WO2022211059A1 - マイクロニードル構造体及びその製造方法 - Google Patents

マイクロニードル構造体及びその製造方法 Download PDF

Info

Publication number
WO2022211059A1
WO2022211059A1 PCT/JP2022/016676 JP2022016676W WO2022211059A1 WO 2022211059 A1 WO2022211059 A1 WO 2022211059A1 JP 2022016676 W JP2022016676 W JP 2022016676W WO 2022211059 A1 WO2022211059 A1 WO 2022211059A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
needle
melting point
resin
microneedle structure
Prior art date
Application number
PCT/JP2022/016676
Other languages
English (en)
French (fr)
Inventor
洋佑 高麗
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202280019111.XA priority Critical patent/CN117083099A/zh
Priority to US18/553,432 priority patent/US20240180465A1/en
Priority to KR1020237026977A priority patent/KR20230163361A/ko
Priority to DE112022001933.6T priority patent/DE112022001933T5/de
Priority to JP2023511730A priority patent/JPWO2022211059A1/ja
Publication of WO2022211059A1 publication Critical patent/WO2022211059A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150969Low-profile devices which resemble patches or plasters, e.g. also allowing collection of blood samples for testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150977Arrays of piercing elements for simultaneous piercing
    • A61B5/150984Microneedles or microblades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/685Microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0061Methods for using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production

Definitions

  • the present invention relates to a microneedle structure and its manufacturing method.
  • Patent Document 1 discloses a microneedle comprising a microneedle-shaped biocompatible matrix and porous particles provided on or at least partially within the biocompatible matrix.
  • the protrusion is not provided with a hole, and has porous particles containing a drug or the like inside or on the surface of the protrusion.
  • the base material has a wide range of selection in consideration of the flow path of the body fluid that has flowed in from the needle-like portion.
  • the bonding means must be one that does not cause problems with the base material when various base materials are used.
  • An object of the present invention is to provide a microneedle structure with a high degree of freedom of selection and a method for manufacturing the microneedle structure.
  • the first aspect of the present invention is a microneedle structure
  • the microneedle structure includes a needle-like portion on one side of a base material, and the base material has a thickness of The substrate is permeable to liquid in all directions, and the needle-like portion is made of a composition containing a low-melting-point resin having a melting point of 150° C. or less, and holes are formed on the surface and inside of the needle-like portion.
  • the needle-like portion is made of a composition containing a low-melting-point resin whose melting point is 150° C. or less, so that it is necessary to heat the needle-like portion at a high temperature when forming the needle-like portion. It is low cost and has good workability, and even if the resin is adhered to the base material in a molten state, the base material is not softened, deformed, or burned, and is adhered to the needle-like part. It is possible to reduce the influence received and increase the degree of freedom in selecting the base material.
  • the needle-like portion has a porous structure (invention 2).
  • the low melting point resin is preferably a water-insoluble resin (invention 3).
  • the low melting point resin is preferably a biodegradable resin (Invention 4).
  • the biodegradable resin has a monomer acid dissociation constant of 4 or more (invention 5).
  • the low melting point resin is preferably polycaprolactone or a copolymer of caprolactone and other monomers (Invention 6).
  • the substrate is preferably a porous substrate (Invention 8).
  • the porous substrate preferably contains a water-insoluble material (invention 9).
  • the water-insoluble material is a low-melting resin having a melting point of 150°C or less (invention 10).
  • the second aspect of the present invention is a microneedle structure comprising a needle-like portion having a hole formed therein and a substrate having the needle-like portion on one side.
  • a method for manufacturing a body characterized by comprising a bonding step of heating a composition containing a low melting point resin having a melting point of 150° C. or less and bonding the heated low melting point resin and the substrate.
  • a method for producing a microneedle structure that does (Invention 11).
  • the low melting point resin having a melting point of 150° C. or less is heated, and the heated low melting point resin and the base material are adhered to each other.
  • the base material does not soften, deform, or burn, and the influence of adhesion to the needle-like part is reduced. It is possible to increase the degree of freedom in selecting the base material.
  • the third aspect of the present invention is a microneedle structure comprising a needle-like portion having a hole formed therein and a base material having the needle-like portion on one side.
  • a microneedle manufacturing method comprising a forming step of heating a composition containing a low melting point resin having a melting point of 150 ° C. or less and forming protrusions on the base material with the composition.
  • a method for manufacturing a structure is provided (Invention 12).
  • a composition containing a low melting point resin having a melting point of 150° C. or less is heated to form projections on a substrate using the composition.
  • the resin is heated in a state of being adhered to the base material, it is not heated to a high temperature, so the base material does not soften, deform, or burn. It is possible to increase the degree of freedom in
  • the low-melting resin is a water-insoluble low-melting resin
  • the composition contains the water-insoluble low-melting resin and a water-soluble material.
  • a removing step of removing the water-soluble material of the protrusions formed from the composition with water to form holes in the protrusions Invention 13).
  • the melting point of the water-soluble material is preferably 150°C or less (invention 14).
  • a composition containing the low melting point resin is applied to a mold having a recess, and the composition is heated to the melting point of the low melting point resin or higher to fill the recess. It is preferable to carry out the process (Invention 15).
  • FIG. 1 is a schematic partial cross-sectional view of a microneedle structure of the present invention
  • FIG. 1 is a cross-sectional view of a test patch using the microneedle structure of the present invention
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the microneedle structure concerning 1st embodiment. It is explanatory drawing which shows the procedure of the manufacturing method of the microneedle structure concerning 2nd embodiment. It is explanatory drawing which shows the procedure of the manufacturing method of the microneedle structure concerning 2nd embodiment.
  • FIG. 1 shows a microneedle structure 10 according to one embodiment of the invention.
  • the microneedle structure 10 includes a plurality of needle-like portions 12 spaced apart from each other at predetermined intervals on one side of a substrate 11 .
  • a plurality of holes 13 are formed in each needle-like portion 12 .
  • the microneedle structure 10 absorbs bodily fluid from the skin through the hole 13 of the needle-shaped portion 12 with the substrate 11, and a test patch for testing using the obtained bodily fluid, or a needle-like structure from the substrate 11. It can be used as a drug administration patch for administering a drug into the body through the skin through the hole 13 of the portion 12 .
  • body fluid includes blood, lymph, interstitial fluid, and the like.
  • Needle-like portion The shape, size, forming pitch, and number of forming needle-like portions 12 can be appropriately selected depending on the intended use of the microneedles.
  • Examples of the shape of the needle-like portion 12 include columnar, prismatic, conical, and pyramidal shapes, and in this embodiment, it is pyramidal.
  • the maximum diameter or maximum cross-sectional dimension of the needle-like portion 12 is, for example, 25 to 1000 ⁇ m, and the tip diameter or cross-sectional dimension of the tip is 1 to 100 ⁇ m.
  • the height is, for example, 50 to 2000 ⁇ m.
  • the needle-like portions 12 are arranged in a plurality of rows in one direction of the substrate 11, and arranged in a matrix by forming a plurality of needle-like portions 12 in each row.
  • the needle-like portion 12 is made of a low-melting resin with a melting point of 150°C or less.
  • a low-melting-point resin a material that is solid at room temperature and has a melting point of 150°C or less is preferable, a material with a melting point of 40-130°C is particularly preferable, and a material with a melting point of 45-100°C is most preferable. . Since it is solid at room temperature, it is possible to maintain the shape of the needle-like portion 12 at room temperature, and if it has a melting point of 150° C. or less, there is no need to heat it at a high temperature, which results in low cost and good workability.
  • the base material does not soften, deform, or burn.
  • the degree of freedom in selecting 11 is high. If the melting point is 130° C. or less, for example, even when a non-woven fabric made of a material such as a synthetic fiber having a low heat resistance temperature is used as the base material 11, deterioration of the base material 11 due to softening of the synthetic fiber can be prevented. . Further, if the melting point is 100° C. or less, it becomes easy to suppress rapid evaporation of the solvent while heating the liquid composition to a temperature equal to or higher than the temperature of the water-insoluble resin in the later-described vibration step.
  • Such a low melting point resin is preferably a water-insoluble low melting point resin.
  • a water-insoluble low melting point resin By being water-insoluble, when applied to a living body, it is not dissolved by body fluids, and it is possible to maintain the shape of the microneedle structure 10 for a desired application time. can easily form a minute hole 13 in the projection.
  • the needle-like portion 12 is made of a first water-insoluble material containing a water-insoluble low melting point resin.
  • water-insoluble low-melting resins other than biodegradable resins described later include polyethylene, polyolefin resins such as ⁇ -olefin copolymers, olefin copolymer resins such as ethylene-vinyl acetate copolymer resins, and polyurethane elastomers. , ethylene-ethyl acrylate copolymer and other acrylic copolymer resins.
  • a low-melting biodegradable resin is preferable.
  • Aliphatic polyesters and derivatives thereof are preferably used as such biodegradable resins, and homocopolymers of at least one monomer selected from the group consisting of glycolic acid, lactic acid and caprolactone, or Examples thereof include copolymers composed of two or more monomers.
  • polybutylene succinate melting point: 84 to 115° C.
  • aliphatic aromatic copolyester melting point: 110 to 120° C.
  • examples of butylene succinate include BioPBS provided by Mitsubishi Chemical Corporation, and examples of aliphatic-aromatic copolyester include Ecoflex manufactured by BASF.
  • the low melting point biodegradable resin is preferably a resin whose monomer has an acid dissociation constant of 4 or more.
  • the acid dissociation constant of the monomer is 4 or more, the effect on the living body when the microneedle structure of the present invention is applied to the living body can be reduced.
  • the acid dissociation constant of the monomer is preferably 4.0 or higher, more preferably 4.5 or higher.
  • the acid dissociation constant of the monomer is preferably 25 or less, more preferably 15 or less.
  • a monomer constituting such a biodegradable resin and having an acid dissociation constant of 4 or more includes caprolactone.
  • the constituent units from which the derived monomer has an acid dissociation constant of 4 or more preferably account for 70% by mass or more, more preferably 80% by mass or more, of all the constituent units. More preferably, it is 90% by mass or more.
  • the low melting point resin is a polycaprolactone or a copolymer of caprolactone and another polymer, which is a water-insoluble and biodegradable resin and whose monomer has an acid dissociation constant of 4 or more. be done.
  • the molecular weight of the water-insoluble resin is generally 5,000-300,000, preferably 7,000-200,000, more preferably 8,000-150,000.
  • the needle-like portion 12 is made of a low-melting resin, but the needle-like portion 12 may contain a resin other than the low-melting resin.
  • the ratio of the low melting point resin to the total mass of the resin components contained in the needle-shaped portion 12 is 50% by mass or more from the viewpoint of efficiently obtaining the effect that the resin can be processed at low temperatures. is preferably 65% by mass or more, and even more preferably 80% by mass or more.
  • the needle-like portion 12 may further contain a high-melting point resin having a melting point exceeding 150° C. within a range that does not impede the effect of being able to process the resin at a low temperature. (melting point: 218°C), polylactic acid (melting point: 170°C), polyhydroxybutyric acid (melting point: 175°C), and other biodegradable resins.
  • a hole 13 is formed on the surface and inside of each needle-like portion 12 .
  • the hole portion 13 may be formed in any way, it is preferable that the needle-like portion 12 has a porous structure as in the present embodiment. If the needle-like portion 12 is formed so that at least a part thereof has a porous structure, body fluids or chemical fluids can pass through the pores 13 of the porous structure, so it is not necessary to mechanically form nano-order flow paths. preferred without In addition, since body fluids or medicinal fluids can flow through all the channels in the portion of the needle-shaped portion 12 where the porous structure is formed, the amount of flow is greater than when a simple single communicating hole is formed.
  • the needle-like portion 12 when forming the needle-like portion 12 so that at least a portion thereof has a porous structure in this way, if the porous structure is not covered on part or all of the side surface of the needle-like portion, the needle-like portion 12 A hole 13 is also opened on the side surface of the . In this case, the flow rate of the liquid can be increased as compared with the case where only the distal end portion of the needle-like portion 12 is opened.
  • the hole 13 is formed by removing the first water-soluble material in a removing step, which will be described later, to form a void.
  • the pores 13 are formed by removing the first water-soluble material to form a plurality of voids that communicate with each other. Some of the holes 13 extend to the substrate 11 side.
  • the size of the opening of the hole 13 is determined by the application such as a test patch using the microneedle structure 10, but from the viewpoint of facilitating the passage of liquid, the size of the opening is 0.1 to 50. It is preferably 0.0 ⁇ m, more preferably 0.5 to 25.0 ⁇ m, even more preferably 1.0 to 10.0 ⁇ m.
  • the base material 11 has liquid permeability in the thickness direction, and a plurality of voids communicate with each other, so that from one surface (the surface on which the needle-like portion 12 is provided) A porous base material having minute base material holes penetrating through the rear surface (the surface opposite to the surface on which the needle-like portion 12 is provided) may be used.
  • a low melting point resin is used as the resin forming the needle-like portion 12
  • various base materials can be selected as the base material 11 depending on the application.
  • the base material 11 may be plate-like, but a sheet-like one with high conformability to the skin is preferable.
  • the base material 11 it is preferable to use a base material made of a fibrous material that is easy to handle.
  • the fibrous substance in the present invention means fibers such as natural fibers and chemical fibers. Substrates made of fibrous substances include nonwoven fabrics, woven fabrics, knitted fabrics, papers, and the like made of these fibers.
  • resin films, metal foils, and the like can also be used as the substrate 11, and resin films are preferable from the viewpoint of flexibility and the like.
  • resin films are preferable from the viewpoint of flexibility and the like.
  • a low-melting resin is used as the resin forming the needle-like portion 12
  • polybutylene terephthalate, polyethylene terephthalate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, vinyl chloride, acrylic resin, polyurethane, poly Lactic acid or the like can be used.
  • a film containing such a resin it is easy to obtain a substrate 11 with high flexibility.
  • resin film it is preferable to provide a through-hole in the resin film so that the fluid can pass through the front and back.
  • the shape of the through-hole is not particularly limited, but a structure in which a plurality of small-diameter through-holes are provided is preferable from the viewpoint of ensuring a sufficient flow rate while causing capillary action.
  • the diameter of the through-hole is, for example, 2 mm or less, preferably 0.05 to 1 mm, more preferably 0.1 to 0.8 mm.
  • the method of forming the through holes is not particularly limited, and can be formed by, for example, punching or laser perforation.
  • the base material 11 may have a structure in which a plurality of layers are laminated.
  • the substrate 11 may be a laminate of a first layer of nonwoven fabric and a second layer of paper.
  • first layer or the second layer may be used as the lamination surface with the needle-like portion 12 .
  • three or more layers may be laminated depending on the application.
  • the substrate hole of the substrate 11 communicates with the hole 13 of the needle-like portion 12 to form a communication hole.
  • the shape of the substrate hole is determined by the material of the substrate 11 .
  • the base material 11 preferably has a porosity of 1 to 70% due to the base material pores, more preferably 5 to 50%, and particularly preferably 10 to 30%. When the porosity is within this range, the bodily fluid absorbed by the needle-like portion 12 can be sufficiently absorbed.
  • the needle-like portion 12 is directly adhered to one surface side of the base material 11 as will be described later.
  • the base material 11 and the needle-like portion 12 are adhered by an adhesive layer or the like, a gap is generated between the base material 11 and the needle-like portion 12, and liquid leaks out.
  • the direct bonding of the base material 11 and the needle-like portion 12 allows the channels of the two to be connected. is easy.
  • the first water-insoluble material that constitutes the needle-like portion 12 is a low-melting-point resin, there is no need to heat the base material 11 and the needle-like portion 12 at a high temperature.
  • the cost and workability are good, and there is no risk of softening, deformation, or burning of the base material 11, so the degree of freedom in selecting the base material 11 is high.
  • the base material curls due to heat, and when a nonwoven fabric made of a resin material with a low softening point such as polyester nonwoven fabric is used, the base material is softened due to heat. Material deterioration and the like are suppressed.
  • the first water-insoluble material is present even in the portion where the needle-like portion 12 is not formed on one surface of the substrate 11, and is in a state of adhering to the substrate 11, so that the one surface of the substrate 11
  • the entire side is formed with a base, which serves as a base for the individual needles 12 and which, like the individual needles 12, has a hole.
  • the base is made of the same material as the needle-like portion 12, or is formed by the same process, so that the needle-like portion 12 and the base material 11 form the base. It is preferable because good adhesiveness can be obtained through the film.
  • the first water-insoluble material is also present in the portion where the needle-like portion 12 is not formed, and is in a state of being attached to the base material 11, so that the strength of the microneedle structure 10 as a whole is further improved. . Moreover, the adhesiveness between the needle-like portion 12 and the base material 11 can be improved by increasing the area where the needle-like portion 12 adheres to the base material 11 . From the viewpoint of making the base material 11 permeable to liquid, the base material 11 contains a second water-insoluble material (a water-insoluble material), which will be described later in detail, and maintains the base material pores. preferable.
  • a second water-insoluble material a water-insoluble material
  • the microneedle structure 10 is preferably used for a test patch 20 that absorbs body fluid from within the skin through the needle-shaped portion 12 and performs a test using the obtained body fluid.
  • the test patch 20 has a microneedle structure 10, and has an analysis sheet 21 and a tape 22 on the back side of the base material 11 thereof.
  • the microneedle structure 10 can also be used as a drug administration patch for administering a drug from the base material 11 through the needle-like portion 12 into the body through the skin.
  • a physiologically active substance-containing sheet is provided on the back side of the substrate 11 of the microneedle structure 10, and the physiologically active substance from the physiologically active substance-containing sheet enters the skin via the substrate 11 and the needle-like portion 12.
  • the drug delivery patch is constructed so that it can be administered to the
  • the analysis sheet 21 is for analyzing body fluids such as subcutaneous blood and interstitial fluid for examination, and is installed on the back side of the base material 11 .
  • body fluids such as subcutaneous blood and interstitial fluid for examination
  • the analysis sheet 21 can be appropriately selected according to the desired inspection contents, and can be formed by incorporating a component as an analysis means into a base material such as paper.
  • a glucose measuring paper that changes color according to the glucose concentration in the body fluid.
  • the analysis sheet 21 absorbs the interstitial fluid sampled by the microneedle structure 10 and changes color, and the blood glucose level is measured over time based on the degree of this color change. It can be used as a test patch 20 for value measurement.
  • the tape 22 is made of a material having biosafety, and is preferably made of a material having flexibility, elasticity, and shrinkage in consideration of the ability to follow the skin when it is applied, but is limited to such materials. not a thing
  • a preferred material for the tape 22 is a stretchable woven fabric, and conventionally known materials can be used.
  • FIG. 3 shows a method of manufacturing a microneedle structure 10 according to one embodiment of the present invention.
  • a liquid composition 3 is filled into a mold 2 having a plurality of recesses 1 (filling step).
  • the recess 1 is filled with the filled liquid composition 3 .
  • the material of the mold 2 is not particularly limited. Composed of siloxane.
  • the mold 2 is provided with a wall portion (not shown) at its peripheral portion, and the liquid composition 3 injected into the concave portion 1 in this wall portion can be stored in the mold 2 .
  • the concave portion 1 provided in the mold 2 is for forming the needle-like portion 12 shown in FIG. 1, and is configured to form the needle-like portion 12 having a desired shape.
  • a plurality of recesses 1 are provided at predetermined positions in a plurality of rows at intervals.
  • the liquid composition 3 includes the first water-insoluble material (schematically indicated by light gray circles in FIG. 3(a)) and the first water-soluble material (shown in FIG. 3(a)) that is soluble in water. (schematically indicated by dark gray circles) and a solvent.
  • each material is schematically shown in the form of particles, showing a state in which they are dispersed in a solvent.
  • At least one of the first water-insoluble material and the first water-soluble material may be dissolved in the solvent in the liquid composition 3, and from the viewpoint of facilitating the formation of a porous structure in the needle-like portion 12, Preferably, at least the first water-insoluble material is dissolved.
  • the liquid composition 3 preferably has a viscosity of 0.1 to 1000 mPa ⁇ s, more preferably 0.5 to 100 mPa ⁇ s, and particularly preferably 1.0 to 10 mPa ⁇ s. Within this range, the liquid composition 3 can be injected into the mold 2 with good workability, and the filling of the composition into the concave portions 1 in the filling step is also good, so that the desired needle-like portions 12 can be formed.
  • a water-soluble material with a melting point higher than room temperature is preferable as the first water-soluble material.
  • the water-soluble material may be organic or inorganic, and includes sodium chloride, potassium chloride, mirabilite, sodium carbonate, potassium nitrate, alum, sugar, water-soluble resin, and the like. Among these, water-soluble resins are preferred.
  • a water-soluble thermoplastic resin is preferable, and the water-soluble thermoplastic resin is more preferably a biodegradable resin in consideration of the effects on the human body.
  • Such biodegradable resins include at least one selected from the group consisting of polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyvinyl alcohol, collagen, and mixtures thereof, with polyethylene glycol being particularly preferred.
  • the molecular weight of polyethylene glycol is, for example, preferably 200 to 4,000,000, more preferably 600 to 500,000, particularly preferably 1,000 to 100,000.
  • the water-soluble resin is preferably a water-soluble resin having a melting point of 150°C or less, more preferably a water-soluble resin having a melting point of 30 to 130°C, still more preferably 35 to 100°C. . Since the melting point is 150° C. or less, there is no need to heat at a high temperature, the base material 11 is not damaged in adhesion to the base material 11, and the degree of freedom in selecting the base material 11 is high. Further, if the melting point is 130° C. or less, softening or the like of synthetic fibers due to heating can be prevented even when a nonwoven fabric made of synthetic fibers or the like is used as the base material 11 . Further, if the melting point is 100° C.
  • first water-soluble materials include polyethylene glycol, polyvinylpyrrolidone, and the like.
  • the melting point of the first water-insoluble material and the melting point of the first water-soluble material are adjusted so that both the first water-insoluble material and the first water-soluble material can be easily melted at the same heating temperature.
  • the difference in melting point is preferably 40°C or less, more preferably 30°C or less.
  • the first water-insoluble material and the first water-soluble material are preferably mixed at a weight ratio of 9:1 to 1:9, more preferably 8:2 to 2:8, and 7: A mixture of 3 to 3:7 is particularly preferred.
  • the needle-like portion 12 having a desired porosity is formed, and it becomes easy to achieve both liquid permeability and strength of the needle-like portion 12 .
  • the liquid composition 3 contains a solvent in order to be liquid while containing each material.
  • the solvent may be water or an organic solvent, but when the first water-insoluble material is to be dissolved, the liquid composition 3 preferably contains an organic solvent.
  • the organic solvent may be any organic solvent that can dissolve or disperse the first water-insoluble material and the first water-soluble material described above, for example, aliphatic hydrocarbons such as hexane, heptane, and cyclohexane, toluene, xylene, and the like.
  • aromatic hydrocarbons methylene chloride, halogenated hydrocarbons such as ethylene chloride, alcohols such as methanol, ethanol, propanol, butanol, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, 2-pentanone, isophorone, cyclohexanone, etc.
  • Ketones, esters such as ethyl acetate and butyl acetate, and cellosolve solvents such as ethyl cellosolve are used.
  • the total content of the first water-insoluble material and the second water-insoluble material in all components of the liquid composition 3 is preferably 40% or less, more preferably 35% or less, based on mass, and 30 % or less is particularly preferable.
  • the liquid composition 3 can be formed with a desired viscosity that facilitates the production of the needle-shaped portion 12 of the microneedle structure 10. As a result, it is possible to form the needle-like portion 12 in a desired shape.
  • the liquid composition 3 contains the first water-soluble material and the first water-insoluble material, but is not limited as long as it contains a low-melting resin.
  • the liquid composition 3 may contain only the first water-insoluble material (low melting point resin).
  • the liquid composition 3 may contain materials other than the first water-soluble material and the low melting point resin as non-volatile solids.
  • the water-insoluble material may contain a water-insoluble resin other than the low melting point resin, or a component other than the resin, such as silica filler.
  • the content of the low-melting resin in the entire water-insoluble component is preferably 60% by mass or more, more preferably 75% by mass or more, and even more preferably 90% by mass or more.
  • the liquid composition 3 when using the liquid composition 3 in which each material is dispersed in a solvent, the liquid composition 3 may further include a dispersant.
  • the mold 2 is preferably placed in an ultrasonic cleaning apparatus and ultrasonically vibrated.
  • the means for applying vibration is not limited to an ultrasonic cleaning apparatus as long as it can apply fine vibration to the mold 2 .
  • filling of the recess 1 with the liquid composition 3 is promoted as shown in FIG. is filled to every corner in the recess 1 .
  • the needle-like portion 12 can be formed without defects due to air bubbles and having high transferability according to the shape of the concave portion 1, and the strength of the needle-like portion 12 is improved.
  • Heating may be performed at the same time as performing the ultrasonic treatment as the vibration step. It is preferable to heat above the melting point of the first water-insoluble material (low melting point resin) contained in 3. By heating at this temperature, surface solidification of the liquid composition 3 is suppressed, evaporation and drying of the solvent are promoted, and the first water-insoluble material and the first water-soluble material in the liquid composition 3 enter the recesses 1. filling is facilitated.
  • the low-melting resin is polycaprolactone with a melting point of 60° C.
  • heating the liquid composition 3 at 60° C. or higher further accelerates the evaporation and drying of the solvent, resulting in the first water-insoluble material and the second water-insoluble material.
  • the filling of the concave portion 1 with the water-soluble material is further promoted.
  • the vibration step it is also preferable to heat the first water-soluble material contained in the liquid composition 3 above the melting point.
  • the frequency in the vibration process is preferably 10-200 kHz, more preferably 20-150 kHz, and particularly preferably 30-80 kHz.
  • the time for ultrasonic treatment is preferably 0.5 to 10 minutes, more preferably 2 to 7 minutes.
  • a deaeration step is preferably performed after the vibration step.
  • the air contained in the recesses 1 can be degassed, further promoting the filling of the recesses 1 with the first water-insoluble material and the first water-soluble material and promoting the evaporation and drying of the solvent. can do.
  • the degassing step is preferably carried out at 0.01 to 0.05 MPa and 20 to 25° C. when ethyl acetate is used as a solvent, for example, as in Examples described later.
  • Heating process After that, it is preferable to perform a heating step of heating the mold 2 .
  • the evaporation and drying of the solvent are further accelerated, and the first water-insoluble material is heated to start softening and deformation, and the filling of the first water-insoluble material into the concave portion 1 is completed. Promoted.
  • the heating temperature is 40° C. or higher and has a small effect on the substrate 11 from the viewpoint of promoting the evaporation of the solvent and improving the adhesiveness between the first water-insoluble material (low melting point resin) and the substrate 11. It is preferable to heat at least at °C or less.
  • the heating temperature is more preferably 45 to 140.degree. C., still more preferably 50 to 100.degree.
  • the melting point of the first water-insoluble material it is preferable to heat at a temperature higher than the melting point of the low-melting resin and at a temperature higher than the melting point of the low-melting resin by 30°C, more preferably at a temperature higher than the melting point of the low-melting resin, It is heating at a temperature not higher than 20° C. higher than the melting point of the low-melting resin.
  • the temperature of the heating process can be set low by using a low-melting resin having a low melting point.
  • the first water-insoluble material when it is important to heat at a lower temperature, the first water-insoluble material may be heated at a temperature at which it starts to soften even if it does not melt as described above. Considering the filling property of the first water-insoluble material into the container, etc., it is preferable to heat above the melting point of the low-melting resin at which the first water-insoluble material starts to melt as described above. Further, when the first water-soluble material is also a resin having a melting point of 150° C. or less, the liquid composition 3 is further heated to a temperature equal to or higher than the melting point of the first water-soluble material and 30° C. or lower than the melting point of the first water-soluble material.
  • the heating temperature is more preferably not less than the melting point of the first water-soluble material and not more than 20° C. higher than the melting point of the first water-soluble material. Note that even if the first water-soluble material is a resin having a melting point exceeding 150° C., this embodiment can be applied. Moreover, in the present embodiment, the heating process is performed after the degassing process, but the heating process may be performed first.
  • the first water-insoluble material and the first water-soluble material contained in the liquid composition 3 stay in the mold 2 in a melted state. That is, as shown in FIG. 3(d), the recesses 1 in the mold 2 are sufficiently filled with the first water-insoluble material and the first water-soluble material. Since the first water-insoluble material and the first water-soluble material are sufficiently filled into the concave portion 1 by the vibration step, the degassing step and/or the heating step, in the present embodiment, there is no defect due to air bubbles.
  • the needle-like portion 12 can have a desired shape with high transferability sufficiently corresponding to the shape of the concave portion 1, the strength thereof is high, and the adhesiveness between the needle-like portion 12 and the base material 11 is also good.
  • the first water-insoluble material and the first water-soluble material overflow from the recess 1 and remain on the surface of the mold 2 on which the recess 1 is formed, the first water-insoluble material and the first water-soluble material It is a state in which the solvent is substantially free of the solvent.
  • the forming step of forming the protrusions 5 is performed by the filling step, followed by the vibrating step, the degassing step, and the heating step.
  • the base is made of the same material as the needle-like portion 12 and is formed by the same process. It is preferable because good adhesion can be obtained through As a result, the substrate 11 is reinforced as a whole surface, and the adhesiveness between the protrusions 5 (needle-shaped portions 12) and the substrate 11 is improved.
  • the sheet 4 is obtained by adding a second water-soluble material that is soluble in water and a second water-insoluble material that is insoluble in water to the base material 11 described above. Since the sheet 4 contains the second water-insoluble material and the second water-soluble material in this manner, absorption of the melted composition in the recesses 1 by the base material 11 can be suppressed. As a result, even if the microneedle structure 10 includes the base material 11 and is formed using the liquid composition 3, excessive voids are not formed particularly in the base portion of the protrusion 5, so that the needle-like portion 12 is formed. Prevents it from collapsing. Therefore, the needle-like portion 12 having a shape suitable for adhesion to the substrate 11 can be formed, and the microneedle structure 10 with good adhesion between the needle-like portion 12 and the substrate 11 can be manufactured. .
  • the sheet 4 contains not only the second water-soluble material but also the second water-insoluble material
  • the molten low-melting resin in the recesses 1 is heat-fused to the second water-insoluble material contained in the sheet 4.
  • the adhesiveness between the sheet 4 and the projections 5 is further improved by the adhesion.
  • the second water-insoluble material is also preferably a low-melting resin having a melting point of 150° C. or less, more preferably a melting point of 40 to 130° C. It is more preferably up to 100°C.
  • the low-melting-point resin the same low-melting-point resin as the first water-insoluble material can be used.
  • the second water-insoluble material is a resin, it is easy to impregnate the porous base material 11 .
  • the second water-soluble material As the second water-soluble material, those listed for the first water-soluble material can be used, but the second water-soluble material is preferably the same as the first water-soluble material. Since the second water-soluble material and the first water-soluble material are the same, it becomes easy to remove the second water-soluble material and the first water-soluble material in the subsequent removal step, and the desired hole of the needle-like portion 12 can be obtained. A portion 13 can be formed.
  • the second water-soluble material is also preferably a resin having a melting point of 150°C or less, more preferably 30 to 130°C, even more preferably 35 to 100°C. .
  • the second water-insoluble material those listed for the first water-insoluble material can be used, but it is preferable that the second water-insoluble material is the same as the first water-insoluble material. Since the second water-insoluble material and the first water-insoluble material are the same, the heat-sealing between the second water-insoluble material and the first water-insoluble material is facilitated, and the adhesion between the protrusions 5 and the sheet 4 is improved. increases.
  • the second water-soluble material and the second water-insoluble material may be contained in the sheet 4 in any way, but the sheet 4 is adhered to the protrusions 5 (needle-like portions 12) of the base material 11. At least the second water-soluble material may be contained so as not to absorb the first water-insoluble material and the first water-soluble material in the concave portion 1 from the surface side. That is, the sheet 4 contains at least the second water-soluble material, and the second water-soluble material blocks at least a part of the substrate pores of the porous substrate 11, thereby forming the first water-insoluble material and the second water-soluble material. (1) It is preferable to be configured so that absorption with a water-soluble material can be suppressed.
  • a layer containing a second water-soluble material and a second water-insoluble material may be laminated on the surface of the base material 11 to which the protrusions 5 are adhered.
  • the substrate 11 is impregnated with the second water-soluble material and the second water-insoluble material by immersing the substrate 11 in a solution containing the second water-soluble material and the second water-insoluble material.
  • a solution containing the second water-soluble material and the second insoluble material may be applied to the porous substrate 11 by an inkjet method or the like.
  • the solution comprising the second water-soluble material and the second water-insoluble material impregnated into the porous substrate 11 is dried to remove the second water-soluble material and the second water-insoluble material from the substrate pores of the substrate 11. Remaining in the part is a simple means of impregnation and is preferable.
  • the solution may further contain a solvent in addition to the second water-soluble material and the second water-insoluble material.
  • the total content concentration of the second water-soluble material and the second water-insoluble material in all components of the solution is preferably 1 to 35%, more preferably 3 to 30%, and more preferably 5 to 25%. It is particularly preferred to have The solution preferably contains the second water-soluble material and the second water-insoluble material in a weight ratio of 9:1 to 1:9. Within this range, it becomes easier to obtain the effect of restoring the substrate hole of the substrate 11 by removing the material in the removal step described later, and the adhesiveness between the substrate 11 and the needle-like portion 12. is easy to increase.
  • the base material 11 When the base material 11 is immersed in the solution containing the second water-soluble material and the second water-insoluble material, for example, the base material 11 is immersed in the solution at 10 to 60° C. for 1 to 60 minutes, and then the solvent is volatilized. By drying, the substrate 11 can be impregnated with the second water-soluble material and the second water-insoluble material.
  • the base material 11 when the base material 11 is composed of a fibrous material, it is possible to easily absorb and impregnate the second water-soluble material and the second water-insoluble material by immersing it in the solution. .
  • the sheet 4 is configured to contain the second water-insoluble material in the present embodiment, it is not limited to this. Even if the sheet 4 does not contain the second water-insoluble material, since the mold 2 is heated, the first water-insoluble material and the first water-soluble material in the recesses 1 are in a molten state, and the sheet 4 is When placed, the protrusions 5 made of the first water-insoluble material and the first water-soluble material melted in the recesses 1 adhere to the surface of the placed sheet 4 .
  • a pressurizing step is performed to apply pressure to the sheet 4.
  • a pressurizing method is not particularly limited, and a known method can be used.
  • the adhesiveness can be further improved by performing the heating step at the same time. From the viewpoint of improving the adhesion of the first water-insoluble material to the substrate 11, it is preferable to heat at 40° C. or higher and 180° C. or lower, which has little effect on the substrate. It is more preferable to heat at 45 to 140° C. at which good adhesion is achieved. Furthermore, it is more preferable to heat at 50 to 100° C. at which the first water-insoluble material starts to melt.
  • the melting point of the first water-insoluble material it is preferable to heat at a temperature higher than the melting point of the low-melting resin and at a temperature higher than the melting point of the low-melting resin by 30°C, more preferably at a temperature higher than the melting point of the low-melting resin, The temperature is not higher than 20° C. higher than the melting point of the low-melting resin.
  • the use of a low-melting-point resin makes it possible to set a low heating temperature during pressurization. Therefore, the cost is low, the workability is good, and there is no possibility that the base material 11 is softened or deformed in the heating process.
  • the heating is performed at a temperature at which the first water-insoluble material and the first water-soluble material, which are low-melting-point resins, can be melted.
  • the bonding step of bonding the projections 5 and the sheet 4 is performed by the heating step, the subsequent pressurization step, and the solidification of the projections 5 .
  • the protrusions 5 and the sheet 4 may be adhered only by the heating process without performing the pressing process.
  • a removal step is performed to remove the sensitive material.
  • the cleaning liquid in this removing process contains water, and the removing process is performed by, for example, leaving the adhered protrusions 5 and the sheet 4 still in the cleaning liquid.
  • the first water-soluble material and the second water-soluble material contained in the protrusions 5 and the sheet 4 are exposed to the outside or communicate with the exposed portions.
  • the remaining part dissolves and flows into the water and is removed.
  • the cleaning liquid may be a mixed solvent such as water and alcohol.
  • a hole 13 is formed in the protrusion 5 as shown in FIG. Thereby, the microneedle structure 10 is obtained.
  • the substrate holes of the substrate 11 blocked by the second water-soluble material are at least partially restored.
  • the substrate 11 contains the second water-insoluble material and the substrate holes are restored.
  • the second water-insoluble material remains in the base material 11 while the needle-like portion 12 is on the side of the base material 11 .
  • the hole 13 extending to the base 11 is further connected to the substrate hole of the substrate 11 . This makes it easier for the liquid to pass through the interface between the needle-like portion 12 and the substrate 11 in the microneedle structure 10 .
  • the first water-insoluble material is used to form the needle-like portions 12 in order to easily form the holes 13 by removing the first water-soluble material, but the above-described low melting point resin is used. If so, the method of manufacturing the hole 13 is not particularly limited. In any case, by using a low-melting resin to form the needle-shaped portion 12, there is no need to heat the needle-like portion 12 at a high temperature. There is no softening, and the degree of freedom in selecting the base material 11 can be increased.
  • the liquid composition 3 is filled into the concave portion 1 to form the needle-like portion 12, but the present invention is not limited to this.
  • the liquid composition 3 containing the first water-soluble material and the first water-insoluble material on the substrate 11 has a viscosity of 0.1 to 1000 mPa s.
  • a method of dropping the liquid composition 3 with a dispenser or the like to form the needle-like portion 12 may be used.
  • the liquid composition 3 can be melted at a low temperature to form the needle-shaped portion 12, so that the workability is good at low cost, and even if the substrate 11 is indirectly heated, the substrate 11 is not deformed or softened, and the degree of freedom in selecting the base material 11 can be increased.
  • test patch 20 (Manufacturing method of test patch) Although not shown, an analysis sheet 21 is placed at a predetermined position on the back side of the substrate 11 of the obtained microneedle structure 10, and a tape 22 is laminated so as to cover the analysis sheet 21 (installation step).
  • a test patch 20 can be manufactured. A conventionally known method can be used as the lamination method.
  • the test patch 20 can be manufactured by laminating the adhesive tape 22 in which an adhesive layer such as an adhesive is formed on the tape base material. Drug delivery patches can also be manufactured by similar methods.
  • (Second embodiment) 4 and 5 show a method of manufacturing a microneedle structure 10 according to another embodiment of the invention.
  • the solid composition having the first water-insoluble material and the first water-soluble material with the base material 11 is placed in a mold for forming the protrusions, and the solid composition is melted. It differs from the first embodiment in that projections are formed.
  • the first water-insoluble material described above and the first water-soluble material described above are heated to melt and mixed to prepare a mixture 33 .
  • the temperature was adjusted to 40°C or higher and the base temperature so that the adhesiveness of the first water-insoluble material to the base material was improved in the subsequent step, and the viscosity was reduced when the resin was melted. It is preferable to heat at 180°C or less, which has little effect on the material, more preferably at 55 to 140°C, and even more preferably at 70 to 120°C. Also in the preparation of the mixture 33, the heating temperature can be set low because the low melting point resin is used.
  • the mixture 33 is preferably in a molten state. If it is important to heat the mixture 33 at a lower temperature, the mixture 33 may be softened to the extent that it adheres to the base material 11. However, considering the reduction of the manufacturing time, etc., the first water-insoluble material is used as described above. It is preferable to heat above the melting point of the low-melting-point resin at which melting is started.
  • the mixture 33 is injected into a solid composition recess 31 formed in a solid composition mold 32, as shown in FIG. 4(a). When injected, the mixture 33 rises from the surface of the solid composition mold 31 due to surface tension.
  • the solid composition recess 32 may be formed with a shape and capacity that can store a desired amount of the mixture 33 .
  • the material of the solid composition mold 32 is not particularly limited, for example, it is preferably formed of a silicone compound or the like, which facilitates the creation of an accurate mold and allows the solidified mixture 33 to be easily peeled off. is made of polydimethylsiloxane.
  • first water-insoluble material and the first water-soluble material used in the mixture 33 those listed in the first embodiment can be used. These first water-insoluble material and first water-soluble material are mixed in a molten state. The mixing ratio of the first water-insoluble material and the first water-soluble material in the mixture 33 may also be the same as in the first embodiment.
  • the mixture 33 contains the first water-insoluble material and the first water-soluble material, but it is sufficient that it contains at least a low-melting-point resin.
  • the mixture 33 may contain a water-insoluble resin other than the low melting point resin, or a component other than the resin, such as silica filler.
  • a sheet 34 containing the base material 11 is placed on the solid composition mold 32 so as to cover the molten mixture 33, whereby the molten sheet 34 is The melted mixture 33 adheres to the . Even if the melted mixture 33 adheres to the sheet 34, since the low-melting resin is used in this embodiment, the heating temperature is low, so that the cost is low and the workability is good, and the mixture in which the base material 11 is melted 33 eliminates the risk of softening, deformation, and combustion.
  • the substrates 11 listed in the first embodiment can be used.
  • the sheet 34 differs from the first embodiment in that if the substrate 11 is porous, the substrate 11 absorbs the molten mixture 33, so that the second water-soluble material and the second It is preferred not to contain water-insoluble materials.
  • the lid 35 (polydimethylsiloxane sheet) of the solid composition mold 32 is placed on the sheet 34 and pressed from above. Due to the pressing, the molten mixture 33 protruding from the surface of the solid composition mold 32 due to surface tension flows outward from the solid composition recess 31 while adhering to the sheet 34, and forms the solid composition recess. It also spreads to the surface of the sheet 34 (the side facing the mixture 33 among the two surfaces of the sheet 34 ) that did not face the sheet 31 . By pressing, the sheet 34 can be placed in the desired position with respect to the mixture 33 . Further, since the molten mixture 33 spreads over the sheet 34 by pressing, the strength of the base material 11 itself can be increased.
  • the mixture 33 adheres to the sheet 34, it is difficult for the mixture 33 to permeate the sheet 34, and the permeation of the composition to the base material 11 in the subsequent process can be suppressed. Unintended formation of voids at the root can be suppressed. Furthermore, by pressing, the mixture 33 is sufficiently adhered to the sheet 34, so that the base material 11 contains the material for forming the needle-like portions 12, and the adhesion between the base material 11 and the needle-like portions 12 is improved. can be enhanced.
  • the pressure during pressing is preferably 0.1 to 10.0 MPa. Within this range, the adhesion between the sheet 34 and the mixture 33 is good. Moreover, from the viewpoint of improving the adhesion of the mixture 33 to the substrate 11 during pressing, the mixture 33 may be heated under conditions similar to or different from those described above.
  • the mixture 33 adhered to the sheet 34 is held at ⁇ 10 to 3° C. for 1 to 60 minutes (refrigerated solidification step), whereby the melted mixture 33 solidifies into a solid state.
  • the sheet 34 is peeled off from the shaped composition mold 32 .
  • a solid composition 36 having the substrate 11 shown in FIG. 4(c) is obtained.
  • the microneedle structure 10 is produced using the solid composition 36 provided with the obtained substrate 11 .
  • a solid composition 36 having a substrate 11 is placed on a mold 2A having recesses 1A for forming protrusions.
  • the mold 2A differs from the mold 2 used in the first embodiment in that it does not have walls, but otherwise is the same.
  • the solid composition 36 is placed so as to face the recess 1A of the mold 2A.
  • a cover 6A of the mold 2A is installed on the back side of the sheet 34. - ⁇
  • the heating and pressurizing step is a preliminary step (FIG. 5(b) )), and the main step (FIG. 5(c)) for sufficiently filling the concave portion 1A with the molten solid composition 36.
  • the heating and pressurizing step can be performed by, for example, a heating press.
  • the heating and pressurizing step of the second embodiment is a step corresponding to the filling step of the first embodiment.
  • the sheet 34 is placed so that the solid composition 36 faces the recess 1A, and the sheet 34 is sandwiched between the mold 2A and the lid 6A.
  • the mold 2A and the lid 6A are placed on the lower stage 37 and the upper stage 38 is placed on the mold 2A and the lid 6.
  • the heating conditions in the preliminary step and the main step it is preferable to heat at least at 40° C. or higher and 180° C. or lower which has little effect on the substrate 11, more preferably at 55 to 140° C. Heating at 70 to 120° C. is more preferable.
  • the solid composition 36 is heated at a melting temperature.
  • the lower stage 37 may be heated, or the upper stage 38 may be heated. In this step, the heating may be maintained after the preliminary step, and the temperature may be changed as appropriate.
  • the heating temperature in the heating and pressurizing step can be set to a low temperature that has little effect on the base material 11, thereby reducing the cost. In addition to good workability, there is no risk of the base material 11 softening, deforming, or burning. Furthermore, the mold 2A is pressed (pressurized) between the upper stage 38 and the lower stage 37 in this state.
  • the pressure in this preliminary step is preferably 0.1 to 5.0 MPa.
  • the solid composition 36 is melted.
  • the pressurizing conditions may be changed between the preliminary process and the main process. For example, in this step, pressurization can be performed at a higher pressure or for a longer time than in the preliminary step.
  • the mold 2A is removed from the lower stage 37, and the solid composition 36 melted is held at ⁇ 10 to 3° C. for 1 to 60 minutes (refrigeration solidification step) to be refrigerated and solidified. do.
  • the protruding portion 5A having a shape corresponding to the recessed portion 1A and having high transferability is formed.
  • the forming step of forming the protrusions 5 is performed by the bonding step and the subsequent heating and pressurizing step.
  • the solid composition 36 contains the first water-soluble material and the first water-insoluble material, but the solid composition 36 should contain at least a low-melting resin.
  • the mold 2 is filled with a particulate low-melting resin or the like and sintered at a temperature equal to or higher than the melting point of the low-melting resin, thereby forming sintered particles and a large number of particles formed between the particles.
  • a microneedle structure having a porous structure composed of voids may be obtained.
  • the solid composition 36 containing a low melting point resin can suppress deformation and alteration of the base material 11 .
  • the composition does not contain a solvent, so discoloration and deformation of the substrate 11 can be suppressed, which is preferable.
  • the order of the bonding step and the heating/pressurizing step may be changed, and the bonding step may be performed after the heating/pressurizing step.
  • the sheet 4 preferably contains the second water-soluble resin in order to suppress absorption of the mixture 33 by the substrate 11 .
  • the sheet 34 containing the substrate 11 is placed so as to cover the melted mixture 33 so that the melted mixture 33 adheres to the melted sheet 34.
  • the sheet 34 including the substrate 11 may be adhered to the solid composition 36 without heating.
  • sheet 34 preferably has an adhesive layer for adhering to solid composition 36 .
  • the sheet 34 is not heated in the bonding step, but by using a low-melting resin as the material for forming the needle-shaped portion 12, the heating temperature in the forming step is also set to a low temperature that has little effect on the base material 11. , which improves workability at low cost.
  • the base material 11 will be softened, deformed, or burned.
  • the adhesion area of the needle-like portion 12 or the base portion to the base material 11 becomes small, which is disadvantageous for the adhesiveness therebetween.
  • the adhesiveness between the needle-shaped part 12 or the base part and the base material 11 is improved by undergoing heating in the forming process.
  • the adhesive layer When the adhesive layer is provided on the base material 11, a gap is generated between the base material 11 and the needle-shaped portion 12 as described above, and liquid leaks out. There is a concern that the passage of liquid to and from the portion 12 may be blocked. Therefore, it is preferable to provide an adhesive layer so as to surround the area through which the liquid should pass in the base material 11 and provide a non-adhesive layer formed area in the central portion.
  • the bonding process may be performed after the forming process.
  • the base material 11 is deformed and softened even when the base material 11 is adhered to the protrusions 5A before the removal process or the needle-like parts 12 after the removal process, even if the base material 11 is heated. workability is good.
  • the case where the substrate 11 is porous is taken as an example, but as the sheet 34, the above-described resin film, metal foil, or the like may be used.
  • Example 1 100 parts by weight of polyethylene glycol (molecular weight 4000, melting point 40°C) as the first water-soluble material, polycaprolactone (melting point 60°C, 6-hydroxycaproic acid, which is a ring-opened monomer) as the first water-insoluble material (having an acid dissociation constant of 4.8) was blended with 800 parts by weight of ethyl acetate as a solvent (organic solvent) to prepare a liquid composition having a solid concentration of 20%.
  • polyethylene glycol molecular weight 4000, melting point 40°C
  • polycaprolactone melting point 60°C, 6-hydroxycaproic acid, which is a ring-opened monomer
  • ethyl acetate organic solvent
  • the space surrounded by the wall formed at the peripheral edge of the mold made of polydimethylsiloxane is a square (15 mm square) when viewed from above, and a part of the wall is formed in order to form the base at the base of the needle-like part.
  • 0.7 ml of the liquid composition was injected so as to fill up to the maximum.
  • the recesses formed in the mold are as follows.
  • ⁇ Concave shape square pyramid shape with a square cross section ⁇ Length of one side of the maximum cross section of the concave portion: 500 ⁇ m ⁇ Height of recess: 900 ⁇ m ⁇ Pitch of recesses: 1000 ⁇ m ⁇ Number of recesses: 13 columns, 13 rows, 169 in total ⁇ Size of area where recesses are formed: 15 mm square ⁇ Arrangement of recesses: square lattice
  • the mold was placed in an ultrasonic cleaner (ultrasonic cleaner AU-10C/manufactured by Aiwa Medical Industry Co., Ltd.) and subjected to ultrasonic treatment for 1 minute.
  • an ultrasonic cleaner ultrasonic cleaner AU-10C/manufactured by Aiwa Medical Industry Co., Ltd.
  • vacuum drying was performed for 30 minutes under a reduced pressure environment at a temperature of 23°C and a pressure of 0.05 MPa. After that, it was heated at 110° C. for 30 minutes in a non-humidity environment.
  • a sheet was placed on the exposed surface of the base provided above the protrusions formed in the recesses of the mold during heating, and a weight (500 g) was placed on the placed sheet while maintaining the heating at 110°C.
  • a pressurization step was performed by placing. With the weight placed thereon, the sheet was held at a low temperature of 3° C. for 10 minutes to solidify the protrusions and the base, and the protrusions and the base were adhered to the sheet.
  • the adhered sheet and the solidified projections and base are peeled off from the mold and immersed in purified water at 23° C. for 24 hours to remove the first water-soluble material and the second water-soluble material in the projections, base and sheet. was dissolved and removed to form the needle and base.
  • the first water-soluble material and the second water-soluble material were dissolved and removed, and the protrusion and the base and the sheet bonded together were allowed to stand in an environment of 23°C and a relative humidity of 50% for 24 hours. was evaporated to dryness to produce a microneedle structure.
  • Example 2 100 parts by weight of the same polyethylene glycol as in Example 1 as the first water-soluble material and 100 parts by weight of the same polycaprolactone as in Example 1 as the first water-insoluble material were weighed and heated to 100°C with a stirrer. was melted by heating and stirring at , and mixed to prepare a mixture.
  • a solid composition mold made of polydimethylsiloxane was prepared, and this mold had a circular opening with a diameter of 20 mm and a concave portion with a depth of 1.5 mm. The mixture was poured to fill the recesses of the mold.
  • Example 2 the same filter paper as in Example 1 is placed on the solid composition mold as a sheet, and a solid composition mold lid (a sheet made of polydimethylsiloxane) is placed thereon to cover the sheet.
  • a solid composition mold lid a sheet made of polydimethylsiloxane
  • the mixture was allowed to adhere. This state was held at 3° C. for 5 minutes, and the molten mixture was solidified into a solid form, and the sheet was separated from the solid composition mold to obtain a solid composition with a substrate.
  • a heating and pressurizing process was performed using a mold that did not have a wall portion but under the same conditions for forming recesses as in Example 1.
  • a preliminary step was performed by stacking 30 mm square polydimethylsiloxane sheets and pressing only the lower stage of the heating press at a set heating temperature of 110° C. and 2 MPa for 3 minutes. After that, similarly, only the lower stage of the heat press was heated at 110° C. and pressed at 4 MPa for 30 seconds to carry out this step.
  • the sheet was peeled off from the mold and immersed in purified water at 23° C. for 24 hours to dissolve and remove the first water-soluble material to form needle-like portions. After that, it was allowed to stand for 24 hours under an environment of 23° C. and a relative humidity of 50% to evaporate water and dry to obtain a microneedle structure.
  • Comparative example 1 As a comparative example, instead of polycaprolactone, polylactic acid having a melting point of 170° C. and an acid dissociation constant of lactic acid as a monomer of 3.08 was used. A microneedle structure was produced in the same manner as in Example 1, except that
  • Examples 1 and 2 and Comparative Example 1 the protrusions were formed by cooling the composition, and after peeling from the mold, the inside of the protrusions was examined with an optical microscope (magnification: 50 times and 100 times) before immersion in purified water. ), and the number of protrusions remaining on the substrate was counted.
  • the transfer ratio was obtained by calculating the ratio of the remaining number to the total number of designed projections.
  • the microneedle structures obtained in Examples had a transfer rate of 50% or more, which was good transferability, while the microneedle structures obtained in Comparative Examples had a transfer rate of less than 50%, which was low in transferability. In the comparative example, it is considered that the transferability was low because the base material was deformed due to adhesion of the melted material when the protrusions were formed.
  • the microneedle structure of the present invention can be used as a test patch, for example, by placing an analysis sheet on the back side and laminating it with a tape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明のマイクロニードル構造体10は、針状部12を基材11の一方面側に備え、基材11が、厚さ方向において液体の透過性を有する基材であり、針状部12は、その融点が150℃以下である低融点樹脂を含む組成物から構成され、針状部12の表面および内部に孔部13が形成されている。また、本発明のマイクロニードル構造体10の製造方法は、融点が150℃以下である低融点樹脂を含有する組成物を加熱して、加熱した低融点樹脂と基材11とを接着させる接着工程とを含む。このようにして、基材が高温により受ける影響を低減し、基材の選択の自由度の高いマイクロニードル構造体及び当該マイクロニードル構造体製造方法が提供される。

Description

マイクロニードル構造体及びその製造方法
 本発明は、マイクロニードル構造体及びその製造方法に関するものである。
 近年、薬学的、医学的または美容的効能を有する活性物質の経皮伝達のための手段として、注射針の代用として身体への負担の小さいマイクロニードルが適用されている。例えば、特許文献1では、マイクロニードル状の生体適合性マトリックスと、前記生体適合性マトリックスの表面上に、または内部の少なくとも一部に提供された多孔性粒子とを含むマイクロニードルが開示されている。特許文献1では、突起部には孔は設けられておらず、薬剤などを含有する多孔性粒子をこの突起部の内部またはその表面に有している。そして、マイクロニードルの突起部を皮膚に刺すと、突起部の多孔性粒子から薬剤を放出することで、経皮伝達を行っている。
特開2016-78474号公報
 ところで、患者の病状等のより適切な把握のために、マイクロニードルを患者の皮膚に刺して間質液等の体液を採取し、この体液を分析する分析パッチにマイクロニードルを適用したい場合には、例えば突起部に孔部を設けた針状部とし、体液が針状部から流入できるように構成する必要がある。しかしながら、このような針状部自体は脆いため、一定の強度を有する基材を用いることでマイクロニードル構造体全体として強度をあげて針状部の欠損を抑制することが考えられる。基材は、針状部から流入した体液の流路等も考慮し、その種類の選択の幅が広いことが望ましい。しかしながら、基材と針状部とを接着させつつ、その接着手段は、種々の基材を用いた場合に、基材に問題が生じないものでなければならないという問題がある。
 本発明は、このような実状に鑑みてなされたものであり、基材と針状部とを接着させつつ、基材が針状部と接着されることにより受ける影響を低減し、基材の選択の自由度の高いマイクロニードル構造体及び当該マイクロニードル構造体の製造方法を提供することを目的とする。
 上記目的を達成するために、第1に本発明は、マイクロニードル構造体であって、前記マイクロニードル構造体は、針状部を基材の一方面側に備え、前記基材が、厚さ方向において液体の透過性を有する基材であり、前記針状部は、その融点が150℃以下である低融点樹脂を含む組成物から構成され、針状部の表面および内部に孔部が形成されていることを特徴とするマイクロニードル構造体を提供する(発明1)。
 上記発明(発明1)においては、針状部は、その融点が150℃以下である低融点樹脂を含む組成物から構成されていることで、針状部を形成する際に高温で加熱する必要がなく、低コストで作業性がよいとともに、かつ、樹脂が溶融された状態で基材に接着するとしても、基材が軟化や変形、燃焼することがなく針状部と接着されることにより受ける影響を低減でき、基材の選択における自由度を高めることが可能である。
 上記発明(発明1)において、前記針状部に、多孔構造が形成されていることが好ましい(発明2)。
 上記発明(発明1、2)において、前記低融点樹脂は、水不溶性樹脂であることが好ましい(発明3)。
 上記発明(発明1~3)において、前記低融点樹脂は、生分解性樹脂であることが好ましい(発明4)。
 上記発明(発明4)において、前記生分解性樹脂が、その単量体の酸解離定数が4以上であることが好ましい(発明5)。
 上記発明(発明1~5)において、前記低融点樹脂は、ポリカプロラクトン又はカプロラクトンと他の単量体との共重合体であることが好ましい(発明6)。
 上記発明(発明1~6)において、前記針状部と前記基材とは直接接着されていることが好ましい(発明7)。
 上記発明(発明1~7)において、前記基材が、多孔性の基材であることが好ましい(発明8)。
 上記発明(発明8)において、前記多孔性の基材が、水不溶性材料を含有することが好ましい(発明9)。
 上記発明(発明9)において、前記水不溶性材料が、融点が150℃以下である低融点樹脂であることが好ましい(発明10)。
 また、上記目的を達成するために、第2に本発明は、その内部に孔部が形成された針状部と、当該針状部を一方面側に備える基材とを備えたマイクロニードル構造体の製造方法であって、融点が150℃以下である低融点樹脂を含有する組成物を加熱して、加熱した前記低融点樹脂と前記基材とを接着させる接着工程を含むことを特徴とするマイクロニードル構造体の製造方法を提供する(発明11)。
 上記発明(発明11)においては、融点が150℃以下である低融点樹脂を加熱して、加熱した前記低融点樹脂と前記基材とを接着させることで、高温で加熱する必要がなく、低コストで作業性がよいとともに、かつ、樹脂が溶融された状態で基材に接着するとしても、基材が軟化や変形、燃焼することがなく針状部と接着されることにより受ける影響を低減でき、基材の選択における自由度を高めることが可能である。
 また、上記目的を達成するために、第3に本発明は、その内部に孔部が形成された針状部と、当該針状部を一方面側に備える基材とを備えたマイクロニードル構造体の製造方法であって、融点が150℃以下である低融点樹脂を含む組成物を加熱し、前記組成物により前記基材に突起部を形成する形成工程を含むことを特徴とするマイクロニードル構造体の製造方法を提供する(発明12)。
 上記発明(発明12)においては、融点が150℃以下である低融点樹脂含む組成物を加熱し、前記組成物により基材に突起部を形成することで、高温で加熱する必要がなく、低コストで作業性がよいとともに、かつ、樹脂が基材に接着された状態で加熱されたとしても、高温で加熱されてないので基材が軟化や変形、燃焼することがなく、基材の選択における自由度を高めることが可能である。
 上記発明(発明11、12)において、前記低融点樹脂が、水に不溶である前記低融点樹脂であり、前記組成物は、水に不溶である前記低融点樹脂と水溶性材料とを含有し、前記形成工程後に、水により、前記組成物から形成された前記突起部の前記水溶性材料を除去して、前記突起部に孔部を形成する除去工程を有することが好ましい(発明13)。
 上記発明(発明13)において、前記水溶性材料の融点が150℃以下であることが好ましい(発明14)。
 上記発明(発明11~14)において、凹部を有する型に前記低融点樹脂を含有する組成物を付与し、前記組成物を前記低融点樹脂の融点以上に加熱して、前記凹部に充填する充填工程を行うことが好ましい(発明15)。
本発明のマイクロニードル構造体の模式的な一部断面図である。 本発明のマイクロニードル構造体を用いた検査パッチの断面図である。 第一実施形態にかかるマイクロニードル構造体の製造方法の手順を示す説明図である。 第二実施形態にかかるマイクロニードル構造体の製造方法の手順を示す説明図である。 第二実施形態にかかるマイクロニードル構造体の製造方法の手順を示す説明図である。
 以下、本発明の実施形態について説明する。
(第一実施形態)
〔マイクロニードル構造体〕
 図1に、本発明の一実施形態に係るマイクロニードル構造体10を示す。マイクロニードル構造体10は、基材11の一方面側に所定の間隔で互いに離間した複数の針状部12を備えている。針状部12には、それぞれ複数の孔部13が形成されている。マイクロニードル構造体10は、針状部12の孔部13を介して皮膚内から体液を基材11で吸収し、得られた体液を用いて検査を行う検査パッチや、基材11から針状部12の孔部13を介して皮膚から体内に薬剤を投与する薬剤投与パッチとして利用することができるものである。なお、本発明において体液とは、血液やリンパ液、間質液等を含む。
(1)針状部
 針状部12の形状や大きさ、形成ピッチ、形成数は、その目的とするマイクロニードルの用途等によって適宜選択することができる。針状部12の形状としては、円柱状、角柱状、円錐状、角錐状等が挙げられ、本実施形態では角錐状である。針状部12の最大直径又は断面の最大寸法は、例えば、25~1000μmであることが挙げられ、先端径又は先端の断面の寸法は1~100μmであることが挙げられ、針状部12の高さは、例えば、50~2000μmであることが挙げられる。さらに、針状部12は、基材11の一方向に複数列設けられるとともに、各列に複数形成されてマトリクス状に配されている。
 針状部12は、融点が150℃以下の低融点樹脂からなる。低融点樹脂としては、常温では固体であり、かつ、融点が150℃以下の材料が好ましく、特に融点が40~130℃の材料が好ましく、融点が45~100℃の材料であるものが最も好ましい。常温で固体であることで、常温で針状部12の形状を保持することができ、また、融点が150℃以下であると、高温で加熱する必要がなく、低コストで作業性がよいとともに、かつ、樹脂が溶融された状態で基材に接着し、又は樹脂と基材とが接着した状態で、樹脂を加熱するとしても、基材が軟化や変形、燃焼することがなく、基材11の選択における自由度が高い。融点が130℃以下であれば、例えば、耐熱温度の低い合成繊維等を材料とする不織布等を基材11として用いた場合にも、合成繊維の軟化等による基材11の変質が防止されうる。また、融点が100℃以下であれば、後述する振動工程において、水不溶性樹脂の温度以上に液状組成物を加温しつつ、溶媒の急激な蒸発を抑制することが容易となる。
 このような低融点樹脂としては、好ましくは水不溶性の低融点樹脂である。水不溶性であることで、生体に適用した際に、体液により溶解せず、所望の適用時間の間、マイクロニードル構造体10の形状を維持しておくことが可能であり、また、後述するように微小な孔部13を突起部に容易に形成することができる。本実施形態では、針状部12は水不溶性の低融点樹脂を含む第一水不溶性材料からなる。
 後述する生分解性樹脂以外の水不溶性の低融点樹脂としては、ポリエチレン、α-オレフィン共重合体などのポリオレフィン系樹脂、エチレン-酢酸ビニル共重合体系樹脂等のオレフィン共重合体系樹脂、ポリウレタン系エラストマー、エチレン-アクリル酸エチル共重合体等のアクリル共重合体系樹脂等が挙げられる。
 また、水不溶性の低融点樹脂としては、低融点の生分解性樹脂が好ましい。生分解性樹脂であることで、生体への影響を低減することができる。このような生分解性樹脂としては、脂肪族ポリエステルおよびその誘導体が好ましく用いられ、さらに、グリコール酸、乳酸及びカプロラクトンからなる群から選択される少なくとも1種の単量体の単独共重合体、又は2種以上の単量体からなる共重合体が挙げられる。また、ポリブチレンサクシネート(融点:84~115℃)、脂肪族芳香族コポリエステル(融点:110~120℃)等も低融点の生分解性樹脂として用いることができ、具体的には、ポリブチレンサクシネートとしては、三菱ケミカル株式会社が提供するBiоPBS等、脂肪族芳香族コポリエステルとしては、BASF社が製造するエコフレックス等を用いることができる。
 また、低融点の生分解性樹脂は、その単量体の酸解離定数が4以上である樹脂が好ましい。単量体の酸解離定数が4以上であることで、本発明のマイクロニードル構造体を生体に適用した際の生体への影響を低減することができる。なお、ここでいう単量体の酸解離定数は、単量体が環状エステルである場合には、その環状エステルが開環したヒドロキシカルボン酸の酸解離定数である。単量体の酸解離定数は、好ましくは4.0以上であり、さらに好ましくは、4.5以上である。また、単量体の酸解離定数は、25以下であることが好ましく、さらに好ましくは15以下である。このような、生分解性樹脂を構成する単量体であって、酸解離定数が4以上であるものとしては、カプロラクトンが挙げられる。低融点の生分解性樹脂は、その由来する単量体の酸解離定数が4以上である構成単位が、全構成単位中70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 低融点樹脂としては、より好ましくは、水不溶性で、かつ生分解性樹脂であるとともに、単量体の酸解離定数が4以上である、ポリカプロラクトン又はカプロラクトンと他のポリマーの共重合体が挙げられる。水不溶性樹脂の分子量は、通常5,000~300,000、好ましくは7,000~200,000、より好ましくは8,000~150,000である。
 本実施形態では、針状部12は低融点樹脂からなるものを示したが、針状部12は低融点樹脂以外の樹脂を含んでいてもよい。この場合、針状部12中に含まれる樹脂成分の合計の質量に対する、低融点樹脂の割合は、低温での樹脂の加工が可能であるという効果を効率的に得る観点から、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。針状部12は、低温での樹脂の加工が可能であるという効果を妨げない範囲で、融点が150℃を超える高融点樹脂をさらに含んでいてもよく、高融点樹脂としては、ポリグリコール酸(融点:218℃)、ポリ乳酸(融点:170℃)、ポリヒドロキシ酪酸(融点:175℃)等の生分解性樹脂が挙げられる。
 各針状部12には、その表面および内部に孔部13が形成されている。孔部13はどのように形成されてもよいが、本実施形態のように針状部12に多孔構造が形成されていることが好ましい。針状部12を少なくともその一部が多孔構造となるように形成すれば、多孔構造の孔部13が体液又は薬液が通過することができるのでナノオーダーの流路を機械的に形成する必要がなく好ましい。また、体液又は薬液は、針状部12中の多孔構造が形成されている部分のすべての流路を流通できるため、単純な一本の連通孔が形成されている場合よりもその流通量を増やすことが可能である。さらに、このように針状部12を少なくともその一部が多孔構造となるように形成する場合、針状部の側面の一部又は全部において、多孔構造が覆われていなければ、針状部12の側面にも孔部13が開口する。この場合、針状部12の先端部のみに開口する場合よりも液体の流通量を増加することができる。孔部13は、後述する除去工程において第一水溶性材料が除去されて空隙が形成されてなるものであり、体液や薬液はこの孔部13を通過する。また、発泡材料等を用いて、針状部12の形成と同時に多孔構造を形成したり、低融点樹脂を含む粒子状の組成物を焼結することにより多孔構造を形成したりすることも可能である。孔部13は、その断面に示すように、第一水溶性材料の除去により複数の空隙が形成されて互いに連通したことで形成されるものである。孔部13によっては基材11側まで延設されている。孔部13は、マイクロニードル構造体10を用いる検査パッチ等の用途によりその開口の大きさが規定されるが、液体を透過しやすくする等の観点から、その開口のサイズが0.1~50.0μmであることが好ましく、0.5~25.0μmであることがより好ましく、1.0~10.0μmであることがさらに好ましい。
(2)基材
 基材11とは、厚さ方向において液体の透過性を有するものであって、複数の空隙が互いに連通することで、一方面(針状部12が設けられた面)からその背面(針状部12が設けられた面とは逆の面)側に貫通する微小な基材孔部が形成されている多孔性の基材が挙げられる。本発明では、針状部12を形成する樹脂として低融点樹脂を用いているので用途に応じて様々な基材を基材11として選択することが可能である
 基材11としては、板状でもよいが、好ましくは皮膚への追従性の高いシート状のものが好ましい。基材11としては、好ましくは、取り扱いが容易である繊維状物質からなる基材を用いることである。ここで、本発明における繊維状物質とは、天然繊維、化学繊維等の繊維を意味する。繊維状物質からなる基材としては、これらの繊維からなる不織布、織布、編物、紙などが挙げられる。
 多孔性の基材のほか、樹脂フィルム、金属箔等も基材11として用いることができ、柔軟性等の観点から、樹脂フィルムが好ましい。本発明では、針状部12を形成する樹脂として低融点樹脂を用いているので、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、塩化ビニル、アクリル樹脂、ポリウレタン、ポリ乳酸等を用いることができる。このような樹脂を含むフィルムを用いることで、柔軟性の高い基材11が得られ易い。樹脂フィルムを用いる場合、表裏を流体が通り抜けることが可能なように、樹脂フィルムに貫通孔を設けることが好ましい。貫通孔の形状は、特に限定されないが、毛細管現象を生じさせつつ、十分な流通量を確保する観点から、径の細い貫通孔が複数設けられている構造が好ましい。貫通孔の径としては、例えば、直径が2mm以下であり、0.05~1mmであることが好ましく、0.1~0.8mmであることがより好ましい。貫通孔の形成方法は特に限定されず、例えば打ち抜きやレーザー穿孔により形成することができる。
 また、基材11は、複数層が積層されている構成であってもよい。例えば、基材11として、不織布である第一層と、紙である第二層とを積層したものでもよい。この場合、第一層と第二層のいずれを針状部12との積層面としてもよい。また、用途に応じて三層以上積層してもよい。また、貫通孔を設けた樹脂フィルムと、不織布等の多孔性の基材を積層した積層基材としてもよい。
 基材11の基材孔部は、針状部12の孔部13と連通して連通孔を形成する。基材孔部の形状は、基材11の材質により決定されるものである。基材11は、基材孔部による空隙率が1~70%であることが好ましく、5~50%であることがより好ましく、10~30%であることが特に好ましい。空隙率がこの範囲にあることで、針状部12で吸収した体液を十分に吸収することができる。
 また、基材11の一方面側には、後述するように針状部12が直接接着されている。例えば、接着剤層等により基材11と針状部12を接着した場合には、基材11と針状部12との間に空隙が生じて、液体が漏れ出したり、接着剤層により基材11と針状部12との間の液体の通過が妨げられたりする懸念があるが、基材11と針状部12が直接に接着されていることで、両者の流路を接続することが容易である。本実施形態では、針状部12を構成する第一水不溶性材料が低融点樹脂であることで、高温で加熱する必要がないので基材11と針状部12とを接着したとしても、低コストで作業性がよいとともに、基材11が軟化や変形、燃焼等の恐れがないため、基材11の選択の自由度が高い。具体的には、紙を基材として用いた場合の熱による基材のカールや、ポリエステル不織布等の軟化点の低い樹脂材料からなる不織布を用いた場合の、熱による繊維の軟化に起因した基材の変質等が抑制される。また、基材11の一方面は、針状部12が形成されていない部分も第一水不溶性材料が存在し、基材11に付着した状態となっていることで、基材11の一方面側全体に、個々の針状部12の土台となるものであって、個々の針状部12と同様に孔部を有する基部が形成されている。本実施形態では、この基部が、針状部12について説明した材料と同一のものからなり、または同一の工程により形成されるものであるので、針状部12と基材11とが、基部を介しての良好な接着性を得ることができ好ましい。さらには、針状部12が形成されていない部分も第一水不溶性材料が存在し、基材11に付着した状態となっていることで、マイクロニードル構造体10が全体として強度がさらに向上する。また、針状部12が基材11に接着する面積が増大することで、針状部12と基材11との接着性を向上させることができる。基材11が液体の透過性を有するようにする観点から、基材11は、詳しくは後述する第二水不溶性材料(水不溶性材料)を含みつつ、基材孔部が維持されていることが好ましい。
〔検査パッチ〕
 マイクロニードル構造体10は、針状部12を介して皮膚内から体液を吸収させ、得られた体液を用いて検査を行う検査パッチ20に利用されることが好ましい。図2に示すように、検査パッチ20は、マイクロニードル構造体10を有し、その基材11の背面側に、分析シート21と、テープ22とを有する。なお、マイクロニードル構造体10は、基材11から針状部12を介して皮膚から体内に薬剤を投与する薬剤投与パッチとして利用することも可能である。この場合には、マイクロニードル構造体10の基材11の背面側に生理活性物質含有シートを設け、基材11および針状部12を介して生理活性物質含有シートからの生理活性物質を皮膚内に投与することができるように薬剤投与パッチを構成する。
 分析シート21は、皮下から取得した血液や間質液等の体液を分析して検査を行うためのものであり、基材11の背面側に設置されている。針状部12を対象の皮膚に刺すと、体液が針状部12の孔部13から流入し基材11に吸収されつつ基材孔部を通過して、分析シート21に到達する。分析シート21は、所望の検査内容に応じて適宜選択することができ、紙等の基材に分析手段としての成分を含ませていることで形成されたものを用いることができる。このような分析シート21としては、例えば体液中のグルコース濃度に応じて変色するグルコース測定ペーパーが挙げられる。分析シート21としてグルコース測定ペーパーを用いた場合には、マイクロニードル構造体10により採取した間質液を分析シート21が吸収して変色し、この変色の度合いで血糖値を経時的に測定する血糖値測定用の検査パッチ20として利用することができる。
 テープ22は、生体安全性を有する材質からなり、貼付した皮膚への追従性を考慮すると、柔軟性、伸縮性、さらには収縮性を有する材料からなるのが好ましいが、かかる材料に限定されるものではない。テープ22の好ましい材料としては、伸縮性織布が挙げられ、従来公知のものを使用することができる。
〔マイクロニードル構造体の製造方法〕
(充填工程)
 図3に、本発明の一実施形態に係るマイクロニードル構造体10の製造方法を示す。本実施形態では、図3(a)に示すように、複数の凹部1が形成されたモールド(型)2に液状組成物3を充填する(充填工程)。凹部1は、充填された液状組成物3で満たされる。
 モールド2の材質は特に限定されるものではないが、例えば、正確な型を作りやすく、固化した液状組成物3を剥がしやすいシリコーン化合物等で形成されていることが好ましく、本実施形態ではポリジメチルシロキサンからなる。当該モールド2には、その周縁部に図示しない壁部が設けられていて、この壁部内の凹部1に注入された液状組成物3をモールド2内に貯留することができる。モールド2に設けられた凹部1は、図1に示す針状部12を形成するためのものあり、所望の形状の針状部12を形成できるように構成されている。モールド2においては、この凹部1が所定の位置に複数互いに間隔を空けて複数列設けられている。
 液状組成物3は、前述の第一水不溶性材料(図3(a)では模式的に薄い灰色の丸で示す)および水に対して可溶である第一水溶性材料(図3(a)では模式的に濃い灰色の丸で示す)と、溶媒とを有する。なお、図中においては説明のため、模式的に、各材料は粒子状に記載し、溶媒中に分散して存在している状態を表している。液状組成物3は、溶媒中に、第一水不溶性材料および第一水溶性材料の少なくとも一方が溶解していてもよく、針状部12に多孔構造を形成することを容易とする観点から、少なくとも第一水不溶性材料が溶解していることが好ましい。液状組成物3は、粘度が0.1~1000mPa・sであることが好ましく、0.5~100mPa・sであることがより好ましく、1.0~10mPa・sであることが特に好ましい。この範囲であることで、作業性よくモールド2に液状組成物3を注入でき、充填工程における凹部1への組成物の充填性もよいので、所望の針状部12を形成することができる。
 第一水溶性材料としては、融点が常温よりも高い水溶性材料が好ましい。水溶性材料は有機物であってもよいし、無機物であってもよく、塩化ナトリウム、塩化カリウム、芒硝、炭酸ナトリウム、硝酸カリウム、ミョウバン、砂糖、水溶性樹脂等が挙げられる。これらの中でも、水溶性樹脂が好ましい。水溶性樹脂としては、水溶性の熱可塑性樹脂が好ましく、水溶性の熱可塑性樹脂は、さらに、人体への影響を考慮して、生分解性樹脂であることがより好ましい。このような生分解性樹脂としては、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール、ポリビニルアルコール、コラーゲンおよびそれらの混合物からなる群から選択される少なくとも1種が挙げられ、ポリエチレングリコールが特に好ましい。ポリエチレングリコールの分子量は、例えば200~4,000,000であることが好ましく、600~500,000であることがより好ましく、1,000~100,000であることが特に好ましい。
 また、好ましくは、水溶性樹脂は、融点が150℃以下である水溶性樹脂であり、より好ましくは、水溶性樹脂の融点が30~130℃であり、さらに好ましくは、35~100℃である。融点が150℃以下であることにより、高温で加熱する必要がなく、基材11との接着において基材11を損ねることがなく、基材11の選択における自由度が高い。また、融点が130℃以下であれば、合成繊維等を材料とする不織布等を基材11として用いた場合にも、合成繊維の加熱による軟化等が防止されうる。また、融点が100℃以下であれば、後述する振動工程において、第一水溶性材料の温度以上に液状組成物を加温しつつ、溶媒の急激な蒸発を抑制することが容易となる。このような第一水溶性材料としては、ポリエチレングリコール、ポリビニルピロリドン等が挙げられる。後述する加熱工程において、同一の加熱温度で第一水不溶性材料と、第一水溶性材料のいずれも溶融させることが容易となるように、第一水不溶性材料の融点と第一水溶性材料の融点の差が、40℃以下であることが好ましく、30℃以下であることがより好ましい。
 第一水不溶性材料と第一水溶性材料とは、質量比で9:1~1:9で混合されることが好ましく、8:2~2:8で混合されることがより好ましく、7:3~3:7で混合されることが特に好ましい。この割合で液状組成物3が構成されていることで、所望の空隙率の針状部12を形成し、針状部12の液体透過性と強度を両立させやすくなる。
 本実施形態では、液状組成物3が各材料を含みつつ液状となるために、溶媒を含んでいる。溶媒は水でもよいし、有機溶媒でもよいが、第一水不溶性材料を溶解させる場合には、液状組成物3は、有機溶媒を含むことが好ましい。有機溶媒は、前述の第一水不溶性材料および第一水溶性材料を溶解または分散させることができる有機溶媒であればよく、例えば、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、塩化エチレン等のハロゲン化炭化水素、メタノール、エタノール、プロパノール、ブタノール、1-メトキシ-2-プロパノール等のアルコール、アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン、酢酸エチル、酢酸ブチル等のエステル、エチルセロソルブ等のセロソルブ系溶剤などが用いられる。
 液状組成物3の全成分中における第一水不溶性材料および第二水不溶性材料の含有量の合計は、質量基準で40%以下であることが好ましく、35%以下であることがより好ましく、30%以下であることが特に好ましい。液状組成物3に対してこの範囲で組成物が含有されていることで、マイクロニードル構造体10の針状部12を製造しやすい所望の粘度で液状組成物3を形成することができ、その結果針状部12を所望の形状で形成することが可能である。
 なお、本実施形態では、液状組成物3としては第一水溶性材料および第一水不溶性材料を含むものを説明したが、低融点樹脂を含むものであれば限定されない。例えば液状組成物3が第一水不溶性材料(低融点樹脂)のみを含むものであってもよい。また、液状組成物3には不揮発性固形分として第一水溶性材料および低融点樹脂以外の材料が含まれていてもよい。例えば、さらに針状部の強度を高めるために、水不溶性材料には、低融点樹脂以外の水不溶性の樹脂や、樹脂以外の成分、例えば、シリカフィラー等が含まれていてもよい。この場合、水不溶性成分全体に占める低融点樹脂の含有量は、60質量%以上であることが好ましく、75質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 本実施形態で、各材料を溶媒に分散させた液状組成物3を用いる場合、液状組成物3は分散剤をさらに備えていてもよい。
(振動工程)
 次に、振動工程としてモールド2を超音波洗浄装置に載置してモールド2を超音波振動させることが好ましい。振動を与える手段としては、モールド2に対して微細な振動を与えることができるものであれば超音波洗浄装置に限られない。このような振動工程を行うことにより、図3(b)に示すように液状組成物3の凹部1への充填が促進され、さらには凹部1内の第一水不溶性材料と第一水溶性材料とが凹部1内の隅々にまで充填される。この充填により、気泡による欠点などのない、凹部1の形状に十分に応じた転写性の高い針状部12を形成することができ、かつ、針状部12の強度が向上する。
 振動工程としての超音波処理を行う際に加温を同時に行ってもよく、その場合に溶媒の蒸発・乾燥を促進できる温度以上(例えば45℃以上)で加温すること、特に、液状組成物3に含まれる第一水不溶性材料(低融点樹脂)の融点以上で加温することが好ましい。この温度で加温することで、液状組成物3の表面固化を抑制し溶媒の蒸発・乾燥を促進して、液状組成物3内の第一水不溶性材料および第一水溶性材料の凹部1への充填が促進される。例えば、低融点樹脂が融点60℃のポリカプロラクトンである場合には、液状組成物3を60℃以上で加熱することで、溶媒の蒸発・乾燥をより促進して、第一水不溶性材料および第一水溶性材料の凹部1への充填がさらに促進される。同様に、振動工程において、液状組成物3に含まれる第一水溶性材料の融点以上で加温することも好ましい。
 振動工程における周波数は、10~200kHzが好ましく、20~150kHzがより好ましく、30~80kHzが特に好ましい。また、振動工程において、超音波処理を行う時間は、0.5~10分間であることが好ましく、2~7分間であることがより好ましい。この範囲でモールド2を振動させることで、液状組成物3内の第一水不溶性材料および第一水溶性材料の凹部1への充填がより促進される。
(脱気工程)
 振動工程の次に脱気工程を行うことが好ましい。これにより、凹部1内に含まれている空気を脱気することができ、凹部1への第一水不溶性材料と第一水溶性材料との充填をさらに促進するとともに溶媒の蒸発・乾燥を促進することができる。脱気工程は、例えば、後述する実施例のように、溶媒として酢酸エチルを用いる場合には、0.01~0.05MPa、20~25℃で行うことが好ましい。この圧力範囲で脱気を行うことで、液状組成物3が表面で固化することを抑制して溶媒を蒸発・乾燥させやすくし、凹部1への第一水不溶性材料と第一水溶性材料との充填をさらに促進することが可能である。
(加熱工程)
 その後、モールド2を加熱する加熱工程を行うことが好ましい。これにより、図3(c)に示すように、溶媒の蒸発・乾燥をさらに促進するとともに第一水不溶性材料は加熱されて軟化・変形が始まり、凹部1への第一水不溶性材料の充填が促進される。
 加熱温度としては、溶媒の蒸発を促進しつつ、第一水不溶性材料(低融点樹脂)と基材11との接着性を向上させる観点から、40℃以上かつ基材11に与える影響が小さい180℃以下で少なくとも加熱をすることが好ましい。接着性の向上と、熱が基材11に与える影響を低減する観点から、加熱温度は、より好ましくは45~140℃であり、更に好ましくは50~100℃である。さらには、第一水不溶性材料の融点との関係では、低融点樹脂の融点以上、低融点樹脂の融点より30℃高い温度以下で加熱することが好ましく、より好ましくは低融点樹脂の融点以上、低融点樹脂の融点より20℃高い温度以下で加熱することである。このように、本実施形態においては融点の低い低融点樹脂を用いていることで、加熱工程の温度を低く設定することが可能である。本実施形態では、低融点樹脂である第一水不溶性材料および第一水溶性材料が溶融可能な温度で加熱することが好ましい。なお、より低温で加熱することを重視する場合には、上述のように第一水不溶性材料が溶融しなくても軟化を開始する温度で加熱してもよいが、製造時間の減縮、凹部1への第一水不溶性材料の充填性等を考えれば、上記のように第一水不溶性材料の溶融が開始される低融点樹脂の融点以上で加熱することが好ましい。また、第一水溶性材料も融点が150℃以下の樹脂である場合には、さらに、第一水溶性材料の融点以上、第一水溶性材料の融点より30℃高い温度以下に液状組成物3を加熱することが好ましく、その加熱温度は第一水溶性材料の融点以上、第一水溶性材料の融点より20℃高い温度以下であることがより好ましい。なお、第一水溶性材料が融点が150℃を超える樹脂であっても本実施形態では適用可能である。また、本実施形態では、脱気工程後に加熱工程を行ったが、加熱工程を先に行ってもよい。
 加熱工程により、溶媒が蒸発・乾燥すると、液状組成物3に含有されていた第一水不溶性材料および第一水溶性材料が溶融された状態でモールド2内に滞留する。即ち、図3(d)に示すように、第一水不溶性材料および第一水溶性材料は、モールド2内の凹部1内に十分に充填されている。振動工程、脱気工程および/又は加熱工程により凹部1への第一水不溶性材料と第一水溶性材料との充填が十分に行われたことで、本実施形態では、気泡による欠点などのない、凹部1の形状に十分に応じた転写性の高い所望の形状で針状部12を有することができ、その強度も高く、さらには針状部12と基材11との接着性も良い。なお、凹部1から第一水不溶性材料および第一水溶性材料はあふれてモールド2の凹部1が形成されている面上にも滞留しているが、第一水不溶性材料および第一水溶性材料のみで溶媒を実質的には含んでいない状態である。このように、本実施形態では、充填工程、これに続く振動工程、脱気工程および加熱工程により、突起部5を形成する形成工程が行われる。
(シート)
 この状態で、図3(d)に示すように、モールド2に対してシート4を載置すると、この前工程でモールド2が加熱されているので凹部1内の第一水不溶性材料と第一水溶性材料は溶融しておりシート4に付着する。したがって高温で加熱する必要がなく、低コストで作業性がよいとともに、加熱工程において加熱する温度が低いことで溶融した材料と基材11とが接触しても、基材11が軟化・変形、燃焼することがない。
 また、第一水不溶性材料と第一水溶性材料とが溶融した状態でモールド2の凹部1が形成されている底面上にも滞留していることで、溶融した第一水不溶性材料と第一水溶性材料は、シート4の一方面全体に付着して、これが基部を形成する。このように、本実施形態では、基部が、針状部12と同一の材料からなりかつ同一の工程により形成されるものであるので、簡易に、針状部12と基材11とが、基部を介しての良好な接着性を得ることができ好ましい。これにより、基材11が面全体として補強されつつ、さらに突起部5(針状部12)と基材11との接着性が向上する。
 シート4は、前述した基材11に水に可溶である第二水溶性材料と水に不溶である第二水不溶性材料とを含有させたものである。このようにシート4が第二水不溶性材料および第二水溶性材料を含んだものであるので、基材11が凹部1内の溶融した組成物を吸収してしまうことが抑制できる。その結果、マイクロニードル構造体10が基材11を備え、かつ、液状組成物3を用いて形成されたとしても、突起部5の特に根元部分に過剰な空隙が形成されないので針状部12が崩れてしまうことが抑制される。そのため、基材11との接着に適した形状を有する針状部12を形成することができ、針状部12と基材11との接着が良好なマイクロニードル構造体10を製造することができる。
 さらには、シート4が第二水溶性材料だけでなく第二水不溶性材料を含んだものであるので、凹部1内の溶融した低融点樹脂が、シート4の含む第二水不溶性材料に熱融着することにより、シート4と突起部5との接着性がさらに向上している。このような接着性をさらに高めるためには、第二水不溶性材料もまた、融点が150℃以下である低融点樹脂であることが好ましく、融点は40~130℃であることがより好ましく、45~100℃以下であることがさらに好ましい。低融点樹脂としては、第一水不溶性材料で挙げた低融点樹脂と同様のものを用いることができる。また、第二水不溶性材料が樹脂であれば、多孔性の基材11に含侵させることが容易である。
 第二水溶性材料としては、第一水溶性材料について列挙したものを用いることができるが、第二水溶性材料が第一水溶性材料と同一であることが好ましい。第二水溶性材料と第一水溶性材料とが同一であることで、のちの除去工程において第二水溶性材料と第一水溶性材料との除去が容易となり、所望の針状部12の孔部13を形成することができる。第二水溶性材料もまた、融点が150℃以下である樹脂であることが好ましく、このような樹脂の融点は30~130℃であることがより好ましく、35~100℃であることがさらに好ましい。
 第二水不溶性材料は第一水不溶性材料について列挙したものを用いることができるが、第二水不溶性材料が第一水不溶性材料と同一であることが好ましい。第二水不溶性材料と第一水不溶性材料とが同一であることで、より第二水不溶性材料と第一水不溶性材料とが熱融着しやすくなり、突起部5とシート4との接着性が高まる。
 シート4に対し、第二水溶性材料と第二水不溶性材料とはどのように含有されていてもよいが、シート4が、基材11の突起部5(針状部12)に接着される面側から、凹部1内の第一水不溶性材料と第一水溶性材料とを吸収しないように、少なくとも第二水溶性材料を含有していればよい。すなわち、シート4は、少なくとも第二水溶性材料を含有し、この第二水溶性材料が多孔性の基材11の基材孔部の少なくとも一部を塞ぐことにより、第一水不溶性材料と第一水溶性材料との吸収を抑制できるように構成されているとよい。例えば第二水溶性材料と第二水不溶性材料とを含む層が基材11の突起部5が接着される側の面に積層されていてもよい。好ましくは、基材11を第二水溶性材料と第二水不溶性材料とを有する溶液内に浸漬させることで基材11に第二水溶性材料と第二水不溶性材料とを含侵させることである。また、インクジェット方式等により、第二水溶性材料と第二不溶性材料とを有する溶液を多孔性の基材11に塗布してもよい。多孔性の基材11に浸み込んだ第二水溶性材料と第二水不溶性材料とを有する溶液を乾燥させて、第二水溶性材料と第二不溶性材料とを基材11の基材孔部中に残留させることが簡便な含浸の手段であり好ましい。
 当該溶液は、第二水溶性材料と第二水不溶性材料だけでなくさらに溶媒を有していてもよい。溶液の全成分中、第二水溶性材料および第二水不溶性材料の合計の含有濃度は、1~35%であることが好ましく、3~30%であることがより好ましく、5~25%であることが特に好ましい。溶液は、第二水溶性材料と第二水不溶性材料とを質量比で9:1~1:9で含有していることが好ましい。この範囲であることで、後述する除去工程において、材料の除去により基材11の基材孔部が復元されるという効果が得られやすくなり、かつ、基材11と針状部12の接着性を高めることが容易である。
 第二水溶性材料と第二水不溶性材料とを含む溶液に基材11を浸漬させる場合、例えば溶液中に基材11を10~60℃で1~60分間浸漬させた後、溶媒を揮発させ、乾燥することで基材11に第二水溶性材料と第二水不溶性材料とを含侵させることができる。特に繊維状物質から基材11が構成されている場合、溶液中に浸漬することで簡易に、かつ第二水溶性材料と第二水不溶性材料を十分に吸収して含浸させることが可能である。
 本実施形態ではシート4が第二水不溶性材料を含有するように構成したが、これに限定されない。シート4が第二水不溶性材料を含有していなくても、モールド2が加熱されているので凹部1内の第一水不溶性材料と第一水溶性材料とは溶融した状態であり、シート4が載置されると凹部1内の溶融した第一水不溶性材料と第一水溶性材料とからなる突起部5が、載置されたシート4の表面に接着する。
(加圧工程)
 次に、図3(e)に示すように、シート4に対して圧力を加える加圧工程を行う。加圧方法は特に限定されるものではなく、公知の方法を用いることができる。加圧工程においては、加熱工程も同時に行うことで、さらに接着性を高めることが可能である。第一水不溶性材料の基材11への接着性を向上させる観点で、40℃以上かつ基材に与える影響が小さい180℃以下で加熱することが好ましく、第一水不溶性材料と基材11との接着が良好となる45~140℃で加熱することがより好ましい。さらには、第一水不溶性材料の溶融が開始される50~100℃で加熱することがさらに好ましい。さらには、第一水不溶性材料の融点との関係では、低融点樹脂の融点以上、低融点樹脂の融点より30℃高い温度以下で加熱することが好ましく、より好ましくは低融点樹脂の融点以上、低融点樹脂の融点より20℃高い温度以下である。このように、本実施形態においては融点の低い低融点樹脂を用いていることで、加圧時の加熱温度も低く設定することが可能である。そのため、低コストで作業性がよいとともに、基材11が加熱工程で軟化・変形等する恐れがない。本実施形態では、低融点樹脂である第一水不溶性材料および第一水溶性材料が溶融可能な温度で加熱している。
 その後、-10~3℃の低温状態で保持することで、凹部1内の突起部5が固化するとともに、突起部5とシート4との接着が完了する。このように、本実施形態では、加熱工程およびこれに続く加圧工程と突起部5の固化により、突起部5とシート4を接着する接着工程が行われる。また、加圧工程は行わず、加熱工程のみで突起部5とシート4とを接着させてもよい。
(除去工程)
 接着工程の完了の後、そして、図3(f)に示すように、固化された突起部5とシート4とが接着されたものをモールド2から離間し、次いで突起部5およびシート4の水溶性材料を除去する除去工程を行う。
 この除去工程における洗浄液は水を含むものであり、除去工程は、例えば、突起部5とシート4とが接着されたものを洗浄液中に静置することで行う。水を含む洗浄液中に静置することで、突起部5およびシート4に含有されていた第一水溶性材料および第二水溶性材料のうち、外部に露出するか、もしくは露出した部分と連通していた部分は溶解し、水中に流れ出て除去される。なお、洗浄液は水とアルコール等の混合溶媒であってもよい。この除去により、図3(g)に示すように突起部5に孔部13が形成され、針状部12として形成される。これにより、マイクロニードル構造体10を得る。除去工程において、第二水溶性材料が除去されることで、第二水溶性材料により塞がれていた基材11の基材孔部が、少なくとも部分的に復元するため、シート4は良好な液体の透過性を示すようになる。また、シート4が第二水溶性材料および第二水不溶性材料を含む場合、基材11は第二水不溶性材料を含みつつ、基材孔部が復元したものとなる。この場合、第一水溶性材料と第二水溶性材料とが接触する部分を溶解させることで、第二水不溶性材料を基材11中に残存させつつ、針状部12の、基材11側まで延設されている孔部13が、さらに基材11の基材孔部と連結される。これにより、マイクロニードル構造体10中において、針状部12と基材11の間の界面を液体が通過することが容易となる。
(突起部形成手段の変形例)
 本実施形態では、第一水溶性材料を除去することで孔部13を容易に形成するために第一水不溶性材料を用いて針状部12を形成したが、前述した低融点樹脂を用いるものであれば孔部13の作製方法は特に限定されない。いずれの場合であっても針状部12を形成するために低融点樹脂を用いることで、高温で加熱をする必要がないために、低コストで作業性がよいとともに、基材11が変形・軟化することがなく、基材11の選択の自由度を高くすることができる。
 また、本実施形態では、凹部1内に液状組成物3を充填して針状部12を形成したが、これに限定されない。例えば、形成工程が、基材11上に、液状組成物3の第一水溶性材料及び第一水不溶性材料を含有させた状態で粘度が0.1~1000mPa・sであるように調製してディスペンサー等で液状組成物3を滴下し、これにより針状部12を形成するという手法によるものであってもよい。この場合も、液状組成物3を低温で溶融して針状部12を形成することができるため、低コストで作業性がよいとともに、基材11が間接的に加熱されたとしても、基材11が変形・軟化することがなく、基材11の選択の自由度を高くすることができる。
(検査パッチの製造方法)
 図示しないが、得られたマイクロニードル構造体10の基材11の背面側の所定の位置に分析シート21を配置し、分析シート21を覆うようにテープ22を積層することで(設置工程)、検査パッチ20を製造することが可能である。積層方法は、従来公知の方法を用いることができ、例えば、基材11の背面側に分析シート21を載置したのちに、一般的に用いられる、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等の粘着剤層をテープ基材上に形成した粘着テープ22を積層することで検査パッチ20を製造できる。薬剤投与パッチも、同様の方法により製造することが可能である。
(第二実施形態)
 図4および図5に、本発明の別の実施形態に係るマイクロニードル構造体10の製造方法を示す。本実施形態では、基材11付きの、第一水不溶性材料および第一水溶性材料を有する固形状組成物を、突起部を形成するためのモールドに設置し固形状組成物を溶融することで突起部を形成する点が第一実施形態とは異なる。
(接着工程)
 基材11付きの固形状組成物の作製についてまず説明する。
 初めに、前述の第一水不溶性材料および前述の第一水溶性材料を加熱して溶融せしめて混合して混合物33を調製する。混合物33の調製に当たっては、後工程で第一水不溶性材料の基材への接着性が向上するように、また、樹脂を溶融させた場合に粘度を低下させられるように、40℃以上かつ基材に与える影響が小さい180℃以下で加熱をすることが好ましく、55~140℃で加熱することがより好ましく、70~120℃で加熱することがさらに好ましい。当該混合物33の調製においても、低融点樹脂を用いていることから、加熱温度を低く設定することができる。このため、後工程において、混合物33が溶融された状態で基材11に接着するとしても、低コストで作業性がよいとともに、基材11が軟化や変形、燃焼することがなく、基材11の選択の自由度が高い。なお、本実施形態では、混合物33は溶融している状態とすることが好ましい。より低温で加熱することを重視する場合には、混合物33を基材11と接着する程度に軟化させてもよいが、製造時間の減縮等を考えれば、上記のように第一水不溶性材料の溶融が開始される低融点樹脂の融点以上で加熱することが好ましい。
 当該混合物33を、図4(a)に示すように、固形状組成物用モールド(型)32に形成された固形状組成物用凹部31に注入する。注入すると、混合物33は表面張力により固形状組成物用モールド31の表面から盛り上がった状態となる。固形状組成物用凹部32は、所望の量の混合物33を貯留できる形状、容量で形成されていればよい。
 固形状組成物用モールド32の材質も特に限定されるものではないが、例えば、正確な型を作りやすく、固化した混合物33を剥がしやすいシリコーン化合物等で形成されていることが好ましく、本実施形態ではポリジメチルシロキサンからなる。
 混合物33に用いられる第一水不溶性材料および第一水溶性材料は、第一実施形態において列挙されたものを用いることができる。これらの第一水不溶性材料および第一水溶性材料は、いずれも溶融された状態で混合されている。混合物33における第一水不溶性材料および第一水溶性材料の混合比率も、第一実施形態と同一でよい。
 混合物33は、本実施形態では第一水不溶性材料および第一水溶性材料が含まれたものを挙げたが、少なくとも低融点樹脂が含有されていればよく、針状部12の強度を高めるために、混合物33は、低融点樹脂以外の水不溶性の樹脂や、樹脂以外の成分、例えば、シリカフィラー等を含有していてもよい。
 次に、図4(b)に示すようにこの固形状組成物用モールド32に、溶融された混合物33を覆うように基材11を含むシート34を載置することで、溶融されたシート34には、溶融された混合物33が付着する。溶融された混合物33がシート34に付着したとしても、本実施形態では低融点樹脂を用いているので、加熱温度が低く、そのため低コストで作業性がよいとともに、基材11が溶融された混合物33により軟化・変形、燃焼をする恐れがない。
 シート34は、基材11として、第一実施形態で列挙したものを用いることができる。本実施形態では、シート34は第一実施形態とは異なり、基材11が多孔性である場合には、溶融された混合物33を基材11に吸収させるため、第二水溶性材料および第二水不溶性材料を含有させないことが好ましい。
 そして、シート34上に固形状組成物用モールド32の蓋35(ポリジメチルシロキサンのシート)を載置して上から押圧する。押圧により、表面張力で固形状組成物用モールド32の表面よりも突出していた溶融した混合物33が、シート34に付着しながら固形状組成物用凹部31から外側へ流れ出し、固形状組成物用凹部31に対向していなかったシート34の表面(シート34の両面のうち、混合物33に面した側)部分にも拡がっていく。押圧することで、シート34を混合物33に対して所望の位置に設置することができる。また、押圧することで溶融した混合物33がシート34に拡がるので、基材11自体の強度を高めることができる。また、シート34に混合物33が付着することで、さらに混合物33がシート34に浸透することは起きづらく、後工程における基材11への組成物の浸透を抑制でき、結果として針状部12の根元での意図しない空隙の形成が抑制できる。さらには、押圧することで、シート34に混合物33が十分に付着することで、基材11に針状部12を形成する材料が含有され、基材11と針状部12との接着性を高めることができる。
 押圧時の圧力は、0.1~10.0MPaであることが好ましい。この範囲であることで、シート34と混合物33との接着性がよい。また、押圧時に、混合物33の基材11への接着性を向上する観点から、上記と同様の条件、あるいは異なる条件で、混合物33を加熱してもよい。
 その後、当該シート34に混合物33が接着した状態で-10~3℃で1~60分間保持する(冷蔵固化工程)ことで、溶融していた混合物33が固化して固形状となるので、固形状組成物用モールド32からシート34ごと剥離する。これにより、図4(c)に示す基材11を備えた固形状組成物36を得る。
(モールド)
 次いで、得られた基材11を備えた固形状組成物36を用いて、マイクロニードル構造体10の作製を行う。
 図5(a)に示すように、基材11を備えた固形状組成物36を、突起部形成用の凹部1Aを有するモールド2Aに載置する。モールド2Aは、第一実施形態で用いたモールド2とは、壁部を有していない点が異なるが、それ以外は同一であり、凹部1Aは凹部1と同一の条件で形成されている。固形状組成物36がモールド2Aの凹部1Aに面するように載置している。シート34の背面側にはモールド2Aの蓋6Aを設置する。
(加熱加圧工程)
 次いで、図5(b)(c)に示す加熱加圧工程を行う。加熱加圧工程は、モールド2Aの凹部1Aに固形状組成物36を十分に充填させるために、基材11を備えた固形状組成物36の溶融を開始するための予備工程(図5(b))と、溶融した固形状組成物36を凹部1Aに十分に充填するための本工程(図5(c))とからなる。なお、加熱加圧工程は、例えば加熱プレス機により行うことができる。第二実施形態の加熱加圧工程は、第一実施形態の充填工程に相当する工程である。
 まず、予備工程においては、図5(b)に示すように、固形状組成物36が凹部1Aに面するようにシート34を載置し、モールド2Aと蓋6Aとでシート34を挟持する。そして、その状態で、モールド2Aおよび蓋6Aを、下部ステージ37上に載置するとともに上部ステージ38をモールド2Aおよび蓋6の上に設置する。
 予備工程および本工程における加熱条件としては、40℃以上かつ基材11に与える影響が小さい180℃以下で少なくとも加熱をすることが好ましく、より好ましくは、55~140℃で加熱することであり、70~120℃で加熱することがさらに好ましい。本実施形態では、固形状組成物36が溶融可能な温度で加熱している。なお、固形状組成物36の加熱のため、下部ステージ37を加熱してもよいし、上部ステージ38を加熱してもよい。本工程では、予備工程の後、加熱を維持すればよく、適宜温度を変更してもよい。
 本実施形態では、針状部12を形成する材料として低融点樹脂を用いているので、加熱加圧工程における加熱温度も基材11に与える影響の少ない低温とすることができ、これにより低コストで作業性がよいとともに、基材11が軟化・変形、燃焼する恐れがない。さらに、この状態で上部ステージ38と下部ステージ37との間でモールド2Aを押圧(加圧)する。この予備工程での圧力は、0.1~5.0MPaであることが好ましい。この範囲の圧力であることで、固形状組成物36を短い時間で溶融させ、溶融した固形状組成物31を凹部1A等に速やかに充填することができる。そして、10秒~10分間保持することで、固形状組成物36が溶融された状態となる。なお、予備工程と本工程で、加圧条件を変更してもよい。例えば、本工程においては、予備工程よりも高圧又は長時間の条件で加圧を行うことができる。
 その後、図5(d)に示すように、下部ステージ37からモールド2Aを外して溶融した固形状組成物36を-10~3℃で1~60分間保持する(冷蔵固化工程)ことで冷蔵固化する。これにより、凹部1Aに応じた形状の転写性の高い突起部5Aが形成される。このように、本実施形態では、接着工程、およびこれに続く加熱加圧工程により、突起部5を形成する形成工程が行われる。
(除去工程)
 最後に、モールド2Aからシート34及び突起部5Aを離間して、除去工程を行う。除去工程は、第一実施形態と同様である。これにより、図5(e)に示すように、突起部5Aに孔部13が形成され、針状部12が形成されて、マイクロニードル構造体10を得る。本実施形態では、固形状組成物36を低温で溶融して針状部12を形成することができるため低コストで作業性がよいとともに、基材11が変形・軟化することがなく、基材11の選択の自由度を高くすることができる。このようにして得られたマイクロニードル構造体10から、検査パッチ20を製造できる。
(変形例)
 また、本実施形態では、固形状組成物36として、第一水溶性材料および第一水不溶性材料とを含有するものを説明したが、固形状組成物36は少なくとも低融点樹脂を含有していれば特に限定されない。例えば、形成工程において、モールド2に粒子状の低融点樹脂等を充填し、低融点樹脂の融点以上の温度で焼結することにより、焼結された粒子と、粒子間に形成された多数の空隙とにより構成された多孔構造を有するマイクロニードル構造体を得てもよい。この場合にも、形成工程と接着工程を同時に行う場合には、固形状組成物36が低融点樹脂を含むことで、基材11の変形や変質を抑制することが可能である。本実施形態のように固形状組成物36を用いる場合には、組成物が溶媒を含有しないので、基材11の変色や変形を抑制できるため好ましい。さらに、本実施形態において、接着工程と加熱加圧工程の順序を入れ替え、加熱加圧工程後に接着工程を行ってもよい。この場合には、第一実施形態と同様、基材11による混合物33の吸収を抑制するため、シート4が第二水溶性樹脂を含むことが好ましい。
 また、本実施形態では、溶融された混合物33を覆うように基材11を含むシート34を載置することで、溶融されたシート34に、溶融された混合物33が付着するようにしたが、この段階では混合物33にシート34を付着させずに、固形状組成物36を得た後、固形状組成物36に基材11を含むシート34を加熱せずに接着させてもよい。この場合には、シート34が、固形状組成物36に接着するための接着剤層を有することが好ましい。この場合、接着工程においてシート34は加熱されないが、針状部12を形成する材料として低融点樹脂を用いていることにより、形成工程における加熱温度も基材11に与える影響の少ない低温とすることができ、これにより低コストで作業性が改善する。また、基材11が軟化・変形、燃焼する恐れがない。マイクロニードル構造体10において、得られる針状部12又は基部が多孔構造を有していると、針状部12又は基部の基材11に対する接着面積が小さくなり、これらの間の接着性にとって不利になるが、このように基材11と固形状組成物31が接着した状態で、形成工程における加熱を経ることで、針状部12又は基部と、基材11との間の接着性を向上させることができる。
 基材11に接着剤層を設ける場合には、上述したように基材11と針状部12との間に空隙が生じて、液体が漏れ出したり、接着剤層により基材11と針状部12との間の液体の通過が妨げられたりする懸念がある。そのため、基材11において液体が通過すべき領域を囲むように接着剤層を設けつつ、中央部には接着剤層の非形成領域を設けることが好ましい。
 さらに、接着工程を、形成工程の後に行ってもよい。この場合に、除去工程前の突起部5A等、または除去工程後の針状部12等と、基材11を接着させる際に、加熱を伴う場合であっても、基材11が変形・軟化することがなく、作業性がよい。
 本実施形態では、基材11が多孔性である場合を例として挙げたが、シート34として、上述した樹脂フィルム、金属箔等を用いてもよい。
 以下、実施例により本発明をより詳細に説明する。
〔実施例〕
(実施例1)
 第一水溶性材料としてのポリエチレングリコール(分子量4000、融点40℃)を100重量部、第一水不溶性材料としてのポリカプロラクトン(融点60℃、単量体の開環物である6-ヒドロキシカプロン酸の酸解離定数が4.8)を100重量部、溶媒(有機溶媒)としての酢酸エチルを800重量部で配合して、固形分濃度20%の液状組成物を調製した。ポリジメチルシロキサンからなるモールドの周縁部に形成された壁部に囲まれた空間は上面視正方形(15mm四方)であり、針状部の根元部分に基部を形成するため、この壁部内の一部まで満たされるように、液状組成物0.7mlを注入した。モールドに形成されている凹部は以下のとおりである。
・凹部形状:断面正方形の四角錘形状
・凹部の最大断面の一辺の長さ:500μm
・凹部の高さ:900μm
・凹部のピッチ:1000μm
・凹部の数:縦列13本、13列の計169本
・凹部が形成された領域のサイズ:15mm四方
・凹部の配置:正方形格子状
 次にモールドを超音波洗浄装置(超音波洗浄機AU-10C/アイワ医科工業株式会社製)に載置しつつ、超音波処理を1分間行った。
 次に脱気工程として温度23℃、圧力0.05MPaの減圧環境下で30分真空乾燥を行った。その後、110℃、無調湿の環境下において30分間加熱した。
 一方、第二水溶性材料としてのポリエチレングリコール(第一水溶性材料と同じもの)を100重量部、第二水不溶性材料としてのポリカプロラクトン(第一水不溶性材料と同じもの)を100重量部、溶媒(有機溶媒)としての酢酸エチルを1800重量部で配合して、固形分濃度10%の溶液を調製した。また、基材としての濾紙(WHATMAN FILTER PAPER GRADE4/GE Healthcare Life Siences社製)を上記の溶液に浸漬させた後取り出して、23℃の条件で、60分間乾燥させることにより、シートを作製した。
 加熱中のモールドの凹部に形成された突起部の上方に設けられた基部の露出面にシートを載置し、110℃の加熱を保ったまま、載置されたシート上に錘(500g)を載せることにより加圧工程を行った。錘を載せた状態で、次いで3℃の低温状態で10分保持して突起部および基部を固化させるとともに突起部及び基部とシートとを接着した。接着されたシートおよび固化された突起部及び基部をモールドから剥離し、23℃の精製水に24時間浸漬させて、突起部、基部、およびシート中の第一水溶性材料および第二水溶性材料を溶解させて除去して針状部および基部を形成した。
 その後、第一水溶性材料および第二水溶性材料を溶解させて除去した突起部および基部とシートとが接着されたものを23℃、相対湿度50%の環境下に24時間静置し、水分を蒸発させて乾燥し、マイクロニードル構造体を作製した。
(実施例2)
 第一水溶性材料としての、実施例1と同じポリエチレングリコールを100重量部、第一水不溶性材料としての、実施例1と同じポリカプロラクトンを100重量部を秤量し、100℃に加熱しながらスターラーで加熱攪拌することにより溶融させ、混合して混合物を調製した。ポリジメチルシロキサンからなる固形状組成物用モールドを準備し、このモールドは、開口部が直径20mmの円形状で深さが1.5mmの凹部が形成されているものであった。このモールドの凹部を満たすように混合物を注入した。
 次いで、実施例1と同一の濾紙をシートとして固形状組成物用モールド上に載置し、その上に固形状組成物用モールド蓋(ポリジメチルシロキサンからなるシート)を載置して、シートに混合物を付着せしめた。この状態で3℃で5分保持し、溶融されていた混合物が固化して固形状となったので、固形状組成物用モールドからシートごと離間して基材付き固形状組成物を得た。
 次いで、実施例1とは壁部がないが凹部の形成条件は同一のモールドを用いて、加熱加圧工程を行った。加熱プレス機(アズワン株式会社製、AH-1T)の下部ステージ上にモールドを載置して、モールドの上に、基材付固形組成物が凹部に面するように載置し、その上から30mm四方の正方形状のポリジメチルシロキサン製のシートを重ね、加熱プレス機の下部ステージのみ設定加熱温度:110℃で加熱しながら及び2MPaで3分間押圧して予備工程を行った。その後、同様に加熱プレス機の下部ステージのみ110℃で加熱したまま4MPaで30秒押圧して本工程を行った。さらに3℃の冷蔵庫にて5分間保管し組成物を固化させた。その後、モールドからシートを剥離して23℃の精製水に24時間浸漬させて、第一水溶性材料を溶解させ、除去して針状部を形成した。その後、23℃、相対湿度50%の環境下に24時間静置し、水分を蒸発させて乾燥し、マイクロニードル構造体を得た。
(比較例1)
 比較例として、ポリカプロラクトンに代えて、融点が170℃であり、単量体である乳酸の酸解離定数3.08であるポリ乳酸を用い、加圧工程中及び事前の加熱の温度を230℃とした以外は、実施例1と同様にしてマイクロニードル構造体を作製した。
 実施例1、2および比較例1において、組成物の冷却により突起部を形成し、モールドからの剥離後、精製水に浸漬させる前に、突起部内部を光学顕微鏡(倍率:50倍および100倍)で観察し、突起部が基材上に残存していた数を数えた。この残存数の、設計上の突起部の全数に対する割合を算出して転写率とした。実施例で得られたマイクロニードル構造体では、転写率が50%以上と転写性がよく、比較例で得られたマイクロニードル構造体は転写率が50%未満で転写性が低かった。比較例では、基材が突起部形成時に、溶融した材料が付着して変形してしまったため、転写性が低かったと考えられる。
 本発明のマイクロニードル構造体は、例えば、分析シートを背面側に配置してテープでラミネートすることにより検査パッチとして使用することができる。
1、1A   凹部
2、2A   モールド
3、3A   液状組成物
4、4A   シート
5、5A   突起部
10   マイクロニードル構造体
11   基材
12   針状部
13   孔部
20   検査パッチ
21   分析シート
22   テープ
31   固形状組成物用凹部
32   固形状組成物用型
33   混合物
34   シート
35   蓋
36   固形状組成物

Claims (15)

  1.  マイクロニードル構造体であって、
     前記マイクロニードル構造体は、針状部を基材の一方面側に備え、前記基材が、厚さ方向において液体の透過性を有する基材であり、前記針状部は、その融点が150℃以下である低融点樹脂を含む組成物から構成され、針状部の表面および内部に孔部が形成されていることを特徴とするマイクロニードル構造体。
  2.  前記針状部に、多孔構造が形成されていることを特徴とする請求項1に記載のマイクロニードル構造体。
  3.  前記低融点樹脂は、水不溶性樹脂であることを特徴とする請求項1又は2に記載のマイクロニードル構造体。
  4.  前記低融点樹脂は、生分解性樹脂であることを特徴とする請求項1から3のいずれか一項に記載のマイクロニードル構造体。
  5.  前記生分解性樹脂が、その単量体の酸解離定数が4以上であることを特徴とする請求項4に記載のマイクロニードル構造体。
  6.  前記低融点樹脂は、ポリカプロラクトン又はカプロラクトンと他の単量体との共重合体であることを特徴とする請求項1から5のいずれか一項に記載のマイクロニードル構造体。
  7.  前記針状部と前記基材とは直接接着されていることを特徴とする請求項1から6のいずれか一項に記載のマイクロニードル構造体。
  8.  前記基材が、多孔性の基材であることを特徴とする請求項1から7のいずれか一項に記載のマイクロニードル構造体。
  9.  前記多孔性の基材が、水不溶性材料を含有することを特徴とする請求項8に記載のマイクロニードル構造体。
  10.  前記水不溶性材料が、融点が150℃以下である低融点樹脂であることを特徴とする請求項9に記載のマイクロニードル構造体。
  11.  その内部に孔部が形成された針状部と、当該針状部を一方面側に備える基材とを備えたマイクロニードル構造体の製造方法であって、
     融点が150℃以下である低融点樹脂を含有する組成物を加熱して、加熱した前記低融点樹脂と前記基材とを接着させる接着工程を含むことを特徴とするマイクロニードル構造体の製造方法。
  12.  その内部に孔部が形成された針状部と、当該針状部を一方面側に備える基材とを備えたマイクロニードル構造体の製造方法であって、
     融点が150℃以下である低融点樹脂を含む組成物を加熱し、前記組成物により前記基材に突起部を形成する形成工程を含むことを特徴とするマイクロニードル構造体の製造方法。
  13.  前記低融点樹脂が、水に不溶である前記低融点樹脂であり、
     前記組成物は、水に不溶である前記低融点樹脂と水溶性材料とを含有し、
     前記形成工程後に、水により、前記組成物から形成された前記突起部の前記水溶性材料を除去して、前記突起部に孔部を形成する除去工程を有することを特徴とする請求項11又は12に記載のマイクロニードル構造体の製造方法。
  14.  前記水溶性材料の融点が150℃以下であることを特徴とする請求項13に記載のマイクロニードル構造体の製造方法。
  15.  凹部を有する型に前記低融点樹脂を含有する組成物を付与し、前記組成物を前記低融点樹脂の融点以上に加熱して、前記凹部に充填する充填工程を行うことを特徴とする請求項11から14のいずれか一項に記載のマイクロニードル構造体の製造方法。
PCT/JP2022/016676 2021-03-31 2022-03-31 マイクロニードル構造体及びその製造方法 WO2022211059A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280019111.XA CN117083099A (zh) 2021-03-31 2022-03-31 微针结构体及其制造方法
US18/553,432 US20240180465A1 (en) 2021-03-31 2022-03-31 Microneedle structure and method for producing same
KR1020237026977A KR20230163361A (ko) 2021-03-31 2022-03-31 마이크로 니들 구조체 및 그 제조 방법
DE112022001933.6T DE112022001933T5 (de) 2021-03-31 2022-03-31 Mikronadelstruktur und verfahren zur herstellung derselben
JP2023511730A JPWO2022211059A1 (ja) 2021-03-31 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062453 2021-03-31
JP2021-062453 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211059A1 true WO2022211059A1 (ja) 2022-10-06

Family

ID=83456636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016676 WO2022211059A1 (ja) 2021-03-31 2022-03-31 マイクロニードル構造体及びその製造方法

Country Status (7)

Country Link
US (1) US20240180465A1 (ja)
JP (1) JPWO2022211059A1 (ja)
KR (1) KR20230163361A (ja)
CN (1) CN117083099A (ja)
DE (1) DE112022001933T5 (ja)
TW (1) TW202302175A (ja)
WO (1) WO2022211059A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048744A1 (en) * 2006-05-01 2010-02-25 Jung-Hwan Park Particle Based Molding
JP2015128499A (ja) * 2014-01-07 2015-07-16 凸版印刷株式会社 マイクロニードルの製造方法
KR20150085502A (ko) * 2015-07-02 2015-07-23 주식회사 엘지생활건강 이층 구조의 나노 크기 구멍을 가진 마이크로니들 및 이의 제조 방법
JP2017000724A (ja) * 2015-06-05 2017-01-05 国立大学法人東北大学 マイクロニードル及びマイクロアレイ並びにその製造方法
WO2019176126A1 (ja) * 2018-03-16 2019-09-19 国立大学法人東京大学 検査チップおよび検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078474A (ja) 2014-10-09 2016-05-16 トヨタ自動車株式会社 車両前部構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048744A1 (en) * 2006-05-01 2010-02-25 Jung-Hwan Park Particle Based Molding
JP2015128499A (ja) * 2014-01-07 2015-07-16 凸版印刷株式会社 マイクロニードルの製造方法
JP2017000724A (ja) * 2015-06-05 2017-01-05 国立大学法人東北大学 マイクロニードル及びマイクロアレイ並びにその製造方法
KR20150085502A (ko) * 2015-07-02 2015-07-23 주식회사 엘지생활건강 이층 구조의 나노 크기 구멍을 가진 마이크로니들 및 이의 제조 방법
WO2019176126A1 (ja) * 2018-03-16 2019-09-19 国立大学法人東京大学 検査チップおよび検査装置

Also Published As

Publication number Publication date
DE112022001933T5 (de) 2024-01-25
KR20230163361A (ko) 2023-11-30
CN117083099A (zh) 2023-11-17
TW202302175A (zh) 2023-01-16
US20240180465A1 (en) 2024-06-06
JPWO2022211059A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US10029081B2 (en) Molding compact, and manufacturing method for transdermal absorption sheet
US9649281B2 (en) Transdermal absorption sheet, and manufacturing method for the same
JP5063544B2 (ja) 経皮吸収シート及びその製造方法
EP2062612A1 (en) Microneedle and microneedle patch
US10814118B2 (en) Transdermal absorption sheet
US10596361B2 (en) Transdermal absorption sheet and method of producing the same
JP6588864B2 (ja) 経皮吸収シートの製造方法
CN108939283B (zh) 一种人体安全可降解的微针阵列及其制造方法和模具
WO2022211059A1 (ja) マイクロニードル構造体及びその製造方法
WO2022211058A1 (ja) マイクロニードル構造体の製造方法およびマイクロニードル構造体
TWI700107B (zh) 收納片、微型針片的包裝體
JP2022157925A (ja) マイクロニードル構造体の製造方法
JP2024049852A (ja) マイクロニードル構造体の製造方法
WO2023190910A1 (ja) マイクロニードル構造体
TW202408614A (zh) 微針構造體
WO2023042525A1 (ja) マイクロニードルパッチ
WO2023190911A1 (ja) マイクロニードル構造体及びマイクロニードル構造体の製造方法
JP6909461B2 (ja) 浮遊系細胞保定用多孔質超薄膜とその製造方法
KR102635701B1 (ko) 약물 저장공간을 갖는 마이크로 니들 및 이의 제조방법
JP2017164308A (ja) 穿刺デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511730

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280019111.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18553432

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001933

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781269

Country of ref document: EP

Kind code of ref document: A1