WO2022211050A1 - シャフトおよびその製造方法、ゴルフクラブ用シャフト - Google Patents
シャフトおよびその製造方法、ゴルフクラブ用シャフト Download PDFInfo
- Publication number
- WO2022211050A1 WO2022211050A1 PCT/JP2022/016646 JP2022016646W WO2022211050A1 WO 2022211050 A1 WO2022211050 A1 WO 2022211050A1 JP 2022016646 W JP2022016646 W JP 2022016646W WO 2022211050 A1 WO2022211050 A1 WO 2022211050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermosetting resin
- prepreg
- shaft
- layer
- resin sheet
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 53
- 229920005989 resin Polymers 0.000 claims abstract description 243
- 239000011347 resin Substances 0.000 claims abstract description 243
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 181
- 239000000835 fiber Substances 0.000 claims abstract description 106
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 50
- 238000004804 winding Methods 0.000 claims description 44
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 30
- 239000004917 carbon fiber Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000003822 epoxy resin Substances 0.000 claims description 16
- 229920000647 polyepoxide Polymers 0.000 claims description 16
- 239000004697 Polyetherimide Substances 0.000 claims description 8
- 229920001601 polyetherimide Polymers 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 19
- 239000012783 reinforcing fiber Substances 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 229920001169 thermoplastic Polymers 0.000 description 10
- 239000004416 thermosoftening plastic Substances 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000002657 fibrous material Substances 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000006082 mold release agent Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229920004747 ULTEM® 1000 Polymers 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920012287 polyphenylene sulfone Polymers 0.000 description 1
- 238000007592 spray painting technique Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/10—Non-metallic shafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
- A63B2209/02—Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/22—Tubes or pipes, i.e. rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/52—Sports equipment ; Games; Articles for amusement; Toys
- B29L2031/5227—Clubs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Definitions
- the present invention relates to a shaft, a method for manufacturing the same, and a golf club shaft composed of the shaft.
- a shaft in which only fiber-reinforced resin layers containing thermosetting resin and fibers are laminated. Such shafts are used for golf club shafts and the like (see, for example, Patent Document 1).
- the shaft is manufactured by a sheet wrap molding method.
- a prepreg is wound around a metal core called a mandrel.
- a wound prepreg is heat-cured to obtain a shaft (see Patent Document 2, for example).
- thermoplastic resin prepreg has higher flexural rigidity, lower tackiness, and inferior drape properties compared to a prepreg containing a thermosetting resin as a matrix resin (thermosetting resin prepreg). . Therefore, it is difficult to mold the thermoplastic resin prepreg so that it conforms to the shape of the mandrel.
- thermosetting resin prepreg In order to put a shaft with high threading strength into practical use, it has been necessary to increase the number of laminated fiber-reinforced resin layers containing thermosetting resin and fibers. However, there is a concern that increasing the number of laminated fiber-reinforced resin layers increases the weight of the entire shaft.
- Another object of the present invention is to provide a shaft that is light in weight while maintaining high threading strength, a method for manufacturing the same, and a golf club shaft comprising the shaft.
- a shaft having a plurality of layers A and at least one layer B The layer A contains a cured thermosetting resin, the layer B contains a thermoplastic resin and a continuous fiber base material, A shaft, wherein at least one said layer B is arranged between two said layers A.
- the ratio of the thickness of the layer B to the sum of the thickness of the layer A and the thickness of the layer B is , 0.5% or more and 90% or less, the shaft according to any one of [1] to [8].
- a golf club shaft comprising the shaft according to any one of [1] to [12].
- thermosetting resin sheet a that will be the layer A and the prepreg b that will be the layer B are placed along the outer circumference of the mandrel along the shape of the mandrel, and the prepreg b and the thermosetting resin sheet a are arranged from the mandrel side.
- thermosetting resin sheet a containing a thermosetting resin and fibers and a prepreg b containing a thermoplastic resin and fibers are placed along the outer periphery of the mandrel from the mandrel side along the shape of the mandrel.
- thermosetting resin sheet a containing a thermosetting resin and a prepreg b containing a thermoplastic resin and fibers are placed along the outer circumference of the mandrel along the shape of the mandrel from the mandrel side.
- a method of manufacturing a shaft comprising the step of winding a resin sheet a and the prepreg b in this order to form a laminate including a portion where the thermosetting resin sheet a and the prepreg b are in contact.
- the method for manufacturing a shaft according to [19] including the step of heating the laminate.
- thermosetting resin sheet a containing a thermosetting resin and a prepreg b containing a thermoplastic resin and fibers are placed along the outer periphery of the mandrel along the shape of the mandrel from the mandrel side.
- the resin sheet a and the prepreg b are wound in this order, and the prepreg b is overlapped and wound so as to be in direct contact with the thermosetting resin sheet a to laminate the thermosetting resin sheet a and the prepreg b.
- a method of manufacturing a shaft comprising forming a body.
- thermosetting resin sheet a containing a thermosetting resin and a prepreg b containing a thermoplastic resin and fibers are laminated on the outer circumference of a mandrel is wound along the shape of the mandrel.
- a method of manufacturing a shaft comprising the step of forming a wound body.
- thermosetting resin sheet a2 different from the thermosetting resin sheet a around the shaft around which the laminated sheet is wound.
- a method of manufacturing the described shaft [26] The method for manufacturing a shaft according to any one of [22] to [25], wherein the laminated sheet is wound in the order of the thermosetting resin sheet a and the prepreg b from the mandrel side. [27] The laminated sheet further includes the thermosetting resin sheet a, and the laminated sheet is arranged in the order of the thermosetting resin sheet a, the prepreg b, and the thermosetting resin sheet a from the mandrel side.
- the ratio of the thickness of one prepreg b to the thickness of one thermosetting resin sheet a is 1.5 or less
- the ratio of the length in the width direction of the thermosetting resin sheet a to the radius of the shaft is 0.5 or more. ] to [34].
- thermosetting resin contained in the thermosetting resin sheet a is an epoxy resin.
- thermoplastic resin contained in the prepreg b is polyetherimide.
- the present invention it is possible to provide a shaft with reduced weight while maintaining high threading strength, a method for manufacturing the same, and a golf club shaft composed of the shaft.
- FIG. 4 is a cross-sectional view along the longitudinal direction of a shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- 1 is a plan view of a shaft according to one embodiment of the invention
- FIG. 1 is a plan view of a shaft according to one embodiment of the invention
- FIG. 1 is a plan view of a shaft according to one embodiment of the invention
- FIG. FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention
- FIG. 4 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft according to one embodiment of the present invention;
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 4 is a plan view showing the position where layer B is arranged in the shaft according to one embodiment of the present invention.
- FIG. 3 is a schematic diagram showing positions of edges of a prepreg and edges of a thermosetting resin sheet;
- FIG. 3 is a schematic diagram showing positions of edges of a prepreg and edges of a thermosetting resin sheet;
- FIG. 4 is a schematic diagram showing the ratio of the total length L of contact between the prepreg and the thermosetting resin sheet and the radius r from the center of the shaft to the outermost surface of the thermosetting resin sheet with which the prepreg contacts.
- FIG. 4 is a schematic diagram showing the shape of a mandrel used in manufacturing a shaft according to one embodiment of the present invention;
- FIG. 2 is a pattern diagram showing the shape of a prepreg used in manufacturing a shaft according to one embodiment of the present invention;
- 1 is a schematic diagram of a golf club shaft according to an embodiment of the present invention;
- a shaft according to one embodiment of the present invention is a shaft having a plurality of layers A and at least one layer B, wherein the layer A contains a cured product of a thermosetting resin, and the layer B is heat cured. At least one said layer B is arranged between two said layers A comprising a plastic resin and a continuous fiber substrate.
- FIG. 1 is a cross-sectional view along the longitudinal direction of the shaft of this embodiment.
- FIG. 2 is a cross-sectional view along the longitudinal direction and the vertical direction of the shaft of this embodiment.
- the shaft 10 of this embodiment shown in FIG. 1 has two layers A11 (11A, 11B) and one layer B12. In the shaft 10 of this embodiment, one layer B12 is arranged between two layers A11A and A11B.
- the shaft 10 has a hollow portion 20 in the center.
- the shape of the shaft 10 may be circular as shown in FIG. 3, elliptical as shown in FIG. 4, polygonal as shown in FIG. 5, or polygonal as shown in FIG. It may be a polygon with rounded corners as shown. Moreover, the shape of 10 may not be completely connected in cross section along the longitudinal direction and the vertical direction as shown in FIG. 7, or the inside may be solid as shown in FIG. Further, the shaft 10 may vary in thickness in the longitudinal direction as shown in FIG. 9, may gradually vary in thickness as shown in FIG. It may be curved or bent.
- thermoplastic resin prepreg is inferior to a thermosetting resin prepreg in drapeability and has a low surface tack, so that it is difficult to roll it into a tubular shape. For these reasons, it has been impossible to form a layer B containing a thermoplastic resin and a continuous fiber base material on a shaft in the conventional sheet wrap molding method.
- a structure (ABA structure) in which one layer B12 is arranged between two layers A11A and A11B, the layer A11 can sandwich and fix the layer B12. It is possible to obtain a shaft that can be molded into a tubular shape, has high strength, and is excellent in molding accuracy. Further, by adopting the ABA structure described above, the productivity is also excellent.
- the sum of the thickness of the layer A11 and the thickness of the layer B12 (in the shaft 10 shown in FIGS. 1 and 2, the sum of the thickness of the layer A11A, the thickness of the layer A11B, and the thickness of the layer B12).
- the ratio of the thickness of the layer B12 to the (thickness of the layer B12 / the sum of the thickness of the layer A11 and the thickness of the layer B12) is preferably 0.5% or more and 90% or less, and 1% or more and 70% or less is more preferably 2% or more and 50% or less, and particularly preferably 5% or more and 20% or less.
- the thickness ratio is equal to or greater than the lower limit, the thread cutting strength is improved.
- the thickness ratio is equal to or less than the upper limit, the moldability is excellent.
- the layer B12 is arranged closer to the hollow portion 20 than the layer A11A. Thereby, the threading strength of the shaft 10 can be further improved.
- the layer B12 is preferably arranged closer to the hollow portion 20 than at least one layer A11, but may be arranged closer to the hollow portion 20 than two or more layers A11.
- Layer A11 is preferably the outermost layer on the side opposite to the hollow portion.
- the layers are arranged in the order of layer A11A-layer B12-layer A11B.
- the layer B12 contains a thermoplastic resin having low adhesion to the layer A11 containing a cured product of a thermosetting resin, the layer B12 can be sandwiched between the layers A11A and A11B and fixed. .
- the threading strength of the shaft 10 can be further improved.
- Layer A11 and layer B12 can be formed by winding a thermosetting resin sheet or prepreg.
- the thermosetting resin sheet a fixes the prepreg b from the outside, making it easier to wind the prepreg b in the shape of a shaft.
- the laminate of the thermosetting resin sheet a and the prepreg b may be formed by winding the laminated sheet of the prepreg b and the thermosetting resin sheet a. After winding the prepreg b, the thermosetting resin sheet a may be formed by winding.
- the prepreg b is formed by winding. It is preferably fixed firmly.
- a laminated body in which the thermosetting resin sheet a1, the prepreg b, and the thermosetting resin sheet a2 are wound from the center side of the shaft 10 is formed by forming a laminated sheet of the thermosetting resin sheet a1 and the prepreg b.
- the laminated body may be formed by winding, or the laminated body may be formed by winding after forming a laminated sheet of the prepreg b and the thermosetting resin sheet a2.
- thermosetting resin sheet a1 the prepreg b, and the thermosetting resin sheet a2 may be laminated to form a laminated sheet, which may then be wound. A2 may be wound in turn to form a laminate.
- the thermosetting resin sheet a may or may not contain fibers.
- the layer B12 can be positioned anywhere on the shaft 10 as long as it is sandwiched between two layers, and as shown in FIG. If so, there may be a plurality of layers B12.
- the layer A11 is composed of a cured thermosetting resin.
- the thermosetting resin is not particularly limited, but an epoxy resin is usually used.
- epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, glycidylamine type epoxy resin, isocyanate-modified epoxy resin, or alicyclic formula epoxy resin, and the like. These epoxy resins can be used from those that are liquid to those that are solid at room temperature. These epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type.
- the layer A11 may be a fiber-reinforced resin layer containing a cured thermosetting resin and a continuous fiber base material.
- a continuous fiber substrate may be replaced by a discontinuous fiber substrate.
- the layer A11 may be made of a fiber-reinforced resin that is a cured prepreg containing a thermosetting resin.
- a prepreg is a resin-impregnated reinforcing fiber sheet obtained by impregnating a reinforcing fiber base material, which is a sheet of a fiber material containing a plurality of reinforcing fibers, with a resin composition (matrix resin composition).
- the prepreg After the prepreg is cut into a predetermined shape, it is deformed using a mold or the like and cured by heating to obtain a molded fiber-reinforced resin.
- the thickness of one sheet of prepreg that becomes the layer A after curing is, for example, 30 ⁇ m to 250 ⁇ m. 40 ⁇ m to 150 ⁇ m is preferable from the viewpoint of handleability.
- the fiber basis weight in the prepreg that becomes layer A after curing is, for example, 10 g/m 2 to 300 g/m 2 . 30 g/m 2 to 250 g/m 2 is preferable, and 50 g/m 2 to 220 g/m 2 is more preferable from the viewpoint of handleability.
- the continuous fiber base material contained in layer A11 is preferably a woven fabric base material or a unidirectional fiber base material.
- Carbon fibers and/or glass fibers can be employed as the reinforcing fibers constituting the continuous fiber base material contained in the layer A11.
- Constituting 40% or more of the continuous fiber base material with carbon fibers is preferable in order to develop physical properties such as strength and rigidity.
- the continuous fiber base material may be composed of only carbon fibers or only glass fibers.
- a fiber-reinforced resin containing only carbon fibers as reinforcing fibers is preferable because it has better physical properties such as strength and rigidity than fiber-reinforced resins containing only glass fibers as reinforcing fibers.
- the ratio of the carbon fiber reinforced resin in the fiber reinforced resin in the shaft is preferably more than 50% by mass, and is 60% by mass or more so that the carbon fiber reinforced resin is the main material. is more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
- the resin contained in the layer A11 does not substantially contain a thermoplastic resin.
- the thermoplastic resin is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to 100% by mass of the resin contained in the layer A11. % or less.
- the layer A11 preferably contains a thermosetting resin (including both uncured resin and cured material) as a matrix resin, and is mainly composed of the thermosetting resin.
- the thermosetting resin is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 80% by mass or more. It is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 95% by mass or more.
- the resin contained in the thermosetting resin sheet a preferably does not substantially contain a thermoplastic resin.
- the thermoplastic resin is preferably 10% by mass or less, preferably 5% by mass or less, with respect to 100% by mass of the resin contained in the thermosetting resin sheet a. It is more preferable that the content is 1% by mass or less.
- the thermosetting resin sheet a preferably contains a thermosetting resin (including both an uncured resin and a cured product) as a matrix resin, and is mainly composed of the thermosetting resin.
- the thermosetting resin is preferably 50% by mass or more, more preferably 60% by mass or more, and 80% by mass or more. It is more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The more the thermosetting resin contained in the thermosetting resin sheet a, the higher the tackiness of the thermosetting resin sheet a and the easier it is to wind the prepreg b.
- Layer B12 is a fiber-reinforced resin layer containing a thermoplastic resin and a continuous fiber base material.
- the layer B12 is a fiber reinforced resin layer containing a thermoplastic resin and a discontinuous fiber base material.
- the layer B12 is made of a fiber-reinforced resin that is a solidified prepreg.
- the thickness of one sheet of prepreg that becomes the layer B after curing is, for example, 10 ⁇ m to 250 ⁇ m.
- the prepreg preferably has a thickness of 20 ⁇ m to 100 ⁇ m from the viewpoint of handleability.
- the carbon fiber basis weight in the prepreg that becomes the layer B after curing is, for example, 10 g/m 2 to 300 g/m 2 . 30 g/m 2 to 250 g/m 2 is preferable, and 50 g/m 2 to 220 g/m 2 is more preferable from the viewpoint of handleability.
- thermoplastic resin polyetherimide, polyetheretherketone, polyetherketoneketone, polyethersulfone, polyphenylenesulfone, polyamide, polyphenylenesulfide, and polycarbonate are used. Among these, polyetherimide is preferable from the viewpoint of improving threading strength.
- the layer B12 contains a thermoplastic resin as a matrix resin and is mainly composed of the thermoplastic resin.
- the thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. is more preferable, and 95% by mass or more is particularly preferable. As the content of the thermoplastic resin increases, the thread cutting strength and thread breaking angle of the shaft improve.
- the resin contained in the layer B12 preferably does not substantially contain a thermosetting resin.
- the content of the thermosetting resin is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less based on 100% by mass of the resin contained in Layer B.
- the prepreg b preferably contains a thermoplastic resin as a matrix resin and has a thermoplastic resin as a main component.
- the thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 80% by mass or more, and 90% by mass or more. is more preferable, and 95% by mass or more is particularly preferable. As the content of the thermoplastic resin increases, the thread cutting strength and thread breaking angle of the shaft improve.
- the resin contained in the prepreg b preferably does not substantially contain a thermosetting resin.
- the content of the thermosetting resin is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less based on 100% by mass of the resin contained in the prepreg b.
- the continuous fiber base material contained in layer B12 is preferably a woven fabric base material or a unidirectional fiber base material. Carbon fibers and/or glass fibers can be employed as the reinforcing fibers constituting the fiber base material contained in the layer B12, like the fibers contained in the layer A11.
- the fiber length is preferably 1% or more of the total length of the shaft, more preferably 10% or more, even more preferably 30% or more, particularly preferably 50% or more, and 90% or more. % or more, even more preferably 95% or more, and particularly preferably 100%.
- a longer fiber length is preferable because it improves the tensile strength of the shaft.
- the fiber length is preferably 10 mm or longer, more preferably 25 mm or longer, and even more preferably 50 mm or longer.
- a longer fiber length is preferable because it improves the tensile strength of the shaft.
- the fiber length can be 1200 mm or less, 1070 mm or less, 1000 mm or less.
- the fiber volume content of the prepreg b is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, still more preferably 40% by volume or more, and particularly preferably 50% by volume or more. .
- the fiber volume content of the prepreg b is preferably 80% by volume or less, more preferably 75% by volume or less, and even more preferably 65% by volume or less.
- Layer B12 may be in the form of a continuous tape, towpreg, web.
- the fibers contained in layer B12 may be in the form of short fibers.
- the short fibers may be obtained by cutting the prepreg to be the layer B12, or the prepreg to be the layer B12 may be obtained by impregnating a deposit of short fibers with a thermoplastic resin.
- thermoplastic fiber reinforced resin layer molded and arranged by injection molding has a lower fiber volume content. Therefore, when the thermoplastic fiber reinforced resin layer molded by injection molding is placed with the same thickness as the thermoplastic impregnated prepreg wound by sheet wrap molding, the amount of fibers is reduced, and the thread breaking strength and thread breaking angle are reduced. descend. Therefore, a shaft having a thermoplastic fiber reinforced resin layer formed by injection molding needs to have a thicker thermoplastic fiber reinforced resin layer than a shaft having a prepreg wound by sheet wrap molding. Thickening the thermoplastic fiber reinforced resin layer increases the weight of the shaft.
- thermoplastic fiber reinforced resin layer may contain a mold release agent because the mold release agent is applied to the injection molding mold and the internal mold release agent is added to the inside of the resin during injection molding.
- the mold release agent contained in the thermoplastic fiber reinforced resin layer molded by injection molding tends to cause delamination, making it difficult to develop the strength and angle characteristics in the thread cutting test described in the Examples section.
- the fiber base material contained in the layer B12 is a unidirectional fiber base material.
- a unidirectional fibrous base material is preferable for manufacturing because the prepreg can be easily wound around a mandrel.
- the fiber length is preferably 1/8 or more, more preferably 1/4 or more, of the circumference of the shaft. The longer the fiber length, the better the threading strength and the threading breaking angle of the shaft.
- the length of the fibers is preferably twice or less the circumference of the shaft, and more preferably one time or less. The shorter the fiber length, the easier it is to wind the prepreg.
- the orientation degree pf of the reinforcing fibers in the layer B12 is preferably 0.5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more.
- the degree of orientation pf is an index representing the orientation state of reinforcing fibers in a specific direction in the layer B12. The larger the value of the degree of orientation pf, the more preferable from the viewpoint of improving the threading strength and the threading breaking angle.
- the fiber direction may be random.
- the thickness of one layer of the layer B12 is preferably 0.2 mm or less, more preferably 0.15 mm or less, and even more preferably 0.1 mm or less.
- the thickness of the layer B12 is usually 0.01 mm or more, preferably 0.02 mm or more.
- the above upper and lower limits can be combined arbitrarily. For example, it is preferably 0.01 mm or more and 0.2 mm or less, more preferably 0.01 mm or more and 0.15 mm or less, and even more preferably 0.02 mm or more and 0.1 mm or less.
- the orientation direction of the fibers is preferably the same as the axial direction of the shaft.
- the angle formed by the orientation direction of the fibers with respect to the axial direction of the shaft is preferably ⁇ 30° or less, more preferably ⁇ 20° or less, further preferably ⁇ 10° or less, and ⁇ 5°. ° or less is particularly preferred.
- the smaller the angle formed by the orientation direction of the fibers with respect to the axial direction of the shaft the easier it is to wind the sheet, which is preferable in terms of production.
- the angle formed by the unidirectional fibers is arranged within ⁇ 5° due to the error of arrangement.
- the content of the thermoplastic resin contained in the layer B12 is relative to the total mass (100% by mass) of the thermosetting resin contained in the layer A11 and the thermoplastic resin contained in the layer B12. , It is preferably 0.5% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 80% by mass or less, still more preferably 2% by mass or more and 50% by mass or less, 3% by mass or more and 30% by mass % or less is particularly preferable, 4% by mass or more and 20% by mass or less is particularly preferable, and 5% by mass or more and 10% by mass or less is particularly preferable.
- the content of the thermoplastic resin is equal to or higher than the lower limit, the thread cutting strength is improved. Moldability improves that the content rate of a thermoplastic resin is below the said upper limit.
- the mass of the layer B12 is preferably 10% by mass or less, more preferably 9% by mass or less, and even more preferably 8% by mass or less, relative to the mass of the shaft. If the mass of the layer B12 is within the above range with respect to the mass of the shaft, the thread cutting strength and the thread breaking angle can be improved while maintaining the lightness of the shaft.
- the mass of the layer B12 is preferably 1% by weight or more, more preferably 2% by weight or more, and even more preferably 3% by weight or more, relative to the mass of the shaft. If the mass of the layer B12 is within the above range with respect to the mass of the shaft, the thread cutting strength and the thread breaking angle are improved.
- the layer B12 is preferably arranged in 50% or more of the total length of the shaft 10, more preferably 70% or more, and 90% or more. It is more preferable that there is one, and it is particularly preferable that it is arranged over the entire length. Since the layer B12 is widely arranged on the shaft 10, the thread cutting strength is improved. Further, as shown in FIGS. 15 and 16, the position where the layer B12 is arranged is the smaller diameter side in the case of a shaft having a taper, that is, the tip side of the shaft 10 (the hatched area in FIG. 16 is preferably arranged in the hatched region from the viewpoint of improving the threading strength, and it is particularly preferable to be arranged over the entire length of the shaft 10 as shown in Fig.
- the shaft Hatching of the entire area of 10 indicates that the layer B12 is arranged over the entire length of the shaft 10 .
- the layer B12 may be spaced apart from the tip of the shaft 10 when the layer B12 is not arranged over the entire length. From the viewpoint of improving the thread cutting strength, it is preferable that the layer B12 is arranged closer to the tip side.
- the shaft 10 of this embodiment has a plurality of layers A11 and at least one layer B12. At least one layer B12 is arranged between the two layers A11A, 11B, so that a shaft with reduced weight can be provided while maintaining high thread strength.
- the shaft of the present embodiment is also suitable as a sporting goods, including golf-related goods such as golf clubs and shafts, racket sports-related goods such as tennis rackets and badminton rackets, fishing gear-related goods such as fishing rods, ski poles, and tents. It is suitably used for various leisure goods such as poles, other indoor and outdoor sports related goods, and the like.
- the shaft of the present embodiment is also suitable as a power drive shaft, and is suitably used for drive shafts and propeller shafts of automobiles, ships, and agricultural machinery, and industrial equipment shafts such as machine tools and belt conveyors. It is also suitable for various frames and pipes in aircraft, automobiles, bicycles and the like.
- the shaft may be used as a pole, bar, or rod that does not carry drive transmission.
- the method for manufacturing a shaft according to the present embodiment has a plurality of layers A and at least one layer B, wherein the layer A contains a cured product of a thermosetting resin, and the layer B is continuous with a thermoplastic resin.
- a step of rotating the prepreg to form a laminate (hereinafter referred to as a “laminate forming step”), a step of heating the laminate (hereinafter referred to as a “heating step”), and a step of heating the laminate after heating. and a step of separating the laminate and the mandrel (hereinafter referred to as a “separation step”).
- the prepreg b to be the layer B and the thermosetting resin sheet a to be the layer A are wound in this order from the mandrel side.
- an adhesive or the like is applied to the mandrel and the prepreg b is wound.
- a prepreg fixing means such as winding a heat-shrinkable tape around the prepreg b and fixing it.
- the carbon fiber basis weight of the prepreg is 20 g/m 2 or less, it is preferable to overlap another prepreg and wind it around the mandrel.
- thermosetting resin sheet a having tack can be used, and may be a thermosetting resin sheet or a prepreg having a thermosetting resin as a matrix resin.
- thermosetting resin sheet a wound around the prepreg b may be wound after forming a laminated sheet with the prepreg b, or the thermosetting resin sheet a may be wound after the prepreg b is wound. You can turn it. By winding the laminated sheet of the prepreg b and the thermosetting resin sheet a, the prepreg b can be more easily wound, which is preferable in terms of production. Further, when a laminated sheet obtained by laminating the prepreg b and the thermosetting resin sheet a is wound around a mandrel, another prepreg b or a mandrel may be in contact with the inside of the prepreg b.
- the outer circumference of the mandrel can be anywhere outside the mandrel.
- a plurality of thermosetting resin sheets a and prepregs b may be wound in the order of mandrel-thermosetting resin sheet a-thermosetting resin sheet a-prepreg b-thermosetting resin sheet a.
- the material of the mandrel may be metal, resin, or fiber-reinforced resin. When a resin or fiber-reinforced resin is used, it may be uncured, cured, or a thermoplastic resin. The mandrel may or may not have a tapered surface. When forming a solid shaft, after winding the sheet or prepreg around the mandrel, the mandrel is not pulled out, and the shaft including the laminate and the mandrel is formed. Alternatively, the mandrel may be withdrawn and another member inserted to form a solid shaft.
- the solid shaft may have a thermosetting resin as a mandrel placed in the center, and a thermosetting resin sheet a or a prepreg b may be placed outside of it.
- a thermosetting resin sheet a or a prepreg b may be placed outside of it.
- the prepreg b is wound around the center thermosetting resin, it is preferable that the prepreg b is arranged so as to be in contact with the center thermosetting resin sheet. By arranging in this order, the prepreg b is fixed by the tack of the thermosetting resin sheet a, which is preferable in terms of manufacturing.
- the layer B12 is preferably provided between the second to eighth layers from the mandrel, and more preferably provided between the third to seventh layers.
- the outermost surface of the layer B12 is preferably within 50%, more preferably within 45%, and preferably within 40% of the thickness of the laminate from the innermost side of the laminate. More preferred.
- the innermost layer B12 is preferably at a position of 5% or more, more preferably at a position of 10% or more, and further preferably at a position of 15% or more from the innermost side of the laminate.
- the laminate thickness when forming a hollow shaft is the distance from the inner surface of the shaft to the outer surface of the shaft.
- the distance from the center of the shaft to the outermost surface of layer B12 is preferably within 50% of the thickness of the laminate, preferably within 45%, and more preferably within 40%.
- the distance from the center of the shaft to the innermost surface of layer B12 is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more of the thickness of the laminate. It is even more preferred to be in position.
- thermosetting resin sheet a and the prepreg b By winding the thermosetting resin sheet a and the prepreg b in this order, the prepreg b is fixed by the thermosetting resin sheet a. As a result, the prepreg b can be wound around the mandrel.
- the surface of the prepreg b facing the thermosetting resin sheet a is preferably in direct contact with the thermosetting resin sheet a. The direct contact between the thermosetting resin sheet a and the prepreg b strengthens the adhesion between the thermosetting resin sheet a and the prepreg b.
- the area in contact with the thermosetting resin sheet a is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 80%.
- the above is more preferable, and it is particularly preferable that the entire prepreg b is covered with the thermosetting resin sheet a.
- the prepreg b firmly adheres to the thermosetting resin sheet a, which is preferable in terms of production. It is also preferable because the layer A11 and the layer B12 are firmly adhered to each other, and the threading strength and the threading breaking angle are improved.
- thermosetting resin sheet a When stacking or winding the prepreg b and the thermosetting resin sheet a, as shown in FIG. 21 and FIG.
- the position of the edge portion a1 of the thermosetting resin sheet a which is the starting point of winding around the outer periphery of the thermosetting resin sheet a, does not have to coincide with the position of the edge portion a1.
- the position of the edge b1 of the prepreg b that is the starting end to be wound around the outer circumference of the mandrel does not have to match. Since the position of the edge b1 of the prepreg b and the position of the edge a1 of the thermosetting resin sheet a do not match each other, the overlapping of the edge b1 of the prepreg b and the edge a1 of the thermosetting resin sheet a causes an appearance of the shaft.
- the area of the thermosetting resin sheet a in contact with the area of the prepreg b is 10% or more. It is preferably 30% or more, more preferably 50% or more, even more preferably 80% or more, and particularly preferably the entire prepreg b is covered with the thermosetting resin sheet a. Within the above range, the layer B adheres more firmly to the layer A, and the thread cutting strength is improved.
- thermosetting resin sheet a2 which is the starting end of winding around the mandrel
- the position of the edge of the prepreg b which is the starting end of winding around the mandrel. good.
- At least one of the edges b1 of the prepreg b is preferably in contact with the thermosetting resin sheet a.
- the edge portion refers to a portion that is attached to the object to be wound when winding is started (winding start edge portion) and a portion that finally touches the winding object when winding is finished (winding end edge portion).
- the length L of the thermosetting resin sheet a in the width direction and the distance from the center of the shaft to the outermost surface of the thermosetting resin sheet a in contact with the prepreg b The ratio of radii r (L/r) is preferably 0.5 or more, more preferably 1 or more, and further preferably ⁇ (circumferential ratio) or more. Within the above range, the tackiness of the thermosetting resin sheet a overcomes the flexural rigidity of the thermosetting resin sheet a of the prepreg b, and the prepreg b can be wound.
- the ratio of the thickness of one prepreg b to the thickness of one thermosetting resin sheet a is preferably 1.3 or less, more preferably 1.2 or less. It is preferably 1.1 or less, and more preferably 1.1 or less. Moreover, it is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, and particularly preferably 0.6 or more. Within the above range, the rigidity of the prepreg b is reduced, making it easier to wind.
- the length of contact of the layer A11 with respect to the shortest point of the axial direction of the shaft of the layer B12 from the butt side end to the tip side end is 10% of the axial length of the shaft of the layer B12. It is preferably 30% or more, more preferably 50% or more, even more preferably 80% or more, and particularly preferably 100%.
- the thickness is within the above range, the layer B12 is more strongly adhered to the layer A11, and the threading strength is improved, which is preferable.
- the ratio of the thickness of the layer B12 to the thickness of the layer A11 is preferably 1.3 or less, more preferably 1.2 or less, and 1.1 or less. More preferred. Moreover, it is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, and particularly preferably 0.6 or more. Within the above range, the bending rigidity of the prepreg b is reduced, making it easier to wind.
- the area where the layer A11 and the layer B12 are in contact is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 80%. More preferably, the layer B12 as a whole is in contact with the layer A11. Within the above range, the layer A11 and the layer B12 are strongly adhered to each other, and the thread cutting strength and the thread breaking angle are improved, which is preferable.
- FIG. 24 is a schematic diagram showing the shape of the mandrel used in manufacturing the shaft 10. As shown in FIG. An iron mandrel 50 having the shape shown in FIG. 24 is prepared. Mandrel 50 is formed in a cylindrical shape. The outer diameter of the mandrel 50 linearly increases gradually from the small diameter end P3 to the switching point P2, and remains constant from the switching point P2 to the large diameter end P1.
- FIG. 25 is a pattern diagram showing the shape of the prepreg used in manufacturing the shaft 10. As shown in FIG. In the laminate forming step, the prepregs (patterns 1 to 7) cut into the shapes shown in FIG. is wound at a predetermined pitch.
- the unit mm is omitted for the dimensions of each pattern.
- the dashed arrows in each pattern indicate the orientation of reinforcing fibers in the fiber material.
- the angle indicated by the dashed arrow represents the angle of orientation of the reinforcing fibers in the fibrous material with respect to the axial direction of the mandrel 50 .
- Pattern 1 is a prepreg forming an angle layer (hereinafter simply referred to as a “+45° angle layer”) in which the reinforcing fibers in the fiber material are oriented at a winding angle of +45° with respect to the axial direction of the mandrel 50; and a prepreg forming an angle layer in which the reinforcing fibers inside are oriented at a winding angle of ⁇ 45° with respect to the axial direction of the mandrel 50 (hereinafter simply referred to as “ ⁇ 45° angle layer”).
- bias layers hereinafter simply referred to as "bias layers" are formed. Pattern 1 is wrapped around the entire surface of mandrel 50 .
- Patterns 2 to 6 are composed of prepregs forming straight layers (hereinafter simply referred to as "straight layers") in which the reinforcing fibers in the fiber material are oriented at a winding angle of 0° with respect to the axial direction of the mandrel 50. .
- Each pattern 2-6 is a layer that runs the length of the shaft 10.
- the pattern 7 is composed of a prepreg forming a straight layer in which the reinforcing fibers in the fiber material are oriented at a winding angle of 0° with respect to the axial direction of the mandrel 50 .
- the pattern 7 is wound around a portion of the mandrel 50 corresponding to the butt-side end of the shaft 10 .
- the prepregs of patterns 1, 2, 4 to 7 are thermosetting resin sheets a to be layer A.
- the prepreg of the pattern 3 is the prepreg b that becomes the layer B. Further, it may be unidirectional lamination, orthogonal lamination, or quasi-isotropic lamination.
- the laminate wrapped with heat-shrinkable tape is placed in a heating furnace and heated.
- the laminate is held at 135° C. for 2 hours. If the heating temperature of the laminate is equal to or higher than the melting point of the thermoplastic resin contained in the prepreg of the pattern 3, the heating of the laminate melts the thermoplastic resin contained in the prepreg of the pattern 3 to form the pattern 3.
- a prepreg and a prepreg of another pattern can be adhered. By curing or softening the prepregs of patterns 1 to 7, these prepregs are integrated. After that, the prepregs of patterns 1 to 7 are naturally cooled to room temperature to harden or solidify, thereby forming fiber-reinforced resin layers.
- the shaft 10 is manufactured by removing the formed fiber reinforced resin layer from the mandrel 50 .
- the heat shrink tape is peeled off from the shaft 10, and the surface of the shaft 10 is polished.
- the shaft 10 may be completed by polishing the surface or may be completed by decorating the polished surface. Whether or not the surface of the shaft 10 of the present embodiment is decorated can be selected as appropriate.
- the surface of the shaft 10 is painted, for example, by ironing or spray painting, or by transferring a transfer foil containing metal foil to form a glossy appearance. do.
- the shaft manufacturing method of the present embodiment it is possible to provide a shaft that is light in weight while maintaining high threading strength.
- FIG. 26 is a schematic diagram of the golf club shaft of this embodiment.
- a golf club shaft (hereinafter also referred to as "shaft") 100 of this embodiment is formed in a cylindrical shape.
- Shaft 100 is formed such that the outer diameter of a surface perpendicular to the axial direction gradually increases from one axial end (right end in FIG. 24) toward the other axial end (left end in FIG. 24). Further, the shaft 100 may be formed so that the outer diameter is the same from the diameter switching portion 101 in the middle in the axial direction to the other end.
- the end of the shaft 100 with a smaller outer diameter is referred to as a tip 102 (the end on the tip 102 side of both ends of the shaft 100 is referred to as a tip end 102a), and the end with a larger outer diameter is referred to as a butt 103.
- the butt 103 is a portion to be gripped by attaching a grip, and refers to, for example, a portion of the shaft 100 from the butt end 103 a to the diameter switching portion 101 .
- the shaft 100 of this embodiment is constructed from the shaft of the above embodiment, it is possible to reduce the weight while maintaining high threading strength.
- Example 1 (Fabrication of shaft) A cylindrical mandrel made of iron was used as the mandrel. Specifically, starting from a position 20 mm from the end (small diameter end), the outer diameter d1 from this position to a position 389.3 mm in the longitudinal axis direction is constant at 3.10 mm, and the above-mentioned A cylindrical body was prepared whose diameter was gradually expanded at a taper rate of 10.22/1000 from the starting point to a position of 1190 mm in the longitudinal direction, and whose outer diameter d2 was 12.10 mm at the position expanded to the maximum diameter. Also, a prepreg (carbon prepreg: manufactured by Mitsubishi Chemical Corporation) having the shape and dimensions shown in FIG. 13 and the specifications shown in Table 2 was prepared. Thermoplastic prepregs 1-3 were made as follows. Table 1 shows the compositions of thermoplastic prepregs 1 to 3.
- prepreg 1 (Production of prepreg 1) Using an extruder and a T-die, two 15 ⁇ m thick films 1 extruded from polyetherimide resin (manufactured by Subic, Ultem 1000) and carbon fiber 1 (manufactured by Mitsubishi Chemical Corporation MR50R) were made into a carbon fiber basis weight of 75 g. /m 2 sheet-like carbon fiber base material, and the film was heat-melted and impregnated into the carbon fiber base material to prepare a fiber-reinforced resin prepreg.
- the obtained prepreg had a carbon fiber content of about 58% by volume, a resin content of about 34% by mass, and a thickness of about 72 ⁇ m.
- the film 1 and the carbon fiber base material in which the carbon fiber 2 (Mitsubishi Chemical Corporation MR70) is in the form of a sheet having a carbon fiber basis weight of 38 g/m 2 are stacked, and the film is heated and melted to form a carbon fiber base material.
- a fiber-reinforced resin prepreg was produced by impregnation.
- the obtained prepreg had a carbon fiber content of about 58% by volume, a resin content of about 33% by mass, and a thickness of about 36 ⁇ m.
- a film 2 with a thickness of 9 ⁇ m obtained by extruding a polyetherimide resin (manufactured by Subic, Ultem 1000) and carbon fiber 2 (manufactured by Mitsubishi Chemical Co., Ltd. MR70) were carbon fiber basis weight 34 g / m 2
- the sheet-shaped carbon fiber base material and the film were laminated, and the film was heated and melted to impregnate the carbon fiber base material to produce a fiber-reinforced resin prepreg.
- the obtained prepreg had a carbon fiber content of about 68% by volume, a resin content of 25% by mass, and a thickness of about 28 ⁇ m.
- Example 2 A shaft of Example 2 was manufactured in the same manner as in Example 1, except that a prepreg having specifications shown in Table 3 (carbon prepreg: manufactured by Mitsubishi Chemical Corporation) was used as Pattern 3. Weight (g), threading strength (torque at breakage (kgf ⁇ m)), and threading breaking angle (deg) of the obtained shaft were evaluated. Table 6 shows the results.
- Example 3 A shaft of Example 3 was manufactured in the same manner as in Example 1, except that a prepreg having specifications shown in Table 4 (carbon prepreg: manufactured by Mitsubishi Chemical Corporation) was used as Pattern 3. Weight (g), threading strength (torque at breakage (kgf ⁇ m)), and threading breaking angle (deg) of the obtained shaft were evaluated. Table 6 shows the results.
- a shaft of a comparative example was manufactured in the same manner as in Example 1 except that a prepreg having specifications shown in Table 5 (carbon prepreg: manufactured by Mitsubishi Chemical Corporation) was used as Pattern 3. Weight (g), threading strength (torque at breakage (kgf ⁇ m)), and threading breaking angle (deg) of the obtained shaft were evaluated. Table 6 shows the results.
- the shaft of the present invention can reduce weight while maintaining high threading strength.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Golf Clubs (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本願は、2021年3月31日に、日本に出願された特願2021-062182号に基づき優先権を主張し、その内容をここに援用する。
シャフトの製造は、シートラップ成形法により行われる。シートラップ成形法は、マンドレルと呼ばれる芯金に、プリプレグを巻回する。巻回したプリプレグを加熱硬化し、シャフトを得る方法である(例えば、特許文献2参照)。
ねじ切り強度の高いシャフトを実用する場合には、熱硬化性樹脂と繊維とを含む繊維強化樹脂層の積層数を増やす必要があった。
しかしながら、繊維強化樹脂層の積層数を増やすと、シャフト全体の重量が大きくなってしまう懸念があった。
[1]複数の層Aと、少なくとも1つの層Bと、を有するシャフトであって、
前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含み、
少なくとも1つの前記層Bが、2つの前記層Aの間に配置される、シャフト。
[2]前記連続繊維基材が織物基材または一方向繊維基材である、[1]に記載のシャフト。
[3]前記層Aが連続繊維基材を含む繊維強化樹脂層である、[1]または[2]に記載のシャフト。
[4]前記層Aに含まれる連続繊維基材が織物基材または一方向繊維基材である、[3]に記載のシャフト。
[5]前記熱可塑性樹脂がポリエーテルイミドを含む、[1]~[4]のいずれかに記載のシャフト。
[6]前記熱硬化性樹脂がエポキシ樹脂を含む、[1]~[5]のいずれかに記載のシャフト。
[7]前記層Bに含まれる連続繊維基材が炭素繊維を含む、[1]~[6]のいずれかに記載のシャフト。
[8]前記熱可塑性樹脂の含有率は、前記熱硬化性樹脂と前記熱可塑性樹脂の合計質量に対して、1質量%以上80質量%以下である、[1]~[7]のいずれかに記載のシャフト。
[9]前記層Aの厚さと前記層Bの厚さの和に対する前記層Bの厚さの比(前記層Bの厚さ/前記層Aの厚さと前記層Bの厚さの和)は、0.5%以上90%以下である、[1]~[8]のいずれかに記載のシャフト。
[10]前記シャフトが中空である、[1]~[9]のいずれかに記載のシャフト。
[11]前記層Aが最外層に配置された、[1]~[10]のいずれかに記載のシャフト。
[12]前記層A-前記層B-前記層Aの順で配置される、[11]に記載のシャフト。
[13][1]~[12]のいずれかに記載のシャフトから構成される、ゴルフクラブ用シャフト。
[14]複数の層Aと、少なくとも1つの層Bと、を有し、前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含む、シャフトの製造方法であって、
マンドレルの外周に、前記マンドレルの形状に沿わせて、前記層Aとなる熱硬化性樹脂シートaと前記層Bとなるプリプレグbを、前記マンドレル側から前記プリプレグb、前記熱硬化性樹脂シートaの順に巻回して、プリプレグの積層体を形成する工程と、
前記積層体を加熱する工程と、
加熱後の前記積層体と前記マンドレルを分離する工程と、を有する、シャフトの製造方法。
[15]前記層Bが、2つの前記層Aの間に配置される、[14]に記載のシャフトの製造方法。
[16]前記シャフトが中空である、[14]または[15]に記載のシャフトの製造方法。
[17]前記層Bが少なくとも1つの前記層Aよりも中空側に配置された、[16]に記載のシャフトの製造方法。
[18]マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂と繊維とを含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記プリプレグb、前記熱硬化性樹脂シートaの順に巻回して、プリプレグの積層体を形成する工程と、
前記積層体を加熱する工程と、を有する、シャフトの製造方法。
[19]マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂を含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記熱硬化性樹脂シートa、前記プリプレグbの順になるように巻回し、前記熱硬化性樹脂シートaと前記プリプレグbが接する部分を含む積層体を形成する工程を有する、シャフトの製造方法。
[20]前記積層体を加熱する工程を有する、[19]に記載のシャフトの製造方法。
[21]マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂を含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記熱硬化性樹脂シートa、前記プリプレグbの順になるように巻回し、前記プリプレグbを、前記熱硬化性樹脂シートaに直接接するように重ねて巻回し、前記熱硬化性樹脂シートaと前記プリプレグbの積層体を形成する工程を有する、シャフトの製造方法。
[22]マンドレルの外周に、熱硬化性樹脂を含む熱硬化性樹脂シートaと、熱可塑性樹脂と繊維とを含むプリプレグbとを積層した積層シートを、前記マンドレルの形状に沿わせて巻回した巻回体を形成する工程を有する、シャフトの製造方法。
[23]前記積層シートを巻回する際、前記熱硬化性樹脂シートaがシャフトの内側に配置されるよう巻回する、[22]に記載のシャフトの製造方法。
[24]前記巻回体を加熱する工程を有する、[22]または[23]に記載のシャフトの製造方法。
[25]前記積層シートを巻回したシャフトに、さらに前記熱硬化性樹脂シートaとは別の熱硬化性樹脂シートa2を巻回する工程を有する、[22]~[24]のいずれかに記載のシャフトの製造方法。
[26]前記マンドレル側から前記熱硬化性樹脂シートa-前記プリプレグbの順になるように、前記積層シートを巻回する、[22]~[25]のいずれかに記載のシャフトの製造方法。
[27]前記積層シートがさらに前記熱硬化性樹脂シートaを含み、前記マンドレル側から前記熱硬化性樹脂シートa-前記プリプレグb-前記熱硬化性樹脂シートaの順になるように、前記積層シートを巻回する、[22]に記載のシャフトの製造方法。
[28]前記マンドレルの外周に巻回する始端となる前記熱硬化性樹脂シートaの縁部の位置と、前記マンドレルの外周に巻回する始端となる前記プリプレグbの縁部の位置とが異なる、[22]~[27]のいずれかに記載のシャフトの製造方法。
[29]前記マンドレルの外周に巻回する始端となる前記熱硬化性樹脂シートa2の縁部の位置と、前記マンドレルの外周に巻回する始端となる前記プリプレグbの縁部の位置とが異なる、[25]~[28]のいずれかに記載のシャフトの製造方法。
[30]前記プリプレグbの面積に対して、前記熱硬化性樹脂シートaと前記プリプレグbの接触する面積が10%以上である、[22]~[29]のいずれかに記載のシャフトの製造方法。
[31]前記熱硬化性樹脂シートaが繊維を含む、[22]~[30]のいずれかに記載のシャフトの製造方法。
[32]前記プリプレグbに含まれる繊維の繊維体積分率が、30体積%以上である、[22]~[31]のいずれかに記載のシャフトの製造方法。
[33]前記プリプレグb1枚の厚さと前記熱硬化性樹脂シートa1枚の厚さの比(プリプレグbの厚さ/熱硬化性樹脂シートaの厚さ)が、1.5以下である、[22]~[32]のいずれかに記載のシャフトの製造方法。
[34]前記プリプレグbに含まれる繊維の長さが、シャフトの長さの1%以上である、[22]~[33]のいずれかに記載のシャフトの製造方法。
[35]前記熱硬化性樹脂シートaの幅方向の長さとシャフトの半径の比(熱硬化性樹脂シートaの幅方向の長さ/シャフトの半径)が、0.5以上である、[22]~[34]のいずれかに記載のシャフトの製造方法。
[36]前記熱硬化性樹脂シートaに含まれる熱硬化性樹脂が、エポキシ樹脂である、[22]~[35]のいずれかに記載のシャフトの製造方法。
[37]前記プリプレグbに含まれる熱可塑性樹脂が、ポリエーテルイミドである、[22]~[36]のいずれかに記載のシャフトの製造方法。
[38]前記熱硬化性樹脂シートaに含まれる繊維が炭素繊維を含む、[31]に記載のシャフトの製造方法。
[39]前記プリプレグbに含まれる繊維が炭素繊維を含む、[22]~[38]のいずれかに記載のシャフトの製造方法。
[40]前記プリプレグbが、前記積層シートの厚さに対して、前記積層シートの最も内側から50%以内の位置に存在するように配置される、[22]~[39]のいずれかに記載のシャフトの製造方法。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
本発明の一実施形態に係るシャフトは、複数の層Aと、少なくとも1つの層Bと、を有するシャフトであって、前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含み、少なくとも1つの前記層Bが、2つの前記層Aの間に配置される。
図1は、本実施形態のシャフトの長手方向に沿う断面図である。図2は、本実施形態のシャフトの長手方向と垂直方向に沿う断面図である。
図1に示す本実施形態のシャフト10は、2つの層A11(11A,11B)と、1つの層B12と、を有する。本実施形態のシャフト10では、1つの層B12が、2つの層A11Aと層A11Bの間に配置される。シャフト10は、中央に中空部20を有する。
また、層Aと層Bが接触した構造(A-B構造)、1つの層B12を2つの層A11Aと層A11Bの間に配置した構造(A-B-A構造)を採用することにより、層A11が層B12を挟み込んで固定するため、管状に成形しても層間の剥がれを抑制できる。A-B構造を採用することにより、強度が高く、成形精度に優れるシャフトを得ることができる。また、前記のA-B-A構造を採用することにより、シートラップ法を適用可能であるため層Bを含むシャフトの生産性にも優れる。
プリプレグbの外側にさらに熱硬化性樹脂シートaが配置されることで、熱硬化性樹脂シートaがプリプレグbを外側から固定し、よりシャフト状に巻回しやすくなる。
熱硬化性樹脂シートaとプリプレグbの積層体は、プリプレグbと熱硬化性樹脂シートaの積層シートを巻回して形成してもよく、プリプレグbを巻回したのち、熱硬化性樹脂シートaを巻回して形成してもよい。プリプレグbの内側の熱硬化性樹脂シートaとプリプレグbと、そのプリプレグbの外側に配置される熱硬化性樹脂シートaを積層した積層シートを形成した後、巻回することで、プリプレグbが強固に固定されることが好ましい。また、シャフト10の中心側から、熱硬化性樹脂シートa1、プリプレグb、熱硬化性樹脂シートa2と巻回した積層体は、熱硬化性樹脂シートa1とプリプレグbの積層シートを形成した後、巻回して積層体を形成してもよく、プリプレグbと熱硬化性樹脂シートa2の積層シートを形成した後、巻回して積層体を形成してもよい。また、熱硬化性樹脂シートa1、プリプレグb、熱硬化性樹脂シートa2を積層した、積層シートを形成した後、巻回してもよく、熱硬化性樹脂シートa1、プリプレグb、熱硬化性樹脂シートa2を順番に巻回して積層体を形成してもよい。
熱硬化性樹脂シートaは、繊維を含んでいてもよく、含んでいなくてもよい。
層A11は、熱硬化性樹脂の硬化物から構成される。熱硬化性樹脂としては、特に限定されないが、通常、エポキシ樹脂が用いられる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、イソシアネート変性エポキシ樹脂または脂環式エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、室温で液状のものから固体状のものまで使用できる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
層A11が熱可塑性樹脂を含む場合、層A11に含まれる樹脂100質量%に対し、熱可塑性樹脂が、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
層A11に含まれる樹脂成分の内、強度の観点から、熱硬化性樹脂が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが一層好ましく、95質量%以上であることが特に好ましい。
熱硬化性樹脂シートaが熱可塑性樹脂を含む場合、熱硬化性樹脂シートaに含まれる樹脂100質量%に対し、熱可塑性樹脂が、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
熱硬化性樹脂シートaに含まれる樹脂成分の内、強度の観点から、熱硬化性樹脂が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが一層好ましく、95質量%以上であることが特に好ましい。
熱硬化性樹脂シートaに含まれる熱硬化性樹脂が多くなるほど、熱硬化性樹脂シートaのタックが高く、プリプレグbを巻回しやすくなる。
層B12は、熱可塑性樹脂と連続繊維基材とを含む繊維強化樹脂層である。連続繊維基材に変えて不連続繊維基材からなるプリプレグを材料として用いて層B12を形成する場合には、層B12は、熱可塑性樹脂と不連続繊維基材とを含む繊維強化樹脂層となる。層B12は、プリプレグの固化物である繊維強化樹脂から構成されている。硬化後に層Bとなるプリプレグ1枚の厚さは、例えば、10μm~250μmである。プリプレグは、取り扱い性の観点から20μm~100μmが好ましい。硬化後に層Bとなるプリプレグ中の炭素繊維目付は、例えば、10g/m2~300g/m2である。取り扱い性の観点から30g/m2~250g/m2が好ましく、50g/m2~220g/m2がより好ましい。熱可塑性樹脂としては、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルサルホン、ポリフェニレンサルホン、ポリアミド、ポリフェニレンサルファイド、ポリカーボネートが用いられる。これらの中でも、ねじ切り強度向上の点から、ポリエーテルイミドが好ましい。
層B12に含まれる樹脂成分の内、熱可塑性樹脂が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが一層好ましく、95質量%以上であることが特に好ましい。熱可塑性樹脂の含有量が多くなるほど、シャフトのねじ切り強度、ねじ切り破壊角度が向上する。
プリプレグbに含まれる樹脂成分の内、熱可塑性樹脂が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが一層好ましく、95質量%以上であることが特に好ましい。熱可塑性樹脂の含有量が多くなるほど、シャフトのねじ切り強度、ねじ切り破壊角度が向上する。
プリプレグbに含まれる樹脂100質量%に対し、熱硬化性樹脂が、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
繊維の長さは、1200mm以下、1070mm以下、1000mm以下とすることができる。
プリプレグbの繊維体積含有率は、80体積%以下であることが好ましく、75体積%以下であることがより好ましく、65体積%以下であることがさらに好ましい。
層B12に含まれる繊維は、短尺繊維の形態であってもよい。層B12となるプリプレグに切り込みを入れて短尺繊維としてもよいし、短尺繊維の堆積物に熱可塑性樹脂を含浸させて層B12となるプリプレグとしてもよい。
一方向繊維の場合は、シャフトの軸方向を0°としたときに、繊維の方向が0°でも巻くことができ、30°でも巻くことができ、45°でも巻くことができる。45°を超える角度で巻くときは、繊維の長さはシャフトの周長の1/8以上であることが好ましく、1/4以上であることがより好ましい。繊維の長さが長いほど、シャフトのねじ切り強度およびねじ切り破壊角度が向上し好ましい。また、繊維の長さはシャフトの周長の2倍以下であることが好ましく、1倍以下であることがより好ましい。繊維の長さが短いほど、プリプレグを巻回しやすくなる。
シャフトの軸方向に対して、繊維の配向方向のなす角度が±30°以下であることが好ましく、±20°以下であることがより好ましく、±10°以下であることがさらに好ましく、±5°以下であることが特に好ましい。シャフトの軸方向に対して、繊維の配向方向のなす角度が小さくなるほど、シートを容易に巻回することができ、製造上好ましい。
通常、一方向繊維のなす角度は、配置の誤差等により±5°以下で配置される。
また、層B12が配置されている位置は、図15および図16に示すように、テーパーを有するシャフトの場合はより細径側、すなわちシャフト10の先端側(図15においてハッチングで示す領域、図16においてハッチングで示す領域に配置されていることが、ねじ切り強度向上の観点から好ましく、図17に示すように、シャフト10の全長にわたって配置されていることが特に好ましい。なお、図17において、シャフト10の全域をハッチングで示しているのは、シャフト10の全長にわたって層B12が配置されていることを示す。
図18~図20に示すように、全長にわたって層B12が配置されない場合は、層B12がシャフト10の先端から間隔をあけて配置されていてもよい。ねじ切り強度向上の観点から、より先端側に層B12が配置されていることが好ましい。
また、本実施形態のシャフトは、動力駆動シャフトとしても好適であり、自動車や船舶、農業機械のドライブシャフトやプロペラシャフト、工作機械やベルトコンベアの産業機器用シャフトに好適に使用される。
また、航空機、自動車、自転車等における各種フレーム、パイプとして、好適に使用される。
シャフトは駆動伝達部材としての使用以外にも、駆動伝達を担わないポール、バー、ロッドとして使用してもよい。
本実施形態のシャフトの製造方法は、複数の層Aと、少なくとも1つの層Bと、を有し、前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含む、シャフトの製造方法であって、マンドレルの外周に、前記マンドレルの形状に沿わせて、前記層Aとなる熱硬化性樹脂シートaと前記層Bとなるプリプレグbを巻回して、プリプレグの積層体を形成する工程(以下、「積層体形成工程」と言う。)と、前記積層体を加熱する工程(以下、「加熱工程」と言う。)と、加熱後の前記積層体と前記マンドレルを分離する工程(以下、「分離工程」と言う。)と、を有する。
また、プリプレグbと熱硬化性樹脂シートaを積層した積層シートをマンドレルに巻回する場合は、プリプレグbの内側に、別のプリプレグbやマンドレルが接してもよい。
プリプレグbの、熱硬化性樹脂シートaと向かい合う面は、熱硬化性樹脂シートaと直接接していることが好ましい。熱硬化性樹脂シートaとプリプレグbが直接接することで、熱硬化性樹脂シートaとプリプレグbの接着が強固になる。
同様に、マンドレルの外周に巻回する始端となる熱硬化性樹脂シートa2の縁部の位置と、マンドレルの外周に巻回する始端となるプリプレグbの縁部の位置とが一致しなくてもよい。
図23に示すシャフトの軸方向に対し垂直な断面において、熱硬化性樹脂シートaの幅方向の長さLと、プリプレグbが接する熱硬化性樹脂シートaの最外面までのシャフトの中心からの半径rの比(L/r)は、0.5以上であることが好ましく、1以上であることがより好ましく、π(円周率)以上であることがさらに好ましい。上記範囲内にあることで、プリプレグbの熱硬化性樹脂シートaの曲げ剛性に対し、熱硬化性樹脂シートaのタックが打ち勝ち、プリプレグbを巻回することができる。
プリプレグb1枚の厚さと熱硬化性樹脂シートa1枚の厚さの比(プリプレグb/熱硬化性樹脂シートa)が、1.3以下であることが好ましく、1.2以下であることがより好ましく、1.1以下であることがさらに好ましい。また、0.3以上であることが好ましく、0.4以上であることがより好ましく、0.5以上であることがさらに好ましく、0.6以上であることが特に好ましい。上記範囲にあることで、プリプレグbの剛性が小さくなり、巻回しやすくなる。
図24は、シャフト10の製造で用いたマンドレルの形状を示す模式図である。
図24に示す形状の鉄製のマンドレル50を用意する。マンドレル50は、円筒状に形成されている。マンドレル50において、その細径端P3から切換点P2まで、その外径が直線的に漸増し、切換点P2から太径端P1まで、その外径は一定となっている。
積層体形成工程では、マンドレル50に、図25に示した形状に切断したプリプレグ(パターン1~7)を順次巻き付けてプリプレグの積層体を形成し、その上に、例えば、ポリプロピレン製の熱収縮テープを所定のピッチで巻き付ける。
パターン1、2、4~7のプリプレグは、層Aとなる熱硬化性樹脂シートaである。パターン3のプリプレグは、層Bとなるプリプレグbである。
また、一方向積層であってもよく、直交積層であってもよく、擬似等方積層であってもよい。
本実施形態のシャフト10を装飾する場合、シャフト10の表面を、例えば、しごき塗装やスプレー塗装によって塗装したり、金属箔を含む転写箔を転写したりすることで、光輝性外観を形成したりする。
本実施形態のゴルフクラブ用シャフトは、上述の実施形態のシャフトから構成される。
図26は、本実施形態のゴルフクラブ用シャフトの模式図である。
図26に示すように、本実施形態のゴルフクラブ用シャフト(以下、「シャフト」と言うこともある。)100は、円筒状に形成されている。シャフト100は、軸方向に垂直な面の外径が軸方向の一端(図24における右端)から他端(図24における左端)に向かうにしたがって漸次大きくなるように形成されている。また、シャフト100は、軸方向の途中の径切換部101から他端に至る間で外径が同一となるように形成されていることもある。以下、シャフト100の両端部のうち外径が小さい端部をチップ102といい(シャフト100の両端のうちチップ102側の端をチップ端102aという。)、外径が大きい端部をバット103という(シャフト100の両端のうちバット103側の端をバット端103aという。)。バット103は、グリップを装着して把持する部分のことであり、例えば、シャフト100のうちバット端103aから径切換部101までの部分を指す。
(シャフトの作製)
マンドレルとして、鉄製の円柱体からなるものを用いた。具体的には、端部から20mmの位置(細径端部)を起点とし、この位置から長手軸方向で389.3mmの位置までの外径d1が3.10mmで一定であり、さらに、上記起点から長手軸方向で1190mmの位置までは10.22/1000のテーパー率で漸次拡径し、この最大径まで拡径した位置における外径d2が12.10mmとされた円柱体を準備した。
また、図13に示す形状および寸法を有するとともに、表2に示す仕様のプリプレグ(カーボンプリプレグ:三菱ケミカル社製)を準備した。熱可塑プリプレグ1~3を、以下の通り作製した。熱可塑性プリプレグ1~3の組成を表1に示す。
押出機およびTダイを用いて、ポリエーテルイミド樹脂(サビック社製、Ultem1000)を押出成形した15μm厚さのフィルム1を2枚と、炭素繊維1(三菱ケミカル社製 MR50R)を炭素繊維目付75g/m2のシート状にした炭素繊維基材とを重ね、前記フィルムを加熱溶融して炭素繊維基材に含浸させて、繊維強化樹脂プリプレグを作製した。得られたプリプレグは炭素繊維含有率が約58体積%、樹脂含有率が約34質量%、厚さが約72μmのプリプレグであった。
前記フィルム1と、炭素繊維2(三菱ケミカル社製 MR70)を炭素繊維目付38g/m2のシート状にした炭素繊維基材と前記フィルムを重ね、前記フィルムを加熱溶融して炭素繊維基材に含浸させて繊維強化樹脂プリプレグを作製した。得られたプリプレグは炭素繊維含有率が約58体積%、樹脂含有率が約33質量%、厚さが約36μmのプリプレグであった。
押出機およびTダイを用いて、ポリエーテルイミド樹脂(サビック社製、Ultem1000)を押出成形した9μm厚さのフィルム2と、炭素繊維2(三菱ケミカル社製 MR70)を炭素繊維目付34g/m2のシート状にした炭素維基材と前記フィルムを重ね、前記フィルムを加熱溶融して炭素繊維基材に含浸させて繊維強化樹脂プリプレグを作製した。得られたプリプレグは炭素繊維含有率が約68体積%、樹脂含有率25質量%、厚さが約28μmのプリプレグであった。
得られたシャフトについて、重量(g)、ねじ切り強度(破壊時のトルク(kgf・m))、ねじ切り破壊角度(deg)を評価した。結果を表6に示す。
シャフトの重量は、市販の電子天秤(株式会社エー・アンド・デイ社製 EK-300i)を用いて、小数点以下2桁まで測定した。
(2)ねじ切り強度、ねじ切り破壊角度
ねじ切り強度およびねじ切り破壊角度の測定は、メカトロニクス エンジニアリング社製のユニバーサルテスターを用いた。シャフトの細径部を専用治具に接着し、太径部はシャフト内部にボルトを埋設し作製した試験片をねじり強度測定器にセットし、シャフトにねじりの応力を加えることで測定できる。
破断した時点での破断荷重と破断角度を読み取り、破断荷重と破断角度を乗じた値をねじり強度(N・m・度)として算出した。また、そのときの破断角度をねじ切り破壊角度とした。
パターン3として、表3に示す仕様のプリプレグ(カーボンプリプレグ:三菱ケミカル社製)を用いたこと以外は実施例1と同様にして、実施例2のシャフトを製造した。
得られたシャフトについて、重量(g)、ねじ切り強度(破壊時のトルク(kgf・m))、ねじ切り破壊角度(deg)を評価した。結果を表6に示す。
パターン3として、表4に示す仕様のプリプレグ(カーボンプリプレグ:三菱ケミカル社製)を用いたこと以外は実施例1と同様にして、実施例3のシャフトを製造した。
得られたシャフトについて、重量(g)、ねじ切り強度(破壊時のトルク(kgf・m))、ねじ切り破壊角度(deg)を評価した。結果を表6に示す。
パターン3として、表5に示す仕様のプリプレグ(カーボンプリプレグ:三菱ケミカル社製)を用いたこと以外は実施例1と同様にして、比較例のシャフトを製造した。
得られたシャフトについて、重量(g)、ねじ切り強度(破壊時のトルク(kgf・m))、ねじ切り破壊角度(deg)を評価した。結果を表6に示す。
11,11A,11B 層A
12 層B
20 中空部
50 マンドレル
100 シャフト
101 径切換部
102 チップ
103 バット
a 熱硬化性樹脂シート
b プリプレグ
a1 熱硬化性樹脂シートaの端部
b1 プリプレグbの端部
Claims (40)
- 複数の層Aと、少なくとも1つの層Bと、を有するシャフトであって、
前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含み、
少なくとも1つの前記層Bが、2つの前記層Aの間に配置される、シャフト。 - 前記連続繊維基材が織物基材または一方向繊維基材である、請求項1に記載のシャフト。
- 前記層Aが連続繊維基材を含む繊維強化樹脂層である、請求項1または2に記載のシャフト。
- 前記層Aに含まれる連続繊維基材が織物基材または一方向繊維基材である、請求項3に記載のシャフト。
- 前記熱可塑性樹脂がポリエーテルイミドを含む、請求項1~4のいずれか1項に記載のシャフト。
- 前記熱硬化性樹脂がエポキシ樹脂を含む、請求項1~5のいずれか1項に記載のシャフト。
- 前記層Bに含まれる連続繊維基材が炭素繊維を含む、請求項1~6のいずれか1項に記載のシャフト。
- 前記熱可塑性樹脂の含有率は、前記熱硬化性樹脂と前記熱可塑性樹脂の合計質量に対して、1質量%以上80質量%以下である、請求項1~7のいずれか1項に記載のシャフト。
- 前記層Aの厚さと前記層Bの厚さの和に対する前記層Bの厚さの比(前記層Bの厚さ/前記層Aの厚さと前記層Bの厚さの和)は、0.5%以上90%以下である、請求項1~8のいずれか1項に記載のシャフト。
- 前記シャフトが中空である、請求項1~9のいずれか1項に記載のシャフト。
- 前記層Aが最外層に配置された、請求項1~10のいずれか1項に記載のシャフト。
- 前記層A-前記層B-前記層Aの順で配置される、請求項11に記載のシャフト。
- 請求項1~12のいずれか1項に記載のシャフトから構成される、ゴルフクラブ用シャフト。
- 複数の層Aと、少なくとも1つの層Bと、を有し、前記層Aは熱硬化性樹脂の硬化物を含み、前記層Bは熱可塑性樹脂と連続繊維基材とを含む、シャフトの製造方法であって、
マンドレルの外周に、前記マンドレルの形状に沿わせて、前記層Aとなる熱硬化性樹脂シートaと前記層Bとなるプリプレグbを、前記マンドレル側から前記プリプレグb、前記熱硬化性樹脂シートaの順に巻回して、プリプレグの積層体を形成する工程と、
前記積層体を加熱する工程と、
加熱後の前記積層体と前記マンドレルを分離する工程と、を有する、シャフトの製造方法。 - 前記層Bが、2つの前記層Aの間に配置される、請求項14に記載のシャフトの製造方法。
- 前記シャフトが中空である、請求項14または15に記載のシャフトの製造方法。
- 前記層Bが少なくとも1つの前記層Aよりも中空側に配置された、請求項16に記載のシャフトの製造方法。
- マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂と繊維とを含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記プリプレグb、前記熱硬化性樹脂シートaの順に巻回して、プリプレグの積層体を形成する工程と、
前記積層体を加熱する工程と、を有する、シャフトの製造方法。 - マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂を含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記熱硬化性樹脂シートa、前記プリプレグbの順になるように巻回し、前記熱硬化性樹脂シートaと前記プリプレグbが接する部分を含む積層体を形成する工程を有する、シャフトの製造方法。
- 前記積層体を加熱する工程を有する、請求項19に記載のシャフトの製造方法。
- マンドレルの外周に、前記マンドレルの形状に沿わせて、熱硬化性樹脂を含む熱硬化性樹脂シートaと熱可塑性樹脂と繊維とを含むプリプレグbを、前記マンドレル側から前記熱硬化性樹脂シートa、前記プリプレグbの順になるように巻回し、前記プリプレグbを、前記熱硬化性樹脂シートaに直接接するように重ねて巻回し、前記熱硬化性樹脂シートaと前記プリプレグbの積層体を形成する工程を有する、シャフトの製造方法。
- マンドレルの外周に、熱硬化性樹脂を含む熱硬化性樹脂シートaと、熱可塑性樹脂と繊維とを含むプリプレグbとを積層した積層シートを、前記マンドレルの形状に沿わせて巻回した巻回体を形成する工程を有する、シャフトの製造方法。
- 前記積層シートを巻回する際、前記熱硬化性樹脂シートaがシャフトの内側に配置されるよう巻回する、請求項22に記載のシャフトの製造方法。
- 前記巻回体を加熱する工程を有する、請求項22または23に記載のシャフトの製造方法。
- 前記積層シートを巻回したシャフトに、さらに前記熱硬化性樹脂シートaとは別の熱硬化性樹脂シートa2を巻回する工程を有する、請求項22~24のいずれか1項に記載のシャフトの製造方法。
- 前記マンドレル側から前記熱硬化性樹脂シートa-前記プリプレグbの順になるように、前記積層シートを巻回する、請求項22~25のいずれか1項に記載のシャフトの製造方法。
- 前記積層シートがさらに前記熱硬化性樹脂シートaを含み、前記マンドレル側から前記熱硬化性樹脂シートa-前記プリプレグb-前記熱硬化性樹脂シートaの順になるように、前記積層シートを巻回する、請求項22に記載のシャフトの製造方法。
- 前記マンドレルの外周に巻回する始端となる前記熱硬化性樹脂シートaの縁部の位置と、前記マンドレルの外周に巻回する始端となる前記プリプレグbの縁部の位置とが異なる、請求項22~27のいずれか1項に記載のシャフトの製造方法。
- 前記マンドレルの外周に巻回する始端となる前記熱硬化性樹脂シートa2の縁部の位置と、前記マンドレルの外周に巻回する始端となる前記プリプレグbの縁部の位置とが異なる、請求項25~28のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグbの面積に対して、前記熱硬化性樹脂シートaと前記プリプレグbの接触する面積が10%以上である、請求項22~29のいずれか1項に記載のシャフトの製造方法。
- 前記熱硬化性樹脂シートaが繊維を含む、請求項22~30のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグbに含まれる繊維の繊維体積分率が、30体積%以上である、請求項22~31のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグb1枚の厚さと前記熱硬化性樹脂シートa1枚の厚さの比(プリプレグbの厚さ/熱硬化性樹脂シートaの厚さ)が、1.5以下である、請求項22~32のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグbに含まれる繊維の長さが、シャフトの長さの1%以上である、請求項22~33のいずれか1項に記載のシャフトの製造方法。
- 前記熱硬化性樹脂シートaの幅方向の長さとシャフトの半径の比(熱硬化性樹脂シートaの幅方向の長さ/シャフトの半径)が、0.5以上である、請求項22~34のいずれか1項に記載のシャフトの製造方法。
- 前記熱硬化性樹脂シートaに含まれる熱硬化性樹脂が、エポキシ樹脂である、請求項22~35のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグbに含まれる熱可塑性樹脂が、ポリエーテルイミドである、請求項22~36のいずれか1項に記載のシャフトの製造方法。
- 前記熱硬化性樹脂シートaに含まれる繊維が炭素繊維を含む、請求項31に記載のシャフトの製造方法。
- 前記プリプレグbに含まれる繊維が炭素繊維を含む、請求項22~38のいずれか1項に記載のシャフトの製造方法。
- 前記プリプレグbが、前記積層シートの厚さに対して、前記積層シートの最も内側から50%以内の位置に存在するように配置される、請求項22~39のいずれか1項に記載のシャフトの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023511722A JPWO2022211050A1 (ja) | 2021-03-31 | 2022-03-31 | |
EP22781260.9A EP4316613A4 (en) | 2021-03-31 | 2022-03-31 | ROD, ITS MANUFACTURING METHOD AND ROD FOR GOLF CLUB |
US18/472,406 US20240009526A1 (en) | 2021-03-31 | 2023-09-22 | Shaft, method for manufacturing shaft, and golf club shaft |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021062182 | 2021-03-31 | ||
JP2021-062182 | 2021-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/472,406 Continuation US20240009526A1 (en) | 2021-03-31 | 2023-09-22 | Shaft, method for manufacturing shaft, and golf club shaft |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022211050A1 true WO2022211050A1 (ja) | 2022-10-06 |
Family
ID=83456605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016646 WO2022211050A1 (ja) | 2021-03-31 | 2022-03-31 | シャフトおよびその製造方法、ゴルフクラブ用シャフト |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240009526A1 (ja) |
EP (1) | EP4316613A4 (ja) |
JP (1) | JPWO2022211050A1 (ja) |
TW (1) | TW202245884A (ja) |
WO (1) | WO2022211050A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000127254A (ja) | 1998-10-26 | 2000-05-09 | Mitsubishi Rayon Co Ltd | 管状体の製造方法と、プリプレグを芯材へ巻き付ける巻付け部材及び巻付け装置 |
JP2003117034A (ja) * | 2001-10-11 | 2003-04-22 | Sumitomo Rubber Ind Ltd | ゴルフクラブシャフト |
JP2009189554A (ja) | 2008-02-14 | 2009-08-27 | Mrc Composite Products Co Ltd | ゴルフクラブ用シャフト |
JP2017143956A (ja) * | 2016-02-16 | 2017-08-24 | グローブライド株式会社 | 新規な外観を呈する管状の積層構造体及びゴルフクラブシャフト |
JP2021062182A (ja) | 2019-10-11 | 2021-04-22 | 東陽市俊康文具有限公司 | 体育館で使われる卓球ボールを便利にピックアップするピックアップ装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2306335B (en) * | 1995-11-03 | 1997-10-08 | Lo Kun Nan | Hollow tube made of composite material for use in recreational products |
AU3397497A (en) * | 1996-06-18 | 1998-01-07 | Quadrax Corporation | Composite golf club shaft and method of and apparatus for making same |
US6132323A (en) * | 1998-12-22 | 2000-10-17 | Callaway Golf Company | Thermoplastic/thermoset hybrid golf club shafts and methods of manufacturing the same |
-
2022
- 2022-03-31 EP EP22781260.9A patent/EP4316613A4/en active Pending
- 2022-03-31 TW TW111112639A patent/TW202245884A/zh unknown
- 2022-03-31 JP JP2023511722A patent/JPWO2022211050A1/ja active Pending
- 2022-03-31 WO PCT/JP2022/016646 patent/WO2022211050A1/ja active Application Filing
-
2023
- 2023-09-22 US US18/472,406 patent/US20240009526A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000127254A (ja) | 1998-10-26 | 2000-05-09 | Mitsubishi Rayon Co Ltd | 管状体の製造方法と、プリプレグを芯材へ巻き付ける巻付け部材及び巻付け装置 |
JP2003117034A (ja) * | 2001-10-11 | 2003-04-22 | Sumitomo Rubber Ind Ltd | ゴルフクラブシャフト |
JP2009189554A (ja) | 2008-02-14 | 2009-08-27 | Mrc Composite Products Co Ltd | ゴルフクラブ用シャフト |
JP2017143956A (ja) * | 2016-02-16 | 2017-08-24 | グローブライド株式会社 | 新規な外観を呈する管状の積層構造体及びゴルフクラブシャフト |
JP2021062182A (ja) | 2019-10-11 | 2021-04-22 | 東陽市俊康文具有限公司 | 体育館で使われる卓球ボールを便利にピックアップするピックアップ装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4316613A4 |
Also Published As
Publication number | Publication date |
---|---|
TW202245884A (zh) | 2022-12-01 |
JPWO2022211050A1 (ja) | 2022-10-06 |
US20240009526A1 (en) | 2024-01-11 |
EP4316613A4 (en) | 2024-08-28 |
EP4316613A1 (en) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101650989B1 (ko) | 골프 클럽용 샤프트 | |
US8057617B2 (en) | Method for producing tubular body made of fiber reinforced resin and tubular body produced by method | |
JP6804240B2 (ja) | 中空筒体、曲げ部を有する筒状成形体、及び曲げ部を有する筒状成形体の製造方法 | |
WO2020129387A1 (ja) | ゴルフシャフト | |
JPH09267400A (ja) | Frp曲り管 | |
US10974110B2 (en) | Golf shaft | |
US9993705B2 (en) | Golf club shaft | |
JP5230835B1 (ja) | バドミントンラケットに用いられるシャフトを製造する方法 | |
JP2005270515A (ja) | 繊維強化複合材料製管状体 | |
JP5577280B2 (ja) | 管状体 | |
WO2022211050A1 (ja) | シャフトおよびその製造方法、ゴルフクラブ用シャフト | |
JP6996073B2 (ja) | 管状体及びパター用ゴルフクラブシャフト、並びにその製造方法 | |
JP2005225982A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JPH10272699A (ja) | 繊維強化樹脂管状体の製造方法 | |
JP2002355818A (ja) | プリプレグおよびそれらからなるゴルフシャフト | |
JP2005271279A (ja) | テーパー付中空管の製造方法 | |
JP4241416B2 (ja) | Frp製シャフトの製造方法及びfrp製シャフト | |
JP2002283468A (ja) | 繊維強化樹脂管状体及びその製造方法 | |
JP2010246823A (ja) | 繊維強化樹脂製ゴルフクラブ用シャフトの製造方法 | |
JP2002177424A (ja) | ゴルフクラブ用シャフト | |
JP2024119264A (ja) | ゴルフクラブシャフト | |
JP2024119267A (ja) | ゴルフクラブシャフト | |
JPH09327536A (ja) | 軽量ゴルフクラブ用シャフト及びその製造方法 | |
JP2003171483A (ja) | プリプレグおよび繊維強化複合材料 | |
JPH1043334A (ja) | ゴルフクラブ用シャフト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22781260 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023511722 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022781260 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022781260 Country of ref document: EP Effective date: 20231031 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |