WO2022213890A1 - 有机硅线性体生产工艺 - Google Patents

有机硅线性体生产工艺 Download PDF

Info

Publication number
WO2022213890A1
WO2022213890A1 PCT/CN2022/084729 CN2022084729W WO2022213890A1 WO 2022213890 A1 WO2022213890 A1 WO 2022213890A1 CN 2022084729 W CN2022084729 W CN 2022084729W WO 2022213890 A1 WO2022213890 A1 WO 2022213890A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrolyzate
heat exchange
vacuum stripping
decompression
pretreatment
Prior art date
Application number
PCT/CN2022/084729
Other languages
English (en)
French (fr)
Inventor
张立军
王海栋
张年运
廖立
胡应如
杜凯
欧阳文武
郭树踴
陈震
廖桂根
Original Assignee
江西蓝星星火有机硅有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西蓝星星火有机硅有限公司 filed Critical 江西蓝星星火有机硅有限公司
Priority to JP2023562340A priority Critical patent/JP2024513947A/ja
Priority to EP22783957.8A priority patent/EP4321556A1/en
Priority to KR1020237037952A priority patent/KR20240041860A/ko
Publication of WO2022213890A1 publication Critical patent/WO2022213890A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/32Post-polymerisation treatment
    • C08G77/34Purification

Definitions

  • the invention belongs to the field of organosilicon compound synthesis, and in particular relates to a production process for organosilicon linear bodies.
  • the organosilicon rings and chloride ion content are lower than 1 ppm and low volatile content is obtained by subjecting dimethyldichlorosilane hydrolyzate to pretreatment and debasing. At 0.5% silicone linearizer.
  • Dimethyldichlorosilane hydrolyzate is composed of 20%-80% linear siloxane (linear body) and 80%-20% cyclic siloxane (ring body).
  • the traditional process of hydrolyzate treatment is cracking technology, such as Chinese patent applications CN101148455A, CN104119372A, CN104497035A, etc., wherein CN101148455A discloses hydrolyzate under basic catalyst conditions, the linear body and the ring body are opened chain and re-cyclized to produce the ring body , the cracking reaction needs to carry out a slag discharge every 7 days, and the process has the disadvantages of high unit consumption of hydrolyzate and high energy consumption.
  • CN104031084B, CN105175730B, CN106083910B all propose to separate the hydrolyzate from the ring body and the linear body, and the obtained ring body and linear body are respectively used for the production of 110 glue and 107 glue.
  • CN106083910B adopts the method of first-level vacuum (-80 ⁇ -95KPa) flash evaporation, and strictly controls the low temperature of 120-150 °C, although claim 4 limits the linear body content in the separated linear body to be 85-99% , but the data of its examples show that the separation temperature is controlled at 130-135 ° C, and the linear body content is between 90-93%, which cannot reach more than 98%.
  • the treatment scheme of the dimethyldichlorosilane hydrolyzate in the prior art cannot make the volatile content in the linear product less than 1%, that is, the problem of low volatile content and high content has not been solved.
  • the SVHC in the EU REACH regulations and standards has added octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6).
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • the content must be less than 0.01%.
  • the inventors of the present invention have found through research that controlling the content of impurities in the dimethyldichlorosilane hydrolyzate, especially the content of chlorine, will help to improve the operating conditions for the subsequent separation of the ring body and the linear body, and on the one hand, avoid the separation operation process.
  • the decomposition or reaction of the neutral body enables the hydrolyzate to adapt to higher separation conditions, and provides a path for reducing the content of low volatile matter in the linear body after separation, thereby completing the present invention.
  • the invention provides a production method of an organosilicon linear product, comprising:
  • step S2 depressurize the hydrolyzate after the pretreatment in step S1, and separate the organosilicon ring body and the organosilicon linear body.
  • the dimethyldichlorosilane hydrolyzate comes from the upstream process and has the meaning well known in the art, and it mainly contains 80-20% linear siloxane, 20-80% ring body (including octamethylcyclotetrasiloxane) alkane (D4), decamethylcyclopentasiloxane (D5), etc.) and other trace impurities, among which the main impurities include water, chloride ions, and hydrocarbons.
  • the pretreatment in step S1 can adopt various separation means for removing impurities known in the art, including but not limited to filtration, adsorption, etc., such as filter filtration, activated carbon adsorption, molecular sieve adsorption, resin adsorption, etc., so
  • the activated carbon, molecular sieve and resin can be the activated carbon, molecular sieve and resin commonly used in the art for adsorbing or filtering impurities such as chloride ions, such as D201 resin, D301 resin and the like.
  • various separation means can be used in combination, such as activated carbon, molecular sieve and resin adsorption; another example is the combination of means for removing large particles of impurities and means for removing small molecular substances.
  • the dimethyldichlorosilane hydrolyzate flows through the pretreatment device of the S1 step at a flow rate of 3-15 m 3 /h, preferably through the S1 step at a flow rate of 7-15 m 3 /h preprocessing device.
  • a primary pre-filter is used to remove mechanical impurities and colloids in the hydrolyzate first; then a secondary treatment is performed, and activated carbon filters, molecular sieves and/or resins are used to adsorb ions including chloride ions. Impurities of small molecular substances.
  • the secondary treatment one of the activated carbon filter, molecular sieve and resin can be optionally used, or a combination of the two or a combination of the three can be used.
  • the secondary treatment uses resin.
  • a backwashing system is simultaneously set in the pretreatment device to improve the impurity removal effect of the pretreatment.
  • the chloride ion content in the hydrolyzate is controlled to be less than 1 ppm, preferably less than 0.5 ppm, through the S1 step pretreatment.
  • the linear body content obtained after de-lowering at 200°C was reduced to 82%, which was far lower than the reason why the linear body content obtained in Example 2 at 150°C was 98%.
  • the inventors have found that, if the chlorine content in the hydrolyzate is reduced to 1 ppm or less, especially 0.5 ppm or less, before the separation of the ring body and the linear body of the dimethyldichlorosilane hydrolyzate is carried out, the obtained The linear body has low impurity content, and is self-stabilized without condensation reaction, and such hydrolyzate can withstand higher de-low temperature, so that the separation of the ring body and the linear body can be carried out at a higher temperature, which greatly improves the The efficiency of linear separation is improved, especially the low volatile content is significantly reduced.
  • a step S11 of preheating the pretreated hydrolyzate can be added in the S1 step and the S2 step, that is, the pretreated hydrolyzate obtained in the S1 step is heated
  • the exchange device is preheated first, and the heat of the heat exchange device can be derived from the ring body and/or the linear body separated in step S2.
  • the heat exchange device is an economizer.
  • the pretreated hydrolyzate in the step S2, can be heated to the temperature required for dehydration under reduced pressure by using a preheating device, and then enters the dehydration device for dehydration under reduced pressure.
  • the hydrolyzate is heated to 180-280°C, preferably between 190-280°C, more preferably between 200-280°C.
  • the temperature for decompression in step S2 is preferably 190-280°C, more preferably 220-280°C.
  • the vacuum stripping in the S2 step can adopt the devices commonly used in the art that can carry out vacuum stripping, including but not limited to flash evaporation devices, packed towers, falling film evaporation devices, etc., as long as the devices are set through the structure Or filler distribution, etc. to achieve uniform distribution of the hydrolyzate.
  • the decompression stripping device can be a decompression stripping device, or a cascade connection of multiple decompression stripping devices, that is, one-stage decompression stripping can be performed, or two-stage or two-stage decompression stripping can be performed. The multi-stage decompression above the level is lowered.
  • the S2 step adopts two-stage vacuum stripping
  • the temperature range of the first-stage vacuum stripping is 180-280 °C, preferably 200-280 °C, more preferably 220-280 °C
  • the pressure is ⁇ -0.0955MPa
  • the temperature range of the second-stage decompression is 190-280°C, preferably 220-280°C, more preferably 240-280°C
  • the pressure is ⁇ -0.0955MPa
  • the second-stage decompression is The low temperature is higher than the temperature of the first stage vacuum stripping.
  • the liquid is discharged from the bottom of the first-stage vacuum stripping device and enters the second-stage vacuum stripping device for vacuum stripping.
  • the ring body and short linear body obtained by the second-stage decompression depressurization are discharged from the top of the second-stage decompression decompression device, and enter the condenser at the top of the device, and collected after condensation; the liquid obtained by the second-stage decompression decompression device Linear body discharge.
  • the ring body obtained by the first-stage decompression and decompression, and the ring body and short linear body obtained by the second-stage decompression decompression can be collected in the storage device using the same set of condensers, or can be collected by separate condensers. into the corresponding independent storage device.
  • step S2 adopts a series connection of a flash evaporation device and a vertical falling film evaporation device to carry out reduced pressure decontamination, wherein the temperature of the flash evaporation is in the range of 180-280 °C, preferably 200-280 °C, and more It is preferably 220-280°C, the temperature range of falling film evaporation is 190-280°C, preferably 220-280°C, more preferably 240-280°C, and the temperature of falling film evaporation is higher than that of flash evaporation.
  • the dimethyldichlorosilane hydrolyzate preheated to 180-280°C is sent to the flash distillation unit, and the flash separation operation is realized under the condition of ⁇ -0.0955MPa.
  • the ring bodies D4 and D5 are partially gasified and discharged from the top of the flash device, enter the condenser at the top of the flash device, and collected after condensation; while most of the linear bodies are in the liquid phase and are discharged from the bottom of the flash device.
  • the bottom liquid of the flash evaporation device enters the vertical falling film evaporation device.
  • the light components including the ring body and the short linear body in the bottom liquid are vaporized, and the linear components of the heavy components are evaporated.
  • the gas remains liquid, and they enter the gas-liquid phase separation space at the bottom of the falling film evaporation device at the same time.
  • the light component gas enters the condenser at the top of the flash evaporation device under vacuum, and is collected after condensation; the heavy component linear liquid is discharged.
  • the heavy-component linear body liquid is pumped to the economizer through the linear body discharge pump, conducts heat exchange with the pretreated hydrolyzate, and is then cooled by the linear body cooling device before being sent to the linear body storage device.
  • the rings obtained by flash evaporation, the rings and the short linear bodies obtained by falling film evaporation can be collected in a storage device in combination, or can be collected in corresponding independent storage devices respectively.
  • the vertical falling film evaporator is conducive to the uniform distribution of materials, and is a more preferred decompression device.
  • the ring bodies and short linear bodies collected in the S2 step can be used in other technological processes, including but not limited to: the process of manufacturing products with the ring bodies as raw materials; and the ring bodies are further separated to obtain more Single-component ring bodies.
  • the ring body and short linear body obtained in step S2 are condensed by the condenser at the top of the lowering device and then enter the processing device, then pumped out by a pump, and sent to the ring body and short linear body after dewatering
  • the storage device will be used in the next process.
  • the aforementioned processing methods for the ring body and the short linear body are applicable to the combined ring body and the short linear body, and also applicable to the unmerged ring body, the unmerged ring body and the short linear body.
  • the stripping device operates under vacuum conditions.
  • a vacuum pipeline is installed on the upper part of the condenser to be connected with a vacuum pump, so as to provide the vacuum degree of the whole system of the stripping device.
  • the step S2 can be repeated again through the return line until Among them, the low volatile content is less than 0.5% before discharging.
  • the linear body separated in step S2 is cooled to 20-50°C and collected.
  • the present invention further provides a production apparatus for the aforementioned production method of organosilicon linear bodies.
  • the device includes: a dimethyldichlorosilane hydrolyzate pretreatment device and a decompression reduction device.
  • the pretreatment device includes a primary prefilter and a secondary treatment device, the primary prefilter filters and removes mechanical impurities and colloids, and the secondary treatment device is an activated carbon filter , molecular sieves and/or resins.
  • the vacuum stripping device comprises two-stage vacuum stripping equipment connected in series.
  • the first-stage vacuum stripping device is a flash evaporation device
  • the second-stage vacuum stripping device is a falling film evaporation device.
  • a preheating device is installed between the pretreatment device and the vacuum stripping device.
  • a heat exchange device is installed between the pretreatment device and the preheating device, and the heat exchange device is connected with the gas outlet and/or the liquid outlet of the vacuum stripping device.
  • the heat exchange device When the heat exchange device is connected with the gas outlet or the liquid outlet of the vacuum stripping device, the heat exchange device has a set of pipes for passing the gas or liquid.
  • the heat exchange device When the heat exchange device is connected with the gas outlet and the liquid outlet of the vacuum stripping device, the heat exchange device has two separate sets of pipes for passing the gas and the liquid respectively.
  • the gas outlet of the vacuum stripping device when the gas outlet of the vacuum stripping device is not connected to the heat exchange device, it is directly connected to the condenser thereafter.
  • the condenser When the gas outlet of the vacuum stripping device is connected to the heat exchange device, the condenser is connected behind the gas outlet of the heat exchange device.
  • the gas outlet of the vacuum stripping device may be the gas outlet of all the vacuum stripping devices in the vacuum stripping device, or any one or more of them. A gas outlet of the vacuum decompression equipment.
  • the condenser is connected to the loop treatment device.
  • the ring handling device is connected to the ring storage device.
  • the liquid outlet of the vacuum stripping device when the liquid outlet of the vacuum stripping device is not connected to the heat exchange device, it is directly connected to the cooling device thereafter.
  • the cooling device When the liquid outlet of the vacuum stripping device is connected to the heat exchange device, the cooling device is connected behind the liquid outlet of the heat exchange device.
  • the liquid outlet of the vacuum stripping device is the outlet of the vacuum stripping device of the last stage in the vacuum stripping device. Liquid outlet.
  • the cooling device is connected to the wire storage device.
  • the production device used in the aforementioned method for producing organosilicon linear bodies includes: a dimethyldichlorosilane hydrolyzate pretreatment device and a vacuum de-lowering device.
  • the pretreatment device includes a primary prefilter and a secondary treatment device, the primary prefilter filters and removes mechanical impurities and colloids, and the secondary treatment device is an activated carbon filter, molecular sieve and/or resin.
  • the vacuum stripping device is a flash evaporation device and a falling film evaporation device connected in series.
  • a preheating device is installed between the pretreatment device and the vacuum stripping device.
  • a heat exchange device is installed between the pretreatment device and the preheating device, and the heat exchange device is connected with the gas outlet and/or the liquid outlet of the vacuum stripping device.
  • the gas discharge port of the vacuum stripping device is connected to the heat exchange device, the gas discharge port in the heat exchange device is connected to the condenser; when the gas discharge port of the vacuum stripping device is not connected to the heat exchanger
  • the gas outlet is directly connected to the condenser.
  • the liquid discharge port in the heat exchange device is connected to the cooling device; when the vacuum stripping device ( When the liquid outlet of the falling film evaporation device is not connected to the heat exchange device, the liquid outlet is directly connected to the cooling device.
  • the condenser is connected to the loop treatment device.
  • the ring handling device is connected to the ring storage device.
  • the cooling device is connected to the wire storage device.
  • the linear viscosity of the organosilicon obtained by the method of the present invention is 50-120 mm 2 /s, the volatile content is lower than 0.5%, and the chloride ion content is lower than 1 ppm.
  • the linear body can be widely used in the production of organic silicon follow-up products such as low-ring content 107 glue, low-ring content amino silicone oil, low-ring content methyl silicone oil, and low-ring content vinyl silicone oil.
  • organic silicon follow-up products such as low-ring content 107 glue, low-ring content amino silicone oil, low-ring content methyl silicone oil, and low-ring content vinyl silicone oil.
  • the linear body of the present invention is a hydroxyl-terminated chain dimethylpolysiloxane mixture with a normal molecular weight distribution, which can be used as a raw material for downstream products of organic silicon, and has the advantages of short polymerization time and low volatile content.
  • FIG. 1 Device and process flow diagram in the embodiment of the present invention
  • the hydrolyzate tank is connected to the pretreatment device; the pretreatment device is connected to the economizer; the heat exchange pipeline inlet of the economizer is connected to the bottom outlet of the falling film evaporator, and the heat exchange pipeline outlet of the economizer is connected to the cooling device
  • the cooler is connected to the wire tank, and the outlet of the economizer is connected to the preheater; the preheater is connected to the feed port of the flash tank; the top of the flash tank is connected to the condenser; the condenser is connected to the processing tank and the vacuum pump respectively;
  • the processing tank is connected to the ring tank; the bottom discharge port of the flash tank is connected to the falling film evaporator; the top of the gas-liquid phase separation space at the bottom of the falling film evaporator is connected to the aforementioned condenser.
  • the dimethyldichlorosilane hydrolyzate from the upstream process is stored in the hydrolyzate tank, and sent to the pretreatment device through the pipeline for pretreatment to reduce the chloride ion content.
  • the pretreated hydrolyzate is sent to the economizer through the pipeline, and is preheated by heat exchange with the linear body from the bottom discharge source of the falling film evaporator.
  • the preheated hydrolyzate is then sent to the preheater through the pipeline, heated to the flash temperature and sent to the flash tank.
  • the ring body in the hydrolyzate is vaporized in the flash tank, discharged from the top of the flash tank, condensed by the condenser and collected into the treatment tank.
  • the linear body of the hydrolyzate remains liquid in the flash tank, and is discharged from the bottom of the flash tank and sent to the falling film evaporator.
  • the top of the vapor-liquid phase separation space at the bottom of the evaporator is discharged, and is condensed and collected into the treatment tank by the condenser.
  • the liquid linear body is discharged from the bottom of the falling film evaporator, sent to the economizer for heat exchange with the pretreated hydrolyzate, and then sent to the cooler for cooling and collected in the linear body tank.
  • the rings and short linear bodies in the treatment tank are sent to the ring body tank for storage.
  • Dimethyldichlorosilane hydrolyzate with flow rate of 8 m 3 /h from upstream mainly contains 60% linear siloxane, 27% octamethylcyclotetrasiloxane (D4), 8% decamethylcyclopentasiloxane Alkane (D5), 3% D6, 1% D7 and other trace impurities, among which the main impurities include water, chloride ions and hydrocarbons.
  • a primary pre-filter is used to remove mechanical impurities and colloids in the hydrolyzate, and D201 resin is used in the secondary treatment.
  • the chloride ion content in the hydrolyzate after the filtration treatment was 1 ppm.
  • the pretreated hydrolyzate is sent to the wire loop separation raw material storage tank, and is pumped to the economizer through the flash feed pump.
  • the economizer exchanges heat with the high temperature linear product, and then the hydrolyzate is heated to 220°C in the preheater.
  • the hydrolyzate is sent to the flash tank, and the flash separation is realized under the condition of negative pressure -0.098MPa.
  • the ring bodies D4 and D5 are partially gasified and discharged from the top of the flash tank. The bottom of the flash tank is discharged.
  • the ring body enters the gas phase tube of the flash tank and is condensed by the tower top condenser and then enters the treatment tank.
  • the ring body is pumped out by a pump and sent to the ring body tank for use in the next process.
  • a small amount of ring body is entrained in the linear body from the bottom of the flash tank, which is further processed by falling film evaporation at a temperature of 240 ° C and -0.098MPa to obtain a linear body, and then sent to the economizer through the discharge pump and pretreated.
  • the hydrolyzate is subjected to heat exchange, and then cooled to normal temperature through a cooler, and sent to the product storage tank.
  • the linear product structural formula that embodiment 1 obtains is The molecular weight is 4000-7000, showing a normal distribution, and the detection data are shown in Table 1.
  • Example 2 The operation steps and related parameters of Example 2 are the same as those of Example 1, except that the flash evaporation temperature of Example 2 is 180°C, and the temperature of falling film evaporation is 200°C.
  • Comparative Example 1 The experimental steps of Comparative Example 1 were the same as those of Example 1, except that the hydrolyzate was not pretreated, but was directly preheated, followed by flash evaporation and falling film evaporation, and the chloride ion content in the hydrolyzate was 3 ppm.
  • Comparative Example 2 The experimental steps of Comparative Example 2 are the same as those of Example 2, except that the hydrolyzate is not pretreated, but directly preheated, followed by flash evaporation and falling film evaporation, and the chloride ion content in the hydrolyzate is 3 ppm.
  • the kinematic viscosity is measured by the method of Q/LXAXJ 02. Volatile content was determined by the method of Q/LXAXJM 21. The chromaticity was measured by the method of Q/LXAXJM 01. D4, D5 and total ring content were determined by chromatography. Chloride ion content was determined by ion chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种低挥发份有机硅线性体的生产工艺,具体为将二甲基二氯硅烷水解物除去氯离子,在180-280℃和-0.0955~-0.0998MPa下脱低,得到的有机硅线性体的挥发份低于0.5%,粘度为50-150mm 2/s,氯离子含量低于1ppm,可广泛用于低环体含量107胶、低环体含量氨基硅油、低环体含量甲基硅油、低环体含量乙烯基硅油等有机硅后续产品的生产,能满足欧盟对聚合物中环体含量限制的要求。

Description

有机硅线性体生产工艺
本申请要求2021年4月9日向中国国家知识产权局提交的专利申请号为202110387311.8,发明名称为“有机硅线性体生产工艺”的在先申请的优先权。该在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于有机硅化合物合成领域,具体涉及有机硅线性体生产工艺,通过将二甲基二氯硅烷水解物经过预处理和脱低得到有机硅环体和氯离子含量低于1ppm以及挥发份低于0.5%的有机硅线性体。
背景技术
二甲基二氯硅烷水解物由20%-80%的线状硅氧烷(线性体)和80%-20%的环状硅氧烷(环体)组成。水解物处理的传统工艺是裂解技术,例如中国专利申请CN101148455A、CN104119372A、CN104497035A等,其中CN101148455A公开了将水解物在碱性催化剂条件下,将线性体和环体开链并重新成环生产环体,裂解反应每7天需要进行一次排渣,所述工艺存在水解物单耗高和能耗高的缺点。同时,传统的裂解产品DMC(环状硅氧烷混合物)用于生产下游产品时,主要是开环聚合,该反应为平衡反应,会有15%的低沸物产生,而低沸物的循环使用,比较浪费能耗;更主要的是,DMC生产的下游产品挥发份高,很难满足欧盟对聚合物的D4、D5、D6含量指标小于0.01%的要求。
而中国专利CN104031084B、CN105175730B、CN106083910B中都提出了将水解物进行环体和线性体分离,得到的环体和线性体分别用于110胶和107胶的生产。其中CN106083910B采用一级真空(-80~-95KPa)闪蒸脱低的方法,严格控制脱低温度120-150℃,虽然其权利要求4限定分离得到的线性体中线性体含量为85-99%,但其实施例的数据显示,分离温度控制在130-135℃,线性体含量为90-93%之间,无法达到98%以上。这一点也被专利CN104031084B 证实:从实施例1-3的结果看,在-0.097MPa真空下,采用两级脱低进行环体和线性体分离时,分离温度在100-200℃变化时,分离所得线性体含量在75-98%之间波动,为实现高线性体收益,必须严格控制脱低温度在140-160℃,因为脱低温度超过150℃后,分离得到的线性体含量反而降低,只有控制在150℃时才能得到含量最高为98%的线性体产品。由此可见,在脱低温度更低的CN105175730B中,线性体中杂质(主要是低分子量物质,行业上通常称为“低沸”)含量事实上会很高,线性体含量应当不会超过98%。
因此,现有技术对二甲基二氯硅烷水解物的处理方案并未能使线性体产品中挥发份含量低于1%,即,未解决低挥发份含量高的问题。而欧盟REACH法规标准中的SVHC新增了八甲基环四硅氧烷(D4)、十甲基环五硅氧烷(D5)、十二甲基环己硅氧烷(D6),要求用于化妆品和个人护理产品,抛光和打蜡,清洗和清洁产品和纺织品处理产品和染料等中的含量须小于0.01%。
产业界需要新的处理二甲基二氯硅烷水解物的方法以及得到合格线性体产品的方法。
发明内容
本发明的发明人通过研究发现,控制好二甲基二氯硅烷水解物中杂质含量,尤其是氯的含量,将有利于改善后续环体和线性体分离的操作条件,一方面避免分离操作过程中线性体的分解或反应,另一方面能使水解物适应更高的分离条件,为实现降低分离后线性体中低挥发份的含量提供路径,从而完成了本发明。
本发明提供了一种有机硅线性体产品的生产方法,包括:
S1:对二甲基二氯硅烷水解物进行预处理以使预处理后的水解物中氯离子含量小于等于1ppm;
S2:将步骤S1预处理后水解物进行减压脱低,分离其中的有机硅环体和有机硅线性体,所述减压脱低的温度为180-280℃,压力为≤-0.0955MPa。
所述二甲基二氯硅烷水解物来自上游工艺,具有本领域公知的含义,其主要含有80-20%的线性硅氧烷、20-80%的环体(包括八甲基环四硅氧烷(D4)、十甲基环五硅氧烷(D5)等)以及其它微量杂质,其中主要的杂质包括水、氯离子、碳氢化合物。
根据本发明,S1步骤中的预处理可以采用本领域已知的各种去除杂质的分离手段,包括但不限于过滤、吸附等,例如过滤器过滤、活性炭吸附、分子筛吸附、树脂吸附等,所述的活性炭、分子筛和树脂可以是本领域用于吸附或过滤氯离子等杂质常用的活性炭、分子筛和 树脂,例如D201树脂、D301树脂等。为提高氯离子去除效果,可以将多种分离手段组合使用,例如将活性炭、分子筛和树脂吸附组合使用;又例如将除去大颗粒杂质的手段和除去小分子物质的手段组合使用。
在本发明的一些实施方式中,二甲基二氯硅烷水解物以3-15m 3/h的流量流经S1步骤的预处理装置,优选以7-15m 3/h的流量流经S1步骤的预处理装置。
在本发明的一个实施方式中,首先利用一级预过滤器除去水解物中的机械杂质及胶体;随后进行二级处理,利用活性炭过滤器、分子筛和/或树脂,吸附包括氯离子在内的小分子物质杂质。二级处理中活性炭过滤器、分子筛和树脂任选其一,或其二组合使用,或三者组合使用。在本发明的一个具体实施方式中,二级处理使用树脂。
在本发明的一个优选实施方式中,预处理装置里同时设置反冲洗系统,提高预处理的除杂效果。
根据本发明,通过S1步骤预处理,将水解物中氯离子含量控制在1ppm以下,优选0.5ppm以下。
发明人研究发现,由氯离子含量在3ppm及以上的二甲基二氯硅烷水解物分离得到的线性体产品性能不稳定,自身会发生缩合反应,粘度增加,挥发份升高,浊度上升,产品不合格。而为了使产品合格,对得到的线性体再进行除氯处理难度非常大,也很难再降低其中的低挥发份。中国专利CN104031084B为降低所分离的线性体产品发生副反应的可能,只能通过将粗线性体脱低温度控制在较低温度(140-160℃)的方式来实现,这也是该专利实施例3在200℃脱低后得到的线性体含量降低至82%,远低于实施例2在150℃下得到的线性体含量98%的原因。发明人研究发现,如果在对二甲基二氯硅烷水解物进行环体和线性体分离之前,将水解物中氯含量降低到1ppm及以下,尤其是0.5ppm及以下,再进行分离,得到的线性体杂质含量低,且自身稳定不会发生缩合反应,而且这样的水解物能够耐受更高的脱低温度,从而使得环体和线性体分离可以在更高的温度下进行,极大提高了线性体分离效率,尤其是使得低挥发份含量显著降低。
根据本发明,为了提高整个方法工艺中的能源利用,可以在S1步骤和S2步骤中增加一个对预处理后水解物进行预加热的步骤S11,即,S1步骤得到的预处理后水解物经过热交换装置,先被预加热,所述热交换装置的热量可以来源于S2步骤分离出的环体和/或线性体。在本发明的一个实施方式中,所述热交换装置是经济器。
根据本发明,S2步骤中可以使用预热装置将预处理后的水解物加热到减压脱低所需温度, 再进入脱低装置进行减压脱低。在本发明的一个实施方式中,将水解物加热到180-280℃,优选190-280℃之间,更优选200-280℃之间。
根据本发明,S2步骤减压脱低的温度优选为190-280℃,更优选为220-280℃。
根据本发明,S2步骤的减压脱低可以采用本领域常用的可进行减压脱低的装置,包括但不限于闪蒸装置、填料塔、降膜蒸发装置等,只要所述装置通过结构设置或填料分布等实现水解物的均匀分布即可。所述减压脱低装置可以是一台减压脱低设备,也可以是多台减压脱低设备的级联串联,即,可以进行一级减压脱低,也可以进行两级或两级以上的多级减压脱低。
在本发明的一些实施方案中,S2步骤采用两级减压脱低,第一级减压脱低的温度范围为180-280℃,优选为200-280℃,更优选为220-280℃,压力≤-0.0955MPa,第二级减压脱低的温度范围为190-280℃,优选为220-280℃,更优选为240-280℃,压力≤-0.0955MPa,并且第二级减压脱低的温度高于第一级减压脱低的温度。第一级减压脱低得到的环体D4、D5等,从第一级减压脱低装置顶部出料,进入装置顶部的冷凝器,冷凝后收集;第一级减压脱低后的线性体以液态,从第一级减压脱低装置底部出料,进入第二级减压脱低装置进行减压脱低。第二级减压脱低得到的环体和短线性体,从第二级减压脱低装置顶部出料,进入装置顶部的冷凝器,冷凝后收集;第二级减压脱低得到的液态线性体出料。第一级减压脱低得到的环体,第二级减压脱低得到的环体和短线性体,可以使用同一套冷凝器合并收集到储存装置内,也可以分别使用独立的冷凝器收集到对应的独立的储存装置内。
在本发明的一个实施方案中,S2步骤采用闪蒸装置和立式降膜蒸发装置的串联进行减压脱低,其中闪蒸的温度范围为180-280℃,优选为200-280℃,更优选为220-280℃,降膜蒸发的温度范围为190-280℃,优选为220-280℃,更优选为240-280℃,并且降膜蒸发的温度高于闪蒸的温度。被预热到180-280℃的二甲基二氯硅烷水解物送至闪蒸装置,在≤-0.0955MPa条件下实现闪蒸分离操作。其中,环体D4、D5部分气化,从闪蒸装置顶部出料,进入闪蒸装置顶部的冷凝器,冷凝后收集;而线性体大部分处于液相状态,从闪蒸装置底部出料。闪蒸装置底液进入立式降膜蒸发装置,在190-280℃,≤-0.0955MPa条件下,底液中的包括环体和短线性体在内的轻组分被汽化,重组份的线性体保持液态,它们同时进入降膜蒸发装置底部的气液分相空间,轻组分气体在真空下进入闪蒸装置顶部的冷凝器,冷凝后收集;重组份的线性体液体出料。在本发明的一个实施方式中重组分的线性体液体通过线性体出料泵送至经济器,与预处理后的水解物进行热交换,然后经过线性体冷却装置冷却后送至线性体储存装置。 在所述的实施方式中,闪蒸得到的环体,降膜蒸发得到的环体和短线性体,可以合并收集到储存装置内,也可以分别收集到对应的独立的储存装置内。
立式降膜蒸发器有利于物料的均匀分布,是更优选使用的减压脱低装置。
根据本发明,S2步骤中被收集的环体和短线性体可用于其他工艺流程,包括但不限于:以环体为原料进行产品制造的工艺;以及所述环体进一步被分离,获得其中更单一成分的环体。
在本发明的一个实施方式中,S2步骤获得的环体和短线性体通过脱低装置顶部冷凝器冷凝后进入处理装置,再通过泵泵出,经过除水后送入环体和短线性体储存装置中待下一工序使用。前述的环体和短线性体处理方式适用于合并后的环体和短线性体,也适用于未合并的环体,未合并的环体和短线性体。
脱低装置在真空条件下操作,在本发明的一个实施方式中,在冷凝器上部安装真空管道与真空泵相连,以提供脱低装置整体系统的真空度。
根据本发明,经过S2步骤脱低获得的线性体,如果所述线性体产品的低挥发份含量不符合工艺要求(低挥发份含量大于0.5%),可以通过返料管线再次重复S2步骤,直至其中低挥发份低于0.5%后再出料。
根据本发明,S2步骤分离的线性体冷却到20-50℃收集。
本发明进一步提供用于前述有机硅线性体生产方法的生产装置。根据本发明,所述装置包括:二甲基二氯硅烷水解物预处理装置和减压脱低装置。
在本发明的一个实施方式中,所述预处理装置包括一级预过滤器和二级处理装置,所述一级预过滤器过滤去除机械杂质和胶体,所述二级处理装置是活性炭过滤器、分子筛和/或树脂。
在本发明的一些实施方式中,所述减压脱低装置包括串联的两级减压脱低设备。在本发明的一个实施方式中,所述串联的两级减压脱低设备中,第一级减压脱低装置是闪蒸装置,第二级减压脱低装置是降膜蒸发装置。
根据本发明,所述预处理装置和减压脱低装置之间安装有预热装置。
根据本发明,所述预处理装置和预热装置之间安装有热交换装置,所述热交换装置与减压脱低装置的气体出料口和/或液体出料口连接。当所述热交换装置与减压脱低装置的气体出料口或液体出料口连接时,所述热交换装置具有一套用于通过所述气体或液体的管道。当所述热交换装置与减压脱低装置的气体出料口和液体出料口连接时,所述热交换装置具有两套 独立的分别用于通过所述气体和液体的管道。
根据本发明,当所述减压脱低装置的气体出料口不连接热交换装置时,其后直接连接冷凝器。当所述减压脱低装置的气体出料口连接热交换装置时,所述冷凝器连接在热交换装置的气体排出口后。本领域技术人员根据本发明可以理解,所述减压脱低装置的气体出料口可以是减压脱低装置中所有减压脱低设备的气体出料口,也可以是其中任一或多个减压脱低设备的气体出料口。
根据本发明,所述冷凝器连接环体处理装置。
根据本发明,所述环体处理装置连接环体储存装置。
根据本发明,当所述减压脱低装置的液体出料口不连接热交换装置时,其后直接连接冷却装置。当所述减压脱低装置的液体出料口连接热交换装置时,所述冷却装置连接在热交换装置的液体排出口后。本领域技术人员根据本发明可以理解,从减压脱低的操作条件而言,所述减压脱低装置的液体出料口是减压脱低装置中最后一级的减压脱低设备的液体出料口。
根据本发明,所述冷却装置连接线体储存装置。
在本发明的一个优选实施方式中,用于前述有机硅线性体生产方法的生产装置包括:二甲基二氯硅烷水解物预处理装置和减压脱低装置。所述预处理装置包括一级预过滤器和二级处理装置,所述一级预过滤器过滤去除机械杂质和胶体,所述二级处理装置是活性炭过滤器、分子筛和/或树脂。所述减压脱低装置是串联连接的闪蒸装置和降膜蒸发装置。在所述预处理装置和减压脱低装置之间安装有预热装置。在所述预处理装置和预热装置之间安装有热交换装置,所述热交换装置与减压脱低装置的气体出料口和/或液体出料口连接。当所述减压脱低装置的气体出料口连接热交换装置,则所述热交换装置中气体的排出口后连接冷凝器;当所述减压脱低装置的气体出料口不连接热交换装置时,该气体出料口后直接连接冷凝器。当所述减压脱低装置(降膜蒸发装置)的液体出料口连接热交换装置,则所述热交换装置中该液体的排出口后连接冷却装置;当所述减压脱低装置(降膜蒸发装置)的液体出料口不连接热交换装置时,该液体出料口后直接连接冷却装置。所述冷凝器连接环体处理装置。所述环体处理装置连接环体储存装置。所述冷却装置连接线体储存装置。
经过本发明的方法获得的有机硅线性体粘度为50-120mm 2/s,挥发份低于0.5%,氯离子含量低于1ppm。所述线性体可广泛用于低环体含量107胶、低环体含量氨基硅油、低环体含量甲基硅油、低环体含量乙烯基硅油等有机硅后续产品的生产。所述线性体产品用于生产下游产品时,通过缩合的反应原理,不产生低沸物,且下游产品挥发份低,能够满足低挥发份的 产品要求。
本发明所述线性体为分子量呈正态分布的羟基封端链状二甲基聚硅氧烷混合物,可作为有机硅下游产品的原料,并具有聚合时间短、挥发份低等优点。
附图说明
图1:本发明实施例中的装置及工艺流程图
具体实施方式
以下结合实施例对本发明做进一步描述。需要说明的是,实施例不能作为对本发明保护范围的限制,本领域的技术人员理解,任何在本发明基础上所作的改进和变化都在本发明的保护范围之内。
以下实施例所用到的常规化学试剂均可商购获得。
实施例所用装置及工艺流程如下:水解物槽连接预处理装置;预处理装置连接经济器;经济器的换热管线入口连接降膜蒸发器底部出料口,经济器的换热管线出口连接冷却器,该冷却器连接线体槽,经济器的出口连接预热器;该预热器连接闪蒸罐进料口;闪蒸罐的顶部连接冷凝器;该冷凝器分别连接处理罐和真空泵;处理罐和环体槽连接;闪蒸罐的底部出料口连接降膜蒸发器;降膜蒸发器底部气液分相空间的顶部与前述冷凝器连接。上游工艺来源的二甲基二氯硅烷水解物贮存于水解物槽中,经管线送至预处理装置进行预处理以降低其中氯离子含量。预处理后的水解物经管线送至经济器,与降膜蒸发器底部出料来源的线性体进行热交换而被预加热。被预加热后的水解物再经管线送至预热器,被加热到闪蒸温度后送至闪蒸罐。水解物中的环体在闪蒸罐中气化,从闪蒸罐顶部排出,经冷凝器冷凝收集到处理罐中。水解物中的线性体在闪蒸罐中保持液态,从闪蒸罐底部出料后送至降膜蒸发器中,经过减压脱低,其中的环体和短线性体气化,从降膜蒸发器底部气液分相空间的顶部排出,经冷凝器冷凝收集到处理罐中。液态线性体从降膜蒸发器的底部出料,送至经济器与预处理后的水解物进行换热后,送至冷却器冷却后收集到线体槽中。处理罐中的环体和短线性体被送至环体槽中储存。
实施例1:
(1)二甲基二氯硅烷水解物预处理及加热
来自上游的流量为8m 3/h的二甲基二氯硅烷水解物主要含有60%线性硅氧烷、27%八甲基环四硅氧烷(D4)、8%十甲基环五硅氧烷(D5)、3%D6、1%D7以及其它微量杂质,其中主要的杂质包括水、氯离子、碳氢化合物。利用一级预过滤器除去水解物中的机械杂质及胶体,二级处理中采用D201树脂。经过过滤处理后的水解物中的氯离子含量为1ppm。预处理后的水解物送至线环分离原料贮罐,通过闪蒸进料泵送至经济器。经过经济器与高温线性体产品进行换热,然后在预热器中将水解物加热至220℃。
(2)水解物的减压闪蒸
将水解物送至闪蒸罐,在负压-0.098MPa条件下实现闪蒸分离,环体D4、D5部分气化,从闪蒸罐的顶部出料,线性体大部分处于液相状态,从闪蒸罐的底部出料。
(3)环体的冷却及处理
环体进入闪蒸罐气相管后通过塔顶冷凝器冷凝后进入处理罐,通过泵将环体泵出,送入环体槽待下一工序使用。
(4)线性体的降膜蒸发及冷却
从闪蒸罐底出来的线性体中夹带了少量的环体,通过降膜蒸发在240℃温度,-0.098MPa条件下进一步处理得到线性体,再通过出料泵送至经济器与预处理后的水解物进行换热,然后经过冷却器冷却至常温,送至产品贮槽。
实施例1得到的线性体产品结构式为
Figure PCTCN2022084729-appb-000001
分子量4000-7000,呈正态分布,检测数据参见表1。
实施例2:
实施例2的操作步骤和相关参数与实施例1相同,区别在于实施例2的闪蒸温度180℃、降膜蒸发的温度为200℃。
实施例2得到的有机硅线性体检测结果参见表1。
对比例1
对比例1的实验步骤与实施例1的操作步骤相同,区别在于:不对水解物进行预处理,直接进行预热和后续闪蒸和降膜蒸发,水解物中氯离子含量为3ppm。
对比例1得到的有机硅线性体的检测结果参见表1。
对比例2
对比例2的实验步骤与实施例2的操作步骤相同,区别在于:不对水解物进行预处理,直接进行预热和后续闪蒸和降膜蒸发,水解物中氯离子含量为3ppm。
对比例2得到的有机硅线性体的检测结果参见表1。
表1 产品测试结果
Figure PCTCN2022084729-appb-000002
注:运动粘度采用Q/LXAXJ 02的方法测定。挥发份采用Q/LXAXJM 21的方法测定。色度采用Q/LXAXJM 01的方法测定。D4、D5和总环体含量采用色谱法测定。氯离子含量用离子色谱测定。
经过多批次实验发现,水解物原始氯离子含量大于等于3ppm,不经过预处理直接分离环体和线性体,无论使用的减压脱低温度如何控制,得到的线性体产品性能不稳定,自身会发生缩合反应,粘度增加,挥发份升高,浊度上升,不符合相关质量规定,测试如下:
Figure PCTCN2022084729-appb-000003
经过多批次实验发现,通过预处理,将水解物氯离子含量降低到1ppm及以下后,减压脱低的温度在更优选的220-280℃之间,均能得到符合相关质量规定的线性体产品,测试如下:
Figure PCTCN2022084729-appb-000004
Figure PCTCN2022084729-appb-000005
从实验结果看,当二甲基二氯硅烷水解物原始氯离子含量在3ppm及以上时,得到的线性体产品性能不稳定,自身易发生缩合反应,导致粘度增加,挥发份升高,浊度上升,从而导致产品不合格。相反,通过预处理步骤,降低水解物氯离子含量后,水解物的减压脱低能承受更高的处理温度,得到的有机硅线性体的相关指标除氯含量降低外,色度降低,挥发份含量降低到1%以下,运动粘度控制在120mm 2/s以下。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种有机硅线性体产品的生产方法,其特征在于包括以下步骤:
    S1:对二甲基二氯硅烷水解物进行预处理以使预处理后的水解物中氯离子含量小于等于1ppm;
    S2:将步骤S1预处理后水解物进行减压脱低,分离其中的有机硅环体和有机硅线性体,所述减压脱低的温度为180-280℃,压力为≤-0.0955MPa。
  2. 如权利要求1所述的生产方法,其特征在于:S1步骤中二甲基二氯硅烷水解物以3-15m 3/h的流量流经S1步骤的预处理装置。
  3. 如权利要求1或2所述的生产方法,其特征在于:S1步骤中,首先利用一级预过滤器除去水解物中的机械杂质及胶体;随后进行二级处理,利用活性炭过滤器、分子筛和/或树脂,吸附包括氯离子在内的小分子物质杂质;
    优选,预处理装置里设置反冲洗系统。
  4. 如权利要求1-3任一项所述的生产方法,其特征在于:S2步骤采用两级减压脱低,第一级减压脱低的温度范围为180-280℃,优选为200-280℃,更优选为220-280℃,压力≤-0.0955MPa,第二级减压脱低的温度范围为190-280℃,优选为220-280℃,更优选为240-280℃,压力≤-0.0955MPa,并且第二级减压脱低的温度高于第一级减压脱低的温度。
  5. 如权利要求1-4任一项所述的生产方法,其特征在于:S2步骤中在水解物减压脱低前,将S1步骤预处理后的水解物加热到减压脱低所需温度后,再进入脱低装置进行减压脱低;
    优选,将S1步骤预处理后的水解物加热到180-280℃。
  6. 如权利要求1-5任一项所述的生产方法,其特征在于:在S1步骤和S2步骤中增加一个对预处理后水解物进行预加热的步骤S11,将S1步骤得到的预处理后水解物经过热交换装置先被预加热,所述热交换装置的热量来源于S2步骤分离出的环体和/或线性体。
  7. 如权利要求1-6任一项所述的生产方法,其特征在于:经过S2步骤脱低获得的线性体在低挥发份含量大于0.5%时,通过返料管线再次重复S2步骤,直至其中低挥发份低于0.5%后再出料。
  8. 用于权利要求1-7任一项所述生产方法的生产装置,其特征在于:所述装置包括二甲基二氯硅烷水解物预处理装置和减压脱低装置;
    优选,所述预处理装置和减压脱低装置之间安装有预热装置;
    优选,所述预处理装置和预热装置之间安装有热交换装置,所述热交换装置与减压脱低装置的气体出料口和/或液体出料口连接;
    优选,当所述减压脱低装置的气体出料口不连接热交换装置时,其后直接连接冷凝器;当所述减压脱低装置的气体出料口连接热交换装置时,所述冷凝器连接在热交换装置的气体排出口后;
    优选,所述冷凝器连接环体处理装置;
    优选,所述环体处理装置连接环体储存装置;
    优选,当所述减压脱低装置的液体出料口不连接热交换装置时,其后直接连接冷却装置;当所述减压脱低装置的液体出料口连接热交换装置时,所述冷却装置连接在热交换装置的液体排出口后;
    优选,所述冷却装置连接线体储存装置。
  9. 如权利要求8所述的生产装置,其特征在于,所述预处理装置包括一级预过滤器和二级处理装置,所述一级预过滤器过滤去除机械杂质和胶体,二级处理装置是活性炭过滤器、分子筛和/或树脂。
  10. 如权利要求8或9所述的生产装置,其特征在于,所述减压脱低装置是串联连接的两级减压脱低设备。
PCT/CN2022/084729 2021-04-09 2022-04-01 有机硅线性体生产工艺 WO2022213890A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023562340A JP2024513947A (ja) 2021-04-09 2022-04-01 有機シリコン直鎖状体の製造方法
EP22783957.8A EP4321556A1 (en) 2021-04-09 2022-04-01 Process for producing organosilicon linear body
KR1020237037952A KR20240041860A (ko) 2021-04-09 2022-04-01 유기실리콘 선형체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110387311.8 2021-04-09
CN202110387311.8A CN115197423A (zh) 2021-04-09 2021-04-09 有机硅线性体生产工艺

Publications (1)

Publication Number Publication Date
WO2022213890A1 true WO2022213890A1 (zh) 2022-10-13

Family

ID=83545961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084729 WO2022213890A1 (zh) 2021-04-09 2022-04-01 有机硅线性体生产工艺

Country Status (5)

Country Link
EP (1) EP4321556A1 (zh)
JP (1) JP2024513947A (zh)
KR (1) KR20240041860A (zh)
CN (1) CN115197423A (zh)
WO (1) WO2022213890A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148455A (zh) 2006-09-21 2008-03-26 蓝星化工新材料股份有限公司 羟基封端的聚二甲基硅氧烷的连续裂解及精馏制备环硅氧烷的方法
CN101323666A (zh) * 2008-07-24 2008-12-17 山东东岳有机硅材料有限公司 一种甲基氯硅烷浓酸水解连续生产水解物的方法
CN101338034A (zh) * 2008-06-06 2009-01-07 浙江新安化工集团股份有限公司 一种107硅橡胶的合成新工艺
CN101875726A (zh) * 2009-04-30 2010-11-03 中国石油天然气股份有限公司 一种二甲基二氯硅烷水解制备聚有机硅氧烷的方法
CN101928399A (zh) * 2010-08-20 2010-12-29 浙江中天氟硅材料有限公司 粘度可控的107硅橡胶的制备方法
CN102002163A (zh) * 2010-10-19 2011-04-06 江苏宏达新材料股份有限公司 一种聚有机硅氧烷的脱氯工艺
CN104119372A (zh) 2014-07-14 2014-10-29 鲁西化工集团股份有限公司硅化工分公司 一种溶剂油催化裂解生产环体硅氧烷的方法
CN104277067A (zh) * 2014-09-18 2015-01-14 鲁西化工集团股份有限公司硅化工分公司 降低二甲基二氯硅烷水解物中氯离子含量的装置及方法
CN104497035A (zh) 2014-12-17 2015-04-08 蓝星化工新材料股份有限公司江西星火有机硅厂 一种提高八甲基环四硅氧烷收率的生产方法
CN104031084B (zh) 2014-06-19 2016-09-07 鲁西化工集团股份有限公司硅化工分公司 有机硅水解物环线分离方法
CN106083910A (zh) * 2016-07-04 2016-11-09 湖北兴发化工集团股份有限公司 一种有机硅水解物环线分离方法及装置
CN106366110A (zh) * 2016-08-30 2017-02-01 唐山三友硅业有限责任公司 用于脱除水解物中残余氯离子的方法
CN107177344A (zh) * 2017-05-27 2017-09-19 湖北兴瑞化工有限公司 一种以二甲基二氯硅烷水解物为原料生产高透明度107胶的方法
CN105175730B (zh) 2015-08-19 2018-11-20 湖北兴瑞化工有限公司 一种利用有机硅水解物制备硅橡胶的方法
CN112358616A (zh) * 2020-07-27 2021-02-12 南京蓝胜环保科技有限公司 一种聚硅氧烷水解物端羟基残余氯去除工艺方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022081B (zh) * 2017-05-27 2020-06-09 湖北兴瑞硅材料有限公司 一种高转化率107硅橡胶生产系统及其生产方法
CN109553636B (zh) * 2017-09-27 2021-03-09 湖北兴瑞硅材料有限公司 一种有机硅氧烷混合环体除杂的方法
CN110550773A (zh) * 2019-08-16 2019-12-10 江西蓝星星火有机硅有限公司 一种降低二甲基二氯硅烷水解物中氯离子及其它杂质含量的方法和装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148455A (zh) 2006-09-21 2008-03-26 蓝星化工新材料股份有限公司 羟基封端的聚二甲基硅氧烷的连续裂解及精馏制备环硅氧烷的方法
CN101338034A (zh) * 2008-06-06 2009-01-07 浙江新安化工集团股份有限公司 一种107硅橡胶的合成新工艺
CN101323666A (zh) * 2008-07-24 2008-12-17 山东东岳有机硅材料有限公司 一种甲基氯硅烷浓酸水解连续生产水解物的方法
CN101875726A (zh) * 2009-04-30 2010-11-03 中国石油天然气股份有限公司 一种二甲基二氯硅烷水解制备聚有机硅氧烷的方法
CN101928399A (zh) * 2010-08-20 2010-12-29 浙江中天氟硅材料有限公司 粘度可控的107硅橡胶的制备方法
CN102002163A (zh) * 2010-10-19 2011-04-06 江苏宏达新材料股份有限公司 一种聚有机硅氧烷的脱氯工艺
CN104031084B (zh) 2014-06-19 2016-09-07 鲁西化工集团股份有限公司硅化工分公司 有机硅水解物环线分离方法
CN104119372A (zh) 2014-07-14 2014-10-29 鲁西化工集团股份有限公司硅化工分公司 一种溶剂油催化裂解生产环体硅氧烷的方法
CN104277067A (zh) * 2014-09-18 2015-01-14 鲁西化工集团股份有限公司硅化工分公司 降低二甲基二氯硅烷水解物中氯离子含量的装置及方法
CN104497035A (zh) 2014-12-17 2015-04-08 蓝星化工新材料股份有限公司江西星火有机硅厂 一种提高八甲基环四硅氧烷收率的生产方法
CN105175730B (zh) 2015-08-19 2018-11-20 湖北兴瑞化工有限公司 一种利用有机硅水解物制备硅橡胶的方法
CN106083910A (zh) * 2016-07-04 2016-11-09 湖北兴发化工集团股份有限公司 一种有机硅水解物环线分离方法及装置
CN106083910B (zh) 2016-07-04 2018-09-28 湖北兴发化工集团股份有限公司 一种有机硅水解物环线分离方法及装置
CN106366110A (zh) * 2016-08-30 2017-02-01 唐山三友硅业有限责任公司 用于脱除水解物中残余氯离子的方法
CN107177344A (zh) * 2017-05-27 2017-09-19 湖北兴瑞化工有限公司 一种以二甲基二氯硅烷水解物为原料生产高透明度107胶的方法
CN112358616A (zh) * 2020-07-27 2021-02-12 南京蓝胜环保科技有限公司 一种聚硅氧烷水解物端羟基残余氯去除工艺方法

Also Published As

Publication number Publication date
EP4321556A1 (en) 2024-02-14
JP2024513947A (ja) 2024-03-27
CN115197423A (zh) 2022-10-18
KR20240041860A (ko) 2024-04-01

Similar Documents

Publication Publication Date Title
WO1992021638A1 (en) Process for purifying aqueous crude ethanol solution
CN109179542B (zh) 多元醇废液中乙二醇、二乙二醇的蒸馏系统及蒸馏工艺
CN110845734B (zh) 一种有机氯硅烷水解和盐酸精制系统及方法
WO2022213890A1 (zh) 有机硅线性体生产工艺
US5558746A (en) Apparatus for quenching a gas stream in the production of vinyl chloride monomer
KR101952349B1 (ko) 추출증류를 이용한 ρ-자일렌 분리장치 및 이 장치를 이용한 분리방법
CN111377801B (zh) 精制低碳醇的方法和系统
CN114752061B (zh) 一种具有脱吸功能的二甲基二氯硅烷水解工艺
CN217939189U (zh) 粗单体分离节能装置
TW202033257A (zh) 回收醯胺化合物之製程
CN110665246A (zh) 一种去除及回收uv光固化单体溶液中甲苯溶剂的装置和方法
CN107235823B (zh) 一种电石法vcm高沸物的回收精制工艺及其设备
CN115779472A (zh) 一种1,4-丁二醇生产中粗丁醇的精制方法及精馏装置
CN213680463U (zh) 一种vcm高沸物提纯装置
CN109279673A (zh) 甲醇制烯烃污水的处理方法及处理系统
CN104844420A (zh) 新戊二醇缩合水洗母液的连续化处理工艺与装置
KR20230022033A (ko) 폴리이미드 제조 폐용액으로부터 디메틸포름아미드의 회수방법
CN110280038B (zh) 四氯化钛精馏装置
CN215084926U (zh) 一种丙酮蒸馏装置
KR20210036151A (ko) 단량체 회수 방법 및 장치
CN110694341A (zh) 含氢硅油水解物处理装置以及处理工艺
CN114573627A (zh) 甲基乙烯基氯硅烷水解物水洗脱氯的方法
CN112125988B (zh) 用于苯乙烯类热塑性弹性体溶液的凝聚方法
CN105481891A (zh) 一种甲基苯基混合环体的纯化分离方法
CN115819648A (zh) 一种基于连续法的聚丁烯-1的生产工艺及生产系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554609

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023562340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020237037952

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022783957

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022783957

Country of ref document: EP

Effective date: 20231109