WO2009086772A1 - 气体分配系统和应用该气体分配系统的半导体处理设备 - Google Patents

气体分配系统和应用该气体分配系统的半导体处理设备 Download PDF

Info

Publication number
WO2009086772A1
WO2009086772A1 PCT/CN2008/073430 CN2008073430W WO2009086772A1 WO 2009086772 A1 WO2009086772 A1 WO 2009086772A1 CN 2008073430 W CN2008073430 W CN 2008073430W WO 2009086772 A1 WO2009086772 A1 WO 2009086772A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
distribution system
gas distribution
flow
process gas
Prior art date
Application number
PCT/CN2008/073430
Other languages
English (en)
French (fr)
Inventor
Jianhui Nan
Original Assignee
Beijing Nmc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Nmc Co., Ltd. filed Critical Beijing Nmc Co., Ltd.
Publication of WO2009086772A1 publication Critical patent/WO2009086772A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a gas distribution system for use in a semiconductor processing process, and a semiconductor processing apparatus to which the distribution system is applied.
  • a reactive gas to be ionized under the excitation of radio frequency power to form a plasma containing a large amount of electrons, ions, excited states of atoms, molecules, and free radicals.
  • the physical/chemical reaction of the etched silicon wafer or the silicon wafer to be deposited is performed to obtain a desired etched pattern or deposited layer.
  • the semiconductor process performed in such a plasma environment may include CVD (Chemical Vapor Deposition), PECVD (Plasma Enhanced Chemical Vapor Deposition), dielectric etching, and polysilicon etching.
  • the semiconductor devices used in these processes typically include the following components: reaction chambers, gas distribution systems, radio frequency systems, and vacuum systems.
  • the gas distribution system transports the reaction gases (ie, process gases) required by the process to the reaction chamber, and the process gases are excited by the inductive coupling coil of the radio frequency system to form a plasma for performing Etching or deposition processes.
  • the above etching or deposition process usually involves several processes, and the process gases used in each process are not the same. Therefore, when the process changes, the process gas also needs to be switched accordingly, that is, the gas distribution system is required to stop supplying the process gas required for the previous process, and then supply the process gas required by the present process.
  • the gas distribution system usually includes a gas supply portion and a flow control portion connected to each other.
  • process gas 1 only the process gas required for the first process is included in the gas distribution system.
  • the body hereinafter referred to as process gas 1
  • process gas 2 the process gas required for the second process
  • the residual process gas 1 in the transfer line can be discharged only when the process gas 2 reaches the end of the transfer line, after which the gas delivered to the reaction chamber is the process gas 2.
  • the process gas in the latter process when the process gas is switched in the front/rear process, when the process gas supply in the previous process is stopped and the process gas supply in the subsequent process is started, the process gas in the latter process must be After passing through the transmission line of the gas supply part and the flow control part, etc., the reaction chamber can be reached and the next process is started. In other words, there is a reaction interval caused by gas switching between the previous process and the latter process.
  • the length of this reaction is the length of time that the process gas of the latter process begins to enter the transfer line until it reaches the reaction chamber. time.
  • the same transfer line is used to transport the process gas required for each process, only after the end of the previous process, the process gas required for the next process can be sent to the transfer line and waiting After the reaction is intermittent, the reaction chamber can be reached for the next process. Therefore, the time required to switch the process gas between the front and rear processes is long.
  • the process gas is a mixed gas of a plurality of gases, if the switching process continues for a long time (that is, the reaction interval is long), the mixing ratio of the gas cannot immediately reach the process requirement, but a transition ratio value. , thus directly affecting the process results.
  • the critical dimension of the process is getting smaller and smaller, which has been gradually reduced from the original 250nm, 180nm, 130nm, 90nm to the current 65nm, or even 45nm, which is even more urgent.
  • the field requires a period of time during which the reaction is intermittent during the process, and the process gas switching is performed rapidly.
  • the present invention provides a gas distribution system and a semiconductor processing apparatus using the same, which are characterized by being small in size, easy to install and maintain, and low in application cost.
  • the present invention provides a gas distribution system for delivering process gases to a reaction zone.
  • the system includes a gas supply portion, a switching portion, and a flow control portion that are sequentially connected.
  • the gas supply portion is configured to supply a process gas and transport it to the switching portion;
  • the switching portion is configured to stop conveying the process gas required for the current process to the flow control portion when the front and rear processes are switched, and then transport the same
  • the flow control portion is an integrated flow controller for controlling the flow rate of the process gas according to the process requirements, and conveying the process gas to the reaction zone.
  • the gas supply portion is connected to the switching portion through at least two gas paths, wherein one of the gas paths is used to transport the process gas required for the current process, and the other gas path is used to transport the process required for the next process. gas.
  • the switching portion is connected to the flow control portion through at least one gas path for conveying the process gas required for the current process.
  • the flow control portion transmits the process gas required for the current process to the central region and the edge region of the reaction zone through two output lines.
  • the integrated flow controller includes a proportional flow controller.
  • the proportional flow controller scales the flow of gas delivered to different reaction zones with an adjustment range of between 1 : 1 and 9: 1.
  • the integrated flow controller includes a mass flow controller.
  • the number of mass flow controllers is two and is programmed to proportionally control the flow of gas delivered to different reaction zones.
  • the present invention also provides such a gas distribution system for delivering a process gas to a reaction zone, comprising a gas supply portion, a flow control portion, and a switching portion that are sequentially connected.
  • the gas supply portion is for supplying a process gas and conveying it to a flow control portion;
  • the flow control portion includes an integrated flow controller for controlling a flow rate of the process gas according to a process requirement, and conveying the process gas to
  • the switching portion is configured to stop the process gas required for the current process from being transferred to the reaction zone during the process of the front-rear process, and then transfer the process gas required for the next process.
  • the gas supply portion is connected to the flow control portion through at least two gas paths, wherein one gas path is used to transport the process gas required for the current process, and the other gas path is used to transport the next process required Process gas.
  • the flow control portion is connected to the switching portion through at least two gas paths, one of which is used to transport the process gas required for the current process, and the other is used to transport the process required for the next process. gas.
  • the switching portion respectively transports the process gas required in the current process to the central region and the edge region of the reaction region through two output pipelines.
  • the integrated flow controller includes a proportional flow controller.
  • the proportional flow controller scales the flow of gas delivered to different reaction zones with an adjustment range of between 1 : 1 and 9: 1.
  • the integrated flow controller includes a mass flow controller.
  • the number of mass flow controllers is two and is programmed to proportionally control the flow of gas delivered to different reaction zones.
  • the present invention provides a semiconductor processing apparatus comprising a reaction chamber and the above gas distribution system, the gas distribution system delivering a process gas to the reaction chamber according to a process requirement.
  • the gas distribution system provided by the invention has the following beneficial effects: First, the volume is small. Since the flow control portion of the gas distribution system provided by the present invention uses an integrated flow controller instead of using a number of discrete pneumatic valves and the like as in the prior art, the gas distribution system provided by the present invention is compact. , small size.
  • the flow control portion of the gas distribution system provided by the present invention uses an integrated flow controller, unlike the prior art, a plurality of discrete pneumatic valves and the like are used, and accordingly, there is no need for each pneumatic valve. Establish a pipe connection. Therefore, the gas distribution system provided by the present invention has a relatively simple structure and is easy to install and maintain.
  • the application cost is low. Since the gas distribution system provided by the present invention has a small volume, it does not occupy a large space of the machine and the clean room as in the prior art, and thus, it does not occupy a large space. The machine space and clean room space result in higher application costs.
  • the semiconductor processing apparatus to which the gas distribution system provided by the present invention is applied also has the above features. Moreover, since the semiconductor processing apparatus provided by the present invention employs a gas distribution system capable of rapid gas switching, the reaction intermittent time between the front/rear processes is shortened, and thus the semiconductor processing apparatus also has a high product yield. Features. DRAWINGS
  • FIG. 1 is a schematic block diagram of a preferred embodiment of a gas distribution system provided by the present invention
  • FIG. 2 is a schematic structural view of a specific implementation of the gas distribution system of FIG. 1.
  • FIG. 3 is a schematic diagram of the gas distribution system of FIG.
  • FIG. 4 is a schematic structural view of a switching portion in the gas distribution system shown in FIG. 2;
  • Figure 5 is a schematic structural view of a flow control portion in the gas distribution system shown in Figure 2;
  • Figure 6 is a schematic view showing another structure of a flow control portion in the gas distribution system provided by the present invention;
  • Figure 7 is a schematic diagram showing the workflow of the flow control portion shown in Figure 6;
  • FIG 8 is a schematic illustration of another embodiment of a gas distribution system provided by the present invention. detailed description
  • the gas distribution system 100 includes the following parts: a gas supply portion 200 for providing a process gas used in each process in a semiconductor processing/processing process, such as a process gas 1 used in the process 1.
  • the process gas 2 used in the process 2; the switching portion 400 is connected to the gas supply portion 200 through the pipe 203 and the pipe 213, and the switching portion 400 is realized by performing different combinations of on/off operations of the pneumatic valves therein.
  • Switching of the gas used in the post-process for example, Switching from process gas 1 to process gas 2; and flow control portion 300, which is connected to switching portion 400 via line 303, which performs flow control and mixing ratio control for the gases used in each process, and will flow
  • the controlled process gas is delivered to the reaction chamber through line 403 and line 413, for example, the process gas is separately delivered to the inner and outer zones of the reaction chamber to effect dual zone intake of the reaction chamber.
  • the specific working process of the gas distribution system 100 provided by the present invention is:
  • the gas supply portion 200 conveys the process gas 1 used in the process 1 (which may be a gas or a plurality of gases) to the switching portion 400 through the pipe 203; the switching portion 400 passes the process gas through the pipe 303. 1 is transferred to the flow control portion 300; the flow control portion 300 performs flow control of the process gas 1 from the line 303 and delivers it through the pipes 403 and 413 to the reaction chamber, for example, to the inner and outer portions of the reaction chamber. Zone, for processing/processing of process 1.
  • the process gas 1 used in the process 1 which may be a gas or a plurality of gases
  • the process gas 1 is continuously delivered to the reaction chamber through the above-mentioned line.
  • the gas supply portion 200 conveys the process gas 2 (which may be a gas or a plurality of gases) used in the process 2 to the switching portion 400 through the line 213.
  • the switching portion 400 does not transport the process gas 2 into the reaction chamber, but discharges it through the bypass line.
  • the process 2 is carried out.
  • the gas supply portion 200 stops the supply of the process gas 1 for the process 1
  • the switching portion 400 cuts off the transfer path of the process gas 1 to the flow control portion 300, no longer transports the process gas 1 to the reaction chamber, and residues in the transfer path
  • the process gas 1 is discharged through a bypass line.
  • the switching portion 400 cuts off the transfer path of the process gas 2 to the bypass line, and communicates the process gas 2 to the transfer path of the flow control portion 300, and transfers the process gas 2 to the flow control portion 300 through the line 303.
  • the flow control portion 300 performs flow control of the process gas 2 from the switching portion 400, and delivers it to the reaction chamber through the conduit 403 and the conduit 413, for example, to the inner and outer regions of the reaction chamber to perform the process 2 Processing / processing.
  • the gas 3 used in the process 3 enters the transmission path of the original process gas 1, and can be quickly switched from the current process 2 to the process 3 after the process 2 is completed.
  • fast gas switching between the front/rear processes during the process can be completed.
  • the gas distribution system can realize not only two-zone intake (ie, the gas distribution system delivers process gas to two regions in the reaction chamber), but also single-zone intake (ie, gas).
  • the distribution system concentrates the delivery of process gases to a region within the reaction chamber, although multi-zone intake can also be achieved (i.e., the gas distribution system delivers process gases to multiple regions within the reaction chamber).
  • multi-zone intake can also be achieved (i.e., the gas distribution system delivers process gases to multiple regions within the reaction chamber).
  • the switching portion 400 and the flow control portion 300 should be placed close to the reaction chamber so that the time it takes for the gas to pass from the switching portion 400 to the reaction chamber is as short as possible.
  • FIG. 2 is a specific implementation of the gas distribution system shown in FIG. Figures 3 through 6 show various portions of the exploded gas distribution system 100, respectively.
  • the composition and operation of the gas supply portion 200, the switching portion 400, the flow control portion 300, and the gas distribution system 100 will be described in detail below with reference to Figs. 2 through 6.
  • the gas supply portion 200 includes the following parts: 4 gas sources, that is, gas sources
  • the flow controller 24 is generally an MFC (Mass Flow Controller).
  • the output of the pneumatic valve 25 on each of the gas passages is connected in parallel and then connected to the line 213.
  • the output ends of the pneumatic valves 26 on each of the air passages are connected in parallel and connected to the line 203.
  • the process gas 1 used in the process 1 is a mixed gas of the gas from the gas source 231 and the gas from the gas source 211 (for convenience of explanation, the mixed gas of the process 1 is referred to as the process gas 1 in the present invention, and will be derived from the gas source 231.
  • the gas is referred to as a process gas 231
  • the gas from the gas source 211 is referred to as a process gas 211, and so on.
  • the ratio of the process gas 231 or the process gas 211 to the process gas 1 the process gas 231 and the process gas 211 may be adjusted. The traffic comes to get.
  • H No Process 2 The process gas 2 used is a mixed gas of the process gas 221 and the process gas 201.
  • the pneumatic valve 23 and the pneumatic valve 26 on the gas paths 232 and 212 are both in an open state, and the process gas 231 and the process gas 211 enter the gas paths 232 and 212, respectively, and are controlled by the flow controller 24, and then It flows through the corresponding pneumatic valve 26 and flows into the line 203 for delivery to the downstream switching portion 400.
  • the pneumatic valve 23 and the pneumatic valve 26 on the gas paths 222 and 202 are opened, and the process gas 221 and the process gas 201 enter the gas paths 222 and 202, respectively, and are controlled by the flow controller 24, after which It flows through the corresponding pneumatic valve 25 and flows into the line 213 for delivery to the downstream switching portion 400 and waits for gas switching.
  • the switching portion 400 is connected to the gas supply portion 200 through the line 301 and the line 302, and is connected to the flow control portion 300 through the line 303.
  • the switching portion 400 is also provided with a bypass 304 that extends beyond the gas distribution system 100.
  • a pneumatic valve 31 is provided on the line connecting the line 301 and the line 303, and on the line connecting the line 302 and the line 303, and on the line connecting the line 301 and the bypass 304, and A pneumatic valve 32 is provided on the line connecting the line 302 and the bypass 304.
  • a throttle valve 33 is provided on both the line 301 and the line 302.
  • the specific working process of the switching portion 400 is: In the process 1, the process gas 1 from the line 203 enters the switching portion 400, and is distributed by the pipe 301, specifically, the pneumatic valve 31 on the pipe connected to the pipe 301.
  • the pneumatic valve 32 performs the following operations: that is, the pneumatic valve 31 is opened, the pneumatic valve 32 is closed, and the process gas 1 is introduced into the flow control portion 300 through the line 303.
  • the bypass 304 can, for example, be connected to a vacuum pump by which the process gas 2 in the bypass 304 is pumped away.
  • the switching portion 400 When the process 1 is completed, the switching portion 400 performs the following operations on the pneumatic valve 31 and the pneumatic valve 32 on the line connected to the line 301: that is, the pneumatic valve 31 is closed, and the pneumatic valve 32 is opened to stop the flow.
  • the downstream flow control portion 300 delivers the process gas 1.
  • the switching portion 400 performs the following operations on the pneumatic valve 31 and the pneumatic valve 32 on the line connected to the line 302: that is, the pneumatic valve 32 is closed, and the pneumatic valve 31 is opened.
  • Gas switching can be achieved by the above series of operations, that is, the process gas 1 used in the process 1 is switched to the process gas 2 used in the process 2.
  • the flow control portion 300 uses an integrated flow controller, for example, a flow controller of the FRC product line of the US MKS Corporation can be used to control the flow of the process gas to be delivered into the reaction chamber, and Proportional control of the process gas to be delivered to the inner and outer zones of the reaction chamber (ie, in a process, controlling the process gas delivered to the interior of the reaction chamber and the process gas delivered to the outdoor zone of the reaction chamber) Proportional relationship between)).
  • the flow controller of the FRC series to proportionally adjust the process gas to be delivered to the inner and outer zones of the reaction chamber, the adjustment range is 1:1 to 9:1 or 9:1 to 1:1.
  • the flow control section 300 can also use MFC. Since a single MFC can only perform flow control, and cannot independently control gas ratios in different regions, when it is necessary to transport process gases to two regions in the reaction chamber through different pipelines, and process gases for the two regions When performing proportional control, you need to set up two MFCs. Among them, each MFC corresponds to one area, and the process gas ratio adjustment of the two areas is realized by adjusting the flow rate of each MFC.
  • Figure 7 shows the software flow for gas proportional control of two zones (internal zone and outer zone) in a process.
  • the total flow rate of the process gas to be delivered to the reaction chamber and the ratio of the process gases delivered to the inner and outer zones of the reaction chamber, respectively, are obtained.
  • each MFC is set based on the calculated flow value so that each MFC delivers a given flow of process gas to the corresponding region of the reaction chamber according to its set value.
  • feedback control can be used to adjust the set value of each MFC.
  • a feedback loop can be set for each MFC, so that the output of each MFC is sampled, and the set value of each MFC is adjusted according to the sample value to obtain the desired flow rate and the inner zone and the outer zone. The ratio between the values.
  • the switching portion 400 is located before the flow control portion 300 in the foregoing embodiment, in other words, in the foregoing embodiment, the process gas switching of the front/rear process is performed first, and the flow control of the process gas to be delivered into the reaction chamber is performed. .
  • the switching portion 400 may also be located after the flow control portion 300.
  • the flow rate of the process gas to be delivered into the reaction chamber may be first controlled, and then the process gas switching of the front/rear process may be performed.
  • Fig. 8 shows a gas distribution system of such a layout structure.
  • the gas distribution system 100 in this embodiment is different from the embodiment shown in Fig. 2 in that: the flow control portion 300 in Fig. 8 is upstream of the switching portion 400, and the flow control portion in Fig. 2 300 is downstream of the switching portion 400.
  • the flow control portion 300 also employs an integrated flow controller.
  • the flow control portion of the gas distribution system provided by the present invention uses an integrated flow controller, and in practical applications, the flow control portion and the switching portion are disposed close to the reaction chamber, thereby
  • the gas distribution system provided by the invention has the advantages of simple and compact structure and small volume, which can reduce the occupation space of the machine table and the clean room, thereby saving cost.
  • the present invention provides a semiconductor processing apparatus which employs the aforementioned gas distribution system provided by the present invention.
  • the semiconductor processing apparatus such as a reaction chamber, a radio frequency system, and a vacuum system, the prior art can be used, and will not be described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

气体分配系统和应用该气体分配系统的半导体处理设备 技术领域
本发明涉及微电子技术领域, 具体而言, 涉及半导体处理工艺中所使用 的一种气体分配系统, 以及应用该分配系统的半导体处理设备。 背景技术
在半导体工艺中, 例如在集成芯片生产过程中, 往往需要使反应气体在 射频功率的激发下产生电离而形成含有大量电子、 离子、 激发态的原子、 分 子和自由基等活性粒子的等离子体, 以便对被刻蚀的硅片或者需要淀积的硅 片进行物理 /化学反应, 从而获得所需要的刻蚀图形或者淀积层。
在这种等离子体环境下进行的半导体工艺,可以有 CVD( Chemical Vapor Deposition , 化学气相沉积 )、 PECVD ( Plasma Enhanced Chemical Vapor Deposition, 等离子体增强化学气相沉积)、 介质刻蚀和多晶硅刻蚀等等。 这 些工艺过程所使用的半导体设备通常都包括下述各部分: 反应腔室、 气体分 配系统、 射频系统和真空系统等。 实际工艺过程中, 气体分配系统将工艺过 程所需的反应气体(即, 工艺气体)输送到反应腔室, 这些工艺气体在射频 系统的电感耦合线圈的作用下被激发而形成等离子体, 以进行刻蚀或淀积等 工艺。
上述刻蚀或淀积工艺通常都包含若干道工序, 且每道工序所使用的工艺 气体不尽相同。 因此当工序发生变换时, 工艺气体也需要相应地进行切换, 也就是要求气体分配系统停止供应前道工序所需工艺气体, 转而供应本道工 序所需工艺气体。
实际应用中, 气体分配系统通常包括相互连接的气体供应部分和流量控 制部分等。 进行第一道工序时, 气体分配系统中只有第一道工序所需工艺气 体(以下称为工艺气体 1 )被输送, 在第一道工序结束后, 将第二道工序所 需工艺气体(以下称为工艺气体 2 )送入相同的传输管路。 这样, 仅当工艺 气体 2到达了传输管路的终点,才能将传输管路中的残存的工艺气体 1排出, 此后输送到反应腔室中的气体才是工艺气体 2。 因此, 目前常釆用的气体分 配系统在进行前 /后工序的工艺气体切换时,在停止前道工序的工艺气体供给 并开始后一道工序的工艺气体供给时, 后一道工序的工艺气体必须要流经气 体供应部分和流量控制部分等的传输管路后才能到达反应腔室, 并开始下一 道工艺。 换言之, 在前道工序和后一道工序之间存在一个因气体切换而带来 的反应间歇, 这个反应间歇的时间长度为后一道工序的工艺气体开始进入传 输管路直至到达反应腔室所经历的时间。
由此可见, 使用相同的传输管路来传输各道工序所需的工艺气体, 只能 是在前道工序结束后, 才能将下道工序所需的工艺气体送入传输管路, 并在 等待反应间歇这段时间之后才能到达反应腔室而进行下一道工序。 因此, 使 得前后工序之间的工艺气体切换所需的时间较长。 而且, 当工艺气体为多种 气体的混合气体时, 切换过程若持续得较长 (也就是反应间歇较长 ), 则会使 气体的混合比例不能立刻达到工艺要求, 而是一个过渡的比例值, 从而直接 影响工艺结果。 尤其是, 随着半导体加工 /处理技术的逐渐提高, 工艺关键尺 寸也越来越小, 已经由原来的 250nm、 180nm、 130nm、 90nm逐渐减小到现 在的 65nm、 甚至 45nm, 这就更为迫切地要求工艺过程中减小反应间歇的时 间段, 快速地进行工艺气体切换。 发明内容
为解决上述技术问题, 本发明提供了一种气体分配系统以及应用该分配 系统的半导体处理设备, 其具有体积较小、 便于安装和维护、 以及应用成本 较低等特点。
为此, 本发明提供了一种用于向反应区域输送工艺气体的气体分配系 统, 其包括顺序连接的气体供应部分、 切换部分以及流量控制部分。 所述气 体供应部分用于提供工艺气体, 并将其向切换部分输送; 所述切换部分用于 在前后工序转换时, 停止向流量控制部分输送当前工序所需的工艺气体, 转 而向其输送下一道工序所需的工艺气体; 所述流量控制部分为集成流量控制 器, 用于根据工艺要求控制工艺气体的流量, 并将所述工艺气体向反应区域 输送。
其中, 所述气体供应部分通过至少两路气路与所述切换部分相连, 其中 的一路气路用于输送当前工序所需的工艺气体, 另一路气路用于输送下一道 工序所需的工艺气体。
其中, 所述切换部分通过至少一路气路与所述流量控制部分相连, 用于 输送当前工序所需的工艺气体。
其中, 所述流量控制部分通过两路输出管路将当前工序所需工艺气体输 送至反应区域的中央区域和边缘区域。
其中, 所述集成流量控制器包括比例流量控制器。 所述比例流量控制器 对输送到不同反应区域的气体流量进行比例调节, 其调节范围在 1 : 1至 9: 1之间。
其中, 所述集成流量控制器包括质量流量控制器。 所述质量流量控制器 的数量为 2个, 并且通过编程来对输送到不同反应区域的气体流量进行比例 控制。
本发明还提供了这样一种用于向反应区域输送工艺气体的气体分配系 统, 其包括顺序连接的气体供应部分、 流量控制部分以及切换部分。 所述气 体供应部分用于提供工艺气体, 并将其向流量控制部分输送; 所述流量控制 部分包括集成流量控制器, 用于根据工艺要求控制工艺气体的流量, 并将所 述工艺气体输送到切换部分; 所述切换部分用于在前后工序转换时, 停止向 反应区域输送当前工序所需的工艺气体, 转而向其输送下一道工序所需的工 艺气体。 其中, 所述气体供应部分通过至少两路气路与所述流量控制部分相连, 其中的一路气路用于输送当前工序所需的工艺气体, 另一路气路用于输送下 一道工序所需的工艺气体。
其中, 所述流量控制部分通过至少两路气路与所述切换部分相连, 其中 的一路气路用于输送当前工序所需的工艺气体, 另一路气路用于输送下一道 工序所需的工艺气体。
其中, 所述切换部分通过两路输出管路将当前工序所需工艺气体分别输 送至反应区域的中央区域和边缘区域。
其中, 所述集成流量控制器包括比例流量控制器。 所述比例流量控制器 对输送到不同反应区域的气体流量进行比例调节, 其调节范围在 1 : 1至 9: 1之间。
其中, 所述集成流量控制器包括质量流量控制器。 所述质量流量控制器 的数量为 2个, 并且通过编程来对输送到不同反应区域的气体流量进行比例 控制。
此外, 本发明还提供了一种半导体处理设备, 包括反应腔室以及上述气 体分配系统, 所述气体分配系统根据工艺要求将工艺气体输送至反应腔室。
相对于现有技术, 本发明提供的气体分配系统具有下述有益效果: 其一, 体积小。 由于本发明提供的气体分配系统中的流量控制部分釆用 集成的流量控制器, 而不像现有的技术那样釆用若干分立的气动阀等部件, 因此, 本发明提供的气体分配系统结构紧凑、 体积较小。
其二, 便于安装和维护。 由于本发明提供的气体分配系统中的流量控制 部分釆用集成的流量控制器, 而不像现有的技术那样釆用若干分立的气动阀 等部件, 相应地, 也就无需在各个气动阀之间建立管路连接。 因此, 本发明 提供的气体分配系统结构较为简单, 并且便于安装和维护。
其三, 应用成本低。 由于本发明提供的气体分配系统的体积较小, 不像 现有的技术那样占用较大的机台空间和洁净室空间, 因而, 不会因占用较大 的机台空间和洁净室空间而导致应用成本较高。
类似地, 应用了本发明提供的气体分配系统的半导体处理设备也具有上 述特点。 而且, 由于本发明提供的半导体处理设备应用了能够进行快速气体 切换的气体分配系统, 使得前 /后工序之间的反应间歇时间得以缩短, 因此该 半导体处理设备还具有产品产出率较高的特点。 附图说明
图 1是本发明提供的气体分配系统的一个优选实施方式的原理框图; 图 2是图 1所示气体分配系统的一个具体实现方式的结构示意图; 图 3是图 2所示气体分配系统中的气体供应部分的结构示意图; 图 4是图 2所示气体分配系统中的切换部分的结构示意图;
图 5是图 2所示气体分配系统中的流量控制部分的结构示意图; 图 6是本发明提供的气体分配系统中的流量控制部分的另一种结构示意 图;
图 7是图 6所示流量控制部分的工作流程示意图; 以及
图 8 是本发明提供的气体分配系统的另一个具体实现方式的结构示意 图。 具体实施方式
为使本技术领域的人员更好地理解本发明的技术方案, 下面结合附图对 本发明提供的气体分配系统及装置进行详细描述。
请参阅图 1 , 本发明提供的气体分配系统 100包括下述各个部分: 气体 供应部分 200,其用于提供半导体加工 /处理工艺中各道工序所用的工艺气体, 如工序 1所用工艺气体 1 , 工序 2所用工艺气体 2; 切换部分 400, 其通过管 路 203和管路 213而与气体供应部分 200相连, 该切换部分 400通过对其内 的气动阀进行不同组合的开 /关操作来实现前 /后工序所用气体的切换, 例如, 由工艺气体 1切换到工艺气体 2; 以及流量控制部分 300, 其通过管路 303 而与切换部分 400相连, 该流量控制部分 300对各道工序所用气体进行流量 控制和混合比例控制,并且将流量被控制的工艺气体通过管路 403和管路 413 输送到反应腔室中, 例如将工艺气体分别输送到反应腔室的内区和外区中, 从而实现反应腔室的双区进气。
本发明提供的气体分配系统 100的具体工作过程为:
在工序 1中, 气体供应部分 200通过管路 203向切换部分 400输送工序 1所用工艺气体 1 (其可以为一种气体, 也可以为多种气体); 切换部分 400 通过管路 303将工艺气体 1传输至流量控制部分 300; 流量控制部分 300对 来自管路 303的工艺气体 1进行流量控制, 并将其通过管道 403和 413输送 到反应腔室内, 例如输送到反应腔室的内区和外区, 以进行工序 1 的加工 / 处理。
当工序 1即将结束时, 继续通过上述管路向反应腔室输送工艺气体 1。 同时, 气体供应部分 200通过管路 213向切换部分 400输送工序 2所用工艺 气体 2 (其可以为一种气体, 也可以为多种气体)。 此时, 切换部分 400并不 将工艺气体 2输送到反应腔室内, 而是将其通过旁路管线排出。
工序 1结束, 转而进行工序 2。 此时, 气体供应部分 200停止供应工艺 1所用工艺气体 1 ,切换部分 400切断工艺气体 1到流量控制部分 300的传输 路径, 不再将工艺气体 1输送至反应腔室, 并将传输路径中残余的工艺气体 1通过旁路管线排出。 同时, 切换部分 400切断工艺气体 2到旁路管线的传 输路径, 并且连通工艺气体 2到流量控制部分 300的传输路径, 将工艺气体 2通过管路 303传输至流量控制部分 300。流量控制部分 300对来自切换部分 400的工艺气体 2进行流量控制, 并将其通过管道 403和管道 413输送到反 应腔室内, 例如输送到反应腔室的内区和外区, 以进行工序 2的加工 /处理。
由工序 1切换到工序 2后, 工序 3所用气体 3进入原工艺气体 1的传输 路径中, 以待工序 2完成后可以快速地从当前工序 2切换到工序 3 , ... ... , 以此类推, 即可完成工艺过程中前 /后工序之间的快速气体切换。
需要指出的是,本发明提供的气体分配系统不但可以实现双区进气(即, 气体分配系统向反应腔室内的两个区域输送工艺气体 ) ,而且也可以实现单区 进气(即, 气体分配系统集中向反应腔室内的一个区域输送工艺气体), 当然 也可以实现多区进气(即, 气体分配系统向反应腔室内的多个区域输送工艺 气体)。 为使工艺气体在反应腔室内均匀分布, 进而提高工艺结果的均一性, 优选地釆用双区或者多区进气方式。
进一步需要指出的是, 为了实现快速气体切换, 切换部分 400和流量控 制部分 300应该靠近反应腔室设置, 以使气体从切换部分 400传输到反应腔 室所经历的时间尽可能地短。
请参阅图 2, 为图 1所示气体分配系统的具体实现方式。 图 3至图 6分 别示出分解后的气体分配系统 100的各个部分。 下面结合图 2至图 6来详细 说明气体供应部分 200、切换部分 400、流量控制部分 300以及气体分配系统 100的组成和工作原理。
请参阅图 3 , 气体供应部分 200包括下述各部分: 4个气源, 即, 气源
201、 211、 221和 231 ; 与这 4个气源相连的 4路气路 202、 212、 222和 232, 每一路气路上均设置有气动阀 23、流量控制器 24以及气动阀 25和 26。其中, 流量控制器 24—般为 MFC ( Mass Flow Controller, 质量流量控制器)。 每一 路气路上的气动阀 25的输出端并联连接, 之后与管路 213相连。 类似地, 每 一路气路上的气动阀 26的输出端并联连接之后与管路 203相连。
假设工序 1所用工艺气体 1为来自气源 231的气体和来自气源 211的气 体的混合气体 (为便于说明, 本发明中将工序 1的混合气体称为工艺气体 1 , 将来自气源 231的气体称为工艺气体 231 , 将来自气源 211的气体称为工艺 气体 211 , 以此类推), 至于工艺气体 231或工艺气体 211占工艺气体 1的比 例, 可以通过调节工艺气体 231和工艺气体 211的流量来得到。 H没工序 2 所用工艺气体 2为工艺气体 221和工艺气体 201的混合气体。 在工序 1中, 需要向反应腔室中输送工艺气体 1。此时, 气路 232和 212 上的气动阀 23和气动阀 26均处于开启状态, 工艺气体 231和工艺气体 211 分别进入气路 232和 212中,并由流量控制器 24来控制其流量,之后流经相 应的气动阀 26而汇入管路 203 , 以便输送到下游的切换部分 400中。
当工序 1快要结束时,打开气路 222和 202上的气动阀 23和气动阀 26, 工艺气体 221和工艺气体 201分别进入气路 222和 202, 并由流量控制器 24 来控制其流量, 之后流经相应的气动阀 25而汇入管路 213 , 以便输送到下游 的切换部分 400中, 并等待气体切换。
请参阅图 4, 切换部分 400通过管路 301和管路 302而与气体供应部分 200相连, 通过管路 303而与流量控制部分 300相连。 该切换部分 400还设 置有延伸至气体分配系统 100之外的旁路 304。 在连接管路 301和管路 303 的管路上、 以及在连接管路 302和管路 303的管路上均设置有气动阀 31 , 而 且, 在连接管路 301和旁路 304的管路上、 以及在连接管路 302和旁路 304 的管路上均设置有气动阀 32。 此外, 在管路 301和管路 302上均设置有节流 阀 33。
切换部分 400的具体工作过程为: 在工序 1中, 来自管路 203的工艺气 体 1进入切换部分 400, 由管路 301进行分配, 具体地, 对与管路 301相连 的管路上的气动阀 31和气动阀 32进行下述操作: 即, 打开气动阀 31 , 关闭 气动阀 32, 使工艺气体 1通过管路 303进入流量控制部分 300。
在工序 1即将结束时, 来自管路 213的工艺气体 2进入切换部分 400, 由管路 302进行分配,具体地,对与管路 302相连的管路上的气动阀 31和气 动阀 32进行下述操作: 即, 打开气动阀 32, 关闭气动阀 31 , 使工艺气体 2 通过旁路 304而排出气体切换系统 100。该旁路 304例如可以与真空泵相连, 由该真空泵将旁路 304中的工艺气体 2抽走。
当工序 1完成时,切换部分 400对与管路 301相连的管路上的气动阀 31 和气动阀 32进行下述操作: 即, 关闭气动阀 31 , 打开气动阀 32, 以停止向 下游的流量控制部分 300输送工艺气体 1。此外,切换部分 400对与管路 302 相连的管路上的气动阀 31和气动阀 32进行下述操作: 即, 关闭气动阀 32, 打开气动阀 31。 经过上述一系列操作就可以实现气体切换, 即, 由工序 1所 使用的工艺气体 1切换到工序 2所使用的工艺气体 2。
请参阅图 5, 流量控制部分 300釆用集成的流量控制器, 例如可以釆用 美国 MKS公司的 FRC产品系列的流量控制器, 以对欲输送到反应腔室中的 工艺气体进行流量控制, 以及对欲输送到反应腔室的内区和外区的工艺气体 进行比例控制 (即, 在某一个工艺过程中, 控制输送到反应腔室内区的工艺 气体和输送到反应腔室外区的工艺气体之间的比例关系)。 釆用该 FRC系列 的流量控制器对欲输送到反应腔室内区和外区的工艺气体进行比例调节时, 其调节范围为 1:1到 9:1或 9:1到 1:1。
请参阅图 6, 流量控制部分 300也可以釆用 MFC。 由于单个 MFC只能 进行流量控制, 而不能独立地实现不同区域的气体比例控制, 因此, 当需要 通过不同管路向反应腔室中的两个区域输送工艺气体, 并对这两个区域的工 艺气体进行比例控制时, 就需要设置两路 MFC。 其中, 每一路 MFC对应一 个区域, 通过调节每一个 MFC的流量来实现两个区域的工艺气体比例调节。
在实际应用中, 通过多路 MFC进行工艺气体比例控制时, 往往需要借 助于软件来实现。 图 7就示出了某一工序中两个区域(内区和外区) 的气体 比例控制的软件流程。
首先, 获得欲输送到反应腔室中的工艺气体的总流量值以及分别输送到 反应腔室的内区和外区的工艺气体的比例值。
然后, 根据上述总流量值以及比例值来计算每个 MFC的流量值。
其后, 根据上述计算得出的流量值来对每一个 MFC进行设定, 以使每 一个 MFC根据其设定值而向反应腔室的相应区域输送给定流量的工艺气体。
为了更为精确地控制进入内区和外区的工艺气体的流量及二者之间的 比例值, 可以釆用反馈控制来对每一个 MFC 的设定值进行调整。 具体地, 可以对每一个 MFC设置一个反馈回路, 这样, 对每一个 MFC的输出进行釆 样, 并根据釆样值对每一个 MFC 的设定值进行调整, 以获得期望的流量以 及内区和外区之间的比例值。
可以理解,尽管前述实施例中切换部分 400位于流量控制部分 300之前, 换言之, 前述实施例中先进行前 /后工序的工艺气体切换, 再进行欲输送到反 应腔室中的工艺气体的流量控制。 然而, 在实际应用中, 切换部分 400也可 以位于流量控制部分 300之后, 换言之, 也可以先对欲输送到反应腔室中的 工艺气体进行流量控制, 再进行前 /后工序的工艺气体切换, 例如图 8就示出 了这种布局结构的气体分配系统。 本实施例中的气体分配系统 100与图 2所 示实施例相比, 二者的不同之处在于: 图 8中的流量控制部分 300在切换部 分 400的上游, 而图 2中的流量控制部分 300在切换部分 400的下游。 至于 气体供应部分 200和切换部分 400的内部组成和结构大致类似, 而且流量控 制部分 300同样釆用集成的流量控制器。
通过前述实施例的描述可以看出: 由于本发明提供的气体分配系统中的 流量控制部分釆用集成的流量控制器, 并且在实际应用中流量控制部分和切 换部分靠近反应腔室设置, 从而使得本发明提供的气体分配系统结构简单紧 凑、 体积小, 可以减小机台和洁净室的占用空间, 进而节约成本。
此外, 本发明还提供一种半导体处理设备, 其釆用了本发明提供的前述 气体分配系统。 至于该半导体处理设备的其他构成部分, 诸如反应腔室、 射 频系统和真空系统等均可以釆用现有技术, 在此不再赘述。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而釆用的示 例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

利 要 求 书
1. 一种气体分配系统, 用于向反应区域输送工艺气体, 其特征在于, 包 括顺序连接的气体供应部分、 切换部分以及流量控制部分, 所述气体供应部 分用于提供工艺气体, 并将其向切换部分输送; 所述切换部分用于在前后工 序转换时, 停止向流量控制部分输送当前工序所需的工艺气体, 转而向其输 送下一道工序所需的工艺气体; 所述流量控制部分为集成流量控制器, 用于 根据工艺要求控制工艺气体的流量, 并将所述工艺气体向反应区域输送。
2. 根据权利要求 1所述的气体分配系统, 其特征在于, 所述气体供应部 分通过至少两路气路与所述切换部分相连, 其中的一路气路用于输送当前工 序所需的工艺气体, 另一路气路用于输送下一道工序所需的工艺气体。
3. 根据权利要求 1所述的气体分配系统, 其特征在于, 所述切换部分通 过至少一路气路与所述流量控制部分相连, 用于输送当前工序所需的工艺气 体。
4. 根据权利要求 1所述的气体分配系统, 其特征在于, 所述流量控制部 分通过两路输出管路将当前工序所需工艺气体输送至反应区域的中央区域和 边缘区域。
5. 根据权利要求 1或 4所述的气体分配系统, 其特征在于, 所述集成流 量控制器包括比例流量控制器。
6. 根据权利要求 5所述的气体分配系统, 其特征在于, 所述比例流量控 制器对输送到不同反应区域的气体流量进行比例调节, 其调节范围在 1 : 1 至 9: 1之间。
7. 根据权利要求 1或 4所述的气体分配系统, 其特征在于, 所述集成流 量控制器包括质量流量控制器。
8. 根据权利要求 7所述的气体分配系统, 其特征在于, 所述质量流量控 制器的数量为 2个, 并且通过编程来对输送到不同反应区域的气体流量进行 比例控制。
9. 一种气体分配系统, 用于向反应区域输送工艺气体, 其特征在于, 包 括顺序连接的气体供应部分、 流量控制部分以及切换部分, 所述气体供应部 分用于提供工艺气体, 并将其向流量控制部分输送; 所述流量控制部分包括 集成流量控制器, 用于根据工艺要求控制工艺气体的流量, 并将所述工艺气 体输送到切换部分; 所述切换部分用于在前后工序转换时, 停止向反应区域 输送当前工序所需的工艺气体, 转而向其输送下一道工序所需的工艺气体。
10. 根据权利要求 9所述的气体分配系统, 其特征在于, 所述气体供应 部分通过至少两路气路与所述流量控制部分相连, 其中的一路气路用于输送 当前工序所需的工艺气体,另一路气路用于输送下一道工序所需的工艺气体。
11. 根据权利要求 9所述的气体分配系统, 其特征在于, 所述流量控制 部分通过至少两路气路与所述切换部分相连, 其中的一路气路用于输送当前 工序所需的工艺气体, 另一路气路用于输送下一道工序所需的工艺气体。
12. 根据权利要求 9所述的气体分配系统, 其特征在于, 所述切换部分 通过两路输出管路将当前工序所需工艺气体分别输送至反应区域的中央区域 和边缘区域。
13. 根据权利要求 9或 12所述的气体分配系统, 其特征在于, 所述集成 流量控制器包括比例流量控制器。
14. 根据权利要求 13所述的气体分配系统, 其特征在于, 所述比例流量 控制器对输送到不同反应区域的气体流量进行比例调节, 其调节范围在 1 : 1 至 9: 1之间。
15. 根据权利要求 9或 12所述的气体分配系统, 其特征在于, 所述集成 流量控制器包括质量流量控制器。
16. 根据权利要求 15所述的气体分配系统, 其特征在于, 所述质量流量 控制器的数量为 2个, 并且通过编程来对输送到不同反应区域的气体流量进 行比例控制。
17. 一种半导体处理设备, 包括反应腔室, 其特征在于, 还包括如权利 要求 1至 16中任意一项所述的气体分配系统,所述气体分配系统根据工艺要 求将工艺气体输送至反应腔室。
PCT/CN2008/073430 2007-12-12 2008-12-10 气体分配系统和应用该气体分配系统的半导体处理设备 WO2009086772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710179336.9 2007-12-12
CN2007101793369A CN101457351B (zh) 2007-12-12 2007-12-12 气体分配系统和应用该气体分配系统的半导体处理设备

Publications (1)

Publication Number Publication Date
WO2009086772A1 true WO2009086772A1 (zh) 2009-07-16

Family

ID=40768466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073430 WO2009086772A1 (zh) 2007-12-12 2008-12-10 气体分配系统和应用该气体分配系统的半导体处理设备

Country Status (2)

Country Link
CN (1) CN101457351B (zh)
WO (1) WO2009086772A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750049B (zh) * 2013-12-31 2018-05-08 北京北方华创微电子装备有限公司 半导体制造中气路配置处理的方法及系统
CN103966569A (zh) * 2014-04-28 2014-08-06 北京七星华创电子股份有限公司 一种半导体设备的真空控制系统及真空控制方法
CN111101115B (zh) * 2018-10-25 2022-03-22 北京北方华创微电子装备有限公司 气路切换装置及其控制方法、半导体加工设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010013363A1 (en) * 1999-04-22 2001-08-16 Hirofumi Kitayama Apparatus and method for feeding gases for use in semiconductor manufacturing
CN2674647Y (zh) * 2003-02-07 2005-01-26 东京毅力科创株式会社 流体控制装置和热处理装置
US20050241763A1 (en) * 2004-04-30 2005-11-03 Zhisong Huang Gas distribution system having fast gas switching capabilities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010013363A1 (en) * 1999-04-22 2001-08-16 Hirofumi Kitayama Apparatus and method for feeding gases for use in semiconductor manufacturing
CN2674647Y (zh) * 2003-02-07 2005-01-26 东京毅力科创株式会社 流体控制装置和热处理装置
US20050241763A1 (en) * 2004-04-30 2005-11-03 Zhisong Huang Gas distribution system having fast gas switching capabilities

Also Published As

Publication number Publication date
CN101457351B (zh) 2012-03-07
CN101457351A (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
US10431431B2 (en) Gas supply delivery arrangement including a gas splitter for tunable gas flow control
KR102396162B1 (ko) 막 프로파일 조정을 위한 샤워헤드 커튼 가스 방법 및 시스템
CN100372971C (zh) 分量供给机构及空间分配开关
US9765432B2 (en) Dual-direction chemical delivery system for ALD/CVD chambers
US9721763B2 (en) Systems and methods for providing gases to a process chamber
KR102531896B1 (ko) 가스 전달 시스템
CN101605925B (zh) 用于处理系统的多区域气体分配系统
US8202393B2 (en) Alternate gas delivery and evacuation system for plasma processing apparatuses
US9412564B2 (en) Semiconductor reaction chamber with plasma capabilities
US10100407B2 (en) Hardware and process for film uniformity improvement
CN107017147A (zh) 包括多个注气点和双注射器的衬底处理室
WO2022213961A1 (zh) 等离子体增强原子层沉积设备及方法
WO2009086772A1 (zh) 气体分配系统和应用该气体分配系统的半导体处理设备
US20220372619A1 (en) Manifold valve for controlling multiple gases
TW202043529A (zh) 利用間歇調節性沖洗的處理量改善
CN112640078B (zh) 用于基板处理腔室的气体输入系统
CN116368260A (zh) 具有一体式转向流动路径的喷头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870165

Country of ref document: EP

Kind code of ref document: A1