individually adjusting the chamber pressure and RF-related parameters (such as RF power, frequency, glow time, etc.) of each process chamber,
  • the flexibility of the process debugging means is reduced.
  • the two process chambers must perform the plasma reaction step at the same time, so that other steps (precursor feeding, purging, etc.) must also be performed simultaneously, resulting in a single process method and poor process matching between chambers.
  • each chamber needs to be equipped with a separate precursor source (such as a source bottle), but this will increase the cost of the precursor source and the complexity of the chamber structure .
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a plasma-enhanced atomic layer deposition apparatus and method, which can individually adjust the chamber pressure and RF-related parameters of each process chamber, so as not only to Process debugging means are added, process matching and process mode diversification are improved, and each chamber does not need to be equipped with a precursor supply device, thereby reducing equipment costs.
  • a plasma enhanced atomic layer deposition equipment which includes two process chambers, a precursor supply device, a reaction gas supply device, a radio frequency device and a pressure adjustment device, wherein,
  • the precursor supply device is in communication with the gas inlet structure of the two process chambers, and is used for selectively supplying a precursor or a purge gas to at least one of the two process chambers;
  • the reaction gas supply device is in communication with the gas inlet structures of the two process chambers, and is used for selectively supplying the reaction gas to at least one of the two process chambers;
  • the radio frequency device is connected to the two process chambers for selectively outputting radio frequency power to at least one of the two process chambers;
  • the pressure regulating device communicates with the exhaust ports of the two process chambers, and is used to independently control the chamber pressures of the two process chambers.
  • the precursor supply device includes a precursor source, an intake line group, a switch line group, and an air extraction device, wherein the precursor source passes through the switch line group and the intake line group. communication, the air intake pipeline group is communicated with the air intake structures of the two process chambers;
  • the precursor source is used to provide the precursor or purge gas
  • the switching pipeline group is used to selectively communicate the precursor source with the intake pipeline group or the air extraction device;
  • the set of intake lines is used to selectively communicate the precursor source with at least one of the two process chambers.
  • the intake pipeline group includes a first intake branch and a second intake branch, wherein the outlet ends of the first intake branch and the second intake branch are respectively connected with the two other branches.
  • the intake structure of the process chamber is connected, and the intake ends of the first intake branch and the second intake branch are both communicated with the switching pipeline group; and, in the first intake branch A first on-off valve and a second on-off valve are respectively arranged on the second intake branch and the second intake branch.
  • the air inlet pipeline group further includes a first dilution branch and a second dilution branch, wherein the air inlet ends of the first dilution branch and the second dilution branch are both connected to the air inlet for supplying the dilution gas.
  • the diluent gas source is connected to the first diluting branch, the gas outlet ends of the first diluting branch and the second diluting branch are respectively connected to the first intake branch and the second intake branch;
  • a first flow controller and a second flow controller are respectively arranged on the second dilution branch.
  • the air intake pipeline group further includes two air mixing structures, both of which have a first air intake end, a second air intake end and an air outlet end, wherein the two air mixing structures
  • the first air intake end of the structure is respectively connected with the air outlet ends of the first air intake branch and the second air intake branch; the air outlet ends of the two air mixing structures are respectively connected with the two process
  • the air inlet structures of the chamber are in communication; the second air inlet ends of the two gas mixing structures are used for communicating with a balance gas source for providing a balance gas and the reaction gas supply device.
  • each of the air-mixing structures includes an air-mixing block and an air-mixing pipeline, wherein the air-mixing block is provided with an air-mixing cavity, and the first air-mixing block is formed on the outer surface of the air-mixing block.
  • the air inlet end and the second air inlet end, and an air outlet end is formed on the outer surface of the air mixing block, and the air outlet end is communicated with the air inlet end of the air mixing pipeline, and the air outlet end of the air mixing pipeline
  • the gas outlet end used as the gas mixing structure communicates with the gas inlet structure of the process chamber.
  • the switching pipeline group includes a first switching branch and a second switching branch, wherein both ends of the first switching branch are respectively communicated with the precursor source and the intake pipeline group. ; both ends of the second switching branch are respectively communicated with the first switching branch and the air extraction device; and, on the first switching branch and the second switching branch, a third shut-off valve and fourth on-off valve.
  • the precursor source includes a carrier gas main circuit, a source bottle, a first carrier gas branch and a second carrier gas branch, wherein the inlet end of the carrier gas main circuit is used to provide a carrier gas.
  • the carrier gas source is communicated with the carrier gas source, and the gas outlet end of the carrier gas main circuit is communicated with the switching pipeline group; and a fifth on-off valve and a third mass flow controller are arranged on the carrier gas main circuit;
  • the inlet end of the first carrier gas branch is communicated with the carrier gas main circuit at the upstream position of the fifth on-off valve, and the gas outlet end of the first carrier gas branch is connected to the source bottle.
  • the inlet end is communicated;
  • the outlet end of the second carrier gas branch is communicated with the carrier gas main circuit at the downstream position of the fifth on-off valve, and the inlet end of the second carrier gas branch is connected to The gas outlet end of the source bottle is connected; and a sixth on-off valve and a seventh on-off valve are respectively arranged on the first carrier gas branch and the second carrier gas branch;
  • the source bottle is used to store the precursor.
  • the radio frequency device includes a first matcher, a second matcher, a first radio frequency power supply, and a second radio frequency power supply, wherein the first radio frequency power supply passes through the first matcher and one of the processes.
  • the chambers are electrically connected; the second radio frequency power supply is electrically connected with the other one of the process chambers through the second matcher.
  • the pressure regulating device includes a first exhaust branch and a second exhaust branch, wherein the intake ends of the first exhaust branch and the second exhaust branch are respectively connected with the two other exhaust branches.
  • the exhaust port of the process chamber is in communication, and the outlet ends of the first exhaust branch and the second exhaust branch are both communicated with the air extraction device; and, in the first exhaust branch and the second exhaust branch A first isolation valve and a second isolation valve are respectively arranged on the gas branch; a first flow regulating valve and a second flow regulating valve are respectively arranged on the first exhaust branch and the second exhaust branch.
  • the plasma-enhanced atomic layer deposition apparatus further includes a remote plasma cleaning device, a first cleaning pipeline and a second cleaning pipeline, and both of the gas mixing structures further have a third air inlet end, wherein , the inlet ends of the first cleaning pipeline and the second cleaning pipeline are connected with the remote plasma cleaning device; the gas outlet ends of the first cleaning pipeline and the second cleaning pipeline are respectively connected with the two the third inlet end is communicated; and a third isolation valve and a fourth isolation valve are respectively provided on the first cleaning pipeline and the second cleaning pipeline;
  • the remote plasma cleaning device is used for providing plasma capable of cleaning the process chamber.
  • an embodiment of the present invention also provides a plasma-enhanced atomic layer deposition method, which uses the above-mentioned plasma-enhanced atomic layer deposition apparatus provided by the embodiment of the present invention to simultaneously deposit films on two wafers; the The plasma enhanced atomic layer deposition method includes the following steps:
  • the steps S1 to S4 are performed cyclically until the thicknesses of the films deposited on the two wafers reach the target thickness.
  • the plasma-enhanced atomic layer deposition apparatus and method provided by the embodiments of the present invention can independently control the chamber pressures of the two process chambers by using the pressure regulating device communicated with the exhaust ports of the two process chambers; and , by using the radio frequency device connected with the two process chambers to selectively output radio frequency power to at least one process chamber of the two process chambers, the radio frequency related parameters of each process chamber can be adjusted individually, thereby not only increasing the
  • the process debugging method improves the process matching, and the two process chambers do not need to perform various process steps simultaneously, thereby improving the diversification of process methods, and there is no need to equip each chamber with a precursor supply device, that is, using a precursor
  • the supply device communicates with the gas inlet structure of the two process chambers to selectively supply a precursor or a purge gas to at least one of the two process chambers, thereby reducing equipment costs.
  • FIG. 1A is a structural diagram of a conventional plasma-enhanced atomic layer deposition apparatus
  • FIG. 1B is a flowchart of a deposition method using the plasma-enhanced atomic layer deposition apparatus in FIG. 1A;
  • FIG. 2 is a schematic block diagram of a plasma-enhanced atomic layer deposition apparatus provided by an embodiment of the present invention
  • FIG. 3 is a structural diagram of a plasma-enhanced atomic layer deposition apparatus provided by an embodiment of the present invention.
  • FIG. 4 is an enlarged view of a precursor source used in an embodiment of the present invention.
  • FIG. 5 is an enlarged view of the intake pipeline group adopted in the embodiment of the present invention.
  • FIG. 6 is a flowchart of a plasma enhanced atomic layer deposition method provided by an embodiment of the present invention.
  • FIG. 7 is another flowchart of the plasma enhanced atomic layer deposition method according to an embodiment of the present invention.
  • an existing plasma-enhanced atomic layer deposition (Plasma Enhanced Atomic Layer Deposition, hereinafter referred to as PEALD) equipment which includes two process chambers (1a, 1b) that can simultaneously perform deposition processes on wafers , wherein the exhaust gas discharged from the two process chambers (1a, 1b) is merged into the main exhaust pipeline 11, and the exhaust gas is transported to the exhaust device (not shown in the figure) by the main exhaust pipeline 11.
  • an isolation valve 12 and a flow regulating valve 13 are also provided on the main exhaust pipeline 11, wherein the isolation valve 12 is used to connect or disconnect the main exhaust pipeline 11; the flow regulating valve 13 is used to adjust the main exhaust pipeline 11.
  • the gas flow rate in the gas pipeline 11 can be controlled so as to control the gas pressure in the two process chambers (1a, 1b) at the same time.
  • the two process chambers (1a, 1b) are respectively communicated with the gas supply device 16 and the remote plasma cleaning device 17 through their respective gas inlet pipelines, wherein the gas supply device 16 is used to supply the two process chambers (1a) at the same time.
  • 1b) Provide process gases (including but not limited to precursors, reactive gases and purge gases); the remote plasma cleaning device 17 is used to accumulate a certain thickness of the films in the two process chambers (1a, 1b), Two process chambers (1a, 1b) are simultaneously supplied with plasma capable of cleaning the process chambers (eg, plasma formed by ionization of NF3 gas).
  • the two process chambers (1a, 1b) share a matcher 14 and a radio frequency power supply 15, and the radio frequency power supply 15 simultaneously applies RF power to the two process chambers (1a, 1b) through the matcher 14 to excite the two process chambers (1a, 1b).
  • the reactive gases in the process chambers (1a, 1b) form plasma.
  • the chamber pressures of the two process chambers (1a, 1b) cannot be individually controlled, resulting in process debugging problems. limitation. For example, when there are differences in film thicknesses deposited between two process chambers, the above differences cannot be eliminated by individually adjusting the chamber pressure of each process chamber, thereby reducing the flexibility of the process debugging means.
  • the isolation valve 12 is opened, the two process chambers (1a, 1b) still have the possibility to communicate with each other via the exhaust pipe, so that no real physical isolation is achieved. When debris or particles occur in one process chamber Abnormal conditions such as an increase in the number are likely to adversely affect another process chamber.
  • each chamber needs to be equipped with a separate precursor source (such as a source bottle), so as to realize the simultaneous passage of the precursors into the two process chambers (1a, 1b), but this in turn increases the cost of the precursor source and the complexity of the chamber structure.
  • a separate precursor source such as a source bottle
  • An embodiment of the present invention further provides a plasma enhanced atomic layer deposition equipment, which includes two process chambers (2a, 2b), Precursor supply device 3, reactive gas supply device 6, radio frequency device 8 and pressure regulating device 7, wherein, the two process chambers (2a, 2b) are independent chambers that are physically isolated, and each process chamber has a A gas structure 21, the air intake structure 21 is, for example, a gas distribution device arranged at the top of the chamber to uniformly deliver the process gas to the interior of the chamber; and each process chamber is also provided with a base 22 for The wafer S is mounted on the wafer S, and the temperature of the wafer S is controlled.
  • the above-mentioned precursor supply device 3 is connected to the air inlet structure 21 of the two process chambers (2a, 2b) for selectively supplying a precursor or blowing gas to at least one of the two process chambers (2a, 2b) Sweep gas. That is, the two process chambers ( 2a, 2b ) share one precursor supply device 3 .
  • the above-mentioned precursors are selected according to the composition and characteristics of the film layer material to be deposited, and the precursors can be delivered into the process chamber in gaseous form with or without the use of a carrier gas.
  • the layer material to be deposited is silicon dioxide (SiO2)
  • SAM24 bis(diethylamino)silane
  • the above-mentioned precursor supply device 3 includes a precursor source 30, an intake pipeline group 5, a switching pipeline group 4 and an air extraction device 10b, wherein the precursor source 30 passes through the switching pipeline group.
  • 4 is communicated with the intake pipeline group 5, which is communicated with the intake structures 21 of the two process chambers (2a, 2b); the precursor source 30 is used to provide the above-mentioned precursor or purge gas; the switching pipe
  • the road group 4 is used to selectively connect the precursor source 30 with the intake line group 5 or the air extraction device 10b;
  • the intake line group 5 is used to selectively connect the precursor source 30 with the two process chambers (2a, 2a, 10b). At least one of 2b) is connected.
  • the precursor provided by the precursor source 30 can be delivered to the intake pipeline group 5 , and to the two via the intake pipeline group 5 .
  • the switching pipeline group 4 includes a first switching branch 41a and a second switching branch 41b, wherein two ends of the first switching branch 41a are respectively connected to the precursor
  • the body source 30 is communicated with the intake pipeline group 5; both ends of the second switching branch 41b are respectively communicated with the first switching branch 41a and the air extraction device 10b; and, in the first switching branch 41a and the second switching branch 41b is provided with a third on-off valve 42a and a fourth on-off valve 42b, respectively.
  • the third on-off valve 42a is opened and the fourth on-off valve 42b is closed, the first switching branch 41a is turned on, and the second switching branch 41b is turned off.
  • the switching branch 41a flows into the intake pipeline group 5; when the third on-off valve 42a is closed and the fourth on-off valve 42b is opened, the first switching branch 41a is disconnected, and the second switching branch 41b is connected, at this time
  • the precursor output from the precursor source 30 flows into the air extraction device 10b through the second switching branch 41b.
  • the precursor source 30 includes a main carrier gas circuit 31 , a source bottle 32 , a first carrier gas branch 35 a and a second carrier gas branch 35 b , wherein,
  • the inlet end of the carrier gas main circuit 31 (towards the left side in FIG. 4 ) is used to communicate with the carrier gas source (not shown in the figure) that provides the carrier gas C1, and the gas outlet end of the carrier gas main circuit 31 (in the figure 4 toward the right) is communicated with the above-mentioned switching pipeline group 4 (that is, the intake end of the first switching branch 41a shown in FIG.
  • valve 33 and the third mass flow controller 34 wherein, the fifth on-off valve 33 is used to connect or disconnect the carrier gas main circuit 31; the third mass flow controller 34 is used to control the carrier gas in the main carrier gas circuit 31.
  • the inlet end of the first carrier gas branch 35a is communicated with the main carrier gas circuit 31 at the upstream position of the fifth on-off valve 33, and the outlet end of the first carrier gas branch 35a is communicated with the inlet end of the source bottle 32; and , a sixth on-off valve 36 and a seventh on-off valve 37 are respectively provided on the first carrier gas branch 35a and the second carrier gas branch 35b.
  • the sixth on-off valve 36 is used to connect or disconnect the first carrier gas branch 35a
  • the seventh on-off valve 37 is used to connect or disconnect the second carrier gas branch 35b.
  • the source bottle 32 is used to store the precursor.
  • the initial state of the precursor stored in the source bottle 32 may be liquid, solid or gaseous, and during the process, the precursor in the source bottle 32 is output in gaseous form with or without a carrier gas.
  • the carrier gas main circuit 31 is connected, and the first carrier gas branch 35a and the second carrier gas branch The circuit 35b is disconnected, and at this time the carrier gas C1 flows to the switching pipeline group 4 via the carrier gas main circuit 31 without passing through the source bottle 32, that is, the precursor in the source bottle 32 is not output.
  • the pipeline and process chamber through which the carrier gas C1 flows can be used for purging, and the carrier gas C1 is used as the above-mentioned purging gas at this time.
  • the carrier gas main circuit 31 is disconnected, and the first carrier gas branch 35a and the second carrier gas branch 35b are connected
  • the carrier gas C1 flows to the source bottle 32 through the front section of the carrier gas main circuit 31 located upstream of the fifth on-off valve 33 and the first carrier gas branch 35a, that is, the carrier gas C1 passes through the source bottle 32 to be able to carry the source bottle 32.
  • the precursor in the bottle 32 is output through the second carrier gas branch 35b and the carrier gas main path 31 at the latter stage downstream of the fifth on-off valve 33 .
  • the switching pipeline set 4 connects the precursor source 30 with the intake pipeline set 5
  • the carrier gas C1 carrying the precursor can be delivered to the intake pipeline set 5, and passes through the intake pipeline set 5 is delivered to at least one of the two process chambers (2a, 2b).
  • the fifth on-off valve 33 , the sixth on-off valve 36 and the seventh on-off valve 37 are all quick on-off valves, so as to realize quick on-off of corresponding pipelines.
  • other on-off valves may also be used according to different process requirements, which are not particularly limited in the embodiment of the present invention.
  • an intermediate pipeline 35c is also connected between the first carrier gas branch 35a and the second carrier gas branch 35b, and a first automatic on-off valve 39c is set on the intermediate pipeline 35c.
  • the automatic on-off valve 39c is opened, the intermediate pipeline 35c is connected.
  • the carrier gas C1 does not pass through the source bottle 32, and the source bottle
  • the precursors in 32 can be output and flow to the switch line group 4 .
  • a second automatic on-off valve 39a may be respectively provided and a third automatic on-off valve 39b to realize automatic control of the first carrier gas branch 35a and the second carrier gas branch 35b.
  • a first manual valve 38a and a second manual valve 38b may also be provided on the first carrier gas branch 35a and the second carrier gas branch 35b, respectively.
  • the above-mentioned settings of the automatic on-off valve and the manual valve are beneficial to improve the flexibility and reliability of the control.
  • the first automatic on-off valve 39c, the second automatic on-off valve 39a and the third automatic on-off valve 39b are, for example, pneumatic valves.
  • the source bottle 32 also has an injection end, and the injection end is used for the liquid transmission system with the precursor that supplements the liquid state
  • the above-mentioned injection end is connected to a liquid transmission system (not shown in the figure), for example, through an injection pipeline 321 , and an eighth on-off valve 322 is provided near the injection end of the injection pipeline 321 .
  • the precursor source 30 uses the source bottle 32 and the carrier gas C1 to supply the precursor.
  • the embodiment of the present invention is not limited to this. In practical applications, the precursor source Any other gas supply structures, such as gas cabinets, can also be used.
  • the intake pipeline group 5 includes a first intake branch 51a and a second intake branch 51b, wherein the first intake branch 51a and the second intake branch 51a
  • the air outlet ends of the air intake branches 51b are respectively communicated with the air intake structures 21 of the two process chambers (2a, 2b).
  • the two gas mixing structures (55a, 55b) are communicated with the pipelines used to transport the precursor (and/or carrier gas) and other gases (such as dilution gas, balance gas, etc.), using After these gases are separately or mixed, they are respectively passed into the two process chambers (2a, 2b).
  • the above-mentioned air mixing structure may not be provided according to the specific situation.
  • the air intake structures 21 of the chambers (2a, 2b) communicate with each other.
  • the intake ends of the first intake branch 51a and the second intake branch 51b are both communicated with the outlet ends of the switching pipeline group 4 (ie, the first switching branch 41a shown in FIG. 3 ); and, as shown in As shown in FIG. 5, a first on-off valve 52a and a second on-off valve 52b are respectively provided on the first intake branch passage 51a and the second intake branch passage 51b.
  • a first on-off valve 52a and a second on-off valve 52b are respectively provided on the first intake branch passage 51a and the second intake branch passage 51b.
  • the above two air-mixing structures (55a, 55b) both have a first air inlet end, a second air inlet end and an air outlet end, wherein the two air-mixing structures (55a, 55b)
  • the first air intake ends of the two gas mixture structures (55a, 55b) are respectively connected with the air outlet ends of the first air intake branch 51a and the second air intake branch 51b; , 2b)
  • the inlet structure 21 is connected; the second inlet ends of the two gas mixing structures (55a, 55b) are used to connect with the balance gas source and the reaction gas supply device 6 for providing the balance gas.
  • the second inlet ends of the two gas mixing structures (55a, 55b) are respectively connected to the balance gas source through two balance gas delivery units (18a, 18b), and the two balance gas delivery units (18a, 18b) It is used to deliver the equilibrium gas to the two process chambers (2a, 2b) independently.
  • the deposition process is performed by alternately delivering the precursors into the two process chambers (2a, 2b)
  • the moment of switching between the two process chambers will cause the process chamber to stop delivering the precursors.
  • the intake air volume fluctuates greatly, which causes the chamber pressure to fluctuate greatly, and the stability of the process gas flow field becomes worse. For this reason, it is possible to start to stop the delivery at the moment of switching between the two process chambers.
  • the balance gas is delivered in the process chamber of the precursor, and the intake volume of the balance gas is equal to the intake volume of the precursor, so as to avoid the large fluctuation of the chamber pressure caused by the fluctuation of the intake volume. Improve the stability of the process gas flow field.
  • the balance gas is, for example, argon (Ar) or other inert gas.
  • FIGS 3 and 5 only schematically show two balance gas delivery units (18a, 18b), but do not show the specific structures of the two.
  • the on-off valve on the gas pipeline wherein the intake end of the balanced gas intake pipeline is used to connect with the balanced gas source, and the gas outlet of the balanced gas intake pipeline is connected to the corresponding gas mixing structure.
  • a flow controller may also be provided on the balance gas intake line to control the gas flow in the balance gas intake line.
  • the above-mentioned two balance gas delivery units (18a, 18b) can also be directly connected to the gas inlet structures 21 of the two process chambers (2a, 2b), respectively, without passing through the gas mixing structure (55a, 2b). 55b).
  • the above-mentioned reaction gas supply device 6 is communicated with the gas inlet structures 21 of the two process chambers (2a, 2b), for simultaneously or respectively supplying the two process chambers (2a, 2b) to the gas inlet structure 21. 2b) Provide reaction gas.
  • the plasma including but not limited to free radicals
  • the plasma formed by the reactive gas can chemically react with the precursor adsorbed on the wafer S, thereby forming a desired film layer on the surface of the wafer S.
  • the layer material to be deposited is silicon dioxide (SiO2), and SAM24 (bis(diethylamino)silane) is used as the precursor, oxygen (O2) can be selected as the reactive gas.
  • the reactive gas supply device 6 includes a first reactive gas delivery unit 6a and a second reactive gas delivery unit 6b, which can be connected to two processes through two gas mixing structures (55a, 55b)
  • the gas inlet structures 21 of the chambers (2a, 2b) communicate with each other, and are used for independently feeding the reaction gases to the two process chambers (2a, 2b).
  • the specific structures include a reaction gas inlet pipeline and a The on-off valve on the reactant gas intake pipeline, wherein the intake end of the reactant gas intake pipeline is used to communicate with the reactant gas source, and the gas outlet end of the reactant gas intake pipeline is communicated with the corresponding gas mixing structure.
  • a flow controller can also be provided on the reaction gas inlet line to control the gas flow in the reaction gas inlet line.
  • first reaction gas delivery unit 6a and second reaction gas delivery unit 6b can also be directly communicated with the gas inlet structures 21 of the two process chambers (2a, 2b) without passing through the gas mixing structure (55a, 55b).
  • each air-mixing structure may have various structures.
  • each air-mixing structure includes an air-mixing block 551 and an air-mixing pipeline 552 , wherein the air-mixing block 551 is provided with There is an air mixing chamber (not shown in the figure), and the first air inlet end, the second air inlet end and the air outlet end are formed on the outer surface of the air mixing block 551.
  • the air outlet end is connected to the air inlet of the air mixing pipeline 552
  • the gas outlet end of the gas mixing pipeline 552 is used as the gas outlet end of the gas mixing structure to communicate with the air inlet structure 21 of the process chamber.
  • the number of the gas inlet ends of the gas mixing structure corresponds to the number of process gases that need to be introduced into the process chamber.
  • the above-mentioned balance gas and/or reaction gas may also be introduced without going through the above-mentioned gas mixing structure.
  • the intake pipeline group 5 further includes a first dilution branch 53a and a second dilution branch 53b, wherein the first dilution branch 53a and the second dilution branch
  • the inlet ends of the passages 53b are all communicated with a dilution gas source (not shown in the figure) for providing the dilution gas
  • the outlet ends of the first dilution branch 53a and the second dilution branch 53b are respectively connected with the first inlet branch.
  • the dilution gas output from the dilution gas source may flow into the first intake branch 51a and the second intake branch 51b via the first dilution branch 53a and the second dilution branch 53b, respectively, and be mixed with the precursor to to dilution.
  • the dilution gas is, for example, argon (Ar) or other inert gas.
  • the radio frequency device 8 is connected to the two process chambers (2a, 2b) for selectively outputting radio frequency power to at least one of the two process chambers (2a, 2b).
  • the radio frequency device 8 includes a first matcher 81a, a second matcher 81b, a first radio frequency power supply 82a and a second radio frequency power supply 82b, wherein the first radio frequency power supply 82a
  • One of the process chambers ie, the first process chamber 2a
  • the second RF power source 82b is connected to the other of the process chambers (ie, the second process chamber) through the second matcher 81b Chamber 2b) Electrical connection.
  • the RF-related parameters (such as RF power, frequency, ignition time, etc.) of the two process chambers (2a, 2b) can be adjusted independently, Thereby, the means of process debugging is increased, and the process matching is improved. Moreover, since the respective radio frequency power sources of the two process chambers (2a, 2b) can be turned on at different times, the two process chambers (2a, 2b) do not need to perform various process steps simultaneously, thereby improving the diversification of process modes.
  • each chamber it is not necessary to equip each chamber with a precursor supplying device, and by using the above-mentioned precursor supplying device adopted in this embodiment, the precursor can be supplied to one of the corresponding process chambers at different times, that is, alternately The precursors are delivered to the two process chambers (2a, 2b), thereby meeting the requirements for process matching and reducing equipment costs.
  • the two process chambers (2a, 2b) are separately equipped with a matcher and a radio frequency power supply, however, the embodiment of the present invention is not limited to this.
  • a matcher and a radio frequency power supply are provided, and the matching device and the radio frequency power supply are selectively connected to one of the process chambers by setting the corresponding switching device, which can also be realized at different times to the two process chambers ( 2a, 2b)
  • the radio frequency power is loaded, the two process chambers (2a, 2b) do not need to perform various process steps simultaneously, thereby improving the diversification of process modes.
  • the pressure regulating device 7 communicates with the exhaust ports of the two process chambers (2a, 2b), and is used to independently control the chamber pressures of the two process chambers (2a, 2b). In this way, when there is a difference in the thickness of the films deposited in the two process chambers (2a, 2b), the pressure adjustment device 7 can independently adjust the chamber pressure of each process chamber to eliminate the above difference, thereby improving the process debugging means. flexibility.
  • the pressure regulating device 7 includes a first exhaust branch 71a and a second exhaust branch 71b, wherein the intake air of the first exhaust branch 71a and the second exhaust branch 71b The ends are respectively connected with the exhaust ports of the two process chambers (2a, 2b), and the outlet ends of the first exhaust branch 71a and the second exhaust branch 71b are both communicated with the air extraction device 10a;
  • the exhaust branch 71a and the second exhaust branch 71b are respectively provided with a first isolation valve 72a and a second isolation valve 72b to independently control the first exhaust branch 71a and the second exhaust branch 71b
  • the first exhaust branch 71a and the second exhaust branch 71b are also provided with a first flow regulating valve 73a and a second flow regulating valve 73b, respectively, to independently adjust the first exhaust branch The gas flow in the passage 71a and the second exhaust branch passage 71b.
  • the physical isolation of the two process chambers (2a, 2b) can be truly achieved, thereby When abnormal conditions such as debris or increased particle count occur in one process chamber, adverse effects on the other process chamber can be avoided. Meanwhile, by disposing the first flow regulating valve 73a and the second flow regulating valve 73b on the first exhaust branch 71a and the second exhaust branch 71b, respectively, the two process chambers (2a, 2b) can be independently controlled.
  • each process can be realized by adjusting the first flow control valve 73a and the second flow control valve 73b individually.
  • the independent control of the chamber pressure of the chambers eliminates the above differences, thereby improving the flexibility of the process debugging means, and further improving the process matching of the two process chambers (2a, 2b).
  • the pressure regulating device 7 is not limited to the solutions provided by the above embodiments, and other arbitrary structures may also be used in practical applications to realize the independent control of the chamber pressure of each process chamber.
  • the above-mentioned air extraction device 10a and air extraction device 10b may be the same air extraction device, that is, the switching pipeline group 4 and the two process chambers (2a, 2b) share the same air extraction device.
  • the evacuation device is, for example, a vacuum pump.
  • the plasma enhanced atomic layer deposition apparatus further includes a remote plasma cleaning device 9, a first cleaning pipeline 91a and a second cleaning pipeline 91b, and both of the two gas mixing structures (55a, 55b) also have a Three inlet ends, wherein the inlet ends of the first cleaning pipeline 91a and the second cleaning pipeline 91b are both connected to the remote plasma cleaning device 9; the gas outlet ends of the first cleaning pipeline 91a and the second cleaning pipeline 91b They are respectively communicated with the above-mentioned third intake ends of the two air mixing structures (55a, 55b).
  • the gas outlet ends of the first cleaning pipeline 91a and the second cleaning pipeline 91b can also be directly communicated with the air intake structures 21 of the two process chambers (2a, 2b).
  • a third isolation valve 92a and a fourth isolation valve 92b are respectively provided on the gas outlet ends of the first cleaning pipeline 91a and the second cleaning pipeline 91b; the remote plasma cleaning device 9 is used in the two process chambers ( After the thin films in 2a, 2b) are accumulated to a certain thickness, at least one of the two process chambers (2a, 2b) is supplied with plasma capable of cleaning the process chamber (for example, formed by ionization of NF3 gas). plasma).
  • any one process chamber can be cleaned individually, or two process chambers can be cleaned at the same time, so that the flexibility of the cleaning method can be improved.
  • the process gas can be prevented from diffusing to the remote plasma cleaning device 9 by closing the third isolation valve 92a and the fourth isolation valve 92b, thereby improving the utilization rate of the process gas and improving the process gas flow field stability.
  • an embodiment of the present invention further provides a plasma-enhanced atomic layer deposition method, which uses the above-mentioned plasma-enhanced atomic layer deposition apparatus provided by the embodiment of the present invention to deposit films on two wafers simultaneously.
  • the plasma enhanced atomic layer deposition method includes:
  • Step S1 the two process chambers (2a, 2b) respectively perform step S11 and step S12, and the two may be performed synchronously or separately at different times.
  • step S11 the precursor is introduced into the first process chamber 2a, so that the precursor is adsorbed on the surface of the wafer S;
  • step S12 the reactive gas is introduced into the second process chamber 2b, and the radio frequency power is outputted to the second process chamber 2b to excite the reactive gas to form plasma, and the plasma can react with the precursor adsorbed on the surface of the wafer S , to form the desired film layer on the surface of the wafer S.
  • the fourth on-off valve 42b, the fifth on-off valve 33 and the second on-off valve 42b are closed.
  • the on-off valve 52b is opened, and the third on-off valve 42a, the sixth on-off valve 36, the seventh on-off valve 37 and the first on-off valve 52a are opened at the same time, so that the precursor ( carried by carrier gas C1).
  • the time for introducing the precursor into the first process chamber 2a is generally shorter than the process time of step S11.
  • the third on-off valve 42a is not kept open all the time in the process of step S11.
  • the third on-off valve 42a is opened, and the fourth on-off valve 42b is closed at the same time, at this time, the first process chamber 2a is opened
  • the third on-off valve 42a is closed, and the fourth on-off valve 42b is opened at the same time, at this time, the precursor flows into the exhaust gas through the second switching branch 41b Device 10b.
  • the third on-off valve 42a can also be kept open during step S11 according to different needs, which is not particularly limited in the embodiment of the present invention.
  • the first dilution branch 53a and the second dilution branch 53b are used to simultaneously feed the dilution gas to the two process chambers (2a, 2b); the balance gas delivery unit 18b is used to feed the second process chamber
  • the chamber 2b is fed with a balance gas to ensure that the air intakes of the two process chambers (2a, 2b) are equal; the second reaction gas delivery unit 6b is used to feed the reaction gas into the second process chamber 2b, and the second radio frequency is turned on
  • the power supply 82b is used to apply radio frequency power to the second process chamber 2b through the second matcher 81b, so as to excite the reaction gas to form plasma.
  • Step S2 the two process chambers (2a, 2b) respectively perform step S21 and step S22, and the two may be performed synchronously or separately at different times.
  • Both steps S21 and S22 are used for purging the precursor supply device and the two process chambers (2a, 2b) in the plasma enhanced atomic layer deposition apparatus.
  • the fourth on-off valve 42b, the fifth on-off valve 33, the first on-off valve 42b, the first on-off valve 42b, the first on-off valve 42b, the The on-off valve 52a, the second on-off valve 52b, the third on-off valve 42a, and the sixth on-off valve 36 and the seventh on-off valve 37 are closed at the same time, so as to realize the corresponding pipeline and the two process chambers (2a, 2b) Purging is performed.
  • the first dilution branch 53a and the second dilution branch 53b are used to pass the dilution gas into the two process chambers (2a, 2b) at the same time, which can also play a purging effect;
  • the balance gas delivery units (18a, 18b) respectively feed the balance gas to the first process chamber 2a and the second process chamber 2b at the same time, which can also play the role of purging; stop feeding the reaction gas to the second process chamber 2b .
  • Step S3 the two process chambers (2a, 2b) respectively perform step S31 and step S32, and the two may be performed synchronously or separately at different times.
  • step S31 a reactive gas is introduced into the first process chamber 2a, and radio frequency power is outputted to the first process chamber 2a to excite the reactive gas to form a plasma, and the plasma can interact with the precursor adsorbed on the surface of the wafer S. body reaction to form the desired film layer on the surface of wafer S;
  • step S32 the precursor is introduced into the second process chamber 2 b so that the precursor is adsorbed on the surface of the wafer S .
  • the fourth on-off valve 42b, the fifth on-off valve 33 and the first on-off valve 42b are closed.
  • the on-off valve 52a is opened, and the third on-off valve 42a, the sixth on-off valve 36, the seventh on-off valve 37 and the second on-off valve 52b are opened at the same time, so that the precursor ( carried by carrier gas C1).
  • the first dilution branch 53a and the second dilution branch 53b to simultaneously introduce dilution gas into the two process chambers (2a, 2b); use the balance gas delivery unit 18a to feed the first process chamber
  • the chamber 2a is fed with a balance gas to ensure that the air intakes of the two process chambers (2a, 2b) are equivalent; the first reactive gas delivery unit 6a is used to feed the reactive gas into the first process chamber 2a, and the first radio frequency is turned on
  • the power supply 82a is used to apply radio frequency power to the first process chamber 2a through the first matcher 81a, so as to excite the reactive gas to form plasma.
  • Step S4 the two process chambers (2a, 2b) respectively perform step S41 and step S42, and the two may be performed synchronously or separately at different times.
  • Steps S41 and S42 are the same as the above-mentioned steps S21 and S22, and the description is not repeated here.
  • steps S1 to S4 are performed cyclically until the thicknesses of the films deposited on the two wafers reach the target thickness.
  • the two process chambers (2a, 2b) do not need to perform various process steps simultaneously, thereby improving the diversification of process modes. Moreover, it is not necessary to equip each chamber with a precursor supplying device, and by using the above-mentioned precursor supplying device adopted in this embodiment, the precursor can be supplied to one of the corresponding process chambers at different times, that is, alternately The precursors are delivered to the two process chambers (2a, 2b), thereby meeting the requirements for process matching and reducing equipment costs.
  • Embodiments of the present invention further provide a plasma-enhanced atomic layer deposition method. Specifically, as shown in FIG. 7 , the method includes steps S1' to S4', wherein,
  • Step S1' and the two process chambers (2a, 2b) respectively perform step S11' and step S12', which can be performed synchronously or separately at different times.
  • step S11' a reactive gas is introduced into the first process chamber 2a, and radio frequency power is outputted to the first process chamber 2a to excite the reactive gas to form plasma, and the plasma can interact with the adsorbed gas on the surface of the wafer S.
  • the precursor reacts to form the desired film layer on the surface of the wafer S;
  • step S12' the precursor is introduced into the second process chamber 2b, so that the precursor is adsorbed on the surface of the wafer S.
  • the fourth on-off valve 42 b , the fifth on-off valve 33 and the The first on-off valve 52a is simultaneously opened, and the third on-off valve 42a, the sixth on-off valve 36, the seventh on-off valve 37 and the second on-off valve 52b are simultaneously opened, so as to realize the separate introduction of the precursor into the second process chamber 2b body (carried by carrier gas C1).
  • the first dilution branch 53a and the second dilution branch 53b to simultaneously introduce dilution gas into the two process chambers (2a, 2b); use the balance gas delivery unit 18a to feed the first process chamber
  • the chamber 2a is fed with a balance gas to ensure that the air intakes of the two process chambers (2a, 2b) are equivalent; the first reactive gas delivery unit 6a is used to feed the reactive gas into the first process chamber 2a, and the first radio frequency is turned on
  • the power supply 82a is used to apply radio frequency power to the first process chamber 2a through the first matcher 81a, so as to excite the reactive gas to form plasma.
  • Step S2' the two process chambers (2a, 2b) respectively perform step S21' and step S22', and the two may be performed synchronously or separately at different times.
  • step S21' and step S22' are used for purging the precursor supply device and the two process chambers (2a, 2b) in the plasma enhanced atomic layer deposition apparatus.
  • the fourth on-off valve 42 b in the process of performing steps S21 ′ and S22 ′, the fourth on-off valve 42 b , the fifth on-off valve 33 , the The first on-off valve 52a, the second on-off valve 52b, the third on-off valve 42a, and the sixth on-off valve 36 and the seventh on-off valve 37 are closed at the same time, so as to realize the corresponding pipeline and the two process chambers ( 2a, 2b) to carry out purging.
  • the first dilution branch 53a and the second dilution branch 53b are used to pass the dilution gas into the two process chambers (2a, 2b) at the same time, which can also play a purging effect;
  • the balance gas delivery units (18a, 18b) respectively feed the balance gas to the first process chamber 2a and the second process chamber 2b at the same time, which can also play the role of purging; stop feeding the reaction gas to the second process chamber 2b .
  • Step S3' the two process chambers (2a, 2b) respectively perform step S31' and step S32', and the two may be performed synchronously or separately at different times.
  • step S31' the precursor is introduced into the first process chamber 2a, so that the precursor is adsorbed on the surface of the wafer S;
  • step S32 ′ a reactive gas is introduced into the second process chamber 2 b , and radio frequency power is outputted to the second process chamber 2 b to excite the reactive gas to form plasma, and the plasma can interact with the precursor adsorbed on the surface of the wafer S reaction to form the desired film layer on the surface of the wafer S.
  • the fourth on-off valve 42 b , the fifth on-off valve 33 and the The second on-off valve 52b is simultaneously opened, and the third on-off valve 42a, the sixth on-off valve 36, the seventh on-off valve 37 and the first on-off valve 52a are simultaneously opened, so as to realize the separate introduction of the precursor into the first process chamber 2a body (carried by carrier gas C1).
  • the first dilution branch 53a and the second dilution branch 53b are used to simultaneously feed the dilution gas to the two process chambers (2a, 2b); the balance gas delivery unit 18b is used to feed the second process chamber
  • the chamber 2b is fed with a balance gas to ensure that the air intakes of the two process chambers (2a, 2b) are equal; the second reaction gas delivery unit 6b is used to feed the reaction gas into the second process chamber 2b, and the second radio frequency is turned on
  • the power supply 82b is used to apply radio frequency power to the second process chamber 2b through the second matcher 81b, so as to excite the reaction gas to form plasma.
  • Step S4' the two process chambers (2a, 2b) respectively perform step S41' and step S42', which can be performed synchronously or separately at different times.
  • Step S41' and step S42' are the same as the above-mentioned step S21' and step S22', and the description is not repeated here.
  • steps S1' to S4' are cyclically performed until the thickness of the film layers deposited on the two wafers reaches the target thickness.
  • the plasma enhanced atomic layer deposition apparatus and method can independently control the pressure of the two process chambers by using the pressure regulating device communicated with the exhaust ports of the two process chambers. chamber pressure; and, by selectively outputting radio frequency power to at least one of the two process chambers using a radio frequency device connected to the two process chambers, the radio frequency related parameters of each process chamber can be adjusted individually , which not only increases the process debugging means and improves the process matching, but also the two process chambers do not need to perform various process steps simultaneously, thereby improving the diversification of process methods, and there is no need to equip each chamber with a precursor supply device, That is, the precursor supply device is used to communicate with the gas inlet structures of the two process chambers to selectively supply the precursor or the purge gas to at least one of the two process chambers, thereby reducing equipment costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明实施例提供一种等离子体增强原子层沉积设备及方法,该设备包括:前驱体供应装置,与两个工艺腔室的进气结构连通,用于选择性地向两个工艺腔室中的至少一者提供前驱体或吹扫气体;反应气体供应装置,与两个工艺腔室的进气结构连通,用于选择性地向两个工艺腔室中的至少一者提供反应气体;射频装置,与两个工艺腔室连接,用于选择性地向两个工艺腔室中的至少一者输出射频功率;压力调节装置,与两个工艺腔室的排气口连通,用于独立地分别控制两个工艺腔室的腔室压力。本发明实施例提供的等离子体增强原子层沉积设备及方法,增加了工艺调试手段,而且无需为每个腔室配备前驱体供应装置,从而降低了设备成本。

Description

等离子体增强原子层沉积设备及方法 技术领域
本发明涉及半导体制造领域,具体地,涉及一种等离子体增强原子层沉积设备及方法。
背景技术
原子层沉积(Atomic Layer Deposition,以下简称ALD)作为膜层沉积的一种方法,具有良好的共形性,精确的厚度控制能力以及对高深宽比图形结构的优异覆盖能力等优势。而等离子体增强原子层沉积(Plasma Enhanced Atomic LayerDeposition,以下简称PEALD)可以避免采用较高的工艺温度,而且前驱体的选择范围较广,是ALD方法的一种良好的补充。
然而,无论是ALD设备还是PEALD设备都存在着产能低的突出问题。为了提高PEALD设备的产能,现有的一种方法是采用两个工艺腔室同时对两个晶圆进行工艺,但是,在每个工艺腔室达到工艺要求的基础上,还对两个工艺腔室之间的工艺重复性(包括薄膜厚度及厚度均匀性,薄膜致密性能等)提出了要求,例如,两个工艺腔室同时沉积的薄膜厚度的差值应小于指定阈值(例如小于1埃)。
但是,现有的具有两个工艺腔室的PEALD设备在实际应用中不可避免地存在以下问题:
其一,两个工艺腔室的腔室压力、射频相关参数均无法单独控制,造成了工艺调试的局限性。例如,当两个工艺腔室沉积的薄膜厚度等存在差异时,无法通过单独调整各个工艺腔室的腔室压力和射频相关参数(如射频功率、频率、起辉时间等)来消除上述差异,从而降低了工艺调试手段的灵活性。
其二,两个工艺腔室必须同时进行等离子体反应步骤,导致其他步骤(通 入前驱体、吹扫等)也必须同步进行,从而造成工艺方式单一,而且腔室间工艺匹配性变差。而且,为了实现前驱体同步通入两个工艺腔室,就需要为每个腔室单独配备一个前驱体源(例如源瓶),但是这又会增加前驱体源的成本和腔室结构复杂性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种等离子体增强原子层沉积设备及方法,其可以单独调整各个工艺腔室的腔室压力和射频相关参数,从而不仅增加了工艺调试手段,提高了工艺匹配性和工艺方式的多样化,而且无需为每个腔室配备前驱体供应装置,从而降低了设备成本。
为实现本发明的目的而提供一种等离子体增强原子层沉积设备,包括两个工艺腔室、前驱体供应装置、反应气体供应装置、射频装置和压力调节装置,其中,
所述前驱体供应装置与两个所述工艺腔室的进气结构连通,用于选择性地向两个所述工艺腔室中的至少一者提供前驱体或吹扫气体;
所述反应气体供应装置与两个所述工艺腔室的进气结构连通,用于选择性地向两个所述工艺腔室中的至少一者提供反应气体;
所述射频装置与两个所述工艺腔室连接,用于选择性地向两个所述工艺腔室中的至少一者输出射频功率;
所述压力调节装置与两个所述工艺腔室的排气口连通,用于独立地分别控制两个所述工艺腔室的腔室压力。
可选的,所述前驱体供应装置包括前驱体源、进气管路组、切换管路组和抽气装置,其中,所述前驱体源通过所述切换管路组与所述进气管路组连通,所述进气管路组与两个所述工艺腔室的进气结构连通;
所述前驱体源用于提供所述前驱体或吹扫气体;
所述切换管路组用于选择性地将所述前驱体源与所述进气管路组或者所述抽气装置连通;
所述进气管路组用于将所述前驱体源选择性地与两个所述工艺腔室中的至少一者连通。
可选的,所述进气管路组包括第一进气支路和第二进气支路,其中,所述第一进气支路和第二进气支路的出气端分别与两个所述工艺腔室的进气结构连通,所述第一进气支路和第二进气支路的进气端均与所述切换管路组连通;并且,在所述第一进气支路和第二进气支路上分别设置有第一通断阀和第二通断阀。
可选的,所述进气管路组还包括第一稀释支路和第二稀释支路,其中,所述第一稀释支路和第二稀释支路的进气端均与用于提供稀释气体的稀释气体源连通,所述第一稀释支路和第二稀释支路的出气端分别与第一进气支路和第二进气支路连通;并且,在所述第一稀释支路和第二稀释支路上分别设置有第一流量控制器和第二流量控制器。
可选的,所述进气管路组还包括两个混气结构,两个所述混气结构均具有第一进气端、第二进气端和出气端,其中,两个所述混气结构的所述第一进气端分别与所述第一进气支路和第二进气支路的出气端连通;两个所述混气结构的所述出气端分别与两个所述工艺腔室的进气结构连通;两个所述混气结构的所述第二进气端用于与提供平衡气体的平衡气体源和所述反应气体供应装置连通。
可选的,每个所述混气结构均包括混气块和混气管路,其中,所述混气块中设置有混气腔,所述混气块的外表面上形成有所述第一进气端和所述第二进气端,所述混气块的外表面上还形成有出气端,该出气端与所述混气管路的进气端连通,所述混气管路的出气端用作所述混气结构的出气端与所述 工艺腔室的进气结构连通。
可选的,所述切换管路组包括第一切换支路和第二切换支路,其中,所述第一切换支路的两端分别与所述前驱体源和所述进气管路组连通;所述第二切换支路的两端分别与所述第一切换支路和所述抽气装置连通;并且,在所述第一切换支路和第二切换支路上分别设置有第三通断阀和第四通断阀。
可选的,所述前驱体源包括载气主路、源瓶、第一载气支路和第二载气支路,其中,所述载气主路的进气端用于与提供载气的载气气源连通,所述载气主路的出气端与所述切换管路组连通;并且,在所述载气主路上设置有第五通断阀和第三质量流量控制器;
所述第一载气支路的进气端与所述载气主路在所述第五通断阀的上游位置处连通,所述第一载气支路的出气端与所述源瓶的进气端连通;所述第二载气支路的出气端与所述载气主路在所述第五通断阀的下游位置处连通,所述第二载气支路的进气端与所述源瓶的出气端连通;并且,在所述第一载气支路和第二载气支路上分别设置有第六通断阀和第七通断阀;
所述源瓶用于存储所述前驱体。
可选的,所述射频装置包括第一匹配器、第二匹配器、第一射频电源和第二射频电源,其中,所述第一射频电源通过所述第一匹配器与其中一个所述工艺腔室电连接;所述第二射频电源通过所述第二匹配器与其中另一个所述工艺腔室电连接。
可选的,所述压力调节装置包括第一排气支路和第二排气支路,其中,所述第一排气支路和第二排气支路的进气端分别与两个所述工艺腔室的排气口连通,所述第一排气支路和第二排气支路的出气端均与抽气装置连通;并且,在所述第一排气支路和第二排气支路上分别设置有第一隔离阀和第二隔离阀;在所述第一排气支路和第二排气支路上还分别设置有第一流量调节阀和第二流量调节阀。
可选的,所述等离子体增强原子层沉积设备还包括远程等离子体清洗装置、第一清洗管路和第二清洗管路,两个所述混气结构均还具有第三进气端,其中,所述第一清洗管路和第二清洗管路的进气端均与所述远程等离子体清洗装置连通;所述第一清洗管路和第二清洗管路的出气端分别与两个所述第三进气端连通;并且,在所述第一清洗管路和第二清洗管路上分别设置有第三隔离阀和第四隔离阀;
所述远程等离子体清洗装置用于提供能够对所述工艺腔室进行清洗的等离子体。
作为另一个技术方案,本发明实施例还提供一种等离子体增强原子层沉积方法,采用本发明实施例提供的上述等离子体增强原子层沉积设备同时在两个晶圆上沉积膜层;所述等离子体增强原子层沉积方法包括以下步骤:
S1、向两个所述工艺腔室中的第一工艺腔室通入所述前驱体,以及向两个所述工艺腔室中的第二工艺腔室通入所述反应气体,并向所述第二工艺腔室输出射频功率;
S2、对所述前驱体供应装置和两个所述工艺腔室进行吹扫;
S3、向所述第二工艺腔室通入所述前驱体,以及向所述第一工艺腔室通入所述反应气体,并向所述第一工艺腔室输出射频功率;
S4、对所述前驱体供应装置和两个所述工艺腔室进行吹扫;
循环进行所述步骤S1至所述步骤S4,直至两个所述晶圆上沉积的所述膜层的厚度达到目标厚度。
本发明具有以下有益效果:
本发明实施例提供的等离子体增强原子层沉积设备及方法,通过利用与两个工艺腔室的排气口连通的压力调节装置,可以独立地分别控制两个工艺腔室的腔室压力;并且,通过利用与两个工艺腔室连接的射频装置,选择性地向两个工艺腔室中的至少一个工艺腔室输出射频功率,可以单独调整各个 工艺腔室的射频相关参数,从而不仅增加了工艺调试手段,提高了工艺匹配性,而且两个工艺腔室无需同步进行各个工艺步骤,从而提高了工艺方式的多样化,而且无需为每个腔室配备前驱体供应装置,即,利用前驱体供应装置与两个工艺腔室的进气结构连通,以选择性地向两个工艺腔室中的至少一个工艺腔室提供前驱体或吹扫气体,从而降低了设备成本。
附图说明
图1A为现有的一种等离子体增强原子层沉积设备的结构图;
图1B为采用图1A中的等离子体增强原子层沉积设备的沉积方法的流程框图;
图2为本发明实施例提供的等离子体增强原子层沉积设备的原理框图;
图3为本发明实施例提供的等离子体增强原子层沉积设备的结构图;
图4为本发明实施例采用的前驱体源的放大图;
图5为本发明实施例采用的进气管路组的放大图;
图6为本发明实施例提供的等离子体增强原子层沉积方法的一种流程框图;
图7为本发明实施例提供的等离子体增强原子层沉积方法的另一种流程框图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明实施例提供的等离子体增强原子层沉积设备及方法进行详细描述。
请参阅图1A,现有的一种等离子体增强原子层沉积(Plasma Enhanced Atomic Layer Deposition,以下简称PEALD)设备,其包括可同时对晶圆进行沉积工艺的两个工艺腔室(1a,1b),其中,两个工艺腔室(1a,1b)各自排出的尾气汇入主排气管路11中,并由该主排气管路11将尾气输送至抽气装 置(图中未示出)。并且,在主排气管路11上还设置有隔离阀12和流量调节阀13,其中,隔离阀12用于接通或断开主排气管路11;流量调节阀13用于调节主排气管路11中的气体流量,从而实现同时对两个工艺腔室(1a,1b)中的气体压力进行控制。
而且,两个工艺腔室(1a,1b)分别通过各自的进气管路与气体供应装置16以及远程等离子体清洗装置17连通,其中,气体供应装置16用于同时向两个工艺腔室(1a,1b)提供工艺气体(包含但不限于前驱体、反应气体和吹扫气体);远程等离子体清洗装置17用于在两个工艺腔室(1a,1b)内的薄膜累积到一定厚度后,同时向两个工艺腔室(1a,1b)提供能够对工艺腔室进行清洗的等离子体(例如由NF3气体电离形成的等离子体)。
此外,两个工艺腔室(1a,1b)共用一个匹配器14和射频电源15,该射频电源15通过匹配器14同时向两个工艺腔室(1a,1b)加载射频功率,以激发两个工艺腔室(1a,1b)中的反应气体形成等离子体。
上述等离子体增强原子层沉积设备在实际应用中不可避免地存在以下问题:
其一,由于两个工艺腔室(1a,1b)共用一个隔离阀12和流量调节阀13,这导致两个工艺腔室(1a,1b)的腔室压力无法单独控制,造成了工艺调试的局限性。例如,当两个工艺腔室沉积的薄膜厚度等存在差异时,无法通过单独调整各个工艺腔室的腔室压力来消除上述差异,从而降低了工艺调试手段的灵活性。此外,在隔离阀12开启时,两个工艺腔室(1a,1b)经由排气管路仍然存在相互连通的可能,从而没有实现真正意义上的物理隔离,当一个工艺腔室发生碎片或者颗粒数量增多等异常情况时,很可能对另外一个工艺腔室产生不良影响。
其二,由于两个工艺腔室(1a,1b)共用一个匹配器14和射频电源15,这在两个工艺腔室沉积的薄膜厚度等存在差异时,无法通过单独调整各个工 艺腔室的射频相关参数(如功率、频率、起辉时间等)来消除上述差异,从而降低了工艺调试手段的灵活性。同时,如图1B所示,由于两个工艺腔室(1a,1b)必须同时进行等离子体反应步骤,导致其他步骤(通入前驱体、吹扫等)也必须同步进行,从而造成工艺方式单一,而且腔室间工艺匹配性变差。而且,为了使两个工艺腔室的工艺匹配性满足要求,就需要为每个腔室单独配备一个前驱体源(例如源瓶),以实现前驱体同步通入两个工艺腔室(1a,1b),但是这又会增加前驱体源的成本和腔室结构复杂性。
其三,由于两个工艺腔室(1a,1b)与远程等离子体清洗装置17之间未设置任何切换控制结构,导致只能同时对两个工艺腔室(1a,1b)同时进行清洗,而不能单独清洗,从而导致清洗方式单一。此外,由于远程等离子体清洗装置17与气体供应装置16之间共用同一进气管路,二者之间没有进行物理隔离,这可能会存在工艺气体向远程等离子体清洗装置17扩散的风险,从而增加了工艺控制的难度。
为了解决上述PEALD设备存在的至少一个问题,请一并参阅图2和图3,本发明实施例还提供一种等离子体增强原子层沉积设备,其包括两个工艺腔室(2a,2b)、前驱体供应装置3、反应气体供应装置6、射频装置8和压力调节装置7,其中,两个工艺腔室(2a,2b)均为物理隔离的独立腔室,每个工艺腔室均具有进气结构21,该进气结构21例如为设置在腔室顶部的气体分配装置,用以将工艺气体均匀地输送至腔室内部;并且,每个工艺腔室中还设置有基座22,用于承载晶圆S,并对晶圆S的温度进行控制。
上述前驱体供应装置3与两个工艺腔室(2a,2b)的进气结构21连接,用于选择性地向两个工艺腔室(2a,2b)中的至少一者提供前驱体或吹扫气体。也就是说,两个工艺腔室(2a,2b)共用一个前驱体供应装置3。在实际应用中,上述前驱体是根据待沉积的膜层材料的组分和特性选择的,该前驱体可以在使用或不使用载气的情况下以气态的形式传输到工艺腔室中。例如,若 待沉积的膜层材料为二氧化硅(SiO2),则可以选择SAM24(双(二乙胺基)硅烷)作为前驱体。
在本实施例中,可选的,上述前驱体供应装置3包括前驱体源30、进气管路组5、切换管路组4和抽气装置10b,其中,前驱体源30通过切换管路组4与进气管路组5连通,该进气管路组5与两个工艺腔室(2a,2b)的进气结构21连通;前驱体源30用于提供上述前驱体或吹扫气体;切换管路组4用于选择性地将前驱体源30与进气管路组5或者抽气装置10b连通;进气管路组5用于将前驱体源30选择性地与两个工艺腔室(2a,2b)中的至少一者连通。
当切换管路组4将前驱体源30与进气管路组5连通时,前驱体源30提供的前驱体可以被输送至进气管路组5中,并经由进气管路组5输送至两个工艺腔室(2a,2b)中的至少一者;当切换管路组4将前驱体源30与抽气装置10b连通时,前驱体源30提供的前驱体直接排入抽气装置10b中,而不会流经任何工艺腔室。
在本实施例中,可选的,如图3所示,切换管路组4包括第一切换支路41a和第二切换支路41b,其中,第一切换支路41a的两端分别与前驱体源30和进气管路组5连通;第二切换支路41b的两端分别与第一切换支路41a和抽气装置10b连通;并且,在第一切换支路41a和第二切换支路41b上分别设置有第三通断阀42a和第四通断阀42b。当第三通断阀42a开启,且第四通断阀42b关闭时,第一切换支路41a接通,第二切换支路41b断开,此时前驱体源30输出的前驱体通过第一切换支路41a流入进气管路组5;当第三通断阀42a关闭,且第四通断阀42b开启时,第一切换支路41a断开,第二切换支路41b接通,此时前驱体源30输出的前驱体通过第二切换支路41b流入抽气装置10b。
在本实施例中,可选的,如图4所示,上述前驱体源30包括载气主路 31、源瓶32、第一载气支路35a和第二载气支路35b,其中,载气主路31的进气端(在图4中朝向左侧)用于与提供载气C1的载气气源(图中未示出)连通,载气主路31的出气端(在图4中朝向右侧)与上述切换管路组4(即,图3中示出的第一切换支路41a的进气端)连通;并且,在载气主路31上设置有第五通断阀33和第三质量流量控制器34;其中,第五通断阀33用于接通或断开载气主路31;第三质量流量控制器34用于控制载气主路31中的载气C1的流量。
第一载气支路35a的进气端与载气主路31在第五通断阀33的上游位置处连通,第一载气支路35a的出气端与源瓶32的进气端连通;第二载气支路35b的出气端与载气主路31在第五通断阀33的下游位置处连通,第二载气支路35b的进气端与源瓶32的出气端连通;并且,在第一载气支路35a和第二载气支路35b上分别设置有第六通断阀36和第七通断阀37。其中,第六通断阀36用于接通或断开第一载气支路35a;第七通断阀37用于接通或断开第二载气支路35b。
源瓶32用于存储前驱体。存储在源瓶32中的前驱体的初始状态可以是液态、固态或者气态,在进行工艺时,源瓶32中的前驱体在使用或不使用载气的情况下以气态的形式输出。具体地,当第五通断阀33开启,且第六通断阀36和第七通断阀37关闭时,载气主路31接通,第一载气支路35a和第二载气支路35b断开,此时载气C1经由载气主路31流向切换管路组4,而不经过源瓶32,即,源瓶32中的前驱体没有输出。在此状态下,可以利用载气C1对其流经的管路和工艺腔室进行吹扫,此时载气C1用作上述吹扫气体。
当第五通断阀33关闭,且第六通断阀36和第七通断阀37开启时,载气主路31断开,第一载气支路35a和第二载气支路35b接通,此时载气C1经由载气主路31位于第五通断阀33上游的前段和第一载气支路35a流向源瓶32,即,载气C1经过源瓶32,以能够携带源瓶32中的前驱体经由第二 载气支路35b和载气主路31位于第五通断阀33下游的后段输出。在此状态下,当切换管路组4将前驱体源30与进气管路组5连通时,携带有前驱体的载气C1可以被输送至进气管路组5中,并经由进气管路组5输送至两个工艺腔室(2a,2b)中的至少一者。
可选的,上述第五通断阀33、第六通断阀36和第七通断阀37均为快速开关阀,以实现相应管路的快速通断。当然,在实际应用中,根据不同的工艺需求,还可以采用其他通断阀,本发明实施例对此没有特别的限制。
可选的,在第一载气支路35a和第二载气支路35b之间还连接有中间管路35c,且在该中间管路35c上设置第一自动通断阀39c,当第一自动通断阀39c开启时,中间管路35c接通,在这种情况下,当第六通断阀36和第七通断阀37开启时,载气C1不经过源瓶32,而源瓶32中的前驱体可以输出,并流向切换管路组4。另外,可选的,在第一载气支路35a和第二载气支路35b上,且位于分别靠近源瓶32的输入端和输出端的位置处还可以分别设置第二自动通断阀39a和第三自动通断阀39b,以实现第一载气支路35a和第二载气支路35b的自动控制。还可以在第一载气支路35a和第二载气支路35b上分别设置第一手动阀38a和第二手动阀38b。上述自动通断阀和手动阀的设置,均有利于提高控制的灵活性和可靠性。上述第一自动通断阀39c、第二自动通断阀39a和第三自动通断阀39b例如为气动阀。
在本实施例中,可选的,为了保证源瓶32中有足够的前驱体,以满足工艺需要,源瓶32还具有注入端,该注入端用于与补充液态的前驱体的液体传输系统连接,具体地,上述注入端例如通过注入管路321与液体传输系统(图中未示出)连接,且在该注入管路321的靠近该注入端处设置有第八通断阀322。
需要说明的是,在本实施例中,上述前驱体源30利用源瓶32和载气C1实现前驱体的供应,但是,本发明实施例并不局限于此,在实际应用中, 前驱体源还可以采用其他任意气体供应结构,例如气柜等。
在本实施例中,可选的,如图5所示,进气管路组5包括第一进气支路51a和第二进气支路51b,其中,第一进气支路51a和第二进气支路51b的出气端分别与两个工艺腔室(2a,2b)的进气结构21连通,具体可以通过两个混气结构(55a,55b)与两个工艺腔室(2a,2b)的进气结构21连通,该两个混气结构(55a,55b)与用于输送前驱体(和/或载气)以及其他气体(例如稀释气体、平衡气体等)的管路连通,用于将这些气体单独或混合后,分别通入两个工艺腔室(2a,2b)中。当然,在实际应用中,根据具体情况,也可以不设置上述混气结构,在这种情况下,第一进气支路51a和第二进气支路51b的出气端可以直接与两个工艺腔室(2a,2b)的进气结构21连通。
第一进气支路51a和第二进气支路51b的进气端均与切换管路组4(即,图3中示出的第一切换支路41a)的出气端连通;并且,如图5所示,在第一进气支路51a和第二进气支路51b上分别设置有第一通断阀52a和第二通断阀52b。通过选择性地开启第一通断阀52a和第二通断阀52b中的至少一者,可以接通第一进气支路51a和第二进气支路51b中的至少一者,从而实现将前驱体源30与两个工艺腔室(2a,2b)中的至少一者连通。
在本实施例中,可选的,上述两个混气结构(55a,55b)均具有第一进气端、第二进气端和出气端,其中,两个混气结构(55a,55b)的第一进气端分别与第一进气支路51a和第二进气支路51b的出气端连通;两个混气结构(55a,55b)的出气端分别与两个工艺腔室(2a,2b)的进气结构21连通;两个混气结构(55a,55b)的第二进气端用于与提供平衡气体的平衡气体源和反应气体供应装置6连接。
具体地,两个混气结构(55a,55b)的第二进气端分别通过两个平衡气体输送单元(18a,18b)与该平衡气体源连接,两个平衡气体输送单元(18a,18b)用于独立地分别向两个工艺腔室(2a,2b)输送平衡气体。当采用交替地向两 个工艺腔室(2a,2b)内输送前驱体的方式进行沉积工艺时,在两个工艺腔室之间切换的时刻,会导致停止输送前驱体的工艺腔室中的进气量产生较大的波动,从而造成腔室压力产生较大波动,同时工艺气体流场的稳定性变差,为此,可以在两个工艺腔室之间切换的时刻,开始向停止输送前驱体的工艺腔室中输送平衡气体,且使该平衡气体的进气量与前驱体的进气量相当,从而可以避免因进气量产生波动,而造成成腔室压力产生较大波动,提高工艺气体流场的稳定性。平衡气体例如为氩气(Ar)或者其他惰性气体。
图3和图5仅示意性地示出两个平衡气体输送单元(18a,18b),并未示出二者的具体结构,该具体结构例如包括平衡气体进气管路和设置在该平衡气体进气管路上的通断阀,其中,平衡气体进气管路的进气端用于与平衡气体源连接,平衡气体进气管路的出气端与相应的混气结构连接。另外,也可以在平衡气体进气管路上设置流量控制器,以控制平衡气体进气管路中的气体流量。当然,在实际应用中,上述两个平衡气体输送单元(18a,18b)也可以直接分别与两个工艺腔室(2a,2b)的进气结构21连接,而不通过混气结构(55a,55b)。
在本实施例中,如图3所示,上述反应气体供应装置6与两个工艺腔室(2a,2b)的进气结构21连通,用于同时或分别向两个工艺腔室(2a,2b)提供反应气体。由该反应气体形成的等离子体(包括但不限于游离基)能够与吸附在晶圆S上的前驱体发生化学反应,从而在晶圆S表面上形成所需的膜层。例如,若待沉积的膜层材料为二氧化硅(SiO2),且SAM24(双(二乙胺基)硅烷)作为前驱体,则可以选择氧气(O2)作为反应气体。
在本实施例中,可选的,反应气体供应装置6包括第一反应气体输送单元6a和第二反应气体输送单元6b,二者可以通过两个混气结构(55a,55b)与两个工艺腔室(2a,2b)的进气结构21连通,用于独立地分别向两个工艺腔室(2a,2b)输送反应气体。图3和图5仅示意性地示出第一反应气体输送 单元6a和第二反应气体输送单元6b,并未示出二者的具体结构,该具体结构例如包括反应气体进气管路和设置在该反应气体进气管路上的通断阀,其中,反应气体进气管路的进气端用于与反应气体源连通,反应气体进气管路的出气端与相应的混气结构连通。另外,也可以在反应气体进气管路上设置流量控制器,以控制反应气体进气管路中的气体流量。当然,在实际应用中,上述第一反应气体输送单元6a和第二反应气体输送单元6b也可以直接与两个工艺腔室(2a,2b)的进气结构21连通,而不通过混气结构(55a,55b)。
每个混气结构可以有多种结构,例如,在本实施例中,如图5所示,每个混气结构均包括混气块551和混气管路552,其中,混气块551中设置有混气腔(图中未示出),该混气块551的外表面上形成有上述第一进气端、第二进气端和出气端,该出气端与混气管路552的进气端连通,混气管路552的出气端用作混气结构的出气端与工艺腔室的进气结构21连通。需要说明的是,上述混气结构的进气端数量与需要向工艺腔室通入的工艺气体的数量相对应。在实际应用中,根据具体需要,也可以不经过上述混气结构通入上述平衡气体和/或反应气体。
在本实施例中,可选的,如图5所示,进气管路组5还包括第一稀释支路53a和第二稀释支路53b,其中,第一稀释支路53a和第二稀释支路53b的进气端均与用于提供稀释气体的稀释气体源(图中未示出)连通,第一稀释支路53a和第二稀释支路53b的出气端分别与第一进气支路51a和第二进气支路51b连通;并且,在第一稀释支路53a和第二稀释支路53b上分别设置有第一流量控制器54a和第二流量控制器54b,用以分别控制第一稀释支路53a和第二稀释支路53b中的气体流量。由稀释气体源输出的稀释气体可以分别经由第一稀释支路53a和第二稀释支路53b流入第一进气支路51a和第二进气支路51b中,并与前驱体混合,以起到稀释作用。稀释气体例如为氩气(Ar)或者其他惰性气体。
射频装置8与两个工艺腔室(2a,2b)连接,用于选择性地向两个工艺腔室(2a,2b)中的至少一个工艺腔室输出射频功率。具体地,在本实施例中,如图3所示,射频装置8包括第一匹配器81a、第二匹配器81b、第一射频电源82a和第二射频电源82b,其中,第一射频电源82a通过第一匹配器81a与其中一个工艺腔室(即,第一工艺腔室2a)电连接;第二射频电源82b通过第二匹配器81b与其中另一个工艺腔室(即,第二工艺腔室2b)电连接。
通过为两个工艺腔室(2a,2b)单独配备匹配器和射频电源,可以单独调整两个工艺腔室(2a,2b)的射频相关参数(如射频功率、频率、起辉时间等),从而增加了工艺调试手段,提高了工艺匹配性。而且,由于可以在不同的时间开启两个工艺腔室(2a,2b)各自的射频电源,两个工艺腔室(2a,2b)无需同步进行各个工艺步骤,从而提高了工艺方式的多样化。而且,无需为每个腔室配备前驱体供应装置,并通过利用本实施例所采用的上述前驱体供应装置可以在不同的时间向相应的其中一个工艺腔室通入前驱体,即,交替地向两个工艺腔室(2a,2b)输送前驱体,从而既满足了对工艺匹配性的要求,又降低了设备成本。
需要说明的是,在本实施例中,为两个工艺腔室(2a,2b)单独配备匹配器和射频电源,但是,本发明实施例并不局限于此,在实际应用中,也可以仅设置一个匹配器和射频电源,并通过设置相应的开关装置来实现将匹配器和射频电源选择性地与其中一个工艺腔室接通,这同样可以实现在不同的时间向两个工艺腔室(2a,2b)加载射频功率,两个工艺腔室(2a,2b)无需同步进行各个工艺步骤,从而提高了工艺方式的多样化。
压力调节装置7与两个工艺腔室(2a,2b)的排气口连通,用于独立地分别控制两个工艺腔室(2a,2b)的腔室压力。这样,当两个工艺腔室(2a,2b)沉积的薄膜厚度等存在差异时,可以通过压力调节装置7单独调整各个工艺腔室的腔室压力来消除上述差异,从而提高了工艺调试手段的灵活性。
具体地,在本实施例中,压力调节装置7包括第一排气支路71a和第二排气支路71b,其中,第一排气支路71a和第二排气支路71b的进气端分别与两个工艺腔室(2a,2b)的排气口连通,第一排气支路71a和第二排气支路71b的出气端均与抽气装置10a连通;并且,在第一排气支路71a和第二排气支路71b上分别设置有第一隔离阀72a和第二隔离阀72b,用以独立地分别控制第一排气支路71a和第二排气支路71b的通断;在第一排气支路71a和第二排气支路71b上还分别设置有第一流量调节阀73a和第二流量调节阀73b,用以独立地分别调节第一排气支路71a和第二排气支路71b中的气体流量。
通过在第一排气支路71a和第二排气支路71b上分别设置第一隔离阀72a和第二隔离阀72b,可以真正实现两个工艺腔室(2a,2b)的物理隔离,从而当一个工艺腔室发生碎片或者颗粒数量增多等异常情况时,可以避免对另外一个工艺腔室产生不良影响。同时,通过在第一排气支路71a和第二排气支路71b上分别设置有第一流量调节阀73a和第二流量调节阀73b,可以独立地控制两个工艺腔室(2a,2b)的排气速率,这样,当两个工艺腔室(2a,2b)沉积的薄膜厚度等存在差异时,可以通过单独调整第一流量调节阀73a和第二流量调节阀73b,来实现各个工艺腔室的腔室压力的独立控制,以消除上述差异,从而提高了工艺调试手段的灵活性,进一步提高了两个工艺腔室(2a,2b)的工艺匹配性。
需要说明的是,压力调节装置7并不局限于采用上述实施例提供的方案,在实际应用中,还采用其他任意结构,来实现各个工艺腔室的腔室压力的独立控制。
还需要说明的是,在实际应用中,上述抽气装置10a和抽气装置10b可以是同一抽气装置,即,切换管路组4与两个工艺腔室(2a,2b)共用同一抽气装置。该抽气装置例如为真空泵。
在本实施例中,等离子体增强原子层沉积设备还包括远程等离子体清洗装置9、第一清洗管路91a和第二清洗管路91b,两个混气结构(55a,55b)均还具有第三进气端,其中,第一清洗管路91a和第二清洗管路91b的进气端均与远程等离子体清洗装置9连通;第一清洗管路91a和第二清洗管路91b的出气端分别与两个混气结构(55a,55b)的上述第三进气端连通。当然,在实际应用中,根据具体情况,第一清洗管路91a和第二清洗管路91b的出气端也可以直接与两个工艺腔室(2a,2b)的进气结构21连通。
并且,在第一清洗管路91a和第二清洗管路91b的出气端上分别设置有第三隔离阀92a和第四隔离阀92b;远程等离子体清洗装置9用于在两个工艺腔室(2a,2b)内的薄膜累积到一定厚度后,再向两个工艺腔室(2a,2b)中的至少一个工艺腔室提供能够对工艺腔室进行清洗的等离子体(例如由NF3气体电离形成的等离子体)。
借助上述第三隔离阀92a和第四隔离阀92b,可以实现对任意一个工艺腔室单独清洗,或者也可以同时对两个工艺腔室进行清洗,从而可以提高清洗方式的灵活性。同时,在进行沉积工艺时,可以通过关闭上述第三隔离阀92a和第四隔离阀92b来阻止工艺气体向远程等离子体清洗装置9扩散,从而提高了工艺气体的利用率,改善了工艺气体流场的稳定性。
需要说明的是,在实际应用中,根据实际情况,也可以不设置上述远程等离子体清洗装置9。
作为另一个技术方案,本发明实施例还提供一种等离子体增强原子层沉积方法,其采用本发明实施例提供的上述等离子体增强原子层沉积设备同时在两个晶圆上沉积膜层。
具体地,以图3示出的等离子体增强原子层沉积设备为例,如图6所示,等离子体增强原子层沉积方法包括:
步骤S1、两个工艺腔室(2a,2b)分别进行步骤S11和步骤S12,二者可 以同步或者在不同时间分别执行。
其中,步骤S11、向第一工艺腔室2a通入前驱体,以使前驱体吸附在晶圆S的表面;
步骤S12、向第二工艺腔室2b通入反应气体,并向第二工艺腔室2b输出射频功率,以激发反应气体形成等离子体,该等离子体可以与晶圆S表面上吸附的前驱体反应,以在晶圆S表面上形成所需的膜层。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S11和步骤S12的过程中,关闭第四通断阀42b、第五通断阀33和第二通断阀52b,同时开启第三通断阀42a、第六通断阀36、第七通断阀37和第一通断阀52a,以实现单独向第一工艺腔室2a通入前驱体(由载气C1携带)。需要说明的是,在进行上述步骤S11的过程中,向第一工艺腔室2a通入前驱体的时间一般较短,短于步骤S11的工艺时长,在这种情况下,第三通断阀42a在进行步骤S11的过程中并不一直保持开启,例如,在步骤S11开始时,第三通断阀42a开启,同时第四通断阀42b关闭,此时向第一工艺腔室2a通入前驱体,在经过一定的时间之后(尚未达到步骤S11的工艺时长),第三通断阀42a关闭,同时第四通断阀42b开启,此时前驱体通过第二切换支路41b流入抽气装置10b。当然,在实际应用中,根据不同的需要也可以使第三通断阀42a在进行步骤S11的过程中一直保持开启,本发明实施例对此没有特别的限制。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体;利用平衡气体输送单元18b向第二工艺腔室2b通入平衡气体,以保证两个工艺腔室(2a,2b)的进气量相当;利用第二反应气体输送单元6b向第二工艺腔室2b通入反应气体,并开启第二射频电源82b,以通过第二匹配器81b向第二工艺腔室2b加载射频功率,从而激发反应气体形成等离子体。
步骤S2、两个工艺腔室(2a,2b)分别进行步骤S21和步骤S22,二者可以同步或者在不同时间分别执行。
步骤S21和步骤S22均用于对等离子体增强原子层沉积设备中的前驱体供应装置和两个工艺腔室(2a,2b)进行吹扫。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S21和步骤S22的过程中,开启第四通断阀42b、第五通断阀33、第一通断阀52a、第二通断阀52b、第三通断阀42a,同时关闭第六通断阀36和第七通断阀37,以实现对相应管路和两个工艺腔室(2a,2b)进行吹扫。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体,也可以起到吹扫作用;利用两个平衡气体输送单元(18a,18b)分别向第一工艺腔室2a和第二工艺腔室2b同时通入平衡气体,同样可以起到吹扫作用;停止向第二工艺腔室2b通入反应气体。
步骤S3、两个工艺腔室(2a,2b)分别进行步骤S31和步骤S32,二者可以同步或者在不同时间分别执行。
其中,步骤S31、向第一工艺腔室2a通入反应气体,并向第一工艺腔室2a输出射频功率,以激发反应气体形成等离子体,该等离子体可以与晶圆S表面上吸附的前驱体反应,以在晶圆S表面上形成所需的膜层;
步骤S32、向第二工艺腔室2b通入前驱体,以使前驱体吸附在晶圆S的表面。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S31和步骤S32的过程中,关闭第四通断阀42b、第五通断阀33和第一通断阀52a,同时开启第三通断阀42a、第六通断阀36、第七通断阀37和第二通断阀52b,以实现单独向第二工艺腔室2b通入前驱体(由载气C1携带)。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体;利用平衡气体输送单元18a向第一工艺腔室2a通入平衡气体,以保证两个工艺腔室(2a,2b)的进气量相当;利用第一反应气体输送单元6a向第一工艺腔室2a通入反应气体,并开启第一射频电源82a,以通过第一匹配器81a向第一工艺腔室2a加载射频功率,从而激发反应气体形成等离子体。
步骤S4、两个工艺腔室(2a,2b)分别进行步骤S41和步骤S42,二者可以同步或者在不同时间分别执行。
步骤S41和步骤S42与上述步骤S21和步骤S22相同,在此不再重复描述。
循环进行上述步骤S1至步骤S4,直至两个晶圆上沉积的膜层的厚度达到目标厚度。
本发明实施例提供的等离子体增强原子层沉积方法,两个工艺腔室(2a,2b)无需同步进行各个工艺步骤,从而提高了工艺方式的多样化。而且,无需为每个腔室配备前驱体供应装置,并通过利用本实施例所采用的上述前驱体供应装置可以在不同的时间向相应的其中一个工艺腔室通入前驱体,即,交替地向两个工艺腔室(2a,2b)输送前驱体,从而既满足了对工艺匹配性的要求,又降低了设备成本。
本发明实施例还提供一种等离子体增强原子层沉积方法,具体的,如图7所示,该方法包括步骤S1’至步骤S4’,其中,
步骤S1’、两个工艺腔室(2a,2b)分别进行步骤S11’和步骤S12’,二者可以同步或者在不同时间分别执行。
其中,步骤S11’、向第一工艺腔室2a通入反应气体,并向第一工艺腔室2a输出射频功率,以激发反应气体形成等离子体,该等离子体可以与晶圆S表面上吸附的前驱体反应,以在晶圆S表面上形成所需的膜层;
步骤S12’、向第二工艺腔室2b通入前驱体,以使前驱体吸附在晶圆S的表面。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S11’和步骤S12’的过程中,关闭第四通断阀42b、第五通断阀33和第一通断阀52a,同时开启第三通断阀42a、第六通断阀36、第七通断阀37和第二通断阀52b,以实现单独向第二工艺腔室2b通入前驱体(由载气C1携带)。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体;利用平衡气体输送单元18a向第一工艺腔室2a通入平衡气体,以保证两个工艺腔室(2a,2b)的进气量相当;利用第一反应气体输送单元6a向第一工艺腔室2a通入反应气体,并开启第一射频电源82a,以通过第一匹配器81a向第一工艺腔室2a加载射频功率,从而激发反应气体形成等离子体。
步骤S2’、两个工艺腔室(2a,2b)分别进行步骤S21’和步骤S22’,二者可以同步或者在不同时间分别执行。
步骤S21’和步骤S22’均用于对等离子体增强原子层沉积设备中的前驱体供应装置和两个工艺腔室(2a,2b)进行吹扫。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S21’和步骤S22’的过程中,开启第四通断阀42b、第五通断阀33、第一通断阀52a、第二通断阀52b、第三通断阀42a,同时关闭第六通断阀36和第七通断阀37,以实现对相应管路和两个工艺腔室(2a,2b)进行吹扫。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体,也可以起到吹扫作用;利用两个平衡气体输送单元(18a,18b)分别向第一工艺腔室2a和第二工艺腔室2b同时通入平衡气体,同样可以起到吹扫作用;停止向第二工艺腔室2b通入反应气 体。
步骤S3’、两个工艺腔室(2a,2b)分别进行步骤S31’和步骤S32’,二者可以同步或者在不同时间分别执行。
其中,步骤S31’、向第一工艺腔室2a通入前驱体,以使前驱体吸附在晶圆S的表面;
步骤S32’、向第二工艺腔室2b通入反应气体,并向第二工艺腔室2b输出射频功率,以激发反应气体形成等离子体,该等离子体可以与晶圆S表面上吸附的前驱体反应,以在晶圆S表面上形成所需的膜层。
具体地,以图2至图5示出的等离子体增强原子层沉积设备为例,在进行步骤S31’和步骤S32’的过程中,关闭第四通断阀42b、第五通断阀33和第二通断阀52b,同时开启第三通断阀42a、第六通断阀36、第七通断阀37和第一通断阀52a,以实现单独向第一工艺腔室2a通入前驱体(由载气C1携带)。
与此同时,可选的,利用第一稀释支路53a和第二稀释支路53b同时向两个工艺腔室(2a,2b)通入稀释气体;利用平衡气体输送单元18b向第二工艺腔室2b通入平衡气体,以保证两个工艺腔室(2a,2b)的进气量相当;利用第二反应气体输送单元6b向第二工艺腔室2b通入反应气体,并开启第二射频电源82b,以通过第二匹配器81b向第二工艺腔室2b加载射频功率,从而激发反应气体形成等离子体。
步骤S4’、两个工艺腔室(2a,2b)分别进行步骤S41’和步骤S42’,二者可以同步或者在不同时间分别执行。
步骤S41’和步骤S42’与上述步骤S21’和步骤S22’相同,在此不再重复描述。
循环进行上述步骤S1’至步骤S4’,直至两个晶圆上沉积的膜层的厚度达到目标厚度。
综上所述,本发明实施例提供的等离子体增强原子层沉积设备及方法,通过利用与两个工艺腔室的排气口连通的压力调节装置,可以独立地分别控制两个工艺腔室的腔室压力;并且,通过利用与两个工艺腔室连接的射频装置,选择性地向两个工艺腔室中的至少一个工艺腔室输出射频功率,可以单独调整各个工艺腔室的射频相关参数,从而不仅增加了工艺调试手段,提高了工艺匹配性,而且两个工艺腔室无需同步进行各个工艺步骤,从而提高了工艺方式的多样化,而且无需为每个腔室配备前驱体供应装置,即,利用前驱体供应装置与两个工艺腔室的进气结构连通,以选择性地向两个工艺腔室中的至少一个工艺腔室提供前驱体或吹扫气体,从而降低了设备成本。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种等离子体增强原子层沉积设备,其特征在于,包括两个工艺腔室、前驱体供应装置、反应气体供应装置、射频装置和压力调节装置,其中,
    所述前驱体供应装置与两个所述工艺腔室的进气结构连通,用于选择性地向两个所述工艺腔室中的至少一者提供前驱体或吹扫气体;
    所述反应气体供应装置与两个所述工艺腔室的进气结构连通,用于选择性地向两个所述工艺腔室中的至少一者提供反应气体;
    所述射频装置与两个所述工艺腔室连接,用于选择性地向两个所述工艺腔室中的至少一者输出射频功率;
    所述压力调节装置与两个所述工艺腔室的排气口连通,用于独立地分别控制两个所述工艺腔室的腔室压力。
  2. 根据权利要求1所述的等离子体增强原子层沉积设备,其特征在于,所述前驱体供应装置包括前驱体源、进气管路组、切换管路组和抽气装置,其中,所述前驱体源通过所述切换管路组与所述进气管路组连通,所述进气管路组与两个所述工艺腔室的进气结构连通;
    所述前驱体源用于提供所述前驱体或吹扫气体;
    所述切换管路组用于选择性地将所述前驱体源与所述进气管路组或者所述抽气装置连通;
    所述进气管路组用于将所述前驱体源选择性地与两个所述工艺腔室中的至少一者连通。
  3. 根据权利要求2所述的等离子体增强原子层沉积设备,其特征在于,所述进气管路组包括第一进气支路和第二进气支路,其中,所述第一进气支路和第二进气支路的出气端分别与两个所述工艺腔室的进气结构连通,所述第一进气支路和第二进气支路的进气端均与所述切换管路组连通;并且,在 所述第一进气支路和第二进气支路上分别设置有第一通断阀和第二通断阀。
  4. 根据权利要求3所述的等离子体增强原子层沉积设备,其特征在于,所述进气管路组还包括第一稀释支路和第二稀释支路,其中,所述第一稀释支路和第二稀释支路的进气端均与用于提供稀释气体的稀释气体源连通,所述第一稀释支路和第二稀释支路的出气端分别与第一进气支路和第二进气支路连通;并且,在所述第一稀释支路和第二稀释支路上分别设置有第一流量控制器和第二流量控制器。
  5. 根据权利要求3所述的等离子体增强原子层沉积设备,其特征在于,所述进气管路组还包括两个混气结构,两个所述混气结构均具有第一进气端、第二进气端和出气端,其中,两个所述混气结构的所述第一进气端分别与所述第一进气支路和第二进气支路的出气端连通;两个所述混气结构的所述出气端分别与两个所述工艺腔室的进气结构连通;两个所述混气结构的所述第二进气端用于与提供平衡气体的平衡气体源和所述反应气体供应装置连通。
  6. 根据权利要求5所述的等离子体增强原子层沉积设备,其特征在于,每个所述混气结构均包括混气块和混气管路,其中,所述混气块中设置有混气腔,所述混气块的外表面上形成有所述第一进气端和所述第二进气端,所述混气块的外表面上还形成有出气端,该出气端与所述混气管路的进气端连通,所述混气管路的出气端用作所述混气结构的出气端与所述工艺腔室的进气结构连通。
  7. 根据权利要求2-6中任意一项所述的等离子体增强原子层沉积设备,其特征在于,所述切换管路组包括第一切换支路和第二切换支路,其中,所述第一切换支路的两端分别与所述前驱体源和所述进气管路组连通;所述第 二切换支路的两端分别与所述第一切换支路和所述抽气装置连通;并且,在所述第一切换支路和第二切换支路上分别设置有第三通断阀和第四通断阀。
  8. 根据权利要求2-6中任意一项所述的等离子体增强原子层沉积设备,其特征在于,所述前驱体源包括载气主路、源瓶、第一载气支路和第二载气支路,其中,所述载气主路的进气端用于与提供载气的载气气源连通,所述载气主路的出气端与所述切换管路组连通;并且,在所述载气主路上设置有第五通断阀和第三质量流量控制器;
    所述第一载气支路的进气端与所述载气主路在所述第五通断阀的上游位置处连通,所述第一载气支路的出气端与所述源瓶的进气端连通;所述第二载气支路的出气端与所述载气主路在所述第五通断阀的下游位置处连通,所述第二载气支路的进气端与所述源瓶的出气端连通;并且,在所述第一载气支路和第二载气支路上分别设置有第六通断阀和第七通断阀;
    所述源瓶用于存储所述前驱体。
  9. 根据权利要求1所述的等离子体增强原子层沉积设备,其特征在于,所述射频装置包括第一匹配器、第二匹配器、第一射频电源和第二射频电源,其中,所述第一射频电源通过所述第一匹配器与其中一个所述工艺腔室电连接;所述第二射频电源通过所述第二匹配器与其中另一个所述工艺腔室电连接。
  10. 根据权利要求1所述的等离子体增强原子层沉积设备,其特征在于,所述压力调节装置包括第一排气支路和第二排气支路,其中,所述第一排气支路和第二排气支路的进气端分别与两个所述工艺腔室的排气口连通,所述第一排气支路和第二排气支路的出气端均与抽气装置连通;并且,在所述第一排气支路和第二排气支路上分别设置有第一隔离阀和第二隔离阀;在所述第一排气支路和第二排气支路上还分别设置有第一流量调节阀和第二流量 调节阀。
  11. 根据权利要求5或6所述的等离子体增强原子层沉积设备,其特征在于,所述等离子体增强原子层沉积设备还包括远程等离子体清洗装置、第一清洗管路和第二清洗管路,两个所述混气结构均还具有第三进气端,其中,所述第一清洗管路和第二清洗管路的进气端均与所述远程等离子体清洗装置连通;所述第一清洗管路和第二清洗管路的出气端分别与两个所述第三进气端连通;并且,在所述第一清洗管路和第二清洗管路上分别设置有第三隔离阀和第四隔离阀;
    所述远程等离子体清洗装置用于提供能够对所述工艺腔室进行清洗的等离子体。
  12. 一种等离子体增强原子层沉积方法,其特征在于,采用权利要求1-11中任意一项所述的等离子体增强原子层沉积设备同时在两个晶圆上沉积膜层;所述等离子体增强原子层沉积方法包括以下步骤:
    S1、向两个所述工艺腔室中的第一工艺腔室通入所述前驱体,以及向两个所述工艺腔室中的第二工艺腔室通入所述反应气体,并向所述第二工艺腔室输出射频功率;
    S2、对所述前驱体供应装置和两个所述工艺腔室进行吹扫;
    S3、向所述第二工艺腔室通入所述前驱体,以及向所述第一工艺腔室通入所述反应气体,并向所述第一工艺腔室输出射频功率;
    S4、对所述前驱体供应装置和两个所述工艺腔室进行吹扫;
    循环进行所述步骤S1至所述步骤S4,直至两个所述晶圆上沉积的所述膜层的厚度达到目标厚度。
PCT/CN2022/085234 2021-04-09 2022-04-06 等离子体增强原子层沉积设备及方法 WO2022213961A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023560057A JP2024511818A (ja) 2021-04-09 2022-04-06 プラズマ増強原子層堆積装置及び方法
KR1020237034803A KR20230155000A (ko) 2021-04-09 2022-04-06 플라즈마 강화 원자층 증착 디바이스 및 방법
EP22784027.9A EP4321648A1 (en) 2021-04-09 2022-04-06 Plasma enhanced atomic layer deposition apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110380765.2A CN113106422B (zh) 2021-04-09 2021-04-09 等离子体增强原子层沉积设备及方法
CN202110380765.2 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022213961A1 true WO2022213961A1 (zh) 2022-10-13

Family

ID=76714937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085234 WO2022213961A1 (zh) 2021-04-09 2022-04-06 等离子体增强原子层沉积设备及方法

Country Status (6)

Country Link
EP (1) EP4321648A1 (zh)
JP (1) JP2024511818A (zh)
KR (1) KR20230155000A (zh)
CN (1) CN113106422B (zh)
TW (1) TWI824471B (zh)
WO (1) WO2022213961A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106422B (zh) * 2021-04-09 2022-03-22 北京北方华创微电子装备有限公司 等离子体增强原子层沉积设备及方法
CN115773471A (zh) * 2022-11-24 2023-03-10 江苏微导纳米科技股份有限公司 原子层沉积设备及其方法
CN117721446A (zh) * 2024-02-08 2024-03-19 理想晶延半导体设备(上海)股份有限公司 一种氧化铟锡透明导电薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425539A (en) * 2005-04-29 2006-11-01 Boc Group Plc Deposition system with three way valve
CN102741975A (zh) * 2010-04-30 2012-10-17 应用材料公司 双腔室处理系统
CN107400878A (zh) * 2017-07-26 2017-11-28 北京芯微诺达科技有限公司 一种原子层沉积设备的进气系统及其方法
CN109642319A (zh) * 2016-08-13 2019-04-16 应用材料公司 用于控制流至工艺腔室的气流的方法及装置
CN109778143A (zh) * 2017-11-14 2019-05-21 北京北方华创微电子装备有限公司 一种沉积系统及其气体传输方法
CN109868459A (zh) * 2017-12-05 2019-06-11 北京北方华创微电子装备有限公司 一种半导体设备
CN113106422A (zh) * 2021-04-09 2021-07-13 北京北方华创微电子装备有限公司 等离子体增强原子层沉积设备及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004311A1 (de) * 2005-01-31 2006-08-03 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von aus mehreren Komponentenhalbleitern bestehende Schichtenfolgen
CN104746046A (zh) * 2013-12-29 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 原子层沉积设备
US10428426B2 (en) * 2016-04-22 2019-10-01 Applied Materials, Inc. Method and apparatus to prevent deposition rate/thickness drift, reduce particle defects and increase remote plasma system lifetime
CN110230041B (zh) * 2018-03-05 2021-05-07 北京北方华创微电子装备有限公司 一种原子层沉积设备及方法
KR20210039489A (ko) * 2018-08-29 2021-04-09 어플라이드 머티어리얼스, 인코포레이티드 비-uv 고경도 저 k 막 증착
KR102205200B1 (ko) * 2018-09-20 2021-01-20 주식회사 엔씨디 박막 증착장치
CN111101116B (zh) * 2018-10-25 2023-08-18 北京北方华创微电子装备有限公司 工艺气体传输装置、原子层沉积方法及沉积设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425539A (en) * 2005-04-29 2006-11-01 Boc Group Plc Deposition system with three way valve
CN102741975A (zh) * 2010-04-30 2012-10-17 应用材料公司 双腔室处理系统
CN109642319A (zh) * 2016-08-13 2019-04-16 应用材料公司 用于控制流至工艺腔室的气流的方法及装置
CN107400878A (zh) * 2017-07-26 2017-11-28 北京芯微诺达科技有限公司 一种原子层沉积设备的进气系统及其方法
CN109778143A (zh) * 2017-11-14 2019-05-21 北京北方华创微电子装备有限公司 一种沉积系统及其气体传输方法
CN109868459A (zh) * 2017-12-05 2019-06-11 北京北方华创微电子装备有限公司 一种半导体设备
CN113106422A (zh) * 2021-04-09 2021-07-13 北京北方华创微电子装备有限公司 等离子体增强原子层沉积设备及方法

Also Published As

Publication number Publication date
JP2024511818A (ja) 2024-03-15
CN113106422A (zh) 2021-07-13
CN113106422B (zh) 2022-03-22
TWI824471B (zh) 2023-12-01
TW202240014A (zh) 2022-10-16
KR20230155000A (ko) 2023-11-09
EP4321648A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2022213961A1 (zh) 等离子体增强原子层沉积设备及方法
US9721763B2 (en) Systems and methods for providing gases to a process chamber
KR102531896B1 (ko) 가스 전달 시스템
US20080176412A1 (en) Atomic layer deposition system including a plurality of exhaust tubes
US20120328780A1 (en) Dual Section Module Having Shared and Unshared Mass Flow Controllers
WO2020062607A1 (zh) 进气系统、原子层沉积设备和方法
US20020170598A1 (en) Process gas supply mechanism for ALCVD systems
US20080026148A1 (en) Film Forming System And Method For Forming Film
US11959172B2 (en) Substrate processing systems including gas delivery system with reduced dead legs
CN110541159A (zh) 原子层沉积设备及方法
WO2009086772A1 (zh) 气体分配系统和应用该气体分配系统的半导体处理设备
CN111188026A (zh) 气体处理系统、气体处理方法及原子层沉积设备
KR100935289B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101245472B1 (ko) 가스 이송 장치 및 방법
CN110777428B (zh) 一种气体输运系统
CN117144339A (zh) 薄膜沉积方法及设备
CN111304628B (zh) 原子层沉积设备及方法
CN117730167A (zh) 用于将前驱物输送至处理腔室的系统及方法
TW202305989A (zh) 用於提供氣體混合物至反應室之設備及使用其的方法
CN117364239A (zh) 一种掺杂多晶硅薄膜生长加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023560057

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237034803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034803

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11202307498T

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2022784027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784027

Country of ref document: EP

Effective date: 20231109