WO2022211555A1 - 랩핑형 가스 센서 - Google Patents

랩핑형 가스 센서 Download PDF

Info

Publication number
WO2022211555A1
WO2022211555A1 PCT/KR2022/004661 KR2022004661W WO2022211555A1 WO 2022211555 A1 WO2022211555 A1 WO 2022211555A1 KR 2022004661 W KR2022004661 W KR 2022004661W WO 2022211555 A1 WO2022211555 A1 WO 2022211555A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
type gas
wrapping type
gas
hydrogen
Prior art date
Application number
PCT/KR2022/004661
Other languages
English (en)
French (fr)
Inventor
임보규
박종목
김예진
기르마헤녹
정서현
정유진
공호열
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022211555A1 publication Critical patent/WO2022211555A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a wrapping-type gas sensor, and more particularly, to a wrapping-type gas sensor capable of high sensitivity sensing while preventing gas leakage.
  • Hydrogen energy which is emerging due to the recent depletion of fossil fuels and environmental pollution, is likely to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. has a
  • SiO2, AlN metal oxide (nitride) semiconductors and sensors using a Schottky barrier diode with a bipolar structure using SiC, GaN, etc. in bulk Pd and Pt, etc.
  • Korean Patent No. 10-0870126 'Method for manufacturing a hydrogen sensor using Pd nanowires' research on materials and structures for a hydrogen sensor that can optimize performance as a hydrogen sensor is in progress, but still There is a need to develop a sensor that operates to have high sensitivity to hydrogen gas at room temperature.
  • the conventional hydrogen sensor is a relatively hard material, so it is difficult to install it in a gas cylinder, a gas pipe, etc., and has a disadvantage in that it occupies a relatively large amount of space.
  • hydrogen is relatively light and the diffusion rate is very fast, even if a leak occurs in an actual gas pipe, it is difficult for a conventional hydrogen sensor to detect.
  • an open space rather than a closed space, it is difficult to detect a hydrogen gas leak in reality despite an expensive and highly sensitive hydrogen gas sensor, and it is difficult to specify a leaked area.
  • An object of the present invention is to provide a wrapping type gas sensor capable of high sensitivity sensing while preventing gas leakage.
  • the wrapping type gas sensor of the present invention includes a shrink film; and a gas sensing unit positioned on at least one surface of the shrink film to detect gas.
  • the gas may include any one or two or more selected from the group consisting of hydrogen, carbon dioxide, oxygen, methane, nitrogen dioxide, and ammonia.
  • the gas sensing unit may include a hydrogen sensor.
  • the shrinkage rate in the machine direction (MD) and the vertical direction (TD) according to Equation 1 below is It may be 30 to 60 days.
  • Shrinkage (%) 100 X (length before shrinkage - (length after shrinkage/length before shrinkage))
  • the hydrogen sensor includes: a substrate positioned on the shrink film; a metal oxide layer positioned on the substrate; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; and a metal nanoparticle layer positioned on the metal oxide layer in a region where the first electrode and the second electrode are spaced apart.
  • the metal oxide of the metal oxide layer may be tin oxide.
  • the metal of the metal nanoparticle layer may be palladium.
  • a self-assembled monolayer (SAM) positioned between the metal oxide layer and the metal nanoparticle layer may further include.
  • the self-assembled monolayer may be an aminosilane-based compound.
  • the aminosilane-based compound is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 -Aminopropylmethyldiethoxysilane (3-aminopropylmethyldiethoxysilane), aminopropylsilanetriol (aminopropylsilanetriol), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (N-(2-aminoethyl)-3- aminopropyltrimethoxysilane), N-(2-aminoethyl)-3-aminopropylsilane (N-(2-aminoethyl)-3-aminopropylsilane), N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (N -(2-aminoethyl)-3-a
  • the thickness of the metal nanoparticle layer may be 0.1 to 20 nm.
  • wrapping type gas sensor may further include a polymer layer disposed on the metal nanoparticle layer and including an acrylate-based polymer.
  • the surface of the metal oxide layer in the region where the first electrode and the second electrode are spaced apart from each other includes a first region where the metal nanoparticle layer is located, and the metal nanoparticle layer A second region not located may be included.
  • the polymer layer may be non-porous.
  • the polymer layer may include poly(C1-C4)alkyl methacrylate.
  • the polymer layer may include polymethyl methacrylate.
  • the polymer layer may have a flat surface.
  • the thickness of the self-assembled monolayer may be 1 to 30 nm.
  • the operating temperature may be -10 to 200 °C.
  • power consumption may be 10 nW or less.
  • an adhesive portion positioned in an exposed region on the shrink film may be further provided.
  • the wrapping type gas sensor according to the present invention includes a shrink film and a sensing unit, it can be installed at a desired location regardless of location, and has high sensitivity to gas while preventing leakage of the installation site.
  • the wrapping-type gas sensor of the present invention has advantages of excellent long-term stability and high sensitivity sensing.
  • FIG. 1 is a perspective view of a wrapping type gas sensor according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a cross section of a wrapping type gas sensor according to a second embodiment of the present invention
  • FIG. 3 is a perspective view of a wrapping type gas sensor according to a third embodiment of the present invention.
  • 4 to 5 are photos of a wrapping type gas sensor according to an embodiment of the present invention.
  • FIG. 6 is a graph of a detection test result for each hydrogen concentration of a wrapping type gas sensor according to an embodiment of the present invention.
  • the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
  • the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
  • a wrapping type gas sensor includes a shrink film; and a gas sensing unit positioned on at least one surface of the shrink film to detect gas.
  • the gas sensor of the present invention can be installed at a desired location regardless of location through the shrink film. Specifically, as it has high flexibility by the shrink film, it can be deformed into a shape corresponding to the area in areas requiring gas sensing, such as gas cylinders and gas pipes, and takes up little space so that it can have high space efficiency. do.
  • the gas sensor of the present invention can be installed by wrapping the installation part with a shrink film, it can be installed in the installation part with a high risk of leakage, such as the gas cylinder inlet, gas pipe, and gas valve, and at the same time prevent gas leakage. have.
  • the leaking gas is supplied directly to the sensing unit without leaking to the outside, so the sensor can be quickly and sensitively sensed and the leak site can be accurately identified, thereby greatly reducing the risk of gas leakage. .
  • the gas is not limited as long as it contains a gaseous material. Specifically, it may mean including any one or two or more selected from the group consisting of hydrogen, carbon dioxide, oxygen, methane, nitrogen dioxide and ammonia, but is not limited thereto.
  • FIG. 1 is a perspective view illustrating a wrapping type gas sensor installed in a cylinder according to an embodiment of the present invention.
  • the gas sensor of the present invention includes a shrink film 5 and a gas sensing unit 100 positioned on the shrink film 5 .
  • the gas sensing unit may be installed in contact with the installation location.
  • the installation position (opening/closing part of the cylinder) - the gas sensing unit - may be located in the order of the shrink film.
  • the shrink film 5 is flexible and is a material that can be contracted by an external force such as heat, and is deformed and shrunk to a shape corresponding to various installation positions, such as a pipe, a cylinder, and a storage tank, and can be installed without being limited to the installation position.
  • the gas sensing unit may be installed to surround the opening/closing part of the high leak risk, and may be installed to seal the opening/closing part. Accordingly, even when leakage occurs, it is possible to prevent the gas from diffusing to the outside, and as the leaked gas moves to the gas sensing unit as it is, high-sensitivity sensing of the gas sensing unit is possible.
  • the shrink film 5 is provided in the form of a film forming a surface having a width equal to or greater than the perimeter of the installation position, and is installed to surround the installation position. At this time, both ends of the shrink film 5 overlapping each other in the width direction may be bonded to each other by an adhesive. Thereafter, the shrink film 5 may be contracted by applying an external force such as heat.
  • the shrink film 5 may be provided as an annular film forming an inner diameter equal to or greater than the outer diameter of the installation position.
  • the shrink film 5 may be formed in various ways without being limited in shape and size according to needs such as an installation location or installation conditions.
  • the shrink film 5 is not limited as long as it is a material known in the art in the prior art, but specifically, the shrink film is polyester (Polyester, PET), oriented polystyrene (OPS), polyvinyl chloride (PVC) and poly It may be a material made of any one or two or more polymers selected from the group consisting of propylene (PP).
  • polyester Polyethylene, PET
  • OPS oriented polystyrene
  • PVC polyvinyl chloride
  • PP propylene
  • the shrinkage film 5 has a shrinkage rate of 20 to 80% in the machine direction (MD) and its vertical direction (TD) according to Equation 1 below when contracted for 10 seconds at a temperature of 90 ° C., Specifically, it may be 30 to 60%, more specifically 40 to 50%.
  • Shrinkage (%) 100 X ((length before shrinkage - length after shrinkage)/length before shrinkage)
  • the shrink film 5 may be in close contact with the installation part without defects during shrinkage.
  • the shrink film 5 having a tensile strength of 100 to 800 Kg/cm 2 , specifically 200 to 600 Kg/cm 2 . After shrinkage in the above range, it is not easily damaged by external force.
  • the thickness of the shrink film 5 is not limited, but may be 5 to 500 ⁇ m, specifically 50 to 300 ⁇ m.
  • the gas sensing unit 100 is positioned on the shrink film 5 and may be installed in contact with the installation position. Specifically, as shown in the drawing, the installation position (opening/closing part of the cylinder)-gas sensing unit-shrink film may be located in the order, and the gas sensing unit may be fixed to the installation position as the shrinkage film is in close contact with the installation position. .
  • the gas sensing unit may be provided on the shrink film in plurality.
  • the gas detection unit 100 may be operated by an external commercial power source, but may be operated by being supplied with power by a separately provided power supply unit (not shown). For example, power may be supplied by a battery electrically connected to the gas sensing unit.
  • the gas sensing unit 100 may be a hydrogen sensor, the substrate 10 positioned on the shrink film 5 , the metal oxide layer 31 positioned on the substrate 10 , the metal A first electrode 51 and a second electrode 53 positioned spaced apart on the oxide layer, and a metal nanoparticle layer 37 positioned in a region where the first electrode 51 and the second electrode 53 are spaced apart are included. do.
  • a hydrogen sensor uses a sensor using catalytic combustion or a hot wire, SiO 2 , AlN metal oxide (nitride) semiconductor, and bulk Pd, Pt with SiC, GaN, etc. using a Schottky barrier diode having a bipolar structure.
  • sensors using since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
  • the hydrogen sensor according to the present invention includes the metal oxide layer 31 and the metal nanoparticle layer 37 located in a specific region on the metal oxide layer 31, it is possible to improve the sensitivity by showing a fast recovery rate, It is possible to operate at room temperature (20 ⁇ 5°C), not high temperature. In addition, fast and accurate detection of low concentration hydrogen gas is possible, and high sensitivity can be maintained even when used repeatedly over a long period of time.
  • the wrapping-type gas sensor including such a hydrogen sensor may have an operating temperature of -10 to 200 °C, more specifically 4 to 100 °C, and may be capable of high-sensitivity sensing of hydrogen gas even at relatively room temperature.
  • the wrapping-type gas sensor including such a hydrogen sensor consumes less than 10 nW, further 5 nW, and can perform high-sensitivity sensing with very low power compared to a general gas sensor that generally consumes 1 to 30 mW.
  • the substrate 10 is not particularly limited as long as it is made of an insulating material, and may be glass, ceramic, alumina, silicon wafer, polymer, or the like.
  • the substrate 10 may be flexible polyimide, flexible polyethylene naphthalate, or flexible polyethylene terephthalate, but is not limited thereto as a flexible polymer material.
  • Such a polymer substrate 10 has flexibility and insulation, and at the same time exhibits light transmittance, and can be applied to various fields.
  • the metal oxide layer 31 and the metal nanoparticle layer 37 are sensing units of the hydrogen sensor, and when exposed to hydrogen while power is supplied to the first and second electrodes, hydrogen is adsorbed and electrical characteristics are changed. Accordingly, the hydrogen sensor may detect hydrogen.
  • the metal oxide layer 31 may be made of an oxide of gallium, indium, tin, and a composite thereof.
  • the metal oxide layer 31 may be made of tin oxide (SnO x ).
  • the metal oxide layer 31 made of tin oxide (SnO x ) has a high hydrogen adsorption rate compared to the area formed by the metal oxide layer 31 so that even low concentration hydrogen gas can be sensed.
  • O x may be selected from O 1 to O 10 depending on the degree of oxidation, but is not limited thereto.
  • the thickness of the metal oxide layer 31 may be 5 to 300 nm, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
  • the metal nanoparticle layer 37 is positioned between the first and second electrodes 51 and 53 spaced apart on the metal oxide layer 31 , and may be provided in the form of clusters and dispersed particles.
  • the diameter of each cluster may be 1 to 10 nm. High-sensitivity sensing may be performed in the above range, and if the diameter is larger than the above range, a problem in that the sensor does not operate may occur.
  • the metal of the metal nanoparticle layer 37 is palladium (Pd), platinum (Pt), rhodium (Rd), nickel (Ni), aluminum (Al), manganese (Mn), molybdenum (Mo), magnesium (Mg), and vanadium. (V) or one or more may be selected from the group consisting of alloys thereof, but is not limited thereto.
  • the metal nanoparticle layer 37 including such metal nanoparticles has both conductivity and hydrogen adsorption ability, so that the sensing unit can adsorb a large amount of hydrogen.
  • the sensing unit including the metal nanoparticles may enable high-sensitivity sensing even at room temperature.
  • the metal of the metal nanoparticle layer 37 may be palladium.
  • the metal oxide layer 31 made of tin oxide, that is, the metal nanoparticle layer 37 made of palladium, that is, the palladium nanoparticle layer 37 on the tin oxide layer 31, includes a sensing unit located
  • the hydrogen sensor is particularly preferable in that it can quickly and accurately detect even a low concentration of hydrogen gas, and the sensitivity does not decrease even when used repeatedly over a long period of time.
  • the palladium nanoparticle layer 37 is located in a specific region, that is, in a region where the first electrode and the second electrode on the tin oxide layer are spaced apart, it is possible to sense hydrogen gas with high sensitivity.
  • the palladium nanoparticles may be uniformly or non-uniformly distributed in the region, and preferably, the palladium nanoparticles are distributed only in a partial region on the surface of the tin oxide layer in the region where the first electrode and the second electrode are spaced apart, the first electrode
  • the surface of the tin oxide layer in the region where the and second electrodes are spaced apart may include a first region in which the palladium nanoparticle layer is positioned and a second region in which the palladium nanoparticle layer is not positioned.
  • the area of the second region may be 50% to 90%, preferably 60% to 80%, of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode.
  • the hydrogen sensor including the tin oxide layer and the palladium nanoparticle layer as described above is capable of sensing hydrogen under various environmental conditions as well as high-sensitivity sensing. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
  • the thickness of the metal nanoparticle layer 37 may be 0.1 to 20 nm, specifically 0.5 nm to 10 nm, more specifically 3 to 7 nm, but is not limited thereto, but may have excellent adsorption capacity for hydrogen in the above range.
  • the first and second electrodes 51 and 53 included in the wrapping type gas sensor may measure a change in current or resistance.
  • the first and second electrodes 51 and 53 are spaced apart from each other on one surface of the metal oxide layer 31, and for example, copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned.
  • the present invention is not limited thereto, and any material used as a general electrode may be used.
  • the surface of the metal nanoparticle layer 37 exposed between the first and second electrodes 51 and 53 spaced apart from each other may be a reaction region in which adsorption of the detection gas occurs.
  • Each of the first and second electrodes 51 and 53 may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
  • FIG. 2 shows a gas sensor 2 including a hydrogen sensing unit according to another embodiment of the present invention.
  • the hydrogen gas sensor includes a self-assembled monolayer (SAM) 35 and a metal nanoparticle layer 37 positioned between the metal oxide layer and the metal nanoparticle layer as shown in FIG. ) may further include a polymer layer 70 formed on the.
  • the hydrogen gas sensor according to the present invention may further include only a self-assembled monolayer without a polymer layer, or, alternatively, may further include only a polymer layer without a self-assembled monolayer.
  • the self-assembled monolayer 35 is positioned in contact with one surface of the metal oxide layer 31 , and is positioned between the metal oxide layer 31 and the metal nanoparticle layer 37 in contact with one surface of the metal oxide layer 31 to sense hydrogen gas. You can have a quick recovery time.
  • the sensing unit in which the self-assembled monolayer 35 is formed may have a wide sensing range capable of sensing hydrogen gas at a low concentration (about 0.1 ppm) to a high concentration (100000 ppm).
  • Self-assembled monolayers (SAMs) 35 are assemblies formed by adsorption of molecular constructs from a solution or gas phase, and the assemblies can be spontaneously aligned.
  • the self-assembled monolayer 35 may be specifically an aminosilane-based compound, and more specifically, the aminosilane-based compound is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane (3- aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, aminopropylsilanetriol, N-(2-aminoethyl)-3-aminopropyltriethoxysilane (N-(2-aminoethyl) )-3-aminopropyltrimethoxysilane), N-(2-aminoethyl)-3-aminopropylsilane (N-(2-aminoethyl)-3-aminopropylsilane
  • the self-assembled monolayer 35 may be formed with a constant thickness on the upper surface of the metal oxide layer 31 .
  • the thickness of the self-assembled monolayer 35 may be 1 to 50 nm, specifically 1 to 30 nm, and more specifically 1 to 5 nm, but is not limited thereto. However, it is possible to implement a faster recovery rate compared to the thickness in the above range.
  • the polymer layer 70 protects the sensing unit and may serve to increase the selectivity of the gas sensor.
  • the polymer layer 70 including the acrylate-based polymer selectively transmits hydrogen gas, thereby enabling more highly sensitive gas sensing.
  • the polymer layer 70 serves to protect the sensing unit, such as preventing the separation of metal nanoparticles from external environments such as moisture and air, and prevents the hydrogen gas sensitivity from being lowered due to moisture or the like when exposed to the outside for a long time. That is, the polymer layer 70 can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit.
  • the thickness of the polymer layer 70 is not particularly limited as long as it can sufficiently protect the metal nanoparticle layer 37 . However, since it is formed to be thicker than the thickness of the electrode, the edge of the polymer layer 70 may be positioned on the electrode.
  • the polymer layer 70 protects not only the sensing unit but also the electrode of the hydrogen gas sensor from the external environment, thereby further enhancing the durability of the hydrogen gas sensor.
  • the polymer layer 70 may be 100 nm or more, or 500 nm or more, specifically 1 ⁇ m to 10 ⁇ m, but is not limited thereto.
  • the metal oxide layer 31 exposed to the outside, that is, the second region, is directly connected to the polymer layer 70 .
  • Such a hydrogen gas sensor may further increase hydrogen selectivity.
  • the polymer layer 70 is not particularly limited as long as it has a structure capable of protecting the metal nanoparticle layer 37 and increasing the selectivity of hydrogen gas, but a non-porous one may be advantageous in terms of hydrogen selectivity. Even if the polymer layer 70 is made of the same polymer material, the non-porous one may have higher hydrogen selectivity than the porous one.
  • non-porous means that when the surface of the polymer layer 70 is observed with a photograph of 25 ⁇ m X 20 ⁇ m measured with a scanning electron microscope, pores are not observed with the naked eye. Specifically, it may mean that pores having a size having a diameter of about 10 nm or more are not found.
  • the polymer layer 70 may have a flat surface in terms of hydrogen selectivity. Specifically, when the polymer layer 70 is made of the same non-porous polymer material, a planar surface may have higher hydrogen selectivity than a non-planar surface.
  • the flat surface refers to a smooth surface, and when the surface of the polymer layer 70 is observed with a photograph of 25 ⁇ m X 20 ⁇ m measured with a scanning electron microscope, it means that irregularities are not observed with the naked eye. it means. Specifically, it may mean that irregularities having a maximum diameter and maximum height of about 10 nm or more are not found.
  • the polymer layer 70 may include an acrylate-based polymer, specifically, poly(C1-C4)alkyl methacrylate. Specifically, one of polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, or a mixture thereof It may include those selected above.
  • the polymer layer 50 may include polymethyl methacrylate. Such a polymer layer 50 may be advantageous in terms of hydrogen selectivity through a non-porous structure.
  • the acrylate-based polymer may have a weight average molecular weight of 1,000 to 1,000,000 g/mol, specifically 5,000 to 500,000 g/mol, and more specifically 20,000 to 400,000 g/mol.
  • the polymer layer 70 made of polymethyl methacrylate simultaneously satisfies a non-porous and flat surface, it is preferable because it can have very high hydrogen selectivity, high sensitivity, and high reliability in sensing hydrogen gas.
  • the gas sensing unit 100 may be an ammonia sensor, for example, the flexible gas sensor disclosed in Korean Patent Application Laid-Open No. 10-2019-0120503 may be used as the ammonia sensor.
  • the gas detection unit 100 may be a nitrogen dioxide sensor, and for example, the nitrogen oxide gas detection sensor disclosed in Korean Patent Application Laid-Open No. 10-2021-0007096 may be used as the nitrogen dioxide sensor.
  • FIG. 3 is a perspective view of a wrapping type gas sensor 3 according to another embodiment of the present invention.
  • the wrapping type gas sensor 3 of the present invention may further include an adhesive portion 40 positioned on the shrink film.
  • the adhesive part 40 is located in an area exposed on the shrink film, that is, in an area where the gas sensing part 100 is not located. It can be installed with a fixed force, and when gas leaks, a gap between the shrink film 5 and the installation part is widened by the earth pressure from which gas is ejected, thereby preventing gas from leaking.
  • the adhesive part 40 is formed along the edge of one side of the shrink film 5 where the gas sensing part 100 is not located, compared to the area where the adhesive part 40 is formed, It can have high fixing force and sealing force. More specifically, the adhesive portion 40 may be formed along the edges of two surfaces positioned at the distal end of the shrink film 5 to be sealed with high adhesion to a pipe or tube on which the shrink film is installed. Accordingly, the leaked gas does not easily flow out through the distal end and stays on the shrink film 5 for a predetermined time, so that the gas detecting unit 100 located on one surface of the shrink film can effectively detect the leaked gas.
  • the adhesive part 40 is not limited as long as it is formed by coating the adhesive used in the film in the art, and specifically, an acrylic adhesive, a urethane-based adhesive, a rubber-based adhesive, a silicone-based adhesive, an ultraviolet curable adhesive, a vinyl acetate-based adhesive, a polyester-based adhesive It may be made of a heat adhesive or a thermoplastic adhesive.
  • the method of detecting a gas of the present invention through the wrapping type gas sensor of the present invention may be performed by measuring a current or resistance before and after exposing a detection target gas to a sensing unit.
  • measuring a drain current (I ds (ref)) of the gas sensor to set a reference; introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current I ds (detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on a drain current value changed (increased) before and after introduction of the detection target gas.
  • the detection gas may be detected with a changed resistance value instead of a changed Dreene current value before and after introduction of the detection target gas.
  • the operating (detection) temperature of the gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
  • Such a gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
  • Shrinkage (%) 100 X ((length before shrinkage - length after shrinkage)/length before shrinkage)
  • liquid polyimide (PI) resin on the cleaned silicon wafer substrate (thickness: 500-550um, resistivity: ⁇ 0.005 ohm, SiO 2 thickness: 3000A (Dry)
  • PI polyimide
  • a 0.1M SnCl 2 solution using 2-methoxyethanol as a solvent was spin-coated (3,000 rpm, 60 seconds) and annealed at 300° C. for 1 hour to form a SnO 2 layer.
  • first and second electrodes Al was deposited to a thickness of 90 nm and a width of 1000 ⁇ m through a shadow mask to form first and second electrodes. In this case, the separation distance between the first and second electrodes was 200 ⁇ m.
  • Pd was deposited at a rate of 0.1 ⁇ /s using a thermal evaporator to have an average thickness of 3 nm.
  • 4 mg/ml of PMMA in anisole was spin-coated (4,000 rpm, 30 seconds) and then heat treated at 175° C. for 10 minutes to prepare a hydrogen gas sensor.
  • the hydrogen sensor prepared in Preparation Example 1 was fixed on a shrink film having a width of 10 cm, a length of 5 cm, and a thickness of 300 ⁇ m, which satisfies the physical properties shown in Table 1 below to prepare a wrapping gas sensor.
  • Example 1 a gas sensor was manufactured in the same manner as in Example 1, except that a non-shrinkable film satisfying the physical properties shown in Table 1 was used.
  • the gas sensors prepared in Examples and Comparative Examples were wrapped to seal the perforations, and both ends of the shrink film overlapping each other were fixed with an adhesive. Then, a hot air of 90 °C was applied.
  • the lifting phenomenon means that a separation distance is generated between the tube and the gas sensor.
  • the embodiment including the shrink film is fixed in close contact along the surface of the tube even in the curved shape of the tube, but in the comparative example, the gas may be exposed to the outside because it is not tightly fixed.
  • Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of a MSTECH probe station with an MFC system.
  • the gas sensor prepared in Example is wrapped so that the perforation is sealed, and then both ends of the shrink film overlapping each other with an adhesive was fixed with Thereafter, the shrink film was shrunk by applying hot air at 90°C.
  • FIG. 6 is a graph showing the results of the detection test (experimental example) for each hydrogen concentration of the hydrogen sensor manufactured in the example. Specifically, Figure 6 shows the detection test results for each concentration of 0.002% to 2%.
  • FIG. 7 is a response-recovery time result graph for each hydrogen concentration of the embodiment. Specifically, the response-recovery time results of the sensor at 0 to 2% hydrogen concentration are shown. Referring to 4, it can be seen that the recovery speed is within 1 minute at room temperature and the response speed is fast.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 랩핑형 가스 센서에 관한 것으로, 상세하게, 가스의 누출을 방지함과 동시에 고감도 센싱이 가능한 랩핑형 가스 센서에 관한 것이다. 본 발명의 랩핑형 가스 센서는 수축필름; 및 상기 수축필름의 적어도 일면에 위치하여 가스를 감지하는 가스감지부;를 포함한다.

Description

랩핑형 가스 센서
본 발명은 랩핑형 가스 센서에 관한 것으로, 상세하게, 가스의 누출을 방지함과 동시에 고감도 센싱이 가능한 랩핑형 가스 센서에 관한 것이다.
최근 화석연료의 고갈 및 환경오염 문제로 인해 대두되고 있는 수소 에너지는 산업용 기초소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지, 핵융합에너지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다.
하지만, 수소가스는 폭발농도범위가 넓고(4~75%), 발화에너지가 작아 미세한 정전기에도 쉽게 발화되기 때문에 누출된 양이 미량이라도 매우 위험할 수 있다. 이에, 수소 누출에 의한 대형사고 및 인명 피해를 줄이기 위해 수소가스를 빠르고 정확하게 탐지할 수 있는 고성능 센서가 요구된다.
현재까지 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등 다양한 수소센서가 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300 ℃이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있다.
이에, 대한민국 등록특허공보 제10-0870126호 ‘Pd 나노와이어를 이용한 수소센서 제조방법’에 개시된 바와 같이, 수소센서로서 성능을 최적화 할 수 있는 수소센서 재료 및 구조에 대한 연구가 진행중에 있으나, 여전히 상온에서 수소 가스에 대한 높은 민감도를 가질 수 있도록 작동하는 센서에 대한 개발이 필요한 실정이다.
게다가, 종래 수소센서는 비교적 경질의 소재로 가스봄베, 가스배관 등에 설치가 용이하지 않으며, 비교적 공간을 많이 차지한다는 단점이 있다. 아울러, 수소가 비교적 가볍고, 확산속도가 매우 빠름에 따라 실제 가스배관에서 누출이 발생해도 종래 수소센서가 검지하는데 어려움이 있다. 특히 밀폐공간이 아닌 개방된 공간인 경우, 고가의 고감도 수소가스센서임에도 불구하고 실질적으로 수소가스 누출을 감지하기 어려우며, 누출부위를 특정하기 어렵다는 단점이 있다.
본 발명은 가스의 누출을 방지함과 동시에 고감도 센싱이 가능한 랩핑형 가스 센서를 제공하는 것이다.
본 발명의 랩핑형 가스 센서는 수축필름; 및 상기 수축필름의 적어도 일면에 위치하여 가스를 감지하는 가스감지부;를 포함한다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 가스는 수소, 이산화탄소, 산소, 메탄, 이산화질소 및 암모니아로 이루어진 군으로 부터 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 실시예에 따른 상기 가스감지부는 수소센서를 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 수축필름을 90℃의 온도에서, 10초간 수축시켰을 때 하기 식 1에 따른 기계 방향(MD) 및 그 수직 방향(TD)의 수축율이 30 내지 60일 수 있다.
[식 1]
수축율(%) = 100 X ( 수축 전 길이 - (수축 후 길이/수축 전 길이))
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서 상기 수소센서는 상기 수축필름에 위치하는 기판; 상기 기판 상에 위치하는 금속산화물층; 상기 금속산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 및 상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 상에 위치하는 금속나노입자층;를 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 금속산화물층의 금속산화물은 주석산화물일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 금속나노입자층의 금속은 팔라듐일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 금속산화물층 및 상기 금속나노입자층 사이에 위치하는 자기조립단분자막(self assembled monolayer, SAM);을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 자기조립단분자막은 아미노실란계 화합물일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 아미노실란계 화합물은 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 3-아미노프로필메틸디에톡시실란(3-aminopropylmethyldiethoxysilane), 아미노프로필실란트리올(aminopropylsilanetriol), N-(2-아미노에틸)-3-아미노프로필트리에톡시실란(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane), N-(2-아미노에틸)-3-아미노프로필실란(N-(2-aminoethyl)-3-aminopropylsilane), N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란(N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane), (3-트리에톡시실리프로필)디에틸렌트리아민((3-triethoxysilylpropyl)dietylene triamine)로 이루어진 군에서 하나 이상 선택되는 것 일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 금속 나노입자층의 두께는 0.1 내지 20 nm일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 금속 나노입자층 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 표면은 상기 금속 나노입자층이 위치하는 제1영역과, 상기 금속 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 고분자층은 비다공질일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 고분자층은 폴리메틸메타크릴레이트를 포함할 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 고분자층은 평탄 표면을 가질 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 자기조립단분자막의 두께는 1 내지 30 ㎚일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 작동온도가 -10 내지 200 ℃ 일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 소모 전력이 10 nW 이하일 수 있다.
본 발명의 일 실시예에 따른 랩핑형 가스 센서에 있어서, 상기 수축필름 상 노출된 영역에 위치하는 점착부를 더 구비할 수 있다.
본 발명에 따른 랩핑형 가스 센서는 수축필름 및 감지부를 포함함에 따라, 장소에 구애받지 않고 원하는 위치에 설치가 가능하며, 설치부위의 누출을 방지함과 동시에 가스에 대한 높은 민감도를 가진다.
아울러, 본 발명의 랩핑형 가스 센서는 장기안정성이 우수하며, 고감도 센싱이 가능하다는 장점이 있다.
도 1은 본 발명의 제1실시예에 따른 랩핑형 가스 센서의 사시도,
도 2는 본 발명의 제2실시예에 따른 랩핑형 가스 센서의 단면을 나타내는 모식도,
도 3은 본 발명의 제3실시예에 따른 랩핑형 가스 센서의 사시도,
도 4 내지 도 5는 본 발명의 일 실시예에 따른 랩핑형 가스 센서의 사진,
도 6은 본 발명의 일 실시예에 따른 랩핑형 가스센서의 수소농도별 검지테스트 결과 그래프,
도 7은 수소농도별 응답-회복 시간 결과 그래프이다.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.
본 발명에 따른 랩핑형 가스 센서는 수축필름; 및 상기 수축필름의 적어도 일면에 위치하여 가스를 감지하는 가스감지부;를 포함한다.
종래 다양한 가스센서들은 대부분 경질의 소재로 설치장소가 매우 한정적이며, 비교적 공간을 많이 차지한다는 단점이 있다. 아울러 실제 가스배관에서 누출이 발생해도 이와 멀리 설치된 종래, 가스 센서가 검지하는데 어려움이 있다. 특히 밀폐공간이 아닌 개방된 공간인 경우, 고가의 고감도 가스센서임에도 불구하고 실질적으로 가스 누출을 감지하기 어려우며, 누출부위를 특정하기 어렵다는 단점이 있다.
그러나, 본 발명의 가스센서는 수축필름을 통해 장소에 구애받지 않고 원하는 위치에 설치가 가능하다. 구체적으로, 수축필름에 의해 높은 유연도를 가짐에 따라 가스봄베, 가스배관 등 가스 센싱이 필요한 영역에 영역과 대응하는 형상으로 변형이 가능하며, 공간을 거의 차지하지 않아 높은 공간효율성을 가질 수 있도록 한다.
또한, 본 발명의 가스센서는 수축필름에 의해 설치부위를 감싸 설치될 수 있음에 따라, 가스 봄베 입구, 가스 배관 및 가스 밸브 등 누출 위험도가 높은 설치부위에 설치됨과 동시에 가스의 누출을 방지할 수 있다. 또한, 가스 누출 시, 누출되는 가스가 외부로 누출되지 않고 감지부로 직접 공급됨에 따라, 센서의 빠른 고감도 센싱이 가능하며, 누출 부위를 정확하게 알 수 있어, 가스 누출에 대한 위험을 매우 저감시킬 수 있다.
본 발명에서, 상기 가스는 기상의 물질 포함하는 것이라면 한정되지 않는다. 구체적으로, 수소, 이산화탄소, 산소, 메탄, 이산화질소 및 암모니아로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상을 포함하는 것을 의미할 수 있으나, 이에 한정되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 랩핑형 가스센서에 대해 상세히 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위하여 어디까지나 예시적으로 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 랩핑형 가스센서가 봄베에 설치된 것을 도시한 사시도이다.
도 1을 참조하면, 본 발명의 가스 센서는 수축필름(5) 및 수축필름(5) 상에 위치하는 가스감지부(100)를 포함한다. 도면에 도시된 바와 같이, 가스감지부는 설치위치와 접촉되며 설치될 수 있으며. 구체적으로, 설치위치(봄베의 개폐부)-가스감지부-수축필름 순으로 위치될 수 있다.
수축필름(5)은 유연하며, 열과 같은 외력에 의해 수축이 가능한 소재로, 배관, 봄베 및 저장탱크 등 여러 설치위치와 대응하는 형상으로 변형 및 수축되어 설치위치에 한정되지 않고 설치될 수 있다.
일 예로, 도면에 도시된 바와 같이 누출위험이 높은 봄베의 개폐부측을 감싸며 설치되어, 개폐부를 밀봉하도록 설치될 수 있다. 이에, 누출이 발생할 시에도, 외부로 가스가 확산하는 것을 방지할 수 있으며, 누출된 가스가 가스감지부로 그대로 이동함에 따라, 가스감지부의 고감도 센싱이 가능하다.
구체적으로, 도 1에 도시된 바와 같이, 수축필름(5)은 설치위치의 둘레길이 이상의 너비를 가지는 면을 형성하는 필름형으로 구비되며, 설치위치를 감싸며 설치된다. 이때, 서로 겹치는 수축필름(5)의 너비방향 양단은 각각 맞닿아 접촉되는 곳이 접착제에 의해 접착될 수 있다. 이후, 열 등과 같은 외력을 가하여 수축필름(5)을 수축시킬 수 있다.
이와 달리, 수축필름(5)은 설치위치의 외경 이상의 내경을 형성하는 환형의 필름으로 구비될 수도 있다. 이처럼, 수축필름(5)은 설치위치 또는 설치조건 등 필요에 따라 형상 및 크기가 한정되지 않고 다양하게 형성될 수 있다.
수축필름(5)은 종래 당업계에 알려진 소재라면 한정되지 않으나, 구체적으로 수축필름은 폴리에스테르(Polyester, PET), 배향성 폴리스티렌(Oriented polystyrene, OPS), 폴리염화비닐(Polyvinyl chloride, PVC) 및 폴리프로필렌(Polypropylene, PP)로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 고분자로 이루어진 소재일 수 있다.
본 발명의 일 양태에 있어서, 수축필름(5)은 90℃의 온도에서, 10초간 수축시켰을 때 하기 식 1에 따른 기계 방향(MD) 및 그 수직 방향(TD)의 수축율이 20 내지 80%, 구체적으로 30 내지 60%, 더욱 구체적으로 40 내지 50%일 수 있다.
수축율(%) = 100 X ((수축 전 길이 - 수축 후 길이)/수축 전 길이)
상기 범위에서 수축필름(5)은 수축 시, 결함없이 설치부분에 밀착될 수 있다.
또한, 수축필름(5)은 인장강도가 100 내지 800Kg/㎠, 구체적으로 200 내지 600Kg/㎠인 것을 사용하는 것이 바람직하다. 상기 범위에서 수축 후, 외력에 의해 쉽게 파손되지 않는다.
일 실시예에 따르면, 수축필름(5)은 두께가 한정되지 않으나, 5 내지 500㎛, 구체적으로 50 내지 300㎛일 수 있다.
가스감지부(100)는 수축필름(5) 상에 위치하는 것으로, 설치위치와 접촉되며 설치될 수 있으며. 구체적으로, 도면에 도시된 바와같이 설치위치(봄베의 개폐부)-가스감지부-수축필름 순으로 위치될 수 있으며, 가스감지부는 수축필름이 설치위치에 밀착됨에 따라, 설치위치에 고정될 수 있다.
가스감지부는 도면에 도시된 바와 달리, 복수개로 수축필름 상에 구비될 수 있다.
가스감지부(100)는 외부 상용전원에 의해 작동될 수 있으나, 별도로 구비되는 전원부(미도시)에 의해 전원이 공급되어 작동될 수 있다. 일 예로, 가스감지부와 전기적으로, 연결되는 배터리 등에 의해 전원이 공급될 수 있다.
일 실시예에 따르면, 가스감지부(100)는 수소센서일 수 있으며, 수축필름(5) 상에 위치하는 기판(10), 기판(10)의 상부에 위치하는 금속산화물층(31), 금속산화물 층 상에 이격되어 위치하는 제1전극(51)과 제2전극(53), 제1전극(51)과 제2전극(53)이 이격된 영역에 위치하는 금속나노입자층(37)을 포함한다.
종래, 수소센서는 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등이 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300℃ 이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있었다.
본 발명에 따른 수소센서는 금속산화물층(31) 및 금속산화물층(31) 상 특정영역에 위치하는 금속나노입자층(37)을 포함함에 따라, 빠른 회복속도를 나타내 민감도 향상을 도모할 수 있으며, 고온이 아닌 상온(20±5℃)에서 작동이 가능하다. 뿐만 아니라, 낮은 농도의 수소 가스에 대해서도 빠르고 정확한 검지가 가능하며, 장기적으로 반복하여 사용 시에도 고민감성을 유지할 수 있다.
구체적으로, 이와 같은 수소센서를 포함하는 랩핑형 가스센서는 작동온도가 -10 내지 200 ℃, 보다 구체적으로 4 내지 100 ℃ 범위일 수 있으며, 비교적 상온에서도 수소가스의 고감도 센싱이 가능할 수 있다.
아울러, 이와 같은 수소센서를 포함하는 랩핑형 가스 센서는 소모전력이 10nW 이하, 나아가 5nW 로, 일반적으로 1 내지 30mW를 소모하는 일반 가스센서에 비해 매우 낮은 전력으로 고감도 센싱이 가능할 수 있다.
기판(10)은 절연성을 가지는 소재로 이루어진 것이라면 크게 제한되지 않으며, 유리, 세라믹, 알루미나, 실리콘 웨이퍼 및 고분자 등 일 수 있다. 일 예로, 도면에 도시된 바와 달리 기판(10)은 유연성 폴리이미드, 유연성 폴리에틸렌나프탈레이트 또는 유연성 폴리에틸렌테레프탈레이트일 수 있으나 유연성을 가지는 고분자 소재라는 이에 제한받지 않는다. 이와 같은 고분자 기판(10)은 유연성 및 절연성을 가짐과 동시에 광투과성을 나타내며, 다양한 분야에 적용이 가능하도록 할 수 있다.
금속산화물층(31) 및 금속 나노입자층(37)은 수소센서의 감지부로, 제1, 2전극에 전원을 공급한 상태에서 수소에 노출될 경우, 수소가 흡착되며 전기적 특성이 변화된다. 이에, 수소센서는 수소를 검지할 수 있다.
구체적으로, 금속산화물층(31)은 갈륨, 인듐, 주석 및 이들의 복합체의 산화물로 이루어 질 수 있다. 일 구체 예로 금속산화물층(31)은 주석산화물(SnOx)로 이루어질 수 있다. 이처럼 주석산화물(SnOx)로 이루어진 금속산화물층(31)은 금속산화물층(31)이 형성하는 면적대비 수소 흡착률이 높아 저농도 수소 가스도 센싱이 가능하도록 한다. 주석산화물은 산화정도에 따라 Ox가 O1 내지 O10에서 선택될 수 있으나 이에 한정되진 않는다.
금속산화물층(31)의 두께는 5 내지 300 ㎚, 상세하게 30 내지 200 ㎚ 일 수 있으나 이에 한정되지 않는다. 다만, 상기 범위에서 두께 대비 높은 수소 감응을 나타낼 수 있다.
금속 나노입자층(37)은 금속산화물층(31)상 이격된 제1, 2전극(51)(53) 사이에 위치하는 것으로, 클러스터 및 분산된 입자형태로 구비될 수 있다. 비한정적인 일 예로, 금속 나노입자층(37)이 클러스터 형태로 구비될 시 각 클러스터의 직경은 1 내지 10㎚일 수 있다. 상기 범위에서 고감도 센싱이 이루어 질 수 있으며, 상기 범위보다 직경이 클 경우, 오히려 센서가 작동하지 않은 문제점이 발생할 수 있다.
제1 및 제2전극에 전류가 인가될 시, 금속 나노입자층(37)은 수소가 흡착되며 전기적 특성이 변화된다. 금속 나노입자층(37)의 금속은 팔라듐(Pd), 백금(Pt), 로듐(Rd), 니켈(Ni), 알루미늄(Al), 망간(Mn), 몰리브덴(Mo), 마그네슘(Mg), 바나듐(V) 또는 이들의 합금로 이루어진 군에서 하나 이상 선택될 수 있으나 이에 한정되진 않는다. 이와 같은 금속 나노입자를 포함하는 금속 나노입자층(37)은 전도성과 수소흡착능을 동시에 가짐에 따라 감지부가 다량의 수소를 흡착할 수 있도록 한다. 아울러, 금속나노입자를 포함하는 감지부는 상온에서도 고감도 센싱이 가능하도록 할 수 있다.
바람직하게, 금속 나노입자층(37)의 금속은 팔라듐일 수 있다. 일 구체예로, 주석산화물로 이루어진 금속산화물층(31), 즉, 주석산화물층(31) 상에 팔라듐으로 이루어진 금속나노입자층(37), 즉, 팔라듐 나노입자층(37)이 위치하는 감지부를 포함하는 수소센서는 낮은 농도의 수소 가스에 대해서도 빠르고 정확한 검지가 가능하며, 장기적으로 반복하여 사용 시에도 감응도가 저하되지 않는 점에서 특히 바람직하다.
구체적으로, 팔라듐 나노입자층(37)이 특정영역, 즉, 주석산화물층 상 제1전극 및 제2 전극이 이격된 영역에 위치함에 따라 높은 민감도로 수소가스 센싱이 가능하다. 팔라듐 나노입자는 상기 영역에서 균일 또는 불균일하게 분포되어 있을 수 있으며, 바람직하게, 팔라듐 나노입자는 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면에 일부영역에만 분포되어, 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면이 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다. 상세하게, 제2영역의 면적은 제1전극 및 제2전극에 의해 구획된 주석산화물층 표면의 총 면적 중 50% 내지 90%, 바람직하게는 60% 내지 80%일 수 있다. 상기와 같은 주석산화물층 및 팔라듐 나노입자층을 포함하는 수소 센서는 고민감도 센싱뿐만 아니라, 다양한 환경조건 하에서도 수소센싱이 가능하다. 구체적으로, 수소 가스 센서는 -50℃ 내지 300℃ 온도 10 내지 80% 의 습도 하에서도 고감도의 수소 센싱이 가능하다.
금속나노입자층(37)의 두께는 0.1 내지 20㎚, 구체적으로 0.5㎚ 내지 10㎚, 더욱 구체적으로 3 내지 7㎚일 수 있으나 이에 한정되지 않으나, 상기 범위에서 수소에 대한 흡착능이 우수할 수 있다.
랩핑형 가스 센서에 포함되는 제1, 2전극(51)(53)은 전류 또는 저항의 변화를 측정할 수 있다. 제1, 2전극(51)(53)은 금속산화물층(31)의 일면 상 서로 이격 위치하는 것으로, 일 예로, 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니며, 일반적인 전극으로 사용되는 소재는 모두 사용가능하다. 이때, 서로 이격 위치하는 제1, 2전극(51)(53) 사이에 노출된 금속 나노입자층(37) 표면은 검출 가스의 흡착이 발생하는 반응 영역일 수 있다. 제1,2 전극(51)(53)의 각각 두께는 10㎚ 내지 200㎚ 구체적으로, 50㎚ 내지 150㎚일 수 있으나 이에 한정되지 않는다.
도 2는 본 발명의 다른 실시예에 따른 수소감지부를 포함하는 가스 센서(2)가 도시되어 있다.
본 발명의 일 실시예에 있어, 수소 가스 센서는 도 2에 도시된 바와 같이 금속산화물층과 금속나노입자층 사이에 위치하는 자기조립단분자막(self assembled monolayer, SAM)(35) 및 금속 나노입자층(37) 상에 형성되는 고분자층(70)을 더 포함할 수 있다. 도면에 도시된 바와 달리, 본 발명에 따른 수소 가스 센서는 고분자층 없이, 자기조립단분자막 만을 더 구비하거나, 이와 달리, 자기조립단분자막 없이 고분자층 만을 더 구비할 수 있다.
자기조립단분자막(35)은 금속산화물층(31) 일면에 접하여 위치하는 것으로, 금속산화물층(31)과 금속 나노입자층(37) 사이에서 금속산화물층(31) 일면에 접하여 위치함에 따라 수소가스 센싱 시 빠른 회복시간을 가질 수 있다. 아울러, 자기조립단분자막(35)이 형성된 감지부는 저농도(약0.1ppm)에서 고농도(100000ppm) 수소가스를 센싱할 수 있는 넓은 센싱범위를 가질 수 있다.
자기조립단분자막(Self-assembled monolayers, SAMs)(35)은 용액 혹은 기체 상으로부터 분자 구성체의 흡착에 의해 형성된 조립체로서, 조립체는 자발적으로 정렬될 수 있다. 자기조립단분자막(35)은 구체적으로 아미노실란계 화합물 일 수 있으며, 더욱 구체적으로 아미노실란계 화합물은 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 3-아미노프로필메틸디에톡시실란(3-aminopropylmethyldiethoxysilane), 아미노프로필실란트리올(aminopropylsilanetriol), N-(2-아미노에틸)-3-아미노프로필트리에톡시실란(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane), N-(2-아미노에틸)-3-아미노프로필실란(N-(2-aminoethyl)-3-aminopropylsilane), N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란(N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane), (3-트리에톡시실리프로필)디에틸렌트리아민((3-triethoxysilylpropyl)dietylene triamine)로 이루어진 군에서 하나 이상 선택될 수 있으나 이에 한정되지 않는다. 이와 같은 자기조립단분자막(35)은 반복적으로 수소 가스를 센싱할 시에도 고감도를 유지시킬 수 있도록 한다.
이와 같은 자기조립단분자막(35)은 금속산화물층(31) 상면에서 일정한 두께로 형성될 수 있다. 구체적으로, 자기조립단분자막(35)의 두께는 1 내지 50 ㎚, 상세하게 1 내지 30 ㎚, 더욱 상세하게 1 내지 5㎚일 수 있으나 이에 한정되진 않는다. 다만, 상기 범위에서 두께 대비 빠른 회복속도를 구현할 수 있다.
고분자층(70)은 감지부를 보호하며, 가스 센서의 선택성을 높이는 역할을 할 수 있다.
특히, 아크릴레이트계 고분자를 포함하는 고분자층(70)은 수소 가스를 선택적으로 투과할 수 있도록 하여 더욱 고감도의 가스 센싱이 가능하도록 한다. 나아가 고분자층(70)은 수분, 공기 등 외부 환경에서 금속 나노입자의 이탈 방지 등 감지부를 보호하는 역할을 하여 장시간 동안 외부 노출 시 수분 등에 의해 수소 가스 민감도가 떨어지는 것을 방지한다. 즉, 고분자층(70)은 감지부의 민감도, 수소선택성, 물리적 및 화학적 안정성을 현저히 향상시킬 수 있다. 고분자층(70)의 두께는 금속 나노입자층(37)을 충분히 보호할 수 있는 두께라면 특별히 한정되지 않는다. 다만, 상기 전극의 두께보다 두껍게 형성되어 고분자층(70)의 가장자리가 전극 상에 위치할 수 있다. 이와 같은 고분자층(70)은 감지부 뿐만 아니라, 수소 가스 센서의 전극도 외부 환경으로부터 보호함에 따라, 수소 가스 센서의 내구성을 더욱 높이는 역할을 할 수 있다. 구체적으로, 고분자층(70)은 100㎚ 이상, 또는 500 nm 이상, 구체적으로 1㎛ 내지 10㎛ 일 수 있으나 이에 한정되지 않는다.
본 발명의 일양태에 있어서, 금속산화물(31) 층 상에 고분자층(70)이 형성될 시, 외부로 노출된 금속산화물층(31), 즉, 제2영역은 고분자층(70)과 직접 접촉될 수 있다. 이와 같은 수소 가스 센서는 수소 선택성을 더욱 높일 수 있다.
고분자층(70)은 금속 나노입자층(37)의 보호 및 수소 가스의 선택도를 높일 수 있는 구조라면 특별히 한정되지 않으나, 비다공질인 것이 수소 선택성에 있어서 유리할 수 있다. 고분자층(70)이 동일한 고분자 소재로 이루어진 것일지라도 비다공질인 것이 다공질일 때보다 더욱 높은 수소 선택도를 가질 수 있다.
본 명세서에서, 비다공질이란 고분자층(70)의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 기공이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 직경을 가지는 크기의 기공이 발견되지 않는 것을 의미할 수 있다.
또한, 고분자층(70)은 평탄 표면을 가지는 것이 수소 선택성에 있어서 유리할 수 있다. 구체적으로, 고분자층(70)이 동일한 비다공질 고분자 소재일 시, 평탄 표면을 가지는 것이 비 평탄 표면을 가지는 것 보다 더욱 높은 수소 선택도를 가질 수 있다.
본 명세서에서, 평탄 표면이란 스무드(smooth)한 표면을 일컫는 것으로, 고분자층(70)의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 요철이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 최대 지름 및 최대 높이를 가지는 요철이 발견되지 않는 것을 의미할 수 있다.
고분자층(70)은 상술한 바와 같이, 아크릴레이트계 고분자를 포함하는 것으로, 구체적으로, 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다. 구체적으로, 폴리메타크릴레이트(polymethacrylate), 폴리메틸아크릴레이트(polymethylacrylate), 폴리메틸메타크릴레이트(PMMA), 폴리에틸아크릴레이트(polyethylacrylate), 폴리에틸메타크릴레이트(polyethylmetacrylate) 또는 이들의 혼합물에서 하나 이상 선택되는 것을 포함할 수 있다. 바람직하게 고분자층(50)은 폴리메틸메타크릴레이트를 포함할 수 있다. 이와 같은 고분자층(50)은 비다공질 구조를 통한 수소 선택도에 있어서 유리할 수 있다.
상기 아크릴레이트계 고분자의 중량평균분자량은 1,000 내지 1,000,000 g/mol일 수 있고, 구체적으로 5,000 내지 500,000 g/mol, 보다 구체적으로 20,000 내지 400,000 g/mol, 일 수 있다.
특히, 폴리메틸메타크릴레이트로 이루어진 고분자층(70)이 비다공질 및 평탄표면을 동시에 만족함에 따라 수소 가스 센싱에 있어 매우 높은 수소 선택성, 고감도 및 높은 신뢰성을 가질 수 있어 바람직하다.
일 실시예에 따르면, 가스감지부(100)는 암모니아센서 일 수 있으며, 일 예로, 대한민국 공개특허 제10-2019-0120503호에 개시된 유연가스센서를 암모니아 센서로 사용할 수 있다.
또 다른, 일 실시예에 따르면 가스감지부(100)는 이산화질소센서 일 수 있으며, 일 예로, 대한민국 공개특허 제10-2021-0007096호에 개시된 질소산화물 가스 검출 센서를 이산화질소센서로 사용할 수 있다.
도 3에는 본 발명의 다른 실시예에 따른 랩핑형 가스 센서(3)의 사시도가 도시되어 있다.
도 3을 참조하면, 본 발명의 랩핑형 가스센서(3)는 수축필름상에 위치하는 점착부(40)를 더 구비할 수 있다.
점착부(40)는 수축필름 상 노출된 영역, 즉, 가스감지부(100)가 위치하지 않는 영역에 위치하는 것으로, 점착부(40)의 점착력에 의해 랩핑형 가스센서가 설치부분에 더욱 높은 고정력으로 설치될 수 있으며, 가스가 누출될 시, 가스 분출되는 토압에 의해 수축필름(5)과 설치부분간에 사이 간극이 벌어져 가스가 누출되는 것을 방지할 수 있다.
구체적으로, 점착부(40)는 도면에 도시된 바와 같이, 가스감지부(100)가 위치하지 않는 수축필름(5)의 일면 가장자리를 따라 형성되어, 점착부(40)가 형성되는 면적대비, 높은 고정력 및 밀봉력을 가질 수 있다. 보다 구체적으로, 점착부(40)는 수축필름(5)의 말단부에 위치하는 두 개의 일면 가장자리를 따라 형성됨으로써 수축필름이 설치되는 파이프 또는 관에 높은 밀착력으로 밀봉될 수 있다. 이에 따라, 누출된 가스가 말단부를 통해 쉽게 유출되지 않고 수축필름(5) 상에 일정시간 체류함으로써 수축필름 상의 일면에 위치하는 가스감지부(100)가 누출된 가스를 효과적으로 감지할 수 있다.
점착부(40)는 당업계의 필름에 사용되는 점착제가 코팅되어 형성된 것이라면 한정되지 않으며, 구체적으로, 아크릴계 점착제, 우레탄계 점착제, 고무계 점착제, 실리콘계 점착제, 자외선 경화성 점착제, 초산비닐계 점착제, 폴리에스터계 열점착제 또는 열가소성 점착제로 이루어진 것일 수 있다.
상기한 본 발명의 랩핑형 가스 센서를 통해 본 발명의 가스를 검출하는 방법은 감지부에 검출 대상 가스를 노출시킨 전 후의 전류 또는 저항을 측정하여 이루어질 수 있다. 비한정적인 일 구체예로, 가스 센서의 드레인 전류(Ids(ref))를 측정하여 기준을 설정하는 단계; 제1,2전극 사이에 위치하는 감지부에 검출 대상 가스를 도입하는 단계; 검출 대상 가스가 도입되었을 때의 드레인 전류(Ids(detect))를 측정하는 검출 단계; 및 측정된 드레인 전류값을 이용하여 검출 가스의 농도를 분석하는 단계;를 포함할 수 있으며, 검출 대상 가스의 도입 전 후 변화된(증가된) 드레인 전류값을 기준으로 검출 가스를 검출할 수 있다. 이와 달리, 검출 대상 가스의 도입 전 후에 따라 변화된 드레엔 전류값이 아닌, 변화된 저항값으로 검출 가스의 검출이 이루어질 수 있음은 물론이다.
이때, 가스 센서의 작동(검출) 온도온도는 -50 내지 300 ℃, 구체적으로 -10 내지 200 ℃, 보다 구체적으로 4 내지 100 ℃ 범위일 수 있다.
이와 같은 가스 검출 방법은 0.1 내지 100000 ppm, 구체적으로 1 내지 80000 ppm의 농도 범위를 가지는 수소 가스를 검출할 수 있다.
이하, 본 발명에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
<필름 물성 측정>
필름을 20cm × 20cm의 정방향으로 재단하고, 90℃± 0.5℃의 온수 중에 무하중 상태에서 10초간 열수축시킨후, 필름의 종방향(MD), 횡방향(TD) 방향의 수치를 측정하고 하기 식에 따라 열수축율을 구하였다.
(식)
수축율(%) = 100 X ((수축 전 길이 - 수축 후 길이)/수축 전 길이)
(제조예 1)
세척된 silicon wafer 기판(두께 : 500-550um, 비저항 : <0.005 ohm, SiO2두께 : 3000A (Dry))에 액상의 폴리이미드(polyimide,PI) 수지를 스핀코팅(1000rpm, 30초)한 후, 단계별로 온도를 높여가며 베이킹하여 제조하였다. 각 단계는 60, 80, 150, 230 및 300℃ 온도로 수행되었으며, 각 단계는 30분간 진행되었으나, 마지막 300℃ 온도는 1시간동안 수행되었다. 제조된 폴리이미드 기판 상에 2-methoxyethanol을 용매로 한 0.1M SnCl2용액을 스핀코팅 진행 (3,000rpm, 60초) 후 300℃ 에서 1시간동안 어닐링하여 SnO2층을 형성하였다. 그 다음, 섀도 마스크를 통해 Al을 두께 90nm , 너비 1000㎛로 증착하여 제1,2전극을 형성하였다. 이때, 제1,2전극의 이격거리는 200㎛였다. 그 다음 평균 3㎚ 두께를 갖도록 Pd을 thermal evaporator 이용하여 0.1Å/s의 속도로 증착하였다. 최종적으로 4mg/ml of PMMA in anisole을 스핀코팅 (4,000rpm, 30초) 후 175℃에서 10분간 열처리하여 수소 가스 센서를 제조하였다.
(실시예 1 내지 3)
가로 10㎝, 세로 5㎝ 및 두께 300㎛이며, 하기 표 1의 물성을 만족하는 수축필름 상에 제조예 1에서 제조한 수소센서를 고정시켜, 랩핑형 가스센서를 제조하였다.
(비교예 1 내지 3)
실시예 1에 있어서, 하기 표 1의 물성을 만족하는 비수축필름을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 가스 센서를 제조하였다.
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3
소재 PET PVC PP PET PVC PP
수축률 58.7% 51.2% 40.5% 15.1% 16.5% 8.7%
(실험예1)
유연 가스 튜브에 송곳으로 1㎜의 천공을 낸 뒤, 실시예 및 비교예에서 제조한 가스센서를 천공이 밀봉되도록 감싼 후, 서로 겹쳐지는 수축필름의 양단부를 접착제로 고정하였다. 이후, 90℃의 열풍을 가하였다.
이후, 튜브를 축으로, 가스센서가 회전하는 방향으로 힘을 가하여 가스센서의 회전 여부및 가스센서 가장자리부분의 들뜸현상을 육안으로 판단하고, 후 하기 표 2에 표시하였다.
이때, 들뜸현상은 튜브와 가스센서사이에 이격거리가 발생한 것을 의미한다.
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3
수축여부 O O O X X X
회전여부 O O O X X X
들뜸현상 X X X O O O
표 2를 참조하면, 수축필름을 포함하는 실시예는 튜브의 굴곡된 형상에도 튜브의 표면을 따라 밀착 고정되나, 비교예는 밀착 고정되지 못해 가스가 외부로 노출될 수 있다.
(실험예 2) 검지테스트
가스 검지 특성은 MFC 시스템이 있는 MSTECH 프로브 스테이션의 반도체 매개변수 분석기 (B15000A, Agilent)를 사용하여 측정하였다.
도 5에 도시된 바와 같이, 측정에 사용되는 유연 가스 튜브에 송곳으로 1㎜의 천공을 낸 뒤, 실시예에서 제조한 가스센서를 천공이 밀봉되도록 감싼 후, 서로 겹쳐지는 수축필름의 양단부를 접착제로 고정하였다. 이후, 90℃의 열풍을 가하여 수축필름을 수축시켰다.
그 다음, 가스튜브에 요구되는 농도의 가스를 공급하였다. 수소가스 검지 테스트는 모두 상온에서 진행하였다. MFC를 이용해서 H2 gas (100ppm, 1%, 10% in N2) 와 dry air를 혼합하여 원하는 농도의 수소 가스 제작하였다. 검지 특성은 수소 가스에 노출되기 전과 후의 가스 센서 전류비교 통해 나타내었다. 1nW의 구동 전력을 사용하였다.
도 6은 실시예에서 제작한 수소 센서의 수소 농도별 검지테스트(실험예) 결과 그래프가 도시되어 있다. 구체적으로 도 6은 0.002% 내지 2%의 농도별 검지테스트 결과가 도시되어있다.
도 6를 참조하면, 저농도(0.002%)에서 고농도(2%)까지 수소 센싱이 가능하여 센싱범위가 매우 넓음을 확인할 수 있었다.
도 7은 실시예의 수소농도별 응답-회복 시간 결과 그래프이다. 구체적으로 0 내지 2% 수소 농도에서 센서의 응답-회복 시간 결과를 나타낸 것으로, 4를 참조하면 상온에서 회복속도가 거의 1분이내이며, 응답속도가 빠름을 확인할 수 있다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (21)

  1. 수축필름; 및
    상기 수축필름의 적어도 일면에 위치하여 가스를 감지하는 가스감지부;를 포함하는 랩핑형 가스 센서.
  2. 제1항에 있어서,
    상기 가스는 수소, 이산화탄소, 산소, 메탄, 이산화질소 및 암모니아로 이루어진 군으로 부터 선택되는 어느 하나 또는 둘 이상을 포함하는 랩핑형 가스 센서.
  3. 제2항에 있어서,
    상기 가스감지부는 수소센서를 포함하는 랩핑형 가스센서.
  4. 제1항에 있어서,
    상기 수축필름 90℃의 온도에서, 10초간 수축시켰을 때 하기 식 1에 따른 기계 방향(MD) 및 그 수직 방향(TD)의 수축율이 30 내지 60인
    수축율(%) = 100 X (수축 전 길이 - (수축 후 길이/수축 전 길이))
  5. 제3항에 있어서,
    상기 수소센서는 상기 수축필름에 위치하는 기판;
    상기 기판 상에 위치하는 금속산화물층;
    상기 금속산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 및
    상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 상에 위치하는 금속나노입자층;를 포함하는 랩핑형 가스 센서.
  6. 제5항에 있어서,
    상기 금속산화물층의 금속산화물은 주석산화물인, 랩핑형 가스 센서.
  7. 제5항에 있어서,
    상기 금속나노입자층의 금속은 팔라듐인, 랩핑형 가스 센서.
  8. 제5항에 있어서,
    상기 금속산화물층 및 상기 금속나노입자층 사이에 위치하는 자기조립단분자막(self assembled monolayer, SAM);을 더 포함하는 랩핑형 가스 센서.
  9. 제8항에 있어서,
    상기 자기조립단분자막은 아미노실란계 화합물인 랩핑형 가스 센서.
  10. 제9항에 있어서,
    상기 아미노실란계 화합물은 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), 3-아미노프로필메틸디에톡시실란(3-aminopropylmethyldiethoxysilane), 아미노프로필실란트리올(aminopropylsilanetriol), N-(2-아미노에틸)-3-아미노프로필트리에톡시실란(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane), N-(2-아미노에틸)-3-아미노프로필실란(N-(2-aminoethyl)-3-aminopropylsilane), N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란(N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane), (3-트리에톡시실리프로필)디에틸렌트리아민((3-triethoxysilylpropyl)dietylene triamine)로 이루어진 군에서 하나 이상 선택되는 것인 랩핑형 가스 센서.
  11. 제5항에 있어서,
    상기 금속 나노입자층의 두께는 0.1 내지 20 nm인, 랩핑형 가스 센서.
  12. 제5항에 있어서,
    상기 금속 나노입자층 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층을 더 포함하는, 랩핑형 가스 센서.
  13. 제5항에 있어서,
    상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 표면은 상기 금속 나노입자층이 위치하는 제1영역과, 상기 금속 나노입자층이 위치하지 않는 제2영역을 포함하는, 랩핑형 가스 센서
  14. 제12항에 있어서,
    상기 고분자층은 비다공질인, 랩핑형 가스 센서.
  15. 제12항에 있어서,
    상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함하는, 랩핑형 가스 센서.
  16. 제15항에 있어서,
    상기 고분자층은 폴리메틸메타크릴레이트를 포함하는 , 랩핑형 가스 센서.
  17. 제12항에 있어서,
    상기 고분자층은 평탄 표면을 가지는, 랩핑형 가스 센서
  18. 제8항에 있어서,
    상기 자기조립단분자막의 두께는 1 내지 30 ㎚ 인 랩핑형 가스 센서.
  19. 제5항에 있어서,
    작동온도가 -10 내지 200 ℃인 랩핑형 가스 센서.
  20. 제8항에 있어서,
    소모 전력이 10 nW 이하인 랩핑형 가스 센서.
  21. 제1항에 있어서,
    상기 수축필름 상 노출된 영역에 위치하는 점착부를 더 구비하는 랩핑형 가스 센서.
PCT/KR2022/004661 2021-03-31 2022-03-31 랩핑형 가스 센서 WO2022211555A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0042359 2021-03-31
KR20210042359 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211555A1 true WO2022211555A1 (ko) 2022-10-06

Family

ID=83456557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004661 WO2022211555A1 (ko) 2021-03-31 2022-03-31 랩핑형 가스 센서

Country Status (2)

Country Link
KR (1) KR20220136281A (ko)
WO (1) WO2022211555A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237020A (zh) * 2023-01-13 2023-06-09 重庆大学 自组装单层膜修饰二硒化锡传感材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259736A (ja) * 1990-03-09 1991-11-19 Kurabe Ind Co Ltd 水素ガス検知素子
KR20130125183A (ko) * 2012-05-08 2013-11-18 연세대학교 산학협력단 수소 센서 및 수소 센서 제조방법
KR20150033258A (ko) * 2013-09-24 2015-04-01 (주)유민에쓰티 테이프형 가스 감지 센서
KR20150072294A (ko) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 나노 구조체를 갖는 센서 및 그 제조 방법
KR20190078016A (ko) * 2017-12-26 2019-07-04 한국기계연구원 연성 가스센서 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870126B1 (ko) 2006-12-27 2008-11-25 연세대학교 산학협력단 Pd 나노와이어를 이용한 수소센서 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259736A (ja) * 1990-03-09 1991-11-19 Kurabe Ind Co Ltd 水素ガス検知素子
KR20130125183A (ko) * 2012-05-08 2013-11-18 연세대학교 산학협력단 수소 센서 및 수소 센서 제조방법
KR20150033258A (ko) * 2013-09-24 2015-04-01 (주)유민에쓰티 테이프형 가스 감지 센서
KR20150072294A (ko) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 나노 구조체를 갖는 센서 및 그 제조 방법
KR20190078016A (ko) * 2017-12-26 2019-07-04 한국기계연구원 연성 가스센서 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237020A (zh) * 2023-01-13 2023-06-09 重庆大学 自组装单层膜修饰二硒化锡传感材料及其制备方法与应用

Also Published As

Publication number Publication date
KR20220136281A (ko) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2022211555A1 (ko) 랩핑형 가스 센서
Jang et al. A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes
EP1664724A2 (en) Carbon dioxide nanoelectronic sensor
WO2010064868A2 (ko) 이산화탄소 측정장치
WO2011081245A1 (ko) 수소 센서 및 그 제조방법
Tang et al. Effect of the deformation state on the response of a flexible H 2 S sensor based on a Ph5T2 single-crystal transistor
WO2022211540A1 (ko) 수소 감지용 센서어레이 및 이를 이용한 수소 감지 시스템.
Baranzahi et al. Fast responding air/fuel sensor for individual cylinder combustion monitoring
WO2023140470A1 (ko) 수소 가스 센서 및 이의 제조방법
KR101729937B1 (ko) 반도체식 염화수소 가스 센서 및 이의 제조방법.
WO2019098469A1 (ko) 그래핀 및 금속 입자가 결합된 복합 구조체를 포함하는 가스 센서 및 그 제조방법
CN112255272A (zh) 一种气体传感器及其制备方法
CN206756733U (zh) 一种具有复合绝缘结构的fet式气体传感器
WO2018174455A1 (ko) 가스 센서 및 그 제조 방법
WO2022114660A1 (ko) 정전용량형 가스센서 및 그 제조 방법
WO2022270810A1 (ko) 일체 구조를 갖는 기체 열전도 방식의 수소 센서
WO2021221425A1 (ko) 전극 구조물 및 이를 포함하는 ph 센서
Liangyan et al. A gas sensor fabricated with field-effect transistors and Langmuir-Blodgett film of porphyrin
WO2022030932A1 (ko) 가스 센서
WO2015194815A1 (ko) 유기 반도체 소자 및 이의 제조 방법, 이를 이용한 직물 구조체 및 부직물 구조체, 그리고 이를 이용한 반도체 장치
WO2022211541A1 (ko) 수소 가스 센서 및 이의 제조방법
WO2022203370A1 (ko) 수소 가스 센서
WO2023146229A1 (ko) 반도체성 단일벽 탄소나노튜브를 갖는 감지층을 포함하는 저항형 수소센서 및 그의 제조방법
KR102627784B1 (ko) 수소 가스 센서 및 이의 제조방법
Song et al. Dopant Enhanced Conjugated Polymer Thin Film for Low‐Power, Flexible and Wearable DMMP Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781674

Country of ref document: EP

Kind code of ref document: A1