KR20150072294A - 나노 구조체를 갖는 센서 및 그 제조 방법 - Google Patents

나노 구조체를 갖는 센서 및 그 제조 방법 Download PDF

Info

Publication number
KR20150072294A
KR20150072294A KR1020130159753A KR20130159753A KR20150072294A KR 20150072294 A KR20150072294 A KR 20150072294A KR 1020130159753 A KR1020130159753 A KR 1020130159753A KR 20130159753 A KR20130159753 A KR 20130159753A KR 20150072294 A KR20150072294 A KR 20150072294A
Authority
KR
South Korea
Prior art keywords
nanoparticles
linker
metal
group
substrate
Prior art date
Application number
KR1020130159753A
Other languages
English (en)
Other versions
KR102192973B1 (ko
Inventor
김준형
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020130159753A priority Critical patent/KR102192973B1/ko
Priority to EP14176658.4A priority patent/EP2886203B1/en
Priority to TW103140011A priority patent/TW201534923A/zh
Priority to US14/554,856 priority patent/US9625381B2/en
Priority to EP14197874.2A priority patent/EP2886204B1/en
Priority to CN201410804507.2A priority patent/CN104729997A/zh
Publication of KR20150072294A publication Critical patent/KR20150072294A/ko
Application granted granted Critical
Publication of KR102192973B1 publication Critical patent/KR102192973B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

나노구조체를 센싱 요소로서 갖는 센서 및 이의 제조방법이 기술된다. 본 발명의 실시예에 따른 센서는 기재 상에 마커를 센싱하기 위한 요소로서 나노 구조체를 구비하고, 상기 나노 구조체는 기재 상에 형성된 링커; 및 상기 링커에 결합된 금속이온으로부터 성장된 금속성 나노입자를 포함할 수 있다.

Description

나노 구조체를 갖는 센서 및 그 제조 방법{SENSOR AND METHOD FOR FABRICATING THE SAME}
본 특허문헌에는 나노 구조체를 센싱 요소로서 갖는 센서 및 이의 제조방법이 기술된다.
나노 구조체는 금속성 나노입자를 여러 가지 방법들로 리간드화 하여 광(빛), 효소, 바이러스, 가스, 중금속 등을 센싱하는 센서에 널리 이용되고 있다.
특히 귀금속인 금 나노입자는 표면 전자의 집단적인 진동 운동이 가지는 고유의 벡터와 외부에서 입사하는 빛의 벡터가 일치하는 조건에서 공명이 일어남으로써 증폭된 장(field)이 유도되는 현상, 즉 표면 플라즈몬 공명(surface plasmon resonance; SPR) 현상을 나타내며, 물질적, 화학적 및 광학적 성질을 나타낸다.
예컨대 바이오 센서의 경우, 양전극 및 음전극 사이를 전기적으로 연결하기 위한 나노 구조체가 형성되고, 나노 구조체는 리셉터가 결합 또는 코팅된 나노 입자를 갖는다.
또한 나노 구조체는 광 흡수시의 파장 변화에 의해 전기전도도가 변화하게 되므로, 이를 응용하여 광 센서에 응용이 가능하다.
한편 전기적, 화학적, 광학적 고감도 센싱을 위하여, 나노 구조체는 응용 분야에 적합한 다양한 사이즈로 제작될 필요가 있다. 하지만, 그 공정이 복잡하여 대량생산에는 한계가 있다. 아울러, 전기적 센싱 및 고속동작을 위해서 나노입자가 균일하게 그리고 고밀도로 제작될 필요가 있다.
본 발명의 실시예들이 해결하고자 하는 기술적 과제는 그 공정이 단순하여 대량 생산이 가능하고, 미세 입자 크기가 제어 가능한 나노 구조체를 갖는 센서 및 그 제조방법을 제공하는 것이다.
본 발명의 실시예들이 해결하고자 하는 다른 과제는 스케일링 시에도 동작 안정성, 재현성 및 신뢰성을 확보할 수 있는 나노 구조체를 갖는 센서 및 그 제조방법을 제공하는 것이다.
본 발명의 일실시예에 따른 센서는 기재 상에 마커를 센싱하기 위한 요소로서 나노 구조체를 구비하고, 상기 나노 구조체는 기재 상에 형성된 링커; 및 상기 링커에 결합된 금속이온으로부터 성장된 금속성 나노입자를 포함할 수 있다.
또한, 본 발명의 다른 실시예에 따른 센서는 기재 상에 마커를 센싱하기 위한 요소로서 나노 구조체를 구비하고, 상기 나노 구조체는 상기 기재 상에 형성되고, 자신의 표면에 링커가 결합된 절연물 입자 지지체; 및 상기 링커에 결합된 금속이온으로부터 성장된 금속성 나노입자를 포함할 수 있다.
본 발명의 실시예들에 따른 센서는 극히 미세하고 크기가 균일하며 고 밀도의 나노입자로 플랫폼의 제작이 가능하여, 스케일링 시에도 동작 안정성, 재현성 및 신뢰성이 우수한 장점이 있다. 또한, 나노입자가 절연성 링커에 의해 고정되어 있음에 따라 물리적 안정성이 우수하다.
본 발명의 실시예들에 따른 센서는 소자 제조과정 중 링커를 이용한 금속 이온층의 형성 및 금속 이온층에 에너지를 인가하는 단순한 방법을 통해 나노 구조체를 직접적으로 제조한다. 따라서, 저비용의 단순 공정으로 대량 생산이 가능하다. 또한, 인-시츄로 나노구조체 플랫폼을 제조함에 따라, 원료의 낭비를 최소화할 수 있다.
도 1은 통상적인 센서의 일부 구조를 보여주는 단면도이다.
도 2A 내지 도 2D는 본 발명의 제1실시예에 따른 센서 플랫폼 제조방법을 나타낸 모식도이다.
도 3A 내지 도 3D는 본 발명의 제2실시예에 따른 센서 플랫폼 제조방법을 나타낸 모식도이다.
이하 첨부한 도면들을 참조하여 본 발명의 센서 및 그 제조방법에 대한 실시예를 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
도 1은 통상적인 센서 플랫폼의 일부 구조를 일부 보여주는 단면도이다.
도 1을 참조하면, 기재(11) 상에 서로 대향하는 양전극(12A) 및 음전극(12B)이형성된다. 또한 기재(11) 상에는 나노구조체(13)가 형성된다. 기재(11)는 응용 분양에 따라 그 형상 및 물질이 달라질 수 있다. 나노 구조체(13)는 단분자층 또는 멀티분자층의 금속성 나노입자(13A)들을 포함할 수 있다.
도 1은 일예시를 위한 센서의 일부 구조이며, 본 발명은 도 1과 같은 구조에 한정되지 않는다. 즉, 공지된 바와 같은 다양한 3차원 구조의 플랫폼에 응용되는 경우 나노 구조체의 위치, 형상 등을 달라질 수 있으며, 상,하부의 물질 역시 달라질 수 있다. 중요하게 나노구조체의 주변이 어떠한 구조 및 물질이든, 광(빛), 효소, 바이러스, 가스, 중금속 등 마커(표적 물질)을 감지하는 센싱 요소에 금속성 나노입자를 갖는 경우, 본 발명은 다양한 실시예로서 그 응용이 가능하다.
[본 발명의 제1 실시예에 따른 나노구조체 및 그 제조 방법]
도 2A 내지 도 2D는 본 발명의 제1실시예에 따른 나노구조체의 제조방법을 나타낸 모식도이다.
본 발명의 제1실시예에 따른 나노 구조체 제조방법은, 기재(110) 상에 링커(120A)를 결합시키는 단계(도 2A); 링커(120A)에 금속이온(130)을 결합하는 단계(도 2B); 에너지를 인가하여 금속이온(130)을 금속성 나노입자(140)로 형성하는 단계(도 2C)를 포함할 수 있고, 금속성 나노입자 표면에 리셉터(150)를 결합하는 단계(도 2D)를 더 포함할 수 있다. 또한, 에너지를 인가하기 이전 또는 에너지 인가중에 나노 입자 사이즈를 제어하기 위하여 단종 또는 복수종의 계면활성제 유기물을 공급하는 단계를 더 포함할 수 있다.
도 2A는 준비된 기재(110) 상에 링커(120A)를 결합시킨 상태를 보여준다. 도 2A를 참조하면 기재(110)는 링커와 결합 가능한 작용기를 갖는 표면층(114)를 갖을 수 있다. 예컨대, 기재(110)은 표면층(114)으로서 SiO2 절연층이 형성된 실리콘기판(112)일 수 있다.
기재(110)는 반도체 기재, 투명 기재, 플렉시블 기재일 수 있으며, 응용되는 디바이스에 따라 그 물질, 구조 및 형상은 달라질 수 있다. 플렉시블 기재의 비한정적인 일 예로, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC), 폴리에테르술폰(PES), 폴리디메틸실록산(PDMS) 또는 이들의 혼합물을 함유하는 플렉시블 고분자 기판을 들 수 있다.
플렉시블 기재를 사용하는 경우, 기재의 표면층(114)은 링커와 결합 가능한 작용기(예컨대 -OH 작용기)를 갖는 유기물일 수 있다.
기재(110) 상에는 링커층(120)이 형성될 수 있다. 링커층(120)은 복수의 링커(120A)로 구성되며, 링커층(120)은 기재(110)의 표면에 자기조립에 의해 결합된 자기조립단분자막일 수 있다.
링커(120A)는 기재(110)의 표면에 화학적으로 결합 또는 흡착하고, 금속이온과 화학적으로 결합할 수 있는 유기 링커일 수 있다. 구체적으로, 링커(120A)는 기재의 표면층(114)과 화학적으로 결합 또는 흡착하는 작용기(122)와 금속이온(후속 형성됨)과 화학적으로 결합하는 작용기(126)를 모두 갖는 유기 링커일 수 있다. 이때, 화학적 결합은 공유결합, 이온결합, 또는 배위결합을 포함할 수 있다. 구체적인 일 예로, 금속 이온과 링커의 결합은 양의 전하(또는 음의 전하)를 갖는 금속 이온과 적어도 일 말단기에 의해 음의 전하(또는 양의 전하)를 갖는 링커간 이온 결합에 의해 결합된 화합물일 수 있다. 구체적인 일 예로, 기재(110)의 표면층과 링커의 결합은 자기조립에 의한 결합일 수 있으며, 링커의 다른 일 말단기와 기재의 표면 원자간 자발적인 화학적 결합일 수 있다.
보다 구체적으로, 링커(120A)는 자기조립단분자막을 형성하는 유기 단분자일 수 있다. 즉, 링커(120A)는 표면층(114)에 자기조립되는 작용기(122)와 금속이온과 결합 가능한 작용기(126)를 갖는 유기 단분자일 수 있다. 또한 링커(120A)는 작용기(122)와 작용기(126)를 연결하고 반데르 발스 상호작용에 의해 정렬된 단분자막의 형성을 가능하게 하는 사슬기(124)를 포함할 수 있다.
자기조립은 기재의 표면 물질 및 유기 단분자의 작용기(122)를 적절히 설계하여 이루어질 수 있으며, 통상적으로 알려진 자기조립(자기 결합)되는 물질 별 말단기의 셋(set)을 이용할 수 있다.
구체적이며 비 한정적인 일 예로, 기재(110)의 표면층(114)이 산화물, 질화물, 옥시나이트라이드 또는 실리케이트인 경우, 링커인 유기 단분자는 하기 화학식 1을 만족하는 물질일 수 있다.
(화학식 1)
R1-C-R2
화학식 1에서, R1은 기재와 결합하는 제1작용기를, C는 사슬기를, R2는 금속이온과 결합하는 제2작용기를 의미한다. R1은 아세틸기, 아세트산기, 포스핀기, 포스포닉산기, 알코올기, 바이닐기, 아마이드기, 페닐기, 아민기, 아크릴기, 실란기, 시안기 및 티올기로 구성되는 군으로부터 선택되는 1종 이상의 작용기일수 있다. C는 C1-20의 선형 또는 분지형 탄소사슬이며, R2는 카르복실산기, 카르복실기, 아민기, 포스핀기, 포스포닉산기, 티올기로 구성되는 군으로부터 선택되는 1종 이상의 작용기일 수 있다.
비 한정적인 일 예로, 링커(120A)인 유기 단분자는 옥틸트리클로로실란 (Octyltrichlorosilane; OTS), 헥사메틸디실란(Hexamethyldisilazane; HMDS), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; ODTS), (3-아미노프로필)트리메톡시실란 ((3-Aminopropyl)trimethoxysilane; APS), (3-아미노프로필)트리에톡시실란 ((3-Aminopropyl)triethoxysilane), N-(3-아미노프로필)-디메틸-에톡시실란 (N-(3-aminopropyl)-dimethyl-ethoxysilane; APDMES) 퍼플루오로데실트리클로로실란 (Perfluorodecyltrichlorosilane; PFS), 메르캅토프로필트리메톡시실란 (Mercaptopropyltrimethoxysilane; MPTMS), N-(2-아미노에틸)-3아미노프로필트리메톡시실란 (N-(2-aminoethyl)-3aminopropyltrymethoxysilane), (3-트리메톡시실릴프로필)디에틸렌트리아민 ((3-
Trimethoxysilylpropyl)Diethylenetriamine), 옥타데실트리메톡시실란 (Octadecyltrimethoxysilane; OTMS), (헵타데카플루오로-1,1,2,2-테트라하이드로데실)트리클로로실란 ((Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane; FDTS), 디클로로디메틸실란 (Dichlorodimethylsilane; DDMS), N-(트리메톡시실릴프로필)에틸렌디아민 트리아세트산 (N-(Trimethoxysilylpropyl)Ethylenediamine Triacetic Acid), 헥사데칸티올 (Hexadecanethiol, HDT) 및 에폭시헥실트리에톡시실란 (Epoxyhexyltriethoxysilan)에서 하나 또는 둘 이상 선택된 물질일 수 있다.
나노입자와 기재 간의 안정적인 절연성 확보 측면에서, 링커인 유기 단분자는 알칸 사슬기, 구체적으로 C3-C20의 알칸 사슬기를 포함할 수 있으며, 산소를 함유하는 모이어티(moiety)를 더 포함할 수 있다. 산소 함유 모이어티의 일 예로, 에틸렌글리콜 (-O-CH2-CH2-), 카복실산 (-COOH), 알코올 (-OH), 에테르 (-O-), 에스테르 (-COO-), 케톤 (-CO-), 알데히드 (-COH) 및/또는 아미드(-NH-CO-) 등을 들 수 있다.
링커(120A)의 부착은 링커(120A)가 용매에 용해된 링커용액에 기재(110)를 접촉시켜 수행될 수 있다. 링커용액의 용매는 링커를 용해하며 휘발에 의해 용이하게 제거 가능한 어떠한 유기용매라도 사용 가능하다. 또한, 알려진 바와 같이, 링커가 실란기를 포함하는 경우, 가수분해 반응을 촉진하기 위한 물이 링커용액에 첨가될 수 있음은 물론이다. 기판과 링커용액간의 접촉은 통상적으로 알려진 자기조립단분자막을 기재에 형성하는 알려진 모든 방법이 사용될 수 있음은 물론이다. 비한정적인 일 예로, 링커용액과 기판과의 접촉은 담금법(dipping), 미세접촉인쇄법(micro contact printing), 스핀코팅(spin-coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀캐스팅(spin casting), 흐름 코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯코팅(ink jet coating), 또는 드롭캐스팅(drop casting) 방법을 이용하여 수행될 수 있다.
링커(120A)를 이용하여 금속이온을 기판에 고정시키는 경우, 기재 표면층(114)의 손상을 방지할 수 있으며, 특히 자기조립을 이용하여 금속이온이 균일하게 분포하는 금속이온막의 형성이 가능하고, 에너지 인가에 의해 형성되는 나노입자 또한 안정적으로 고정될 수 있는 장점이 있다.
한편, 링커(120A)는 금속이온과 화학적으로 결합하는 작용기 자체일 수 있다. 구체적으로, 기재(110)의 표면을 개질하여 작용기(링커)를 형성한 후, 표면 개질된 기재에 금속 전구체를 공급함으로써 금속이온이 작용기와 결합하도록 할 수 있다. 이때, 작용기는 카르복실산기, 카르복실기, 아민기, 포스핀기, 포스포닉산기, 티올기로 구성되는 군으로부터 선택되는 1종 이상의 작용기일 수 있다. 기재(110)의 표면에 작용기를 형성하는 방법은 어떠한 방법을 사용하여도 무방하다. 구체적인 일 예로, 플라즈마 개질이나 화학적 개질, 작용기를 갖는 화합물의 증착(도포)를 들 수 있으며, 막 내 불순물 도입이나 막질 저하, 막의 손상을 방지하는 측면에서 작용기를 갖는 화합물의 증착(도포)를 통해 개질이 이루어질 수 있다.
구체적이며 비 한정적인 일 예로, 기재(110)의 표면층(114)이 산화물, 질화물, 옥시나이트라이드 또는 실리케이트인 경우, 기재(110) 상에 실란화합물층을 형성하는 것에 의해 작용기(링커)를 형성할 수 있다.
상세하게, 실란화합물층은 카르복실산기, 카르복실기, 아민기, 포스핀기, 포스포닉산기 및 티올기에서 하나 이상 선택되는 작용기를 갖는 알콕시실란화합물일 수 있다.
보다 구체적으로, 실란화합물은 하기 화학식2일 수 있다.
(화학식 2)
R1 n(R2O)3- nSi-R
화학식 2에서, R1은 수소; 카르복실산기; 카르복실기; 아민기; 포스핀기; 포스포닉산기; 티올기; 또는 선형 또는 분지형의(C1 - C10)알킬기이고, R2는 선형 또는 분지형의 (C1 - C10)알킬기이고, R은 선형 또는 분지형의 (C1-C10) 알킬기로 상기 R의 알킬은 카르복실산기; 카르복실기; 아민기; 포스핀기; 포스포닉산기; 또는 티올기;로 하나 이상이 치환된 것이며, 상기 R1의 알킬기 및 R2의 알킬기는 서로 독립적으로 할로겐; 카르복실산기; 카르복실기; 아민기; 포스핀기; 포스포닉산기; 및 티올기;에서 선택되는 하나 이상으로 치환될 수 있고, n은 0, 1, 또는 2이다.
보다 더 구체적으로, 실란 화합물은 하기 화학식 3 내지 5일 수 있다.
(화학식 3)
(R3)3Si-R4-SH
(화학식 4)
(R3)3Si-R4-COOH
(화학식 5)
(R3)3Si-R4-NH2
화학식 3, 화학식 4 또는 화학식 5에서, R3는 독립적으로 알콕시 또는 알킬로 이루어지고, 하나 이상의 R3 그룹은 알콕시 그룹이고, R4는 (C1-C10)의 2가 탄화수소 그룹이다. 구체적으로, 화학식 3, 화학식 4 또는 화학식 5에서, R3는 동일하거나 상이하며, 메톡시, 에톡시 또는 프로폭시인 알콕시 또는 알킬로 이루어지고, R4는 -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH(CH3)-CH2- 또는 -CH2-CH2-CH(CH3)-와 같은 C1-C20의 2가 탄화수소 그룹일 수 있다.
비한정적인 일 예로, 카르복시실란화합물은 메틸디아세톡시실란, 1,3-디메틸-1,3-디아세톡시디실록산, 1,2-디메틸-1,2-디아세톡시디실란, 1,3-디메틸-1,3-디프로피오녹시디실라메탄 또는 1,3-디에틸-1,3-디아세톡시디실라메탄을 들 수 있다. 비 한정적인 일 예로, 아미노실란화합물은 N-(2-아미노에틸) 아미노프로필 트리(메톡시)실란, N-(2-아미노에틸) 아미노프로필 트리(에톡시)실란, N-(2-아미노에틸)아미노프로필메틸 디(메톡시)실란, N-(2-아미노에틸)아미노프로필메틸 디(에톡시)실란, 3-아미노프로필트리(메톡시)실란, 3-아미노프로필트리(에톡시)실란, 3-아미노프로필메틸디(메톡시)실란 또는 3-아미노프로필메틸디(에톡시)실란을 들 수 있다. 비 한정적인 일 예로, 머캅토 실란화합물은 머캅토프로필트리메톡시실란, 머캅토프로필트리에톡시실란, 머캅토에틸트리메톡시실란 또는 머캅토에틸트리에톡시실란을 들 수 있다.
상술한 실란화합물을 기재(110) 표면에 도포 또는 증착하여 작용기(실란화합물층에 의한 작용기)를 형성할 수 있다. 상세하게, 상술한 실란화합물이 용해된 용액을 도포 및 건조하여 실란화합물층을 형성하거나, 기상의 실란화합물을 기재 표면에 공급하여 실란화합물을 증착하는 방법을 사용할 수 있다.
이때, 실란화합물의 작용기는 후속 공급될 금속 전구체와 반응하여 금속 이온이 기재 상에 고정될 수 있음에 따라 균일한 막을 형성하며 작용기가 그 표면으로 고르게 노출된 실란화합물층을 형성하는 것이 보다 바람직하다. 이러한 측면에서, 실란화합물층은 ALD(atomic layer deposition) 방법을 이용하여 형성될 수 있다.
상술한 작용기를 갖는 실란화합물, 구체적으로 화학식 2의 실란화합물, 보다 구체적으로 화학식 3 내지 4의 실란화합물 또한 앞서 상술한 자기조립단분자에 속할 수 있다. 상세하게, (R3)3Si는 제1말단기에 해당할 수 있으며, R4 는 사슬기에 해당할 수 있으며, -SH, -COOH 또는 -NH2의와 같은 R(화학식 2의 R)은 제2말단기에 해당할 수 있으며, 작용기를 갖는 실란화합물 층은 작용기를 갖는 실란화합물의 단분자막일 수 있다.
도 2B는 링커(120A)에 금속이온(130)을 결합한 상태를 보여준다. 금속이온(130)은 링커(120A)의 작용기(126)에 결합 될 수 있다.
금속 이온(130)은 금속 전구체를 링커가 형성된 구조물에 공급하는 것에 의해 형성될 수 있다. 즉, 금속 전구체가 용해된 용액을 기재에 도포하거나, 기상의 금속 전구체를 기재 상에 공급함으로써 이루어질 수 있다.
금속 전구체는 원하는 나노입자의 물질을 고려하여 설계될 수 있다. 일 예로, 금속 전구체의 금속은 전이금속, 전이후 금속 및 준금속 군에서 하나 또는 둘 이상 선택되는 금속의 전구체일 수 있다. 전이금속은 스칸듐, 타이타늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연, 이트륨, 지르코늄, 나이오븀, 몰리브데넘, 테크네튬, 루테늄, 로듐, 팔라듐, 은, 카드뮴, 란타넘, 하프늄, 탄탈럼, 텅스텐, 레늄, 오스뮴, 이리듐, 백금 및 금을 포함할 수 있고, 전이후금속은 알루미늄, 갈륨, 인듐, 주석, 탈륨, 납 및 비스무트를 포함할 수 있으며, 준금속은 붕소, 규소, 저마늄, 비소, 안티모니, 텔루륨 및 폴로늄을 포함할 수 있다.
즉, 링커(120A)를 매개로 기재에 결합(부착)되는 금속 이온(130)은 전이금속, 전이후 금속 및 준금속 군에서 하나 또는 둘 이상 선택되는 금속(원소) 이온일 수 있다. 금속 이온(130)은 금속 전구체의 종류에 따라 상술한 금속 이온 자체 또는 상술한 금속을 포함하는 단분자 이온일 수 있다. 유기 단분자(링커)의 작용기(126)에 금속 이온 자체가 결합하거나(도 1C의 (a) 참조), 유기 단분자의 작용기(126)에 금속을 포함하는 단분자 이온이 결합한 것(도 1C의 (b) 참조) 일 수 있다. 이때, 금속을 포함하는 단분자 이온은 금속 전구체로부터 야기(유기 단분자의 제2작용기와의 반응에 의한 야기)되는 이온일 수 있다.
금속 전구체는 링커(120A)인 유기단분자의 작용기와 반응 가능한 모든 금속 전구체가 사용 가능하다. 비 한정적인 일 예로, 금속 전구체는 금속염일 수 있다. 구체적으로, 금속염은 전이금속, 전이후 금속 및 준금속 군에서 하나 또는 둘 이상 선택되는 금속의 할로겐화물, 칼코젠화물, 염산화물, 질산염, 황산염, 아세트산염 또는 암모늄염일 수 있다. 금속 전구체의 금속이 Au일 때, 구체적이며 비한정적인 일 예로, HAuCl4, AuCl, AuCl3, Au4Cl8, KAuCl4, NaAuCl4, NaAuBr4, AuBr3, AuBr, AuF3, AuF5, AuI, AuI3, KAu(CN)2, Au2O3, Au2S, Au2S3, AuSe, Au2Se3를 들 수 있으나, 본 발명이 전이금속 전구체의 종류에 의해 한정될 수 없음은 물론이다.
도 2C는 에너지를 인가하여 금속이온(130)을 환원과 동시에 성장시키므로서 금속성 나노입자(140)가 형성된 상태를 보여준다. 링커(120A)를 매개로 금속성 나노입자(140)가 기재(110) 상에 형성될 수 있다.
합성 기술이 고도로 발달하여 수십 내지 수백개의 원자들로 이루어진 극히 미세한 나노입자의 합성이 가능하다 하더라도, 열역학적으로, 외부에서 기 합성된 나노입자는 입자크기에 있어 일정한 분포를 가질 수 밖에 없으며, 이는 합성시의 반응장(reaction field)이 커질수록 더욱 큰 입자간 크기 차를 유발할 수 밖에 없다. 또한, 식각에 의해 탑-다운 방식으로 나노입자를 제조하는 방법은 리쏘그라피 기술이 고도로 발달하여 20nm 이하의 입자의 제조가 가능해진다 하더라도, 그 공정이 복잡하고 엄격하고 정밀한 제어가 필요하여 상업적으로 어려움이 많다.
하지만, 본 발명의 제1실시예에 따른 제조방법은 기재의 표면 영역에 해당하는 극히 작은 반응장에서 직접적으로 나노입자를 제조함에 따라, 극히 균일하고 미세하게 제어된 크기의 나노입자를 고밀도로 형성할 수 있다. 또한, 단지 링커를 매개로 금속이온을 기재 상에 고정시킨 후, 금속 이온에 에너지를 인가하여 나노입자를 형성함에 따라, 간단하고 용이하며, 단시간에 저비용으로 나노입자를 대량 생산할 수 있다. 또한, 금속 원자(이온)이 링커를 통해 기재 상에 고정되어 있는 상태에서, 에너지 인가에 의해 핵생성과 성장(나노입자화)이 이루어짐에 따라, 금속 원자(이온)의 이동이 전체적으로 균일하게 억제되며 보다 균일하고 미세한 나노입자가 형성될 수 있다. 상세하게, 나노입자화를 위한 물질의 핵생성 및 성장시 요구되는 금속의 물질 공급은 오직 링커에 결합된 금속 원자(이온)에 의해 이루어질 수 있다. 즉, 나노입자화를 위한 물질 공급이 링커와 기 결합된 금속 원자(이온)의 이동에 의해서만 발생하며, 링커와의 결합에 의해 금속 원자(이온)이 일정 거리 이상으로 이동하여 핵생성 및 성장에 참여하는 것이 어려워짐에 따라, 각 나노입자의 반응장은 핵의 주변으로 한정될 수 있다. 이에 의해 기재 상에는 보다 균일하고 미세한 크기의 나노입자가 고밀도로 형성될 수 있으며, 일정하게 서로 이격된 나노입자가 형성될 수 있다. 이때, 금속성 나노입자는 링커와 결합한 상태를 유지하여 나노입자가 링커를 매개로 물리적으로 안정하게 고정 결합될 수 있으며, 나노입자간의 이격 거리는 각 나노입자의 생성 및 성장에 기여하는 금속 원자 확산거리에 대응될 수 있다.
나노입자화를 위해 인가되는 에너지는 열, 화학, 광, 진동, 이온빔, 전자빔 및 방사선 에너지에서 하나 이상 선택되는 에너지원일 수 있다.
구체적으로, 열 에너지는 줄열을 포함할 수 있다. 열 에너지는 직접적으로 또는 간접적으로 인가될 수 있는데, 직접적 인가는 열 원(source)과 금속 이온이 고정된 기재가 물리적으로 접촉된 상태를 의미할 수 있으며, 간접적 인가는 열 원(source)과 금속 이온이 고정된 반도체 기재가 물리적으로 비접촉된 상태를 의미할 수 있다. 비 한정적인 일 예로, 직접적인 인가는 기재 하부에, 전류의 흐름에 의해 줄열을 발생하는 히팅 엘리먼트가 위치하여, 기재를 통해 금속 이온에 열 에너지를 전달하는 방법을 들 수 있다. 비 한정적인 일 예로, 간접적인 인가는 튜브와 같은 열처리 대상이 위치하는 공간, 열처리 대상이 위치하는 공간을 감싸 열 손실을 방지하는 내열재 및 내열재 내부에 위치하는 히팅 엘리먼트를 포함하여 구성되는 통상의 열처리 로를 이용한 방법을 들 수 있다. 비 한정적인 일 예로, 간접적 인가는 금속 이온이 고정된 기재 상부로 금속 이온과 일정거리 이격되게 히팅 엘리먼트가 위치하여 금속 이온과 히팅 엘리먼트 사이에 존재하는 유체(공기를 포함함)를 통해 금속 이온에 열 에너지를 전달하는 방법을 들 수 있다.
구체적으로, 광 에너지는 극자외선 내지 근적외선을 포함할 수 있으며, 광 에너지의 인가는 광의 조사를 포함할 수 있다. 비 한정적인 일 예로, 금속 이온이 고정된 기재 상부로 금속 이온과 일정거리 이격되게 광원이 위치하여 금속 이온에 광을 조사할 수 있다.
구체적으로, 진동 에너지는 마이크로웨이브 및/또는 초음파를 포함할 수 있으며, 진동 에너지의 인가는 마이크로웨이브 및/또는 초음파의 조사를 포함할 수 있다. 비 한정적인 일 예로, 금속 이온이 고정된 기재 상부로 금속 이온과 일정거리 이격되게 마이크로웨이브 및/또는 초음파 발생원이 위치하여 금속 이온에 마이크로웨이브 및/또는 초음파를 조사할 수 있다.
구체적으로, 방사선 에너지는 α선, β선 및 γ선에서 하나 이상 선택되는 방사선을 포함할 수 있으며, 금속 이온의 환원 측면에서 β선 및/또는 γ선일 수 있다. 비 한정적인 일 예로, 금속 이온이 고정된 기재 상부로 금속 이온과 일정거리 이격되게 방사선 발생원이 위치하여 금속 이온에 방사선을 조사할 수 있다.
구체적으로, 에너지는 입자빔에 의한 운동 에너지일 수 있으며, 입자빔은 이온빔 및/또는 전자빔을 포함할 수 있다. 금속 이온의 환원 측면에서 빔의 이온은 음의 전하를 갖는 이온일 수 있다. 비 한정적인 일 예로, 금속 이온이 고정된 기재 상부로 금속 이온과 일정거리 이격되게 이온 또는 전자 발생원이 위치하고, 이온 또는 전자를 금속 이온 방향으로 가속하는 전기장(전자기장)을 제공하는 가속부재를 이용하여, 금속 이온에 이온빔 및/또는 전자빔을 인가할 수 있다.
구체적으로, 화학적 에너지는 화학반응의 반응 전 후 깁스 프리 에너지차를 의미할 수 있으며, 화학적 에너지는 환원 에너지를 포함할 수 있다. 상세하게, 화학적 에너지는 환원제에 의한 환원반응 에너지를 포함할 수 있으며, 환원제에 의해 금속 이온이 환원되는 환원반응 에너지를 의미할 수 있다. 비 한정적인 일 예로, 화학적 에너지의 인가는 금속 이온이 고정된 기재와 환원제를 접촉하는 환원 반응일 수 있다. 이때, 환원제는 액상으로 공급될 수도 있고 기상으로 공급될 수도 있음은 물론이다.
본 발명의 일 실시예에 따른 제조방법에 있어, 에너지의 인가는 열, 화학, 광, 진동, 이온빔, 전자빔 및 방사선 에너지에서 선택된 둘 이상의 에너지가 동시 또는 순차적으로 인가되는 것을 포함할 수 있다.
동시 인가의 구체적인 일 예로, 열의 인가와 동시에 입자빔의 인가가 동시에 수행될 수 있으며, 이때 입자빔의 입자가 열에너지에 의해 가열될 수 있음은 물론이다. 동시 인가의 다른 구체적인 일 예로, 열의 인가와 동시에 환원제의 투입이 동시에 수행될 수 있다. 동시 인가의 또 다른 구체적인 일 예로, 입자빔의 인가와 동시에 적외선이 인가되거나, 입자빔과 함께 마이크로웨이브가 인가될 수 있다.
순차적 인가는 한 종류의 에너지 인가가 이루어진 후 다시 다른 종류의 에너지 인가가 이루어지는 것을 의미할 수 있으며, 서로 상이한 종류의 에너지가 연속적 또는 불연속적으로 금속 이온에 인가되는 것을 의미할 수 있다. 링커를 매개로 기재에 고정된 금속 이온의 환원이 입자화보다 먼저 이루어지는 것이 바람직함에 따라, 순차적 인가의 구체적인 일 예로, 환원제의 투입 후 열이 인가되거나, 음의 전하를 띠는 입자빔의 인가 후 열이 인가될 수 있다.
비 한정적이며, 실질적인 일 예로, 에너지의 인가는 텅스텐-할로겐 램프를 포함하는 급속열처리장치(RTP; Rapid Thermal Processing system)를 이용하여 수행될 수 있으며, 급속 열처리시의 가온 속도(heating rate)는 50 내지 150℃/sec일 수 있다. 급속열처리장치를 이용한 열처리시, 열처리 분위기는 환원 분위기 또는 불활성 기체 분위기일 수 있다.
비 한정적이며, 실질적인 일 예로, 에너지의 인가는 환원제가 용매에 용액된 환원액과 금속 이온을 접촉시킨 후, 급속열처리장치를 이용한 열처리에 의해 수행될 수 있다. 급속열처리장치를 이용한 열처리시, 열처리 분위기는 환원 분위기 또는 불활성 기체 분위기일 수 있다.
비 한정적이며, 실질적인 일 예로, 에너지의 인가는 진공 챔버 내에, 전자빔 발생장치로부터 전자빔을 발생시키고, 이를 금속 이온으로 가속함으로써 수행될 수 있다. 이때, 전자빔 발생장치는 스퀘어 타입 또는 리니어 건 타입일 수 있다. 전자빔 발생장치는 플라즈마를 발생시킨 후, 차폐막을 이용하여 전자를 추출함으로써 전자빔을 생성할 수 있다. 또한, 진공 챔버 내 기재를 지지하는 시편 홀더에는 가열 부재가 형성될 수 있으며, 이러한 가열 부재에 의해 전자 빔 인가 전, 전자 빔 인가 중 및/또는 전자 빔 인가 후 기재에 열 에너지가 가해질 수 있음은 물론이다.
목적하는 나노입자가 금속 나노입자인 경우, 상술한 에너지의 인가에 의해 금속 나노입자가 인-시츄로 제조될 수 있다. 금속 나노입자가 아닌 금속화합물 입자를 제조하고자 하는 경우, 상술한 에너지의 인가 시 또는 상술한 에너지의 인가 후, 금속 이온과 상이한 이종 원소를 공급하여, 금속화합물 나노입자를 제조할 수 있다. 상세하게, 금속화합물 나노입자는 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 또는 금속간화합물 나노입자를 포함할 수 있다. 보다 상세하게, 상술한 에너지의 인가 시 가스상 또는 액상으로 이종 원소를 공급함으로써 금속화합물 나노입자를 제조할 수 있다. 구체적인 일 예로, 에너지의 인가시 산소 가스를 포함하는 산소원 공급함으로써 금속 나노입자가 아닌 금속산화물 나노입자를 제조할 수 있으며, 에너지의 인가시 질소 가스를 포함하는 질소원을 공급함으로써 금속 나노입자가 아닌 금속질화물 나노입자를 제조할 수 있으며, 에너지의 인가시 C1-C10의 탄화수소 가스를 포함하는 탄소원을 공급함으로써 금속탄화물 나노입자를 제조할 수 있으며, 에너지의 인가시 목적하는 금속간화합물을 제조하기 위한 이종 원소 전구체 가스를 이종 원소원을 공급함으로써 금속간화합물 나노입자를 제조할 수 있다. 보다 상세하게, 상술한 에너지 인가 후, 에너지 인가에 의해 제조되는 금속 나노입자를 탄화처리, 산화처리, 질화처리 또는 합금화함으로써, 금속간화합물 나노입자를 제조할 수 있다.
인가되는 에너지의 종류, 인가되는 에너지의 크기, 에너지의 인가 시간 및 온도를 포함하는 에너지 인가 조건에서 하나 이상 선택되는 인자(factor)에 의해, 나노입자의 밀도, 나노입자의 크기 및 분포가 조절될 수 있다. 상세하게, 에너지의 인가에 의해 0.5 내지 3nm의 평균 입자크기를 갖는 나노입자가 제조될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2 인 고밀도의 나노입자가 제조될 수 있다.
구체적인 일 예로, 인가되는 에너지가 전자 빔인 경우, 전자 빔 조사량은 0.1 KGy 내지 100 KGy일 수 있다. 이러한 전자 빔 조사량에 의해, 평균 입자 직경이 2 내지 3nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 실질적으로 0.1x1014 내지 10x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 전자 빔인 경우, 전자 빔 조사량은 100 μGy 내지 50 KGy 이러한 전자 빔 조사량에 의해, 평균 입자 직경이 1.3 내지 1.9nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 실질적으로 0.2x1014 내지 20x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 전자 빔인 경우, 전자 빔 조사량은 1 μGy 내지 10 KGy 이러한 전자 빔 조사량에 의해, 평균 입자 직경이 0.5 내지 1.2nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 실질적으로 0.2x1014 내지 30x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 열 에너지인 경우, 환원 분위기에서 300 내지 500℃의 온도 0.5시간 내지 2시간 동안 열처리하거나, 링커를 매개로 고정 결합된 금속 이온에 환원제를 공급하고, 불활성 분위기에서 200 내지 400℃의 온도로 0.5시간 내지 2시간 동안 열처리함으로써, 평균 입자 직경이 2 내지 3nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.1x1014 내지 10x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 열 에너지인 경우, 환원 분위기에서 200 내지 400℃의 온도 0.5시간 내지 2시간 동안 열처리하거나, 링커를 매개로 고정 결합된 금속 이온에 환원제를 공급하고, 불활성 분위기에서 100 내지 300℃의 온도로 0.5시간 내지 2시간 동안 열처리함으로써, 평균 입자 직경이 1.3 내지 1.9nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.2x1014 내지 20x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 열 에너지인 경우, 환원 분위기에서 200 내지 400℃의 온도 0.2시간 내지 1시간 동안 열처리하거나, 링커를 매개로 고정 결합된 금속 이온에 환원제를 공급하고, 불활성 분위기에서 100 내지 300℃의 온도로 0.2시간 내지 1시간 동안 열처리함으로써, 평균 입자 직경이 0.5 내지 1.2nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.2x1014 내지 30x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 화학 에너지인 경우, 환원제에 의한 반응 온도 20 내지 40℃의 온도 0.5시간 내지 2시간 동안 화학 반응 시킴으로써, 평균 입자 직경이 2 내지 3nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.1x1014 내지 10x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 화학 에너지인 경우, 환원제에 의한 반응 온도 -25 내지 5℃의 온도 0.5시간 내지 2시간 동안 화학 반응 시킴으로써, 평균 입자 직경이 1.3 내지 1.9nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.2x1014 내지 20x1014 개/cm2인 나노입자가 형성될 수 있다.
구체적인 일 예로, 인가되는 에너지가 화학 에너지인 경우, 환원제에 의한 반응 온도 -25 내지 5℃의 온도 0.2시간 내지 1시간 동안 화학 반응 시킴으로써, 평균 입자 직경이 0.5 내지 1.2nm인 극히 미세한 나노입자가 형성될 수 있으며, 입자 반경의 표준 편차가 ±20% 이하인 극히 균일한 나노입자가 형성될 수 있으며, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2, 0.2x1014 내지 30x1014 개/cm2인 나노입자가 형성될 수 있다.
상술한 바와 같이, 열 에너지 인가시 환원 분위기에서의 열 에너지 인가 또는 화학 에너지와 열에너지가 순차적으로 인가 또는 화학 에너지가 인가되는 경우를 들 수 있는데, 환원 분위기에서 열에너지를 인가하는 경우, 환원 분위기는 수소가 존재하는 분위기를 포함할 수 있으며, 구체적인 일 예로, 수소를 1 내지 5% 함유하는 불활성 기체인 환원 가스 분위기일 수 있다. 또한, 균일한 환원력을 제공하는 측면에서 환원 가스가 흐르는 분위기에서 열 에너지가 인가될 수 있으며, 구체적인 일 예로, 환원 가스가 10 내지 100 cc/min으로 흐르는 분위기일 수 있다. 화학 에너지와 열에너지가 순차적으로 인가되는 경우, 환원제를 링커와 결합한 금속 이온에 접촉시킨 후, 불활성 분위기에서 열 에너지가 인가될 수 있다. 환원제는 금속 이온을 환원시키는 물질이라면 사용 가능하다. 환원제 투입에 의해 화학 에너지를 인가하게 되는 경우, 환원 반응에 의해서도 입자화가 이루어질 수 있다. 환원 반응시 입자화가 발생하는 경우, 환원 반응이 채널 전 영역에서 매우 빠르고 균질하게 이루어져야 보다 균일한 크기의 나노입자가 형성될 수 있다. 이러한 측면에서, 환원력이 강한 환원제를 사용할 수 있으며, 대표적인 일 예로, 환원제는 NaBH4, KBH4 , N2H4H2O, N2H4, LiAlH4, HCHO, CH3CHO 또는 이들의 혼합물을 들 수 있다. 또한, 화학 에너지 인가시, 상기에서 기술한 환원력이 강한 환원제를 사용할 때 화학 반응 온도를 조절 함으로써 핵생성 속도 및 나노 입자 성장 속도를 조절 하여 나노 입자 크기를 조절 할 수 있다. 링커에 결합된 금속 이온과 환원제의 접촉은 환원제가 용해된 용매를 금속 이온 부착 영역에 도포하거나, 기재를 환원제가 용해된 용매에 함침시키거나, 환원제를 기상으로 공급함으로써 이루어질 수 있다. 구체적이며 비한정적인 일 예로, 환원제와 금속 이온간의 접촉은 상온에서 이루어질 수 있으며, 1 내지 12시간 동안 이루어질 수 있다.
상술한 바와 같이, 인가되는 에너지의 종류, 인가되는 에너지의 크기, 에너지의 인가 시간 및 온도에서 하나 이상 선택되는 인자(factor)를 이용하여, 나노입자의 핵생성 및 성장을 조절할 수 있으며, 에너지 인가시 또는 에너지 인가 후 이종 원소원을 공급하여 금속 나노입자를 금속화합물 나노입자로 변화시킴으로써, 금속 나노입자 뿐만 아니라, 금속 산화물 나노입자, 금속 질화물 나노입자, 금속 탄화물 나노입자 또는 금속간화합물 나노입자를 제조할 수 있다.
한편 본 발명의 일 실시예에 따른 제조방법에서, i) 에너지의 인가 전, 금속 이온에 결합 또는 흡착되는 계면활성제 유기물을 공급한 후 에너지를 인가하여 나노입자의 크기를 조절할 수 있으며, 이와 독립적으로 ii) 에너지의 인가 도중 금속 이온에 결합 또는 흡착되는 계면활성제 유기물을 공급함으로써 나노입자 성장시 그 크기를 조절할 수 있다. 이러한 계면활성제 유기물의 공급은 제조 과정 중 선택적 사항이 될 수 있다. 에너지 인가전 또는 인가중에 공급되는 계면활성제 유기물은 단종의 유기물일 수 있으며, 서로 다른 복수종의 복수의 유기물일 수 있다.
금속의 물질이동을 보다 효과적으로 억제하기 위해, 계면활성제 유기물은 서로 다른 종의 제1유기물과 제2유기물을 사용할 수 있다.
여기서 제1유기물은 질소 또는 황 함유 유기물일 수 있으며, 일예로 황 함유 유기물은 일 말단기가 티올기인 직쇄 또는 분지쇄형 탄화수소 화합물을 포함할 수 있다. 황 함유 유기물의 구체적인 일 예로, HS-Cn-CH3(n: 2 내지 20인 정수), n-도데실 메르캅탄, 메틸 메르캅탄, 에틸 메르캅탄(Ethyl Mercaptan), 부틸 메르캅탄, 에틸헥실 메르캅탄, 이소옥틸 메르캅탄, tert-도데실 메르캅탄, 티오글리콜아세트산, 메르캅토프로피온산, 메르캅토에탄올, 메르캅토프로판올, 메르캅토부탄올, 메르캅토헥산올 및 옥틸 티오글리콜레이트에서 하나 이상 선택된 물질을 들 수 있다.
제2유기물은 상전이 촉매(Phase-transfer catalyst) 계열의 유기물일 수 있으며, 구체적인 일예로 4원소 암모늄(quaternary ammonium), 또는 인단백질염(phosphonium salts) 일 수 있다. 더 구체적으로 제2유기물은 테트라옥실암모늄 브로마이드(Tetraocylyammonium bromide), 테트라에틸암모늄(tetraethylammonium), 테트라엔부틸암모늄(Tetra-n-butylammonium bromide), 테트라메틸암모늄 클로라이드(Tetramethylammonium chloride). 테트라부틸암모늄플로라이드(Tetrabutylammonium fluoride) 에서 하나 이상 선택된 물질 일 수 있다.
에너지 인가 전 또는 에너지 인가 중 공급되는 계면활성제 유기물은 금속 이온의 핵 또는 링커와 결합된 금속 이온에 결합 또는 흡착할 수 있으며, 공급되는 에너지에 의한 나노입자의 핵생성 및 성장은 금속 이온과 결합하거나 금속 이온에 흡착하는 계면활성제 유기물에 의해 제어될 수 있다. 이러한 계면활성제 유기물은 에너지 인가시 금속의 물질 이동을 억제하여 보다 균일하고 보다 미세한 나노입자의 형성을 가능하게 한다. 금속 이온은 계면활성제 유기물과 결합함으로써, 핵 생성 또는 성장에 관여하기 위한 이동(diffusion)시 보다 높은 활성화 에너지(activation energy)가 필요하게 되거나 유기물에 의해 물리적으로 이동이 억제됨으로써, 금속(이온)의 확산이 느려지고 핵의 성장에 기여하는 금속(이온)의 수가 감소될 수 있다.
계면활성제 유기물의 존재 하, 에너지를 인가하는 구성은 구체적으로, 에너지 인가 단계가 수행되기 전, 유기물이 용해된 용액을 금속 이온 결합 영역(즉, 링커를 매개로 금속 이온이 결합된 기재 표면)에 도포하거나 기상의 유기물을 공급하는 단계를 포함할 수 있다. 또는, 에너지 인가와 함께 유기물이 용해된 용액을 금속 이온 결합 영역에 도포하거나 기상의 유기물을 공급하여 금속 핵에 유기물을 흡착 또는 결합시키는 것일 수 있다. 또는, 에너지를 인가하는 중에 유기물이 용해된 용액을 금속 이온 결합 영역에 도포하거나 기상의 유기물을 공급하여 금속 핵에 유기물을 흡착 또는 결합시키는 것일 수 있다. 또는, 일정 시간 동안 에너지를 인가한 후, 에너지의 인가를 중지하고, 유기물이 용해된 용액을 금속 이온 결합 영역에 도포하거나 기상의 유기물을 공급하여 금속 핵에 유기물을 흡착 또는 결합시킨 후, 다시 에너지를 인가하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어, 에너지는 금속 이온 결합 영역 전 영역에 동시에 에너지가 인가되거나, 금속 이온 결합 영역의 일부에 에너지가 인가될 수 있다. 일부분에 에너지가 인가되는 경우, 에너지가 스팟(spot), 라인(line) 또는 기 설정된 형상의 면을 이루며 인가(조사)될 수 있다. 비 한정적인 일 예로, 스팟으로 에너지가 조사되며, 금속 이온 결합 영역 전 영역을 스캔하는 방식으로 에너지가 인가(조사)될 수 있다. 이때, 금속 이온 결합 영역의 일 부분에 에너지가 인가된다는 것은 스팟, 라인 또는 면으로 에너지가 조사되며 금속 이온 결합 영역 전 영역이 스캔되는 경우뿐만 아니라, 금속 이온 결합 영역의 일부 영역에만 에너지가 인가(조사)되는 경우 또한 포함할 수 있다.
도 2D는 에너지 인가에 의해 성장된 금속성 나노입자(140)에 리셉터(150)가 결합된 상태를 보여준다. 리셉터(150)는 금속성 나노입자(140)의 표면에 결합 또는 코팅된 상태일 수 있다. 리셉터(150)는 금속성 나노입자(140) 표면에 결합가능하고 감지하고자 하는 마커(표적 물질)와 물리적, 광학적, 전기적, 화학적 등과 같은 메카니즘으로 반응하는 물질이면, 그 어떠한 물질도 사용 가능하다.
마커는 단백질, 핵산, 올리고당, 아미노산, 탄수화물, 용해 가스, 산화황 가스, 산화질소 가스, 잔류농약, 중금속 및 환경유해물질 등과 같은 물질일 수 있다. 이때 마커와 반응하는 리셉터(150)는 효소기질, 리간드, 아미노산, 펩티드, 단백질, 핵산, 지질 및 탄수화물로 이루어진 그룹에서 선택되는 어느 하나 이상일 수 있다. 리셉터(150)는 성장된 금속성 나노입자(140) 표면에 작용기에 의해 결합되거나 코팅될 수 있다. 리셉터(150)의 작용기는 아민기, 카르복실기 및 티올기로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
도 2D를 참조하여, 본 발명의 제1실시예에 따른 제조방법에 의해 형성된 나노 구조체 센서를 보다 상세하게 설명한다.
본 발명의 제1실시예에 따른 센서는, 마커(표적 물질)의 물리적, 전기적, 화학적, 광학적 센싱을 위한 나노구조체를 포함한다.
나노 구조체는 기재(110) 상에 형성된 링커(120A)와, 링커(120A)에 결합된 금속이온으로부터 성장된 금속성 나노입자(140)를 포함할 수 있다. 또한 나노 구조체는 금속성 나노입자(140) 표면에 결합된 리셉터(150)를 더 포함할 수 있다. 또한 나노 구조체는 금속성 나노입자(140) 표면에는 나노입자 성장전 또는 성장중에 결합되어 있던 계면활성제 유기물이 잔류할 수 있다.
기재(110)는 플렉시블 기재 일 수 있으며, 플렉시블 기재는 히드록시기(-OH) 작용기를 갖는 표면층을 포함할 수 있다. 플렉시블 기재는 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC), 폴리에테르술폰(PES), 폴리디메틸실록산(PDMS)의 그룹으로 부터 선택된 어느 하나이거나 이들의 혼합물을 포함할 수 있다.
링커(120A)는 자기조립에 의해 기재(110) 표면에 결합되는 유기 단분자일 수 있다. 나노 구조체는 기재(110) 상에 결합된 복수의 링커(120A)들로 이루어진 링커층(120)을 포함할 수 있다. 링커층(120)은 유기단분자가 기재(110) 상에 자기 결합되어 형성된 자기조립단분자막일 수 있다. 또한, 링커층(120)는 기재(110) 상에 형성되고, 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기를 갖는 실란화합물층일 수 있다. 링커(120A)는 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기를 포함할 수 있다.
금속성 나노입자(140)는 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나일 수 있다. 금속성 나노입자(140)는 링커(120A)에 금속이온을 결합시키고, 그 금속이온을 성장시키는 것에 의해 생성된 입자이다.
금속성 나노입자(140)는 성장시의 에너지 인가 조건에 따라 그 사이즈를 제어할 수 있다. 또한, 입자로 성장하기 위한 에너지 인가전 또는 인가중에 계면활성제의 공급 여부에 따라 나노입자 사이즈의 조절이 가능하다. 계면활성제는 유기물일 수 있으며, 성장 완료된 나노입자(140) 표면에 남아있을 수 있다. 바람직하게, 계면활성제 유기물을 사용하지 않는 경우 금속성 나노입자(140)는 2.0nm 내지 3.0nm의 직경을 갖을 수 있다. 바람직하게, 어느 한 종류의 계면활성제 유기물을 사용하는 경우 금속성 나노입자(140)는 1.3nm 내지 1.6nm의 직경을 갖을 수 있다. 바람직하게, 서로 다른 종류의 복수의 계면활성제 유기물을 사용하는 경우 금속성 나노입자(140)는 0.5nm 내지 1.2nm의 직경을 갖을 수 있다.
동일한 평면 내에서 복수의 금속성 나노입자들이 서로 이격 배열된 단일의 나노입자층을 구성할 수 있다. 이는 상술한 제조방법과 같이, 링커를 통해 기재 상에 형성된 이온층(금속 이온의 층)에 에너지를 인가함으로써 나노입자 층이 형성되기 때문이다. 링커와의 결합에 의해 형성되는 단일한 이온층에 에너지를 인가하여 나노입자층이 형성됨에 따라, 나노입자층은 나노입자 간의 응집이 엄격하게 방지되어, 서로 이격된 상태의 나노입자의 단일한 층을 이룰 수 있으며, 극히 미세한 크기를 갖는 나노입자들로 이루어질 수 있으며, 나노입자의 밀도가 극히 높을 수 있다.
구체적으로, 나노입자층의 나노입자는 0.5 내지 3nm의 평균 입자크기를 가질 수 있으며, 입자 반경의 표준 편차가 ±20% 이하로 극히 균일한 크기를 가질 수 있고, 단위 면적당 나노입자의 수인 나노입자 밀도가 1013 내지 1015 개/cm2로 극히 고밀도를 가질 수 있다.
리셉터(150)는 단백질, 핵산, 올리고당, 아미노산, 탄수화물, 용해 가스, 산화황 가스, 산화질소 가스, 잔류농약, 중금속 및 환경유해물질 등과 같은 마커(표적 물질)와 반응하는 물질이면 그 사용이 가능하다. 리셉터(150)는 성장된 금속성 나노입자(140) 표면에 결합 또는 코팅될 수 있다. 리셉터(150)는 작용기에 의해 금속성 나노입자(140) 표면에 결합되며, 효소기질, 리간드, 아미노산, 펩티드, 단백질, 핵산, 지질 및 탄수화물로 이루어진 그룹에서 선택되는 어느 하나 이상일 수 있다. 리셉터(150)의 작용기는 아민기, 카르복실기 및 티올기로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
한편, 나노 구조체는 리셉터(150)을 갖는 복수의 금속성 나노입자(140)들이 배열되어 나노 입자층을 구성하고, 링커층(120)과 상기 나노 입자층이 교번적으로 반복 적층되어, 수직적 멀티 스택 구조를 갖을 수 있다.
[제 2 실시예에 따른 나노구조체 및 그 제조 방법]
도 3A 내지 도 3D는 본 발명의 제2실시예에 따른 나노 구조체 및 그 제조 방법을 설명하기 위한 모식도이다.
본 발명의 제2실시예에 따른 나노구조체 제조 방법은, 기재(210) 상에 자신의 표면에 링커(224)가 결합된 절연물 입자 지지체(222)를 형성하는 단계(도 3A), 링커(224)에 금속이온(230)을 결합시키는 단계(도 3B), 에너지를 인가하여 금속이온을 금속성 나노입자(240)로 형성하는 단계(도 3C)를 포함할 수 있다. 또한, 금속성 나노입자 표면에 리셉터(250)를 결합하는 단계(도 3D)를 더 포함할 수 있다. 또한, 에너지를 인가하기 이전 또는 에너지 인가중에 단종 또는 복수종의 계면활성제 유기물을 공급하는 단계를 더 포함할 수 있다.
도 3A는 링커(224)가 결합된 절연물 입자 지지체(222)가 기재(210) 상에 형성된 상태를 보여준다. 기재(210)는 표면층(214)를 갖을 수 있다. 예컨대, 기재(210)은 SiO2 절연층을 표면층(214)으로 갖는 실리콘기판(212)일 수 있다.
기재(210)은 플렉시블 기재 또는 투명 기재를 포함할 수 있다. 플렉시블 기재를 사용하는 경우, 기재(210)의 표면층(214)은 링커와 결합 가능한 -OH 작용기를 갖는 유기물일 수 있다. 그 밖에 기재(210)의 형상 및 물질은 본 발명의 제1실시예에서 설명된 바와 같은 다양한 실시예의 응용이 가능하다.
링커(224)가 결합된 절연물 입자 지지체(222)는 기재상에 복수개 형성되어 지지체층(220)을 구성할 수 있다. 링커가 결합된 지지체층(220)은 링커가 용매에 용해된 링커용액에 절연물 입자 파우더를 섞어 지지체층 원료를 생성하는 단계와, 상기 지지체층 원료를 기재 상에 코팅 또는 증착하는 단계를 포함할 수 있다. 이때 코팅 방법은 지지체층 원료를 기재 상에 스핀 코팅하는 방법을 사용할 수 있고, 증착 방법은 지지체층 원료가 용해된 용액에 기재를 담그는 액상 증착법을 사용할 수 있다.
절연물 입자 지지체(222)는 금속, 전이 금속, 전이후 금속 및 준금속의 그룹으로부터 선택된 어느 하나 이상 원소를 갖는 산화물을 포함할 수 있다. 또한, 절연물 입자 지지체(222)는 실리콘 산화물, 하프늄 산화물, 알루미늄 산화물, 지르코늄 산화물, 바륨-타이타늄 복합산화물, 이트륨 산화물, 텅스텐 산화물, 탄탈륨 산화물, 아연 산화물, 타이타늄 산화물, 주석 산화물, 바륨-지르코늄 복합산화물, 실리콘 질화물, 실리콘 옥시나이트라이드, 지르코늄 실리케이트, 하프늄 실리케이트 및 고분자로 이루어진 그룹으로부터 선택된 적어도 어느 한 물질을 포함할 수 있다.
링커(224)는 절연물 입자 지지체(222)의 표면에 화학적으로 결합 또는 흡착하고, 금속이온과 화학적으로 결합할 수 있는 유기 단분자일 수 있다. 구체적으로, 링커(224)는 절연물 입자 지지체(222)의 표면과 화학적으로 결합 또는 흡착하는 제1작용기와 금속이온(후속 형성됨)과 화학적으로 결합하는 제2작용기를 모두 갖는 유기 단분자일 수 있다. 또한 링커(224)는 제1작용기와 제2작용기를 연결하는 사슬기를 포함할 수 있다. 링커(224)는 금속이온과 결합 가능한 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기를 포함할 수 있다. 링커(224)는 본 발명의 제1실시예를 통해 설명된 다양한 실시예의 응용이 가능하다.
도 3B는 링커(224)에 금속이온(230)을 결합한 상태를 보여준다. 금속이온(230)은 링커(224)의 작용기에 결합될 수 있다. 금속 이온(230)은 금속 전구체를 기재(링커가 형성된 기재)에 공급하는 것에 의해 형성될 수 있다. 즉, 금속 전구체가 용해된 용액을 기재에 도포하거나, 기상의 금속 전구체를 기재 상에 공급함으로써 이루어질 수 있다. 링커(224)에 금속 이온(230)을 결합하는 방법 및 그 방법에 사용되는 물질 등은 본 발명의 제1실시예에서 설명된 다양한 실시예 및 그의 응용이 가능하다.
도 3C는 에너지를 인가하여 금속이온(230)을 성장시키므로서 금속성 나노입자(240)가 형성된 상태를 보여준다. 나노입자화를 위해 인가되는 에너지는 열, 화학, 광, 진동, 이온빔, 전자빔 및 방사선 에너지에서 하나 이상 선택되는 에너지원일 수 있으며, 그 다양한 실시예는 앞서 설명된 제1실시예와 동일 또는 유사할 수 있다.
한편 본 발명의 제2실시예에 따른 제조방법에서, i) 에너지의 인가 전, 금속 이온에 결합 또는 흡착되는 계면활성제 유기물을 공급한 후 에너지를 인가하여 나노입자의 크기를 조절할 수 있으며, 이와 독립적으로 ii) 에너지의 인가 도중 금속 이온에 결합 또는 흡착되는 계면활성제 유기물을 공급함으로써 나노입자 성장시 그 크기를 조절할 수 있다. 이러한 계면활성제 유기물의 공급은 제조 과정 중 선택적 사항이 될 수 있다. 에너지 인가전 또는 인가중에 공급되는 계면활성제 유기물은 단종의 유기물일 수 있으며, 서로 다른 종의 복수의 유기물일 수 있다.
에너지 인가 전 또는 에너지 인가 중 공급되는 계면활성제 유기물은 금속 이온의 핵 또는 링커와 결합된 금속 이온에 결합 또는 흡착할 수 있으며, 공급되는 에너지에 의한 나노입자의 핵생성 및 성장은 금속 이온과 결합하거나 금속 이온에 흡착하는 계면활성제 유기물에 의해 제어될 수 있다. 즉 성장되는 나노입자(240)의 사이즈를 균일하고 미세하게 형성할 수 있다.
금속의 물질이동을 보다 효과적으로 억제하기 위해, 계면활성제 유기물은 서로 다른 종의 제1유기물과 제2유기물을 사용할 수 있다.
여기서 제1유기물은 질소 또는 황 함유 유기물일 수 있으며, 일예로 황 함유 유기물은 일 말단기가 티올기인 직쇄 또는 분지쇄형 탄화수소 화합물을 포함할 수 있다. 황 함유 유기물의 구체적인 일 예로, HS-Cn-CH3(n: 2 내지 20인 정수), n-도데실 메르캅탄, 메틸 메르캅탄, 에틸 메르캅탄(Ethyl Mercaptan), 부틸 메르캅탄, 에틸헥실 메르캅탄, 이소옥틸 메르캅탄, tert-도데실 메르캅탄, 티오글리콜아세트산, 메르캅토프로피온산, 메르캅토에탄올, 메르캅토프로판올, 메르캅토부탄올, 메르캅토헥산올 및 옥틸 티오글리콜레이트에서 하나 이상 선택된 물질을 들 수 있다.
제2유기물은 상전이 촉매(Phase-transfer catalyst) 계열의 유기물일 수 있으며, 구체적인 일예로 4원소 암모늄(quaternary ammonium), 또는 인단백질염(phosphonium salts) 일 수 있다. 더 구체적으로 제2유기물은 테트라옥실암모늄브로마이드(Tetraocylyammonium bromide), 테트라에틸암모늄(tetraethylammonium), 테트라엔부틸암모늄(Tetra-n-butylammonium bromide), 테트라메틸암모늄클로라아드(Tetramethylammonium chloride). 테트라부틸암모늄플로라이드(Tetrabutylammonium fluoride) 에서 하나 이상 선택된 물질 일 수 있다.
도 3D는 에너지 인가에 의해 성장된 금속성 나노입자(240)에 리셉터(250)가 결합된 상태를 보여준다. 리셉터(250)는 금속성 나노입자(240)의 표면에 결합 또는 코팅된 상태일 수 있다. 리셉터(250)는 금속성 나노입자(240) 표면에 결합가능하고 감지하고자 하는 마커(표적 물질)와 물리적, 광학적, 전기적, 화학적 등과 같은 메카니즘으로 반응하는 물질이면, 그 어떠한 물질도 사용 가능하다.
마커는 단백질, 핵산, 올리고당, 아미노산, 탄수화물, 용해 가스, 산화황 가스, 산화질소 가스, 잔류농약, 중금속 및 환경유해물질 등과 같은 물질일 수 있다. 이때 마커와 반응하는 리셉터(250)는 효소기질, 리간드, 아미노산, 펩티드, 단백질, 핵산, 지질 및 탄수화물로 이루어진 그룹에서 선택되는 어느 하나 이상일 수 있다. 리셉터(250)는 성장된 금속성 나노입자(240) 표면에 작용기에 의해 결합되거나 코팅될 수 있다. 리셉터(250)의 작용기는 아민기, 카르복실기 및 티올기로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
도 3D를 참조하여, 본 발명의 제2실시예에 따른 제조방법에 의해 형성된 나노 구조체를 보다 상세하게 설명한다.
본 발명의 제1실시예에 따른 센서는, 마커(표적 물질)의 물리적, 전기적, 화학적, 광학적 센싱을 위한 나노구조체를 포함한다.
나노 구조체는 기재(210) 상에 형성되고 링커(224)가 결합된 절연물 입자 지지체(222)와, 링커(224)에 결합된 금속이온으로부터 성장된 금속성 나노입자(240)를 포함할 수 있다. 또한 나노 구조체는 금속성 나노입자(240) 표면에 결합된 리셉터(250)를 더 포함할 수 있다.
기재(210)는 링커와 결합 가능한 작용기를 갖는 표면층(224)을 포함할 수 있다. 표면층(214)은 산화물층을 포함할 수 있다. 더 구체적으로 표면층은 실리콘 산화물, 하프늄 산화물, 알루미늄 산화물, 지르코늄 산화물, 바륨-타이타늄 복합산화물, 이트륨 산화물, 텅스텐 산화물, 탄탈륨 산화물, 아연 산화물, 타이타늄 산화물, 주석 산화물, 바륨-지르코늄 복합산화물, 실리콘 질화물, 실리콘 옥시나이트라이드, 지르코늄 실리케이트, 하프늄 실리케이트의 그룹으로 부터 선택된 적어도 어느 한 물질의 층일 수 있다.
기재(210)는 플렉시블 기재 일 수 있으며, 플렉시블 기재는 링커와 결합 가능한 히드록시기(-OH) 작용기를 갖는 표면층(224)을 포함할 수 있다. 플렉시블 기재는 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC), 폴리에테르술폰(PES), 폴리디메틸실록산(PDMS)의 그룹으로 부터 선택된 어느 하나이거나 이들의 혼합물을 포함할 수 있다.
절연물 입자 지지체(222)는 금속, 전이 금속, 전이후 금속 및 준금속의 그룹으로부터 선택된 어느 하나 이상 원소를 갖는 산화물 입자일 수 있다. 절연물 입자 지지체(222)는 10nm 내지 20nm의 직경을 갖는 입자일 수 있다. 절연물 입자 지지체(222)는 기재(210) 상에 단분자층 또는 멀티 분자층으로 형성될 수 있다.
절연물 입자 지지체(222)는 실리콘 산화물, 하프늄 산화물, 알루미늄 산화물, 지르코늄 산화물, 바륨-타이타늄 복합산화물, 이트륨 산화물, 텅스텐 산화물, 탄탈륨 산화물, 아연 산화물, 타이타늄 산화물, 주석 산화물, 바륨-지르코늄 복합산화물, 실리콘 질화물, 실리콘 옥시나이트라이드, 지르코늄 실리케이트, 하프늄 실리케이트 및 고분자로 이루어진 그룹으로 부터 선택된 적어도 어느 한 물질일 수 있다.
링커(224)는 유기 단분자일 수 있다. 나노 구조체는 기재(210) 상에 결합된 복수의 링커(224)들로 이루어진 링커층을 포함 할 수 있다. 링커층은 유기단분자가 절연물 입자 지지체 층 상에 자기 결합되어 형성된 자기조립단분자막일 수 있다. 또한, 링커(224)는 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기를 포함 할 수 있다. 링커(224)는 절연물 입자 지지체(222)의 표면과 결합하는 제1작용기와, 금속이온과 결합하는 제2작용기 및 상기 제1작용기와 제2작용기를 연결하는 사슬기를 포함할 수 있다.
금속성 나노입자(240)는 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나일 수 있다. 금속성 나노입자(240)는 링커(224)에 금속이온을 결합시키고, 그 금속이온을 성장시키는 것에 의해 생성된 입자이다.
금속성 나노입자(240)는 성장시의 에너지 인가 조건에 따라 그 사이즈를 제어할 수 있다. 또한, 입자로 성장하기 위한 에너지 인가전 또는 인가중에 계면활성제의 공급 여부에 따라 나노입자 사이즈의 조절이 가능하다. 계면활성제는 유기물일 수 있으며, 성장 완료된 나노입자(240) 표면에 남아있을 수 있다. 바람직하게, 계면활성제를 사용하지 않는 경우 금속성 나노입자(240)는 2.0nm 내지 3.0nm의 직경을 갖을 수 있다. 바람직하게, 어느 한 종류의 계면활성제 사용하는 경우 금속성 나노입자(240)는 1.3nm 내지 1.6nm의 직경을 갖을 수 있다. 바람직하게, 서로 다른 종류의 복수의 계면활성제 사용하는 경우 금속성 나노입자(240)는 0.5nm 내지 1.2nm의 직경을 갖을 수 있다. 그 밖에 나노입자(240)의 다양한 실시예는 앞서 설명된 제1실시예와 동일 또는 유사할 수 있다.
리셉터(250)는 단백질, 핵산, 올리고당, 아미노산, 탄수화물, 용해 가스, 산화황 가스, 산화질소 가스, 잔류농약, 중금속 및 환경유해물질 등과 같은 마커(표적 물질)와 반응하는 물질이면 그 사용이 가능하다. 리셉터(250)는 성장된 금속성 나노입자(240) 표면에 결합 또는 코팅될 수 있다. 리셉터(250)는 작용기에 의해 금속성 나노입자(240) 표면에 결합되며, 효소기질, 리간드, 아미노산, 펩티드, 단백질, 핵산, 지질 및 탄수화물로 이루어진 그룹에서 선택되는 어느 하나 이상일 수 있다. 리셉터(250)의 작용기는 아민기, 카르복실기 및 티올기로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다.
한편, 나노 구조체는 리셉터(250)을 갖는 복수의 금속성 나노입자(240)들이 배열되어 나노입자층(220)이 구성되고, 지지체층(220)과 상기 나노 입자층이 교번적으로 반복 적층되어, 수직적 멀티 스택 구조를 갖을 수 있다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (46)

  1. 기재 상에 마커를 센싱하기 위한 요소로서 나노 구조체를 구비하고,
    상기 나노 구조체는,
    기재 상에 형성된 링커; 및
    상기 링커에 결합된 금속이온으로부터 성장된 금속성 나노입자를 포함하는
    센서.
  2. 제 1 항에 있어서,
    상기 기재는 그 표면에 링커와 결합 가능한 작용기를 갖는 표면층을 포함하는 센서.
  3. 제 1 항에 있어서,
    상기 링커는 자기조립에 의해 상기 기재 표면에 결합되는 유기 단분자인 센서.
  4. 제 1 항에 있어서,
    상기 나노 구조체는 상기 금속성 나노입자 표면에 결합된 리셉터를 더 포함하는 센서.
  5. 제 1 항에 있어서,
    상기 나노 구조체는 성장전의 상기 금속이온 또는 성장중인 나노입자 표면에 결합된 계면활성제 유기물을 더 포함하는 센서.
  6. 제 1 항에 있어서,
    상기 계면활성제 유기물은 서로 다른 종류의 복수의 유기물을 포함하는 센서.
  7. 제 1 항에 있어서,
    상기 금속성 나노입자는 2.0nm 내지 3.0nm의 직경을 갖는 센서.
  8. 제 1 항에 있어서,
    상기 금속성 나노입자는 1.3nm 내지 1.9nm의 직경을 갖는 센서.
  9. 제 1 항에 있어서,
    상기 금속성 나노입자는 0.5nm 내지 1.2nm의 직경을 갖는 센서.
  10. 제 1 항에 있어서,
    상기 링커는 유기 단분자이며,
    상기 나노 구조체는 상기 유기단분자가 상기 기재상에 복수개 자기 결합되어 형성된 자기조립단분자막의 링커층을 더 포함하는 센서.
  11. 제 10 항에 있어서,
    상기 링커층은 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기를 갖는 실란화합물층을 더 포함하며,
    상기 아민기, 카르복실기 및 티올기에서 선택된 어느 하나의 작용기는 상기 링커의 일부인
    센서.
  12. 제 1 항에 있어서,
    상기 링커는 상기 기재의 표면과 결합하는 제1작용기와, 상기 금속이온과 결합하는 제2작용기 및 상기 제1작용기와 제2작용기를 연결하는 사슬기를 포함하는 센서.
  13. 제 1 항에 있어서,
    상기 링커는 상기 금속이온과 결합하는 아민기, 카르복실기 및 티올기에서 선택된 어느 하나를 포함하는 센서.
  14. 제1항에 있어서,
    상기 금속성 나노입자는 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나인 센서.
  15. 제 1 항에 있어서,
    복수의 상기 금속성 나노입자들이 서로 이격 배열된 단분자층을 구성하는 센서.
  16. 제 1 항에 있어서,
    상기 나노 구조체는
    복수의 상기 링커로 구성된 링커층과 복수의 상기 금속성 나노입자들로 구성된 나노입자층이 교번적으로 반복 적층되어, 수직적 멀티 스택 구조를 갖는 센서.
  17. 기재 상에 마커를 센싱하기 위한 요소로서 나노 구조체를 구비하고,
    상기 나노 구조체는,
    상기 기재 상에 형성되고, 자신의 표면에 링커가 결합된 절연물 입자 지지체; 및
    상기 링커에 결합된 금속이온으로부터 성장된 금속성 나노입자를 포함하는
    센서.
  18. 제 17 항에 있어서,
    상기 기재는 그 표면에 링커와 결합 가능한 작용기를 갖는 표면층을 포함하는 센서.
  19. 제 17 항에 있어서,
    상기 링커가 결합된 절연물 입자 지지체는 상기 기재 상에 복수개 배열되어, 단분자층 또는 멀티분자층의 지지체층을 구성하는 센서.
  20. 제 17 항에 있어서,
    상기 링커는 상기 금속이온과 결합하는 아민기, 카르복실기 및 티올기에서 선택된 어느 하나를 포함하는 센서.
  21. 제 17 항에 있어서,
    상기 나노 구조체는 상기 금속성 나노입자 표면에 결합된 리셉터를 더 포함하는 센서.
  22. 제 17 항에 있어서,
    상기 나노 구조체는 성장전의 상기 금속이온 또는 성장중인 나노입자 표면에 결합된 계면활성제 유기물을 더 포함하는 센서.
  23. 제 17 항에 있어서,
    상기 계면활성제 유기물은 서로 다른 종류의 복수의 유기물을 포함하는 센서.
  24. 제 17 항에 있어서,
    상기 금속성 나노입자는 2.0nm 내지 3.0nm의 직경을 갖는 센서.
  25. 제 17 항에 있어서,
    상기 금속성 나노입자는 1.3nm 내지 1.9nm의 직경을 갖는 센서.
  26. 제 17 항에 있어서,
    상기 금속성 나노입자는 0.5nm 내지 1.2nm의 직경을 갖는 센서.
  27. 제 17 항에 있어서,
    상기 금속성 나노입자는 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나인 센서.
  28. 제 19 항에 있어서,
    상기 나노 구조체는
    상기 지지체층과 복수의 상기 금속성 나노입자들로 구성된 나노입자층이 교번적으로 반복 적층되어, 수직적 멀티 스택 구조를 갖는 센서.
  29. 마커를 센싱하기 위한 요소로서 나노 구조체를 갖는 센서의 제조 방법에 있어서,
    기재 상에 링커를 형성하는 단계;
    상기 링커에 금속이온을 결합시키는 단계;
    에너지를 인가하여 상기 금속이온을 금속성 나노입자로 형성하는 단계를 포함하는
    방법.
  30. 제 29 항에 있어서,
    상기 에너지 인가전 또는 상기 에너지 인가중에, 계면활성제 유기물을 공급하는 단계를 더 포함하는 방법.
  31. 제 29 항에 있어서,
    상기 금속성 나노입자 표면에 리셉터를 결합하는 단계를 더 포함하는 방법.
  32. 제 31 항에 있어서,
    상기 복수의 링커로 구성된 링커층이 형성되고,
    상기 링커층은 유기 단분자들로 구성된 자기조립단분자막인 방법.
  33. 제 32 항에 있어서,
    상기 링커층은 상기 링커가 용매에 용해된 링커용액에 상기 기재의 표면을 접촉시켜 형성하는 방법.
  34. 제 29 항에 있어서,
    상기 복수의 링커로 구성된 링커층이 형성되고,
    상기 링커층은 상기 링커를 갖는 기상의 가스를 사용한 원자층증착법에 의해 형성되는 방법.
  35. 제 34 항에 있어서,
    상기 링커층은 아민기, 카르복실기 및 티올기에서 선택된 어느 하나를 포함하는 실란화합물층인 방법.
  36. 제 29 항에 있어서,
    상기 금속 이온을 결합하는 단계는,
    금속 전구체를 상기 링커가 결합된 구조물 상에 접촉시키는 단계를 포함하는 방법.
  37. 제 29 항에 있어서,
    상기 금속 이온을 결합하는 단계는,
    금속전구체가 용해된 용액을 상기 링커가 결합된 구조물 상에 도포하거나, 기상의 금속 전구체를 상기 링커가 결합된 구조물 상에 공급하는 단계를 포함하는 방법.
  38. 제 29 항에 있어서,
    상기 에너지는 열, 화학, 광, 진동, 이온빔, 전자빔 및 방사선의 그룹으로부터 선택된 어느 하나 이상의 에너지인 방법.
  39. 제 29 항에 있어서,
    상기 에너지 인가시, 상기 금속이온과 상이한 이종원소를 공급하여, 상기 금속성 나노 입자를 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나로 형성하는 방법.
  40. 마커를 센싱하기 위한 요소로서 나노 구조체를 갖는 센서의 제조 방법에 있어서,
    자신의 표면에 링커가 결합된 절연물 입자 지지체를 기재 상에 형성하는 단계;
    상기 링커에 금속이온을 결합시키는 단계;
    에너지를 인가하여 상기 금속이온을 금속성 나노입자로 형성하는 단계를 포함하는
    방법.
  41. 제 40 항에 있어서,
    상기 에너지 인가전 또는 상기 에너지 인가중에, 계면활성제 유기물을 공급하는 단계를 더 포함하는 방법.
  42. 제 40 항에 있어서,
    상기 금속성 나노입자 표면에 리셉터를 결합하는 단계를 더 포함하는 방법.
  43. 제 40 항에 있어서,
    상기 링커가 결합된 절연물 입자 지지체를 형성하는 단계는,
    링커가 용매에 용해된 링커용액에 절연물 입자 파우더를 섞어 상기 지지체 원료를 생성하는 단계; 및
    상기 지지체 원료를 상기 기재 상에 코팅 또는 증착하는 단계를 포함하는
    방법.
  44. 제 40 항에 있어서,
    상기 금속 이온을 결합하는 단계는,
    금속전구체가 용해된 용액을 상기 링커가 결합된 구조물 상에 도포하거나, 기상의 금속 전구체를 상기 링커가 결합된 구조물 상에 공급하는 단계를 포함하는 방법.
  45. 제 40 항에 있어서,
    상기 에너지는 열, 화학, 광, 진동, 이온빔, 전자빔 및 방사선의 그룹으로부터 선택된 어느 하나 이상의 에너지인 방법.
  46. 제 40 항에 있어서,
    상기 에너지 인가시, 상기 금속이온과 상이한 이종원소를 공급하여, 상기 금속성 나노 입자를 금속 나노입자, 금속산화물 나노입자, 금속질화물 나노입자, 금속탄화물 나노입자 및 금속간화합물 나노입자의 그룹으로부터 선택된 어느 하나로 형성하는 방법.
KR1020130159753A 2013-12-19 2013-12-19 나노 구조체를 갖는 센서 및 그 제조 방법 KR102192973B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020130159753A KR102192973B1 (ko) 2013-12-19 2013-12-19 나노 구조체를 갖는 센서 및 그 제조 방법
EP14176658.4A EP2886203B1 (en) 2013-12-19 2014-07-11 Method for fabricating a nano structure
TW103140011A TW201534923A (zh) 2013-12-19 2014-11-19 包含奈米結構的感測器及其製造方法
US14/554,856 US9625381B2 (en) 2013-12-19 2014-11-26 Sensor including nanostructure and method for fabricating the same
EP14197874.2A EP2886204B1 (en) 2013-12-19 2014-12-15 Method for fabricating sensor including nanostructure
CN201410804507.2A CN104729997A (zh) 2013-12-19 2014-12-19 包含纳米结构的传感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130159753A KR102192973B1 (ko) 2013-12-19 2013-12-19 나노 구조체를 갖는 센서 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20150072294A true KR20150072294A (ko) 2015-06-29
KR102192973B1 KR102192973B1 (ko) 2020-12-18

Family

ID=52358540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130159753A KR102192973B1 (ko) 2013-12-19 2013-12-19 나노 구조체를 갖는 센서 및 그 제조 방법

Country Status (5)

Country Link
US (1) US9625381B2 (ko)
EP (1) EP2886204B1 (ko)
KR (1) KR102192973B1 (ko)
CN (1) CN104729997A (ko)
TW (1) TW201534923A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067194A (ko) * 2020-11-17 2022-05-24 한국화학연구원 수소 가스 센서
WO2022211555A1 (ko) * 2021-03-31 2022-10-06 한국화학연구원 랩핑형 가스 센서

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725313B2 (en) * 2013-12-19 2017-08-08 Sk Innovation Co., Ltd. Method for fabricating NANO structure including dielectric particle supporters
TWI612288B (zh) * 2015-08-10 2018-01-21 國立清華大學 一種重金屬檢驗試片與其製備方法
WO2020220131A1 (en) * 2019-05-02 2020-11-05 Queen's University At Kingston Sensor elements having metallic nanostructures and uses thereof
CN110231372B (zh) * 2019-07-17 2021-08-03 上海海事大学 一种用于丙酮检测的气敏传感器及其制备方法
KR102622679B1 (ko) * 2021-10-26 2024-01-10 한국전자기술연구원 자기조립단분자막을 이용한 가스 센서 및 그의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119100A (ko) * 2009-04-30 2010-11-09 주식회사 아모그린텍 금속산화물 나노입자를 이용한 가스센서 및 그 제조방법
KR101098074B1 (ko) * 2009-04-22 2011-12-26 이화여자대학교 산학협력단 금속산화물 나노입자와 촉매를 이용한 수소센서 및 그 제조방법
US20120282721A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Method for forming Chalcogenide Semiconductor Film and Photovoltaic Device
KR20120124121A (ko) * 2011-05-03 2012-11-13 인하대학교 산학협력단 화학 나노센서의 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569195B (en) * 2001-01-24 2004-01-01 Matsushita Electric Ind Co Ltd Micro-particle arranged body, its manufacturing method, and device using the same
US20040203256A1 (en) 2003-04-08 2004-10-14 Seagate Technology Llc Irradiation-assisted immobilization and patterning of nanostructured materials on substrates for device fabrication
CN101120433B (zh) * 2004-06-04 2010-12-08 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法
KR20080103568A (ko) * 2006-02-17 2008-11-27 솔렉슨트 코포레이션 나노구조의 전계발광 장치 및 디스플레이
WO2008085556A2 (en) 2006-09-12 2008-07-17 University Of South Florida Surfactant-free nanoparticles for drug delivery
WO2008068873A1 (en) * 2006-12-08 2008-06-12 Kazufumi Ogawa Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
KR100927886B1 (ko) * 2007-06-18 2009-11-23 한국생명공학연구원 단백질 g-올리고 뉴클레오타이드 결합체
US9660205B2 (en) * 2007-06-22 2017-05-23 Regents Of The University Of Colorado Protective coatings for organic electronic devices made using atomic layer deposition and molecular layer deposition techniques
JP4817154B2 (ja) * 2007-07-06 2011-11-16 エム・テクニック株式会社 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
US9096431B2 (en) * 2008-09-08 2015-08-04 Nanyang Technological University Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same
US8734844B2 (en) * 2010-05-18 2014-05-27 National Health Research Institutes Solid phase gold nanoparticle synthesis
US20130242297A1 (en) * 2010-08-24 2013-09-19 Singapore Health Services Pte Ltd Substrate for optical sensing by surface enhanced raman spectroscopy (sers) and methods for forming the same
KR101572228B1 (ko) * 2011-03-08 2015-11-26 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 나노 갭 길이를 가지는 전극 구조의 제작 방법 및 그것에 의해 얻어지는 나노 갭 길이를 가지는 전극 구조, 및 나노 디바이스
JPWO2013094477A1 (ja) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 透明導電膜、透明導電膜付き基材及びその製造方法
KR101350704B1 (ko) * 2011-12-26 2014-01-15 한국표준과학연구원 이온빔을 이용한 일차원 또는 이차원 나노 구조물의 무운동 굽힘 방법
US20130327392A1 (en) 2012-06-07 2013-12-12 California Institute Of Technology Chemically Linked Colloidal Crystals and Methods Related Thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098074B1 (ko) * 2009-04-22 2011-12-26 이화여자대학교 산학협력단 금속산화물 나노입자와 촉매를 이용한 수소센서 및 그 제조방법
KR20100119100A (ko) * 2009-04-30 2010-11-09 주식회사 아모그린텍 금속산화물 나노입자를 이용한 가스센서 및 그 제조방법
KR20120124121A (ko) * 2011-05-03 2012-11-13 인하대학교 산학협력단 화학 나노센서의 제조방법
US20120282721A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Method for forming Chalcogenide Semiconductor Film and Photovoltaic Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067194A (ko) * 2020-11-17 2022-05-24 한국화학연구원 수소 가스 센서
WO2022108428A1 (ko) * 2020-11-17 2022-05-27 한국화학연구원 수소 가스 센서
WO2022211555A1 (ko) * 2021-03-31 2022-10-06 한국화학연구원 랩핑형 가스 센서

Also Published As

Publication number Publication date
US20150177138A1 (en) 2015-06-25
KR102192973B1 (ko) 2020-12-18
EP2886204B1 (en) 2019-04-24
US9625381B2 (en) 2017-04-18
TW201534923A (zh) 2015-09-16
CN104729997A (zh) 2015-06-24
EP2886204A1 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
KR102192973B1 (ko) 나노 구조체를 갖는 센서 및 그 제조 방법
KR20150072292A (ko) 플렉시블 기반 나노 구조체를 갖는 센서 및 그 제조 방법
US9768401B2 (en) Single electron transistor
US9748507B2 (en) Single electron transistor having nanoparticles of uniform pattern arrangement
KR20150072291A (ko) 플렉시블 기반 나노 구조체 제조방법
CN104724669A (zh) 架构包含介电粒子支撑体的可挠性纳米结构的方法
CN104724665A (zh) 包含介电粒子支撑层的可挠性纳米结构
KR20150072287A (ko) 플렉시블 기반 나노 구조체
KR20150072304A (ko) 나노 구조체 제조방법
KR20150072289A (ko) 플렉시블 기반 나노 구조체 제조방법
KR20150072303A (ko) 나노 구조체 제조방법
KR20150072302A (ko) 나노 구조체 제조방법
KR20150072282A (ko) 플렉시블 기반 나노 구조체 제조방법
KR20150072295A (ko) 나노 구조체
KR20150072285A (ko) 절연물 입자 지지체를 갖는 나노 구조체
KR20150072284A (ko) 플렉시블 기반 절연물 입자 지지체를 갖는 나노 구조체 제조방법
KR20150072300A (ko) 절연물 입자 지지체 상에 결합된 나노입자를 갖는 나노 구조체
KR20150072277A (ko) 플렉시블 기반 나노 구조체
KR20150072301A (ko) 플렉시블 기반 절연물 입자 지지체를 갖는 나노 구조체
KR20150072299A (ko) 절연물 입자 지지체를 갖는 나노 구조체 제조방법
KR20150072296A (ko) 플렉시블 기반 절연물 입자 지지체를 갖는 나노 구조체 제조방법
KR20150072307A (ko) 플렉시블 기반 절연물 입자 지지체를 갖는 나노 구조체
KR20150072293A (ko) 절연물 입자 지지체를 갖는 나노 구조체
KR20150072305A (ko) 절연물 입자 지지체를 갖는 나노 구조체 제조방법
KR20150072306A (ko) 절연물 입자 지지체를 갖는 나노 구조체

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant