WO2022211019A1 - 眼鏡レンズの製造方法及び眼鏡レンズ - Google Patents

眼鏡レンズの製造方法及び眼鏡レンズ Download PDF

Info

Publication number
WO2022211019A1
WO2022211019A1 PCT/JP2022/016493 JP2022016493W WO2022211019A1 WO 2022211019 A1 WO2022211019 A1 WO 2022211019A1 JP 2022016493 W JP2022016493 W JP 2022016493W WO 2022211019 A1 WO2022211019 A1 WO 2022211019A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
spectacle lens
coating film
layer
manufacturing
Prior art date
Application number
PCT/JP2022/016493
Other languages
English (en)
French (fr)
Inventor
雄治 星
健治 小島
Original Assignee
ホヤ レンズ タイランド リミテッド
雄治 星
健治 小島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 雄治 星, 健治 小島 filed Critical ホヤ レンズ タイランド リミテッド
Priority to CN202280024541.0A priority Critical patent/CN117083559A/zh
Priority to KR1020237033023A priority patent/KR20230153421A/ko
Priority to JP2023511701A priority patent/JPWO2022211019A1/ja
Priority to EP22781229.4A priority patent/EP4318093A1/en
Publication of WO2022211019A1 publication Critical patent/WO2022211019A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/08Anti-misting means, e.g. ventilating, heating; Wipers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures

Definitions

  • the present disclosure relates to a spectacle lens manufacturing method and spectacle lens.
  • BACKGROUND ART Techniques for forming an antifogging layer on the surface of a lens substrate for preventing fogging (antifogging) of spectacle lenses are conventionally known. For example, a technique of coating the surface of a lens substrate with a surfactant is known. Also known is a technique for forming a water-absorbent resin layer and a water-repellent layer on the surface of the lens.
  • a water-absorbing layer mainly composed of urethane or acrylic resin having a specific polyoxyethylene chain is formed on the surface of a glass or plastic substrate, and the surface of the water-absorbing layer is coated with amino-modified silicone or mercapto
  • An antifogging optical article having a water-repellent layer containing at least one of modified silicones as a main component is described.
  • the anti-fogging layer having water absorption properties described in Patent Document 1 is excellent in anti-fogging properties and anti-fogging durability as compared with the case where a conventional anti-fogging layer is formed by coating a surface with a surfactant.
  • the anti-fogging property may be insufficient in a situation where fogging is likely to occur, such as in a high humidity environment.
  • a spectacle lens was sought.
  • the anti-fogging property of spectacle lenses depends on the film thickness of the anti-fogging layer, and the thicker the film thickness, the better the anti-fogging property.
  • an antifogging layer having a thickness of about 1 ⁇ m or more, it is formed by applying a liquid coating composition for an antifogging layer to a substrate and forming a film.
  • a liquid coating composition for an antifogging layer In order to ensure the function as a film, there is a limit to the film thickness that can be formed by one application.
  • the anti-fogging layer coating composition may pool around the lens. , there is a problem that the appearance is poor.
  • an embodiment of the present disclosure provides a spectacle lens manufacturing method and a spectacle lens in which the film thickness of the water-absorbing anti-fogging layer is increased and the occurrence of liquid pooling is suppressed.
  • the task is to That is, it is an object to provide a method for manufacturing a spectacle lens that is excellent in anti-fogging properties and appearance, and a spectacle lens.
  • Embodiments of the present disclosure relate to the following [1] to [12].
  • a method for manufacturing a spectacle lens having a water-absorbing anti-fogging layer comprising: Having a coating step of forming a coating film on the base material, The coating step includes a first coating step of coating the antifogging layer coating composition on a substrate to form a coating film (x); and a second coating step of coating the antifogging layer coating composition on the coating film (x) to form the coating film (y).
  • Component (A) structural units derived from the monomer (a-1) represented by the following general formula (1), structural units derived from the monomer (a-2) represented by the following general formula (2), hydroxy A (meth)acrylic resin component (B ): Polyol compound (B)
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 2 and R 3 may be the same or different.
  • R 4 is a hydrogen atom or a methyl group
  • m is an integer of 1 to 5.
  • R 5 is a hydrogen atom or a methyl group
  • R 6 is a divalent organic group
  • n is an integer of 0 or 1 or more.
  • a spectacle lens having, on at least one surface side of a base material, a water-absorbing anti-fogging layer that is a laminate of two or more layers.
  • a spectacle lens manufacturing method and a spectacle lens are provided in which the film thickness of the water-absorbing anti-fogging layer is increased and the occurrence of liquid pooling is suppressed. That is, a method for manufacturing a spectacle lens having excellent anti-fogging properties and appearance, and a spectacle lens are provided.
  • alkyl group includes an alkyl group having no substituent (unsubstituted alkyl group) and an alkyl group having a substituent (substituted alkyl group).
  • (meth)acryl used herein represents a concept that includes both acryl and methacryl. The same applies to similar notations such as "(meth)acrylate”.
  • the structural unit derived from the monomer (a-1) is “structural unit (a-1)"
  • the structural unit derived from the monomer (a-2) is “structural unit (a-2)”
  • the monomer A structural unit derived from (a-3) may be referred to as “structural unit (a-3)”
  • a structural unit derived from monomer (a-1) may be referred to as “structural unit (a-4)”.
  • the “solid content” in the coating composition means the amount of components other than the solvent.
  • the “carbon number” of a group having a substituent means the carbon number of the portion excluding the substituent.
  • a method for manufacturing a spectacle lens according to an embodiment of the present disclosure is a method for manufacturing a spectacle lens having a water-absorbing anti-fogging layer, comprising a coating step of forming a coating film on a base material, the coating step comprising: A first coating step of coating the antifogging layer coating composition on a substrate to form a coating film (x), and coating the antifogging layer coating composition on the coating film (x) to form a coating film (y ).
  • the first coating step is a step of coating the antifogging layer coating composition on the substrate to form the coating film (x).
  • the coating method of the first coating step is not particularly limited, and examples thereof include an air spray method, an airless spray method, an electrostatic coating method, a roll coater method, a flow coater method, a spin coat method, and a dipping method. From the viewpoint of productivity, the dipping method is preferred.
  • the film thickness of the coating film (x) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more, from the viewpoint of improving antifogging properties, and suppresses the formation of liquid pools. from the viewpoint of reducing the thickness, the thickness is preferably 20 ⁇ m or less, more preferably 17 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the method for manufacturing a spectacle lens according to an embodiment of the present disclosure includes a first heating step of heating the substrate on which the coating film (x) is formed at 70° C. or higher and 150° C. or lower after the first coating step. is preferred.
  • the solvent component contained in the coating film (x) volatilizes, the adhesiveness of the surface of the coating film (x) decreases, and foreign matter adheres to the coating film (x) during the manufacturing process. is suppressed. That is, it is possible to suppress appearance defects.
  • the antifogging layer coating composition constituting the coating film (x) is added to the dipping tank (coating composition It is possible to prevent it from being mixed into the storage tank).
  • the antifogging layer coating composition contains a curable resin
  • the coating film (x) in the first heating step, it is preferable to heat the coating film (x) to such an extent that the coating film (x) is not completely cured, as in the later-described heating step. That is, it is preferable that the coating film (x) after the first heating step is in the middle of the curing reaction. By not curing completely, curing (crosslinking) proceeds between the coating film (x) and the coating film (y), and adhesion to the coating film (y) is improved.
  • the heating temperature in the first heating step is preferably 72° C. or higher, more preferably 75° C. or higher, from the viewpoint of suppressing appearance defects, and from the viewpoint of suppressing thermal deformation and yellowing of spectacle lenses. , preferably 140° C. or lower, more preferably 130° C. or lower.
  • the heating time in the first heating step is preferably 3 minutes or more, more preferably 5 minutes or more, and still more preferably 10 minutes or more from the viewpoint of suppressing the occurrence of poor appearance, and is preferable from the viewpoint of productivity. is 60 minutes or less, more preferably 40 minutes or less, still more preferably 30 minutes or less.
  • the second coating step is a step of applying the antifogging layer coating composition onto the coating film (x) to form the coating film (y).
  • the antifogging layer coating composition used to form the coating film (y) may be the same as or different from the antifogging layer coating composition used to form the coating film (x). good.
  • the coating method of the second coating step includes the same method as that of the first coating step. From the viewpoint of productivity, the dipping method is preferred.
  • the dipping method is used as the coating method, the film thickness of the part that is first lifted out of the dipping tank (coating composition tank) is usually thinner, and the film thickness of the part that is lifted up the slowest from the dipping tank is thicker. Therefore, when applying the antifogging layer coating composition, it is preferable to rotate the base material vertically by 180° C. and then dip it when applying the coating film (x). By doing so, it becomes easier to obtain a spectacle lens in which the film thickness of the anti-fogging layer is uniform.
  • the film thickness of the coating film (y) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more, from the viewpoint of improving antifogging properties, and suppresses the formation of liquid pools. from the viewpoint of reducing the thickness, the thickness is preferably 20 ⁇ m or less, more preferably 17 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the method for manufacturing a spectacle lens according to an embodiment of the present disclosure includes a second heating step of heating the substrate on which the coating film (y) is formed at 70° C. or higher and 150° C. or lower after the second coating step. is preferred.
  • the solvent component contained in the coating film (y) volatilizes, the adhesiveness of the coating film (y) surface decreases, and foreign matter adheres to the coating film (y) during the manufacturing process. is suppressed. That is, it is possible to suppress appearance defects.
  • the anti-fogging layer coating composition is mixed in the dipping tank (coating composition tank) during the formation of the coating film (y) described below (during dipping). can be prevented.
  • the antifogging layer coating composition contains a curable resin
  • in the second heating step it is preferable to heat the coating film (y) to such an extent that the coating film (y) is not completely cured, as in the heating step described later. That is, it is preferable that the coating film (y) after the second heating step is in the middle of the curing reaction.
  • the coating film (z) described below is formed on the coating film (y) by not completely curing, curing (crosslinking) proceeds between the coating film (y) and the coating film (z), and the coating film The adhesion with (z) is improved.
  • the heating temperature in the second heating step is preferably 72° C. or higher, more preferably 75° C. or higher, from the viewpoint of suppressing appearance defects, and from the viewpoint of suppressing thermal deformation and yellowing of spectacle lenses. , preferably 140° C. or lower, more preferably 130° C. or lower.
  • the heating time in the second heating step is preferably 3 minutes or more, more preferably 5 minutes or more, and still more preferably 10 minutes or more from the viewpoint of suppressing the occurrence of poor appearance, and is preferable from the viewpoint of productivity. is 60 minutes or less, more preferably 40 minutes or less, still more preferably 30 minutes or less.
  • the method for manufacturing a spectacle lens comprises coating the coating film (y) with the anti-fogging layer coating composition to form the coating film (z ) to form a third coating step.
  • the antifogging layer coating composition used to form the coating film (z) may be the same as the antifogging layer coating composition used to form the coating film (x) or the coating film (y). Well, they can be different.
  • the coating method for the third coating process includes the same method as for the first coating process. From the viewpoint of productivity, the dipping method is preferred.
  • the film thickness of the coating film (z) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more, from the viewpoint of improving anti-fogging properties, and suppresses the formation of liquid pools. from the viewpoint of reducing the thickness, the thickness is preferably 20 ⁇ m or less, more preferably 17 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the method for manufacturing a spectacle lens according to an embodiment of the present disclosure includes a third heating step of heating the substrate on which the coating film (z) is formed at 70° C. or higher and 150° C. or lower after the third coating step. is preferred.
  • the third heating step the solvent component contained in the coating film (z) volatilizes, the adhesiveness of the coating film (z) surface decreases, and foreign matter adheres to the coating film (z) during the manufacturing process. is suppressed. That is, it is possible to suppress appearance defects.
  • the heating temperature in the third heating step is preferably 72° C. or higher, more preferably 75° C. or higher, from the viewpoint of suppressing appearance defects, and from the viewpoint of suppressing thermal deformation and yellowing of spectacle lenses. , preferably 140° C. or lower, more preferably 130° C. or lower.
  • the heating time in the third heating step is preferably 3 minutes or longer, more preferably 5 minutes or longer, and still more preferably 10 minutes or longer, from the viewpoint of suppressing appearance defects, and is preferably from the viewpoint of productivity. is 60 minutes or less, more preferably 40 minutes or less, still more preferably 30 minutes or less.
  • the spectacle lens manufacturing method preferably includes a heating step of heating the coating film after the coating step. That is, it is preferable to include a heating step of heating the coating films after forming the coating films (x) and (y) or after forming the coating films (x) to (z).
  • the heating temperature in the heating step is preferably 20 to 160° C., more preferably 60 to 130° C., from the viewpoint of improving antifogging properties, and the heating time is preferably 20 to 150 minutes from the viewpoint of improving antifogging properties. , more preferably 10 to 140 minutes.
  • the heating temperature and heating time in the heating step may be appropriately adjusted in consideration of the type of solvent, the heat resistance of the lens substrate, and the like.
  • the heating temperature in the heating step is preferably a temperature higher than the heating temperatures in the first heating step, the second heating step, and the third heating step, preferably a temperature higher than 5 ° C., more preferably. is at least 10°C higher temperature.
  • a water-absorbing anti-fogging layer may be provided on the functional layer.
  • the functional layer may be provided on the water-absorbing anti-fogging layer.
  • the curable resin is preferably cured by the heating step to obtain a cured product.
  • the heating step it is preferable that the curing reaction of the coating film is in progress (the curing reaction is not completed).
  • the water-absorbing anti-fogging layer according to this embodiment is an anti-fogging layer having water absorption.
  • the fact that the antifogging layer has water absorbency means that the material constituting the antifogging layer exhibits a characteristic of absorbing moisture, and the transparent substrate on which the antifogging layer is formed is stored at room temperature.
  • the water-absorbing anti-fogging layer (hereinafter also referred to as anti-fogging layer) according to the present embodiment comprises the cured product of the coating film (x) formed by applying the anti-fogging layer coating composition and the anti-fogging layer coating composition. It includes a cured product of the coating film (y) formed by applying and is a laminate of two or more layers.
  • the antifogging layer according to this embodiment may further include a cured product of the coating film (z) formed by applying the antifogging layer coating composition, and may be a laminate of a three-layer structure.
  • the antifogging layer preferably contains a cured product of an antifogging layer coating composition containing components (A) to (C) described below.
  • the anti-fogging layer is preferably provided as the outermost layer of the spectacle lens from the viewpoint of sufficiently exhibiting the anti-fogging property.
  • the antifogging layer may be provided only on one of the principal surfaces, or may be provided on both surfaces.
  • the anti-fogging layer is preferably provided directly on the substrate from the viewpoint of ease of manufacture. That is, the spectacle lens according to this embodiment preferably has an antifogging layer directly on the substrate.
  • the thickness of the antifogging layer is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 12 ⁇ m or more, even more preferably 15 ⁇ m or more, still more preferably 18 ⁇ m or more, and more preferably 18 ⁇ m or more. It is more preferably 20 ⁇ m or more, and from the viewpoint of ease of production, it is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, even more preferably 40 ⁇ m or less, and even more preferably 35 ⁇ m or less.
  • the antifogging layer coating composition preferably contains the following components (A) to (C).
  • R 4 is a hydrogen atom or a methyl group, and m is an integer of 1 to 5.
  • R 5 is a hydrogen atom or a methyl group
  • R 6 is a divalent organic group
  • n is an integer of 0 or 1 or more.
  • the structural unit (a-1) contained in component (A) (also referred to as (meth)acrylic resin) has an amide group, is highly hydrophilic, and easily holds moisture. For this reason, it is thought that the water adhering to the surface of the antifogging layer obtained by curing the antifogging layer coating composition is likely to be absorbed into the cured interior.
  • the polyol compound (B) it is believed that by blending the polyol compound (B), it is possible to maintain the cross-linking density necessary for the antifogging layer and to create gaps through which water is sufficiently absorbed. For these reasons, it is believed that anti-fog properties are imparted.
  • the structural unit (a-2) contained in the resin (A) is a structural unit having a polycaprolactone structure, and its flexible chemical skeleton contributes to improving the flexibility and elasticity of the antifogging layer.
  • the inclusion of the structural unit (a-3) that is more rigid than the structural unit (a-2) ensures a balance between flexibility and elasticity.
  • the polydimethylsiloxane chain possessed by the structural unit (a-4) contributes to improving the slipperiness of the antifogging layer.
  • the anti-fogging layer when an external force is applied to the anti-fogging layer, the flexibility and elasticity of the anti-fogging layer absorb the external force, while the slipperiness allows the external force to escape to the outside of the anti-fogging layer. It is thought that the anti-fogging layer is less likely to be scratched as a result of synergistic expression.
  • the anti-fogging layer coating composition contains 20% by mass or more and 65% by mass or less of the structural units derived from the monomer (a-1) based on 100% by mass of all the structural units constituting the component (A), and the monomer (a -2) is 10% by mass or more and 40% by mass or less, and the ratio of the structural units derived from the monomer (a-4) is 1% by mass or more and 10% by mass or less, and the component (C) Ratio of the total amount (OH) obtained by adding the number of isocyanate groups contained in (NCO) and the number of hydroxyl groups contained in component (A) and the number of hydroxyl groups contained in component (B) (NCO) / (OH ) is preferably 0.15 or more and 0.55 or less.
  • the structural unit (a-2) and the structural unit (a-3) having a hydroxyl group in the component (A) are balanced (amount ratio) and equivalent It is believed that the hardness of the antifogging layer can be increased to the extent that the ratio (NCO/OH) is set to a specific range of less than 1 and the frictional resistance is improved.
  • a specific equivalent ratio (NCO/OH) of less than 1 while maintaining the structural balance of the structural unit (a-2) and the structural unit (a-3) having a hydroxyl group in the component (A) is set in the range of , the cross-linking density of the anti-fogging layer is increased, and the solvent resistance of the anti-fogging layer is considered to be improved.
  • the antifogging layer coating composition of the present embodiment has a (meth)acrylic resin as the component (A), that is, a structural unit derived from the monomer (a-1) represented by the general formula (1), the general formula Structural units derived from the monomer (a-2) represented by (2), structural units derived from the hydroxyalkyl (meth)acrylate (a-3), and the monomer (a) represented by the general formula (3) -4) preferably contains a (meth)acrylic resin having a structural unit derived from.
  • a (meth)acrylic resin can typically be obtained by polymerizing a monomer (a-1), a monomer (a-2), a monomer (a-3) and a monomer (a-4). Details of the polymerization method will be described later.
  • 100% of the structural units constituting the (meth)acrylic resin may not be structural units derived from (meth)acrylic monomers. That is, the (meth)acrylic resin may partially (but not entirely) contain structural units derived from non-(meth)acrylic monomers.
  • 50% by mass or more of the total structural units of the (meth)acrylic resin are structural units derived from (meth)acrylic monomers. is preferably More preferably, 80% by mass or more of the total structural units of the (meth)acrylic resin are structural units derived from (meth)acrylic monomers. More preferably, all (100%) structural units of the (meth)acrylic resin are structural units derived from (meth)acrylic monomers.
  • the monomer (a-1) is not particularly limited as long as it has the structure of general formula (1) above. Specifically, (meth)acrylamide, N-methylacrylamide, N,N-dimethyl(meth)acrylamide, N-ethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, Nn-propyl (meth) ) acrylamide, N-isopropyl(meth)acrylamide and the like.
  • At least one type of the monomer (a-1) may be used, or two or more types may be used in combination.
  • a (meth)acrylic resin may be obtained by performing a polymerization reaction using two or more of the monomers listed above.
  • the monomer (a-1) particularly preferably contains N,N-dimethyl(meth)acrylamide and N,N-diethyl(meth)acrylamide.
  • the structural units derived from the monomer (a-1) in the (meth)acrylic resin are preferably contained in an amount of 20 to 65% by mass based on the total structural units of the resin. More preferably 35 to 60% by mass, still more preferably 40 to 55% by mass.
  • the structural unit derived from the monomer (a-1) is 20% by mass or more, it becomes easy to form an antifogging layer exhibiting antifogging performance suitable for practical use. A decrease in the ratio of structural units derived from other monomers is avoided, and the balance of the composition as a whole can be easily maintained.
  • the monomer (a-2) is not particularly limited as long as it has the structure of general formula (2) above.
  • the (meth)acrylic resin preferably contains 10 to 40% by mass, more preferably 20 to 38% by mass of structural units derived from the monomer (a-2), based on the total structural units of the resin. % by mass, more preferably 25 to 35% by mass.
  • the (meth)acrylic resin may contain a plurality of repeating units derived from the monomer (a-2).
  • Monomer (a-3) is a hydroxyalkyl (meth)acrylate. Specific examples thereof include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate and the like. Among these, hydroxyethyl (meth)acrylate is preferred in the present embodiment.
  • the structural unit derived from the monomer (a-3) in the (meth)acrylic resin is preferably 1 to 30% by mass, more preferably 1 to 30% by mass, based on the total structural units of the (meth)acrylic resin. is contained in an amount of 2 to 20% by mass, more preferably 3 to 15% by mass.
  • the monomer (a-3) has a hydroxyl group like the monomer (a-2) and undergoes a cross-linking reaction with a polyfunctional isocyanate compound described later to form an antifogging layer.
  • the monomer (a-2) alone is not used to cause a cross-linking reaction to form an anti-fogging layer. It can be an antifogging layer having the physical properties of
  • the (meth)acrylic resin contains structural units derived from the monomer (a-2) and the monomer (a-3), so it has hydroxyl groups as a whole, that is, it has a hydroxyl value. Therefore, it can react with a polyfunctional isocyanate compound described later together with a polyol compound described later to form a crosslinked structure.
  • the (meth)acrylic resin preferably has a hydroxyl value of 40 to 150 mgKOH/g, more preferably 70 to 140 mgKOH/g, even more preferably 90 to 130 mgKOH/g.
  • a polyfunctional isocyanate compound (described later) together with a polyol compound (described later)
  • the crosslinked structure is easily controlled appropriately. Therefore, it is possible to harden the antifogging layer while maintaining the flexibility and elasticity of the antifogging layer. Therefore, it becomes easier to achieve a higher degree of compatibility between the scratch resistance of the antifogging layer, the reduction in frictional resistance, and the solvent resistance.
  • the hydroxyl value means mg of potassium hydroxide required to neutralize acetic acid bound to hydroxyl groups when 1 g of sample is acetylated.
  • the monomer (a-4) is not particularly limited as long as it has the structure of general formula (3) above.
  • the (meth)acrylic resin may contain a plurality of repeating units derived from the monomer (a-4).
  • a (meth)acrylic resin may be obtained by performing a polymerization reaction using two or more of the monomers listed above.
  • the structural unit derived from the monomer (a-4) in the (meth)acrylic resin is preferably 1 to 10% by mass, more preferably 2 to 8, based on the total structural units of the resin. % by mass, more preferably 3 to 7% by mass.
  • the structural unit derived from the monomer (a-4) is 1% by mass or more, it becomes easier to obtain an antifogging layer that satisfies scratch resistance. If it is 10% by mass or less, it becomes easier to synthesize a homogeneous (meth)acrylic resin.
  • any structural unit may or may not be included.
  • Examples of the structural unit (a-5) include structural units derived from the monomers shown below.
  • R is a hydrogen atom or a methyl group
  • R' is an alkyl group, a monocyclic or polycyclic cycloalkyl group
  • a constitutional unit derived from a monomer that is an aryl group or an aralkyl group can be mentioned.
  • this monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, isodecyl (meth)acrylate, n-lauryl (meth)acrylate, n-stearyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate and the like.
  • R' is an alkyl group having 1 to 8 carbon atoms are preferable, those in which R' is an alkyl group having 1 to 6 carbon atoms are more preferable, and those in which R' is an alkyl group having 1 to 4 carbon atoms are more preferable. More preferred.
  • the (meth)acrylic resin may contain a plurality of repeating units corresponding to the structural unit (a-5).
  • a (meth)acrylic resin may be obtained by performing a polymerization reaction using two or more of the monomers listed as specific examples above.
  • the (meth)acrylic resin contains the structural unit (a-5)
  • its content is preferably 1 to 40% by mass, more preferably 3 to 40% by mass, based on the total structural units of the (meth)acrylic resin. 30% by mass, more preferably 5 to 20% by mass.
  • the mass average molecular weight (Mw) of the (meth)acrylic resin is not particularly limited, but is preferably from 10,000 to 100,000, more preferably from 20,000 to 70,000. 000 to 60,000 is more preferred. If the weight average molecular weight is 10,000 or more, the desired anti-fogging performance tends to be obtained, and if it is 100,000 or less, there is a tendency for excellent coating suitability when coating an object to be coated such as a spectacle lens.
  • the mass average molecular weight can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the glass transition temperature of the (meth)acrylic resin is not particularly limited, it is preferably 20 to 120°C, more preferably 30 to 110°C, and still more preferably 35 to 100°C.
  • the glass transition temperature of the (meth)acrylic resin (the glass transition temperature of the (meth)acrylic resin alone, not the glass transition temperature of the antifogging layer) is the glass transition temperature obtained based on the above formula. means temperature.
  • the glass transition temperatures are determined using only monomers with known glass transition temperatures.
  • (Meth)acrylic resins can typically be obtained through a polymerization reaction.
  • various methods such as radical polymerization, cationic polymerization, and anionic polymerization may be used, and among these, radical polymerization is preferred.
  • the polymerization may be any of solution polymerization, suspension polymerization, emulsion polymerization, and the like. Of these, solution polymerization is preferred from the viewpoint of precise control of polymerization.
  • a known polymerization initiator can be used as the polymerization initiator for radical polymerization.
  • azobisisobutyronitrile, 2,2-azobis(2-methylbutyronitrile), 2,2-azobis(2-methylpropionitrile), and 2,2-azobis(2,4-dimethylvalero nitrile) benzoyl peroxide, t-butyl peroxyoctanoate, diisobutyl peroxide, di(2-ethylhexyl) peroxypivalate, decanoyl peroxide, t-butylperoxy-2- Redox combining oxidizing agents and reducing agents, such as peroxide-based initiators such as ethylhexanoate and t-butyl peroxybenzoate, hydrogen peroxide and iron(II) salts, persulfates and sodium hydrogen sulfite system initiators and the like.
  • the amount of the polymerization initiator to be blended is not particularly limited, but is preferably 0.001 to 10 parts by mass when the entire mixture of monomers to be polymerized is 100 parts by mass.
  • the polymerization reaction may be carried out in one step or in two or more steps.
  • the temperature of the polymerization reaction is not particularly limited, it is typically in the range of 50°C to 200°C, preferably 80°C to 150°C.
  • the antifogging layer coating composition of the present embodiment preferably contains a polyol compound.
  • a polyol compound By containing a polyol compound, it becomes possible to form an anti-fogging layer having more excellent anti-fogging durability by reacting with a polyfunctional isocyanate compound described below together with the (meth)acrylic resin.
  • the number of hydroxyl groups in one molecule of the polyol compound is 2 or more, preferably 2-6, more preferably 2-4.
  • the polyol compound preferably contains at least one or more polyol compounds selected from the group consisting of polycaprolactone polyols, polycarbonate polyols, and polyether polyols. These chemical structures are moderately flexible and elastic. Therefore, the flexibility and elasticity of the cured film can be further enhanced.
  • Polycaprolactone polyol can be used without any particular restrictions as long as it is a compound that has an open ring structure of caprolactone and two or more hydroxyl groups in one molecule.
  • Polycarbonate polyols can be used without particular limitation as long as they are compounds having a carbonate group represented by —O—(C ⁇ O)—O— and two or more hydroxyl groups in one molecule.
  • Polycarbonate polyol can be obtained by reacting one or more polyol raw materials (polyhydric alcohol) with carbonic acid ester or phosgene.
  • Polyol raw materials are not particularly limited, and examples thereof include aliphatic polyols, polyols having an alicyclic structure, and aromatic polyols. In the present embodiment, an aliphatic polyol having no alicyclic structure is preferred from the viewpoint of the flexibility of the cured film.
  • Carbonic acid esters include, for example, aliphatic carbonic acid esters such as dimethyl carbonate and diethyl carbonate, aromatic carbonic acid esters such as diphenyl carbonate, and cyclic carbonic acid esters such as ethylene carbonate. Of these, aliphatic carbonates are preferred, and dimethyl carbonate is particularly preferred, because of their availability and ease of production.
  • any compound having an ether bond (--O--) and two or more hydroxyl groups in one molecule can be used as the polyether polyol without any particular limitation.
  • Specific compounds include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5 - pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, Neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis( ⁇ -hydroxyeth
  • polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide using compounds as initiators, alkyl glycidyl ethers such as methyl glycidyl ether, and aryls such as phenyl glycidyl ether Examples include polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as glycidyl ethers and tetrahydrofuran.
  • the polyol compound may be a compound corresponding to a plurality of polycaprolactone polyols, polycarbonate polyols, and polyether polyols.
  • the polyol compound may be a polyether polyester polyol or the like having an ether bond and an ester bond.
  • the polyol compound may contain more than one of polycaprolactone polyol, polycarbonate polyol, and polyether polyol.
  • the hydroxyl value of the polyol compound is preferably 50-500 mgKOH/g, more preferably 100-350 mgKOH/g, still more preferably 150-250 mgKOH/g.
  • the mass average molecular weight (Mw) of the polyol compound is preferably 450-2,500, more preferably 500-1,500, still more preferably 500-700.
  • the content of the polyol compound in the antifogging layer coating composition is preferably 5 to 200 parts by mass, more preferably 15 to 180 parts by mass, still more preferably 20 to 200 parts by mass, based on 100 parts by mass of the (meth)acrylic resin. 150 parts by mass, more preferably 20 to 100 parts by mass, even more preferably 20 to 50 parts by mass, and even more preferably 20 to 40 parts by mass. By setting it as this numerical range, it becomes easy to obtain the performance derived from a polyol compound, and it becomes easy to balance with other components.
  • the polyol compound preferably contains polycaprolactone polyol among the above-described polycaprolactone polyol, polycarbonate polyol, and polyether polyol.
  • polycaprolactone polyols polycaprolactone diol (having a caprolactone structure and , a compound having two hydroxyl groups).
  • the (meth)acrylic resin, which is the component (A) has the structure of the general formula (2) described above, that is, the caprolactone structure, so that the polyol compound tends to have good compatibility with the resin.
  • the antifogging performance tends to be improved without excessively increasing the crosslink density.
  • the antifogging layer coating composition of the present embodiment preferably contains a polyfunctional isocyanate compound as component (C).
  • a polyfunctional isocyanate compound By including a polyfunctional isocyanate compound in the coating composition, the hydroxyl groups of the structural units (a-2) and structural units (a-3) contained in the (meth)acrylic resin that is component (A), and the component
  • the hydroxyl group of the polyol compound (B) and the polyfunctional isocyanate compound undergo a cross-linking reaction to form an anti-fogging layer having excellent anti-fogging durability.
  • a polyfunctional isocyanate compound is a compound having two or more isocyanate groups (including an isocyanate group protected by a leaving group) in one molecule.
  • the polyfunctional isocyanate compound has 2 to 6 functional groups per molecule, and still more preferably 2 to 4 functional groups per molecule.
  • Polyfunctional isocyanate compounds include aliphatic diisocyanates such as lysine isocyanate, hexamethylene diisocyanate and trimethylhexane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane-2,4-(or 2,6)-diisocyanate, 4, Cycloaliphatic diisocyanates such as 4′-methylenebis(cyclohexyl isocyanate) and 1,3-(isocyanatomethyl)cyclohexane, and tri- or higher functional isocyanates such as lysine triisocyanate.
  • aliphatic diisocyanates such as lysine isocyanate, hexamethylene diisocyanate and trimethylhexane diisocyanate
  • hydrogenated xylylene diisocyanate isophorone diisocyanate
  • polyfunctional isocyanate compound as component (C) in addition to the above compounds, polymers thereof such as biuret type, isocyanurate type, and adduct type may be used. Among them, a biuret-type polyfunctional isocyanate compound having appropriate rigidity is preferable.
  • the content of the polyfunctional isocyanate compound in the antifogging layer coating composition is not particularly limited as long as it is blended according to the equivalent ratio (NCO)/(OH) described later. 5 to 100 parts by mass, preferably 7 to 75 parts by mass, more preferably 10 to 60 parts by mass, still more preferably 10 to 50 parts by mass, even more preferably 15 to 40 parts by mass, based on 100 parts by mass of the system resin, Even more preferably 20 to 30 parts by mass. It is considered that the necessary and sufficient cross-linking is achieved within the cured film by setting the value within this numerical range.
  • the molar amount of the isocyanate groups (including blocked isocyanate groups) contained in the polyfunctional isocyanate compound relative to the hydroxyl groups possessed by the (meth)acrylic resin and the polyol compound is preferably It ranges from 0.15 to 0.55. When the equivalent ratio (NCO)/(OH) is within this range, the crosslink density is sufficiently high, and as a result, functions such as anti-fogging properties and solvent resistance as a cured film are sufficient. From this point of view, the equivalent ratio (NCO)/(OH) is preferably 0.25 to 0.50, more preferably 0.35 to 0.45.
  • the antifogging layer coating composition of the present embodiment may be of a one-liquid type, that is, in a state in which all components other than the solvent are substantially uniformly mixed (dissolved or dispersed) in the solvent.
  • a one-liquid type is preferred.
  • the antifogging layer coating composition of the present embodiment may be of a two-liquid type. By adopting a two-liquid type, the storage stability of the antifogging layer coating composition can be enhanced.
  • the antifogging layer coating composition of the present embodiment comprises (1) Liquid A containing a (meth)acrylic resin and/or polyol compound and not containing a polyfunctional isocyanate compound, and (2) a polyfunctional isocyanate compound.
  • a and B liquids are stored in separate containers, and the A and B liquids are mixed immediately before use (coating).
  • components (additives, etc.) other than (meth)acrylic resins, polyol compounds, and polyfunctional isocyanate compounds may be contained in liquid A, liquid B, or other containers may be prepared with
  • the polyfunctional isocyanate compound is not a blocked isocyanate (that is, when the isocyanate group exists in the form of —NCO in the system)
  • the antifogging layer coating composition may be a two-pack type. preferable.
  • the antifogging layer coating composition of the present embodiment may contain a solvent.
  • a solvent facilitates adjustment of the viscosity and solid content of the coating composition.
  • solvents include aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as methanol, ethanol, isopropyl alcohol, n-butanol, t-butanol, isobutanol, and diacetone alcohol, acetone, methyl ethyl ketone, and methyl isobutyl.
  • ketone-based solvents such as ketones and cyclohexanone
  • ester-based solvents such as ethyl acetate, propyl acetate, butyl acetate, and isobutyl acetate
  • glycol ether-based solvents such as propylene glycol monomethyl acetate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate
  • t-butanol, diacetone alcohol, methyl ethyl ketone, ethyl acetate, and propylene glycol monomethyl ether acetate are preferred from the viewpoints of low reactivity with isocyanate, solubility and drying properties.
  • the content of the solvent in the antifogging layer coating composition is preferably 20 to 90% by mass, more preferably 30 to 85% by mass, still more preferably 35 to 80% by mass, from the viewpoint of controlling the thickness of the antifogging layer. % by mass.
  • the total content of components (A), (B) and (C) in the solid content of the coating composition is preferably 60% by mass or more, more preferably It is 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and preferably 100% by mass or less, for example 100% by mass.
  • the solid content of the antifogging layer coating composition is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more, from the viewpoint of obtaining spectacle lenses with more excellent antifogging properties. From the viewpoint of obtaining a spectacle lens with excellent optical properties, the content is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the antifogging layer coating composition may contain additives such as a curing catalyst, an ultraviolet absorber, a light stabilizer, a surfactant, a leveling agent and an antifoaming agent, if necessary.
  • the content of the additive is, for example, preferably 0.001 to 5% by mass, more preferably 0.01 to 4% by mass, still more preferably 0.1 to 5% by mass, based on the total mass of the antifogging layer coating composition. 3% by mass.
  • the viscosity of the antifogging layer coating composition at 15° C. is preferably 15 mPa ⁇ s or more, more preferably 20 mPa ⁇ s or more, and still more preferably 23 mPa ⁇ s or more from the viewpoint of antifogging properties. From the viewpoint of suppressing the viscosity and obtaining a spectacle lens with an excellent appearance, the viscosity is preferably 80 mPa ⁇ s or less, more preferably 65 mPa ⁇ s or less, and even more preferably 50 mPa ⁇ s or less.
  • the "viscosity” in the present embodiment is a value measured in accordance with JIS Z 8803: 2011 using a vibrating viscometer "VM-10A” (manufactured by Sekonic Co., Ltd.). It is a value measured by the method described in Examples.
  • the solid content concentration of the antifogging layer coating composition is preferably 10% by mass or more, more preferably 13% by mass or more, and still more preferably 15% by mass or more from the viewpoint of antifogging properties, and suppresses liquid pooling. From the viewpoint of obtaining spectacle lenses with excellent appearance, the content is preferably 30% by mass or less, more preferably 27% by mass or less, and even more preferably 25% by mass or less.
  • the antifogging layer coating composition can be prepared by dissolving or dispersing each of the above-mentioned components, which are used as necessary, in a solvent. Each component can be dissolved or dispersed in the solvent simultaneously or sequentially in any order. There are no particular restrictions on the specific dissolving or dispersing method, and known methods can be employed without any restrictions.
  • Resins made from various kinds of raw materials can be used as the base material.
  • resins that form the substrate include polycarbonate resins, urethane urea resins, (thio)urethane resins, polysulfide resins, polyamide resins, and polyester resins.
  • (Thio)urethane resin means at least one selected from thiourethane resins and urethane resins. Among these, (thio)urethane resins and polysulfide resins are preferred.
  • the substrate used for the spectacle lens of the present embodiment preferably has a refractive index of 1.50 or more, and more preferably a plastic substrate having a refractive index of 1.60 or more.
  • plastic substrates include allyl carbonate plastic lens "HILUX 1.50” (manufactured by HOYA Corporation, refractive index 1.50), thiourethane plastic lens “MERIA” (manufactured by HOYA Corporation, refractive index 1.60), thiourethane plastic lens "EYAS” (manufactured by HOYA Corporation, refractive index 1.60), thiourethane plastic lens "EYNOA” (manufactured by HOYA Corporation, refractive index 1.67), polysulfide plastic Lens “EYRY” (manufactured by HOYA Corporation, refractive index 1.70), polysulfide plastic lens "EYVIA” (manufactured by HOYA Corporation, refractive index 1.74), and the like.
  • the thickness and diameter of the substrate are not particularly limited, but the thickness is usually about 1 to 30 mm, and the diameter is usually about 50 to 100 mm.
  • the substrate may be either a finished lens or a semi-finished lens.
  • the surface shape of the substrate is not particularly limited, and may be flat, convex, concave, or the like.
  • the spectacle lens of the present disclosure may be any of a monofocal lens, a multifocal lens, a progressive power lens, and the like.
  • the progressive power lens the near portion region (near portion) and the progressive portion region (intermediate portion) are usually included in the aforementioned lower region, and the distance portion region (far portion) is included in the upper region.
  • the spectacle lens may be provided with a functional layer other than the water-absorbing anti-fogging layer.
  • the functional layer include a hard coat layer, an antireflection layer, a primer layer, and the like.
  • the functional layer may be provided on the first main surface of the lens substrate, may be provided on the second main surface of the lens substrate, or may be provided on the first main surface of the lens substrate and It may be provided on both of the second main surfaces. Further, after providing the functional layer on the lens substrate, the water-absorbing anti-fog layer may be provided on the functional layer, and after providing the water-absorbing anti-fogging layer on the lens substrate, the functional layer may be provided. may be provided.
  • the spectacle lens is a spectacle lens obtained by the manufacturing method described above. That is, it has a coating step of forming a coating film on a substrate, and the coating step includes a first coating step of coating the antifogging layer coating composition on the substrate to form the coating film (x); A spectacle lens obtained by a method for manufacturing a spectacle lens, comprising a second coating step of coating the antifogging layer coating composition on the coating film (x) to form the coating film (y).
  • a spectacle lens has a water-absorbing anti-fogging layer in which two or more layers are laminated on at least one side of a base material.
  • the spectacle lens is obtained by curing a cured product obtained by curing the coating film (x) formed in the first coating step and by curing the coating film (y) formed in the second coating step.
  • the cured product obtained by curing the coating film (x) and the cured product obtained by curing the coating film (y) are in direct contact with each other.
  • the spectacle lens may further have a cured product obtained by curing the coating film (z) formed in the third coating step, and the cured product obtained by curing the coating film (y) and The cured product obtained by curing the coating film (z) is preferably in direct contact.
  • the spectacle lens may have two or more water-absorbing anti-fogging layers laminated on both sides of the substrate.
  • the present disclosure may arbitrarily combine the items described as examples or preferred ranges in the detailed description of the invention with respect to examples, contents, and various physical properties of each of the above components. Further, if the compositions described in the examples are adjusted to the compositions described in the detailed description of the invention, the present disclosure can be implemented over the entire claimed composition range in the same manner as in the examples.
  • Viscosity measurement It was measured at a measurement temperature of 15° C. using a vibrating viscometer “VM-10A” (manufactured by Sekonic Co., Ltd.). In addition, the measuring method conformed to JIS Z 8803:2011.
  • the film thickness of the antifogging layer of the obtained spectacle lens was measured using a non-contact film thickness measurement system FF8 manufactured by System Road Co., Ltd.
  • the spectacle lens was visually observed under a fluorescent lamp and evaluated according to the following evaluation criteria.
  • DMAA dimethylacrylamide
  • PLAXEL FA2D polycaprolactone-modified hydroxyethyl acrylate
  • HEMA 2-hydroxyethyl methacrylate
  • one end methacrylate-modified poly Dimethylsiloxane manufactured by JNC Co., Ltd., Silaplane FM-0721, molecular weight 5000
  • methyl methacrylate 25 parts by mass and 1,1'-azobis (cyclohexane-1-carbonitrile) (Wako Pure Chemical Industries, Ltd.) 1 part by mass of V-40 (manufactured by the company) was mixed.
  • This mixed monomer was added dropwise to the 500 ml flask over 2 hours while stirring, and reacted for 5 hours. The heating was stopped and the mixture was cooled to room temperature to obtain a resin solution containing (meth)acrylic resin (solid content ratio: about 40% by mass).
  • the resulting (meth)acrylic resin had a hydroxyl value of 57 mgKOH/g, a number average molecular weight (Mn) of 12,000, a mass average molecular weight (Mw) of 44,000, and a polydispersity (Mw /Mn) was 3.67. Further, the glass transition temperature (Tg) of the (meth)acrylic resin calculated from the compounding ratio of the monomers used was 32.8° C. based on the aforementioned Fox formula.
  • coating composition 1 (Meth) acrylic resin obtained above, polycaprolactone diol (manufactured by Daicel Corporation, Praxel 205U, molecular weight 530, hydroxyl value 207 to 217 mgKOH / g), polyfunctional isocyanate compound (manufactured by Asahi Kasei Corporation, 24A-100, hexa Biuret type methylene diisocyanate, isocyanate group content 23.5% by mass, solid content 100% by mass), propylene glycol monomethyl ether acetate, diacetone alcohol, methyl ethyl ketone, t-butanol, and ethyl acetate were mixed to obtain a mixture. .
  • each content in the obtained mixture is as follows.
  • Polyfunctional isocyanate compound 3.4% by mass
  • ethyl acetate, methyl ethyl ketone, and diacetone alcohol were added to the mixture and mixed so as to have a viscosity of 75.9 mPa ⁇ s and a solid content of 24.5% by mass, thereby obtaining a coating composition 1.
  • the amount of (meth)acrylic resin is not the amount of the resin solution (solid content: mass%), but the amount of resin (solid content) contained in the resin solution. It represents the amount as a solid content. Further, when the (meth)acrylic resin and the polyol compound were uniformly mixed in the above amounts, the hydroxyl value of the mixture was measured to be 93 mgKOH/g.
  • Example 1 A thiourethane-based plastic lens MERIA (manufactured by HOYA Corporation, refractive index 1.60, degree S-0.00D, thickness 1.8 mm, outer diameter 75 mm) was used as a substrate, and the obtained coating composition 1 was applied to this. After forming a coating film (x) by coating on the base material using a dipping method (withdrawing speed: 5 mm/sec), it was heated at a temperature of 100° C. for 20 minutes. After allowing to cool, the coating composition 1 was applied to the substrate on which the coating film was formed using a dipping method (lifting speed: 5 mm/sec) to form a coating film (y), and the temperature was 100 ° C. Heated for 20 minutes. After standing to cool, it was heated at 120° C. for 120 minutes to produce a spectacle lens having an antifogging layer on the base material. Table 1 shows the evaluation results of the obtained spectacle lenses.
  • Example 2 A thiourethane-based plastic lens MERIA (manufactured by HOYA Corporation, refractive index 1.60, degree S-0.00D, thickness 1.8 mm, outer diameter 75 mm) was used as a substrate, and the obtained coating composition 1 was applied to this. After forming a coating film (x) by coating on the base material using a dipping method (withdrawing speed: 5 mm/sec), it was heated at a temperature of 100° C. for 20 minutes. After standing to cool, the coating composition 1 was applied to the substrate on which the coating film (x) was formed using a dipping method (withdrawing speed: 5 mm/sec) to form the coating film (y), and the temperature Heated at 100° C. for 20 minutes.
  • a thiourethane-based plastic lens MERIA manufactured by HOYA Corporation, refractive index 1.60, degree S-0.00D, thickness 1.8 mm, outer diameter 75 mm
  • the coating composition was applied to the substrate on which the coating film (y) was formed using a dipping method (lifting speed: 5 mm/sec) to form a coating film (z), and the temperature was 100. C. for 20 minutes. After standing to cool, it was heated at 120° C. for 120 minutes to produce a spectacle lens having an antifogging layer on the base material. Table 1 shows the evaluation results of the obtained spectacle lenses.
  • Example 3 A spectacle lens having an antifogging layer on a substrate was produced in the same manner as in Example 1, except that Coating Composition 3 was used instead of Coating Composition 1. Table 1 shows the evaluation results of the obtained spectacle lenses.
  • a method for manufacturing a spectacle lens which is an embodiment of the present disclosure, is a method for manufacturing a spectacle lens having a water-absorbing anti-fog layer, in which the anti-fog layer composition is applied onto a substrate to form a coating film.
  • the coating step includes a first coating step of coating the antifogging layer coating composition on a substrate to form a coating film (x), and an antifogging layer coating on the coating film (x). and a second coating step of coating the composition to form the coating film (y).

Abstract

吸水性防曇層を有する眼鏡レンズの製造方法であって、基材上に防曇層組成物を塗布して塗布膜を形成する塗布工程を有し、前記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する、眼鏡レンズの製造方法。

Description

眼鏡レンズの製造方法及び眼鏡レンズ
 本開示は、眼鏡レンズの製造方法及び眼鏡レンズに関する。
 眼鏡レンズの曇り防止(防曇)のために、レンズ基材の表面に防曇層を形成する技術は従来知られている。
 例えば、レンズ基材の表面に、界面活性剤を被覆する技術が知られている。
 また、レンズ記載の表面に吸水性樹脂層及び撥水層を形成する技術も知られている。例えば、特許文献1では、ガラス又はプラスチック基材の表面に、特定のポリオキシエチレン鎖を有するウレタン又はアクリル樹脂を主成分とする吸水層を形成し、同吸水層の表面にアミノ変性シリコーン又はメルカプト変性シリコーンの少なくとも一方を主成分とする撥水層を形成する防曇性光学物品が記載されている。
国際公開2013/005710号
 特許文献1に記載の吸水性能を含む防曇層は、従来の表面に界面活性剤を塗布して防曇層を形成する場合に比べ、防曇性や防曇耐久性に優れるものである。
 しかしながら、このような防曇層であっても、湿度が高い環境下等、曇りが発生し易い状況においては防曇性が不十分な場合があり、より防曇性に優れる防曇層を有する眼鏡レンズが求められていた。
 一方、眼鏡レンズの防曇性は、防曇層の膜厚に依存し、膜厚が厚いほど、防曇性に優れる。通常、約1μm以上の防曇層を形成する場合、液体状の防曇層用塗布組成物を基材に塗布し、成膜することによって形成されるが、視認性や透明性等、眼鏡レンズとしての機能を確保するためには、1回の塗布で形成できる膜厚には限界がある。また、防曇層用塗布組成物の粘度を向上させることにより、膜厚をある程度厚くすることも可能ではあるが、この場合、レンズ周辺部に防曇層用塗布組成物の液だまりが発生し、外観不良となるという問題があった。
 上述のような問題に対して、本開示の一実施形態は、吸水性防曇層の膜厚が厚膜化され、液だまりの発生が抑制された眼鏡レンズの製造方法、及び眼鏡レンズを提供することを課題とする。すなわち、防曇性及び外観に優れる眼鏡レンズの製造方法、及び眼鏡レンズを提供することを課題とする。
 本発明者は、基材上に防曇層組成物を用いた塗布膜の形成を少なくとも2回実施することで、上記課題を解決し得ることを見出した。
 本開示の実施形態は、以下の[1]~[12]に関する。
[1]吸水性防曇層を有する眼鏡レンズの製造方法であって、
 基材上に塗布膜を形成する塗布工程を有し、
 前記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、
 前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する、眼鏡レンズの製造方法。
[2]前記吸水性防曇層の膜厚が8μm以上である、上記[1]に記載の眼鏡レンズの製造方法。
[3]前記吸水性防曇層の膜厚が10μm以上50μm以下である、上記[1]又は[2]に記載の眼鏡レンズの製造方法。
[4]前記吸水性防曇層の膜厚が20μm以上40μm以下である、上記[1]~[3]に記載の眼鏡レンズの製造方法。
[5]前記塗布工程の後に、前記塗布膜を加熱する加熱工程を有する、上記[1]~[4]のいずれかに記載の眼鏡レンズの製造方法。
[6]前記第1塗布工程後に、70℃以上150℃以下で加温する第1加温工程を有する、上記[1]~[5]のいずれかに記載の眼鏡レンズの製造方法。
[7]前記第2塗布工程後に、70℃以上150℃以下で加温する第2加温工程を有する、上記[1]~[6]のいずれかに記載の眼鏡レンズの製造方法。
[8]前記塗布膜(y)上に防曇層塗布組成物を塗布して塗布膜(z)を形成する第3塗布工程を有する、上記[1]~[7]のいずれかに記載の眼鏡レンズの製造方法。
[9]前記第3塗布工程後に、70℃以上150℃以下で加温する第3加温工程を有する、上記[8]に記載の眼鏡レンズの製造方法。
[10]ディッピング法により、前記塗布膜を形成する、上記[1]~[9]に記載の眼鏡レンズの製造方法。
[11]前記防曇層塗布組成物が、下記の成分(A)~(C)を含む、上記[1]~[10]のいずれかに記載の眼鏡レンズの製造方法。
成分(A):下記一般式(1)で表されるモノマー(a-1)に由来する構成単位、下記一般式(2)で表されるモノマー(a-2)に由来する構成単位、ヒドロキシアルキル(メタ)アクリレート(a-3)に由来する構成単位、及び、下記一般式(3)で表されるモノマー(a-4)に由来する構成単位を有する(メタ)アクリル系樹脂
成分(B):ポリオール化合物(B)
成分(C):多官能イソシアネート化合物(C)
Figure JPOXMLDOC01-appb-C000004

[一般式(1)中、Rは、水素原子又はメチル基であり、R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基であり、R及びRは同一でも、異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000005

[一般式(2)中、Rは水素原子又はメチル基であり、mは1~5の整数である。]
Figure JPOXMLDOC01-appb-C000006

[一般式(3)中、Rは水素原子又はメチル基であり、Rは2価の有機基であり、nは0又は1以上の整数である。]
[12]基材の少なくとも一方の面側に、2層構成以上の積層である吸水性防曇層を有する、眼鏡レンズ。
 本開示の一実施形態によれば吸水性防曇層の膜厚が厚膜化され、液だまりの発生が抑制された眼鏡レンズの製造方法、及び眼鏡レンズが提供される。すなわち、防曇性及び外観に優れる眼鏡レンズの製造方法、及び眼鏡レンズが提供される。
 以下、本開示の実施形態及び実施例について説明する。同一又は相当する部分に同一の参照符号を付し、その説明を繰返さない場合がある。以下に説明する実施の形態及び実施例において、個数、量等に言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量等に限定されない。以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本開示の実施の形態及び実施例にとって必ずしも必須のものではない。
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含する。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)、及び、置換基を有するアルキル基(置換アルキル基)を包含する。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタアクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書中、モノマー(a-1)に由来する構成単位を「構成単位(a-1)」、モノマー(a-2)に由来する構成単位を「構成単位(a-2)」、モノマー(a-3)に由来する構成単位を「構成単位(a-3)」、モノマー(a-1)に由来する構成単位を「構成単位(a-4)」と称することがある。
 塗布組成物における「固形分量」とは、溶媒以外の成分の量を意味する。
 置換基を有する基についての「炭素数」とは、該置換基を除く部分の炭素数をいうものとする。
[眼鏡レンズの製造方法]
 本開示の実施形態に係る眼鏡レンズの製造方法は、吸水性防曇層を有する眼鏡レンズの製造方法であって、基材上に塗布膜を形成する塗布工程を有し、前記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する。
 基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程とを有することで、液だまりの発生を抑制しつつ、吸水性防曇層を厚膜化することができる。すなわち、防曇性及び外観に優れる眼鏡レンズを得ることができる。
<第1塗布工程>
 第1塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する工程である。
 第1塗布工程の塗布方法は特に限定されず、例えばエアスプレー法、エアレススプレー法、静電塗装法、ロールコーター法、フローコーター法、スピンコート法、ディッピング法等が挙げられる。生産性の観点から、ディッピング法が好ましい。
 塗布膜(x)の膜厚は、防曇性向上の観点から、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上、より更に好ましくは7μm以上であり、液だまりの発生を抑制する観点から、好ましくは20μm以下、より好ましくは17μm以下、更にこのましくは15μm以下である。
<第1加温工程>
 本開示の実施形態に係る眼鏡レンズの製造方法は、第1塗布工程後に、塗布膜(x)が形成された基材を、70℃以上150℃以下で加温する第1加温工程を有することが好ましい。第1加温工程を有することで、塗布膜(x)に含まれる溶剤成分が揮発して塗布膜(x)表面の粘着性が低下し、製造工程で異物が塗布膜(x)上に付着することが抑制される。すなわち、外観不良となることを抑制することができる。また、塗布膜(y)がディッピング法により形成される場合、塗布膜(x)を構成する防曇層塗布組成物が、塗布膜(y)形成時(ディッピング時)に、ディッピング槽(塗布組成物槽)に混入することを防ぐことができる。
 防曇層塗布組成物が硬化性樹脂を含む場合、第1加温工程では、後述の加熱工程のように塗布膜(x)を完全に硬化させない程度に加温することが好ましい。すなわち、第1加温工程後の塗布膜(x)は、硬化反応が途中であることが好ましい。完全に硬化させないことで、塗布膜(x)と塗布膜(y)との間で硬化(架橋)が進み、塗布膜(y)との密着性が向上する。
 第1加温工程における加温温度は、外観不良の発生を抑制する観点から、好ましくは72℃以上、より好ましくは75℃以上であり、眼鏡レンズの熱による変形及び黄変を抑制する観点から、好ましくは140℃以下、より好ましくは130℃以下である。
 第1加温工程における加温時間は、外観不良の発生を抑制する観点から、好ましくは3分以上、より好ましくは5分以上、更に好ましくは10分以上であり、生産性の観点から、好ましくは60分以下、より好ましくは40分以下、更に好ましくは30分以下である。
<第2塗布工程>
 第2塗布工程は、塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する工程である。
 塗布膜(y)を形成するために用いられる防曇層塗布組成物は、塗布膜(x)を形成するために用いられる防曇層塗布組成物と同じであってもよく、異なっていてもよい。
 第2塗布工程の塗布方法は、第1塗布工程と同様の方法が挙げられる。生産性の観点から、ディッピング法が好ましい。
 塗布方法としてディッピング法を用いる場合、通常、ディッピング槽(塗布組成物槽)から、先に引き上げられた部分の膜厚は薄くなり、最も遅くディッピング槽から引き上げられた部分の膜厚は厚くなる。したがって、防曇層塗布組成物を塗布する際には、塗布膜(x)を塗布する際とは、基材の上下方向を180℃回転させてディッピングすることが好ましい。このようにすることで、防曇層の膜厚が均一な眼鏡レンズを得られ易くなる。
 塗布膜(y)の膜厚は、防曇性向上の観点から、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上、より更に好ましくは7μm以上であり、液だまりの発生を抑制する観点から、好ましくは20μm以下、より好ましくは17μm以下、更にこのましくは15μm以下である。
<第2加温工程>
 本開示の実施形態に係る眼鏡レンズの製造方法は、第2塗布工程後に、塗布膜(y)が形成された基材を、70℃以上150℃以下で加温する第2加温工程を有することが好ましい。第2加温工程を有することで、塗布膜(y)に含まれる溶剤成分が揮発して塗布膜(y)表面の粘着性が低下し、製造工程で異物が塗布膜(y)上に付着することが抑制される。すなわち、外観不良となることを抑制することができる。また、塗布膜(y)がディッピング法により形成される場合、防曇層塗布組成物が、後述の塗布膜(y)形成時(ディッピング時)に、ディッピング槽(塗布組成物槽)に混入することを防ぐことができる。
 防曇層塗布組成物が硬化性樹脂を含む場合、第2加温工程では、後述の加熱工程のように塗布膜(y)を完全に硬化させない程度に加温することが好ましい。すなわち、第2加温工程後の塗布膜(y)は、硬化反応が途中であることが好ましい。完全に硬化させないことで、後述の塗布膜(z)を塗布膜(y)上に形成する場合、塗布膜(y)と塗布膜(z)との間で硬化(架橋)が進み、塗布膜(z)との密着性が向上する。
 第2加温工程における加温温度は、外観不良の発生を抑制する観点から、好ましくは72℃以上、より好ましくは75℃以上であり、眼鏡レンズの熱による変形及び黄変を抑制する観点から、好ましくは140℃以下、より好ましくは130℃以下である。
 第2加温工程における加温時間は、外観不良の発生を抑制する観点から、好ましくは3分以上、より好ましくは5分以上、更に好ましくは10分以上であり、生産性の観点から、好ましくは60分以下、より好ましくは40分以下、更に好ましくは30分以下である。
<第3塗布工程>
 本開示の実施形態に係る眼鏡レンズの製造方法は、より厚膜化された防曇層を得る観点から、前記塗布膜(y)上に防曇層塗布組成物を塗布して塗布膜(z)を形成する第3塗布工程を有してもよい。
 塗布膜(z)を形成するために用いられる防曇層塗布組成物は、塗布膜(x)や塗布膜(y)を形成するために用いられる防曇層塗布組成物と同じであってもよく、異なっていてもよい。
 第3塗布工程の塗布方法は、第1塗布工程と同様の方法が挙げられる。生産性の観点から、ディッピング法が好ましい。
 塗布膜(z)の膜厚は、防曇性向上の観点から、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上、より更に好ましくは7μm以上であり、液だまりの発生を抑制する観点から、好ましくは20μm以下、より好ましくは17μm以下、更にこのましくは15μm以下である。
<第3加温工程>
 本開示の実施形態に係る眼鏡レンズの製造方法は、第3塗布工程後に、塗布膜(z)が形成された基材を、70℃以上150℃以下で加温する第3加温工程を有することが好ましい。第3加温工程を有することで、塗布膜(z)に含まれる溶剤成分が揮発して塗布膜(z)表面の粘着性が低下し、製造工程で異物が塗布膜(z)上に付着することが抑制される。すなわち、外観不良となることを抑制することができる。
 第3加温工程における加温温度は、外観不良の発生を抑制する観点から、好ましくは72℃以上、より好ましくは75℃以上であり、眼鏡レンズの熱による変形及び黄変を抑制する観点から、好ましくは140℃以下、より好ましくは130℃以下である。
 第3加温工程における加温時間は、外観不良の発生を抑制する観点から、好ましくは3分以上、より好ましくは5分以上、更に好ましくは10分以上であり、生産性の観点から、好ましくは60分以下、より好ましくは40分以下、更に好ましくは30分以下である。
<加熱工程>
 本開示の実施形態に係る眼鏡レンズの製造方法は、塗布工程の後に、塗布膜を加熱する加熱工程を有することが好ましい。すなわち、塗布膜(x)及び塗布膜(y)を形成後又は塗布膜(x)~塗布膜(z)を形成後に、塗布膜を加熱する加熱工程を有することが好ましい。
 加熱工程における加熱温度は、防曇性向上の観点から、好ましくは20~160℃、より好ましくは60~130℃であり、加熱時間は、防曇性向上の観点から、好ましくは20~150分間、より好ましくは10~140分間である。なお、加熱工程における加熱温度や加熱時間は、溶剤の種類やレンズ基材の耐熱性等を考慮して適宜調整すればよい。
 加熱工程における加熱温度は、前述の第1加温工程、第2加温工程、及び第3加温工程における加温温度より高い温度であることが好ましく、好ましくは5℃高い温度以上、より好ましくは10℃高い温度以上である。
 また、必要に応じて、上述した機能層(ハードコート層、プライマー層、反射防止層等)を、レンズ基材上に設けた後、機能層上に吸水性防曇層を設けてもよく、レンズ基材上に吸水性防曇層を設けた後、吸水性防曇層上に機能層を設けてもよい。
 防曇層塗布組成物が硬化性樹脂を含む場合、好ましくは当該加熱工程により硬化性樹脂を硬化させて硬化物とする。前述の第1加温工程、第2加温工程、及び第3加温工程においては、塗布膜の硬化反応が途中(硬化反応が完結していない)であることが好ましい。
<吸水性防曇層>
 本実施形態に係る吸水性防曇層とは、吸水性を有する防曇層である。ここで、防曇層が吸水性を有するとは、防曇層を構成する材料が水分を取り込む特性を示すことを意味し、また、防曇層が形成された透明基材を室温下で保管した後、当該防曇層付き透明基材を40℃の温水の水面から35mm離れた位置に設置して温水からの蒸気を15秒間当てたときに、細かい水滴による防曇層表面の乱反射が無く、かつ、蒸気を接触させた後の防曇層付き透明基材を通して見た像に結露による歪みが無いことを意味する。
 本実施形態に係る吸水性防曇層(以後、防曇層とも言う。)は、防曇層塗布組成物を塗布して形成される塗布膜(x)の硬化物と防曇層塗布組成物を塗布して形成される塗布膜(y)の硬化物を含み、2層構成以上の積層である。本実施形態に係る防曇層は、更に防曇層塗布組成物を塗布して形成される塗布膜(z)の硬化物を含んでもよく、3層構成の積層であってもよい。
 防曇層は、後述の成分(A)~(C)を含む防曇層塗布組成物の硬化物を含むことが好ましい。
 防曇層は、防曇性を十分に発揮する観点から、眼鏡レンズの最外層として設けられることが好ましい。
 防曇層はいずれか一方の主面のみに設けられていてもよく、両面に設けられていてもよい。
 本実施形態に係る一態様として、製造容易性の観点から、防曇層は、基材に直接設けられることが好ましい。すなわち、本実施形態に係る眼鏡レンズは、基材に直接防曇層を有することが好ましい。
 防曇層の膜厚は、防曇性向上の観点から、好ましくは8μm以上であり、より好ましくは10μm以上、更に好ましくは12μm以上、より更に好ましくは15μm以上、より更に好ましくは18μm以上、より更に好ましくは20μm以上であり、製造容易性の観点から、好ましくは50μm以下、より好ましくは45μm以下、更に好ましくは40μm以下、より更に好ましくは35μm以下である。
(防曇層塗布組成物)
 防曇層塗布組成物は、下記の成分(A)~(C)を含むことが好ましい。
成分(A):下記一般式(1)で表されるモノマー(a-1)に由来する構成単位、下記一般式(2)で表されるモノマー(a-2)に由来する構成単位、ヒドロキシアルキル(メタ)アクリレート(a-3)に由来する構成単位、及び、下記一般式(3)で表されるモノマー(a-4)に由来する構成単位を有する(メタ)アクリル系樹脂
成分(B):ポリオール化合物(B)
成分(C):多官能イソシアネート化合物(C)
Figure JPOXMLDOC01-appb-C000007

[一般式(1)中、Rは水素原子又はメチル基であり、R及びRはそれぞれ独立に水素原子又は炭素数1~3の直鎖もしくは分岐のアルキル基である。]
Figure JPOXMLDOC01-appb-C000008

[一般式(2)中、Rは水素原子又はメチル基であり、mは1~5の整数である。]
Figure JPOXMLDOC01-appb-C000009

[一般式(3)中、Rは水素原子又はメチル基であり、Rは2価の有機基であり、nは0又は1以上の整数である。]
 成分(A)((メタ)アクリル系樹脂とも言う。)に含まれる構成単位(a-1)はアミド基を有しており、親水性が大きく、水分を抱え込みやすい。このため、防曇層塗布組成物を硬化することにより得られる防曇層の表面に付着した水分は、硬化内部へと吸収されやすくなると考えられる。また、ポリオール化合物(B)を配合することで、防曇層として必要な架橋密度を保ちつつ、水分が十分に吸収されるような隙間を存在させることができると考えられる。これらの理由で、防曇性が付与されると考えられる。
 また、樹脂(A)に含まれる構成単位(a-2)はポリカプロラクトン構造を有する構成単位であり、その柔軟な化学骨格により防曇層の柔軟性及び弾力性の向上に寄与する。加えて、構成単位(a-2)よりも剛直な構成単位(a-3)を含むことにより、柔軟性と弾力のバランスが確保される。一方で、構成単位(a-4)が有するポリジメチルシロキサン鎖は、防曇層に対して滑り性の向上に寄与する。このため、防曇層に外力が加わった際には、防曇層の柔軟性・弾力性によって外力を吸収しつつ、滑り性によって外力を防曇層外へ逃がすという、上記の2つの効果が相乗的に発現し、結果として防曇層には傷が付きにくくなると考えられる。
 防曇層塗布組成物は、成分(A)を構成する全構成単位100質量%に対し、モノマー(a-1)に由来する構成単位の割合が20質量%以上65質量%以下、モノマー(a-2)に由来する構成単位の割合が10質量%以上40質量%以下、モノマー(a-4)に由来する構成単位の割合が1質量%以上10質量%以下、であり、成分(C)に含まれるイソシアネート基の数(NCO)と、成分(A)に含まれる水酸基の数及び成分(B)に含まれる水酸基の数を足し合わせた総量(OH)との比(NCO)/(OH)が、0.15以上0.55以下であることが好ましい。
 防曇層塗布組成物の組成をこのようにすると、成分(A)中の、水酸基を有する構成単位(a-2)及び構成単位(a-3)のバランス(量比)を取りつつ、当量比(NCO/OH)が1よりも小さい特定の範囲に設定され、摩擦抵抗が向上する程度にまで防曇層の硬さを高めることができると考えられる。加えて、成分(A)中の、水酸基を有する構成単位(a-2)及び構成単位(a-3)の構成バランスを取りつつ、かつ、当量比(NCO/OH)が1よりも小さい特定の範囲に設定され、防曇層の架橋密度が高くなり、防曇層の耐溶剤性が向上すると考えられる。
 本実施形態の防曇層塗布組成物の含有成分について、以下説明する。
〔成分(A):(メタ)アクリル系樹脂〕
 本実施形態の防曇層塗布組成物は、成分(A)である(メタ)アクリル系樹脂、すなわち、一般式(1)で表されるモノマー(a-1)に由来する構成単位、一般式(2)で表されるモノマー(a-2)に由来する構成単位、ヒドロキシアルキル(メタ)アクリレート(a-3)に由来する構成単位、及び、一般式(3)で表されるモノマー(a-4)に由来する構成単位を有する(メタ)アクリル樹脂を含むことが好ましい。
 前述したように、構成単位(a-1)が主として水(湿気)の吸収に関与しているものと考えられる。
 (メタ)アクリル系樹脂は、典型的には、モノマー(a-1)、モノマー(a-2)、モノマー(a-3)及びモノマー(a-4)を重合させることで得ることができる。重合方法の詳細については後に述べる。
 なお、本実施形態においては、(メタ)アクリル系樹脂を構成する構成単位の100%が、(メタ)アクリル系のモノマーに由来する構成単位でなくてもよい。すなわち、(メタ)アクリル系樹脂は、(メタ)アクリル系ではないモノマーに由来する構成単位を一部(全部ではない)含んでいてもよい。
 (メタ)アクリル構造に由来する効果を十二分に得るためには、(メタ)アクリル系樹脂は、全構成単位中の50質量%以上が、(メタ)アクリル系のモノマーに由来する構成単位であることが好ましい。より好ましくは、(メタ)アクリル系樹脂の全構成単位中の80質量%以上が、(メタ)アクリル系のモノマーに由来する構成単位である。更に好ましくは、(メタ)アクリル系樹脂の全て(100%)の構成単位が、(メタ)アクリル系のモノマーに由来する構成単位である。
 モノマー(a-1)は、前述の一般式(1)の構造を持つものであれば特に限定されない。具体的には、(メタ)アクリルアミド、N-メチルアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド等が挙げられる。
 モノマー(a-1)は、少なくとも1種を用いればよく、2種以上を組み合わせて用いてもよい。例えば、上記に挙げたモノマーのうち2種以上を用いて重合反応を行うことで(メタ)アクリル系樹脂を得てもよい。
 モノマー(a-1)は、防曇性能向上の観点から、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドを含むことが特に好ましい。
 本実施形態において、(メタ)アクリル系樹脂中のモノマー(a-1)に由来する構成単位は、当該樹脂の全構成単位に対して、20~65質量%含むことが好ましい。より好ましくは35~60質量%、更に好ましくは40~55質量%である。モノマー(a-1)に由来する構成単位が20質量%以上であれば、実用に適した防曇性能を発揮する防曇層を形成しやすくなり、65質量%以下であれば、相対的に他のモノマーに由来する構成単位の比率が低下することが回避され、組成物全体としてのバランスを保ちやすくなる。
 モノマー(a-2)は、前述の一般式(2)の構造を持つものであれば特に限定されない。
 本実施形態において、(メタ)アクリル系樹脂は、モノマー(a-2)に由来する構成単位を、当該樹脂の全構成単位に対して、好ましくは10~40質量%、より好ましくは20~38質量%、更に好ましくは25~35質量%含む。
 モノマー(a-2)に由来する構成単位が10質量%以上であれば、防曇層の柔軟性が確保されやすくなり、40質量%を以下であれば、防曇層の弾力性を確保しやすくなる。
 (メタ)アクリル系樹脂は、モノマー(a-2)に由来する繰り返し単位を複数種含んでいてもよい。
 モノマー(a-3)はヒドロキシアルキル(メタ)アクリレートである。この具体例としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられる。本実施形態においては、これらの中でもヒドロキシエチル(メタ)アクリレートが好ましい。
 本実施形態において、(メタ)アクリル系樹脂中のモノマー(a-3)に由来する構成単位は、(メタ)アクリル系樹脂の全構成単位に対して、好ましくは1~30質量%、より好ましくは2~20質量%、更に好ましくは3~15質量%含まれる。
 なお、モノマー(a-3)は、モノマー(a-2)と同様に水酸基を有し、後述する多官能イソシアネート化合物と架橋反応を起こし、防曇層を形成する。
 本実施形態においては、モノマー(a-2)だけで架橋反応を生じさせ、防曇層を形成するのではなく、モノマー(a-3)とともに多官能イソシアネート化合物と架橋反応を生じさせることで種々の物性を兼ね備えた防曇層とすることができる。
 前述したように、(メタ)アクリル系樹脂は、モノマー(a-2)及びモノマー(a-3)に由来する構成単位を含むため、全体として水酸基を有する、すなわち水酸基価を有する樹脂である。このため、後述のポリオール化合物とともに、後述の多官能イソシアネート化合物と反応し、架橋構造を形成することができる。
 (メタ)アクリル系樹脂の水酸基価は、40~150mgKOH/gであることが好ましく、70~140mgKOH/gであることがより好ましく、90~130mgKOH/gであることが更に好ましい。
 この数値範囲とすることで、ポリオール化合物(後述)とともに、多官能イソシアネート化合物(後述)と反応し、架橋構造が適切に制御されやすくなる。そのため、防曇層の柔軟性・弾力性を維持しつつ、防曇層を硬くすることが可能となる。よって、防曇層の耐擦傷性、摩擦抵抗の低減、及び耐溶剤性とのより高度な両立を図りやすくなる。
 なお、水酸基価とは、試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数を意味する。
 モノマー(a-4)は、前述の一般式(3)の構造を持つものであれば特に限定されない。
 (メタ)アクリル系樹脂は、モノマー(a-4)に由来する繰り返し単位を複数種含んでいてもよい。例えば、上記に挙げたモノマーのうち2種以上を用いて重合反応を行うことで(メタ)アクリル系樹脂を得てもよい。
 本実施形態において、(メタ)アクリル系樹脂中のモノマー(a-4)に由来する構成単位は、当該樹脂の全構成単位に対して、好ましくは1~10質量%、より好ましくは2~8質量%、更に好ましくは3~7質量%含まれる。
 モノマー(a-4)に由来する構成単位が1質量%以上であれば、耐擦傷性を満足する防曇層を得やすくなる。10質量%以下であれば、均質な(メタ)アクリル系樹脂を合成しやすくなる。
 (メタ)アクリル系樹脂は、構成単位(a-1)、構成単位(a-2)、構成単位(a-3)、及び構成単位(a-4)以外の任意の構成単位(構成単位(a-5))を含んでもよいし、含まなくてもよい。構成単位(a-5)としては、例えば、以下で表されるモノマーに由来する構成単位が挙げられる。(メタ)アクリル系樹脂にこのような構成単位を含めることで、(メタ)アクリル系樹脂のガラス転移温度や、防曇層の物性(防曇層の硬さ、柔らかさ等)の調整・最適化をすることができる。
 構成単位(a-5)としては、一般式CH=CR-COO-R’において、Rが水素原子又はメチル基であり、R’が、アルキル基、単環又は多環のシクロアルキル基、アリール基、又はアラルキル基であるモノマー由来の構成単位であることが挙げられる。
 このモノマーの具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
 これらの中でも、R’が炭素数1~8のアルキル基であるものが好ましく、R’が1~6のアルキル基であるものがより好ましく、R’が1~4のアルキル基であるものが更に好ましい。
 (メタ)アクリル系樹脂は、構成単位(a-5)に該当する繰り返し単位を複数種含んでいてもよい。例えば、上記で具体例として挙げられたモノマーのうち2種以上を用いて重合反応を行うことで(メタ)アクリル系樹脂を得てもよい。
 (メタ)アクリル系樹脂が構成単位(a-5)を含む場合、その含有量は、(メタ)アクリル系樹脂の全構成単位に対して、好ましくは1~40質量%、より好ましくは3~30質量%、更に好ましくは5~20質量%である。
 (メタ)アクリル系樹脂の質量平均分子量(Mw)は、特に限定はされないが、10,000~100,000であることが好ましく、20,000~70,000であることがより好ましく、30,000~60,000であることが更に好ましい。質量平均分子量が10,000以上であれば得たい防曇性能を得られやすく、100,000以下であれば眼鏡レンズ等の被塗物に塗装する際の塗装適性に優れる傾向がある。
 なお、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いることで求めることができる。
 (メタ)アクリル系樹脂のガラス転移温度は、特に限定されないが、好ましくは20~120℃、より好ましくは30~110℃、更に好ましくは35~100℃である。
なお、(メタ)アクリル系樹脂のガラス転移温度は、種々の方法で求めることが可能であるが、例えば以下のフォックス(Fox)の式に基づいて求めることができる。
1/Tg=(W/Tg)+(W/Tg)+(W/Tg)+・・・+(W/Tg
〔式中、Tgは、(メタ)アクリル系樹脂のガラス転移温度(K)、W、W、W・・・Wは、それぞれのモノマーの質量分率、Tg、Tg、Tg・・・Tgは、それぞれ各モノマーの質量分率に対応するモノマーからなる単独重合体のガラス転移温度(K)を示す。〕
 本明細書において、(メタ)アクリル系樹脂のガラス転移温度(防曇層のガラス転移温度ではなく、(メタ)アクリル系樹脂単独のガラス転移温度)は、上記式に基づいて求められたガラス転移温度を意味する。なお、特殊モノマー、多官能モノマー等のようにガラス転移温度が不明のモノマーについては、ガラス転移温度が判明しているモノマーのみを用いてガラス転移温度が求められる。
 (メタ)アクリル系樹脂は、典型的には重合反応により得ることができる。重合反応としては、ラジカル重合、カチオン重合、アニオン重合等の各種方法であればよく、この中でもラジカル重合が好ましい。また、重合は、溶液重合、懸濁重合、及び乳化重合等のいずれであってもよい。これらのうち、重合の精密な制御等の観点から、溶液重合が好ましい。
 ラジカル重合の重合開始剤としては、公知のものを用いることができる。例えば、アゾビスイソブチロニトリル、2,2-アゾビス(2-メチルブチロニトリル)、2,2-アゾビス(2-メチルプロピオニトリル)、及び2,2-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系開始剤、ベンゾイルパーオキサイド、t-ブチルパーオキシオクタノエート、ジイソブチルパーオキサイド、ジ(2-エチルヘキシル)パーオキシピバレート、デカノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、及びt-ブチルパーオキシベンゾエート等の過酸化物系開始剤、過酸化水素と鉄(II)塩、過硫酸塩と亜硫酸水素ナトリウム等、酸化剤と還元剤とを組み合わせたレドックス系開始剤等が挙げられる。これらは、1種単独で用いても2種以上を併用してもよい。
 重合開始剤の配合量は、特に限定されないが、重合するモノマーの混合液全体を100質量部とした場合に0.001~10質量部とすることが好ましい。
 また、重合反応に際しては、適宜、公知の連鎖移動剤、重合禁止剤、分子量調整剤等を用いてもよい。更に、重合反応は、1段階で行ってもよいし、2段階以上で行ってもよい。重合反応の温度は特に限定されないが、典型的には50℃~200℃、好ましくは80℃~150℃の範囲内である。
〔成分(B):ポリオール化合物〕
 本実施形態の防曇層塗布組成物は、ポリオール化合物を含むことが好ましい。ポリオール化合物を含むことにより、(メタ)アクリル系樹脂とともに後述の多官能イソシアネート化合物と反応し、より防曇耐久性に優れた防曇層を形成することが可能となる。ポリオール化合物が1分子中に有する水酸基の個数は2以上で、好ましくは2~6、より好ましくは2~4である。
 ポリオール化合物は、ポリカプロラクトンポリオール、ポリカーボネートポリオール、及びポリエーテルポリオールからなる群より選択される少なくとも1種以上のポリオール化合物を含むことが好ましい。これらの化学構造は、適度に柔軟で、かつ弾力性を有している。このため、硬化膜の柔軟性・弾力性をより高めることができる。
 ポリカプロラクトンポリオールは、一分子中に、カプロラクトンの開環構造及び2以上の水酸基を有する化合物であれば特に制限なく使用可能である
 ポリカーボネートポリオールは、一分子中に、-O-(C=O)-O-で表されるカーボネート基及び2以上の水酸基を有する化合物であれば、特に制限なく使用可能である。ポリカーボネートポリオールは、1種以上のポリオール原料(多価アルコール)と、炭酸エステルやホスゲンとを反応させることにより得ることができる。
 ポリオール原料としては、特に制限されないが、例えば、脂肪族ポリオール、脂環構造を有するポリオール、芳香族ポリオール等が挙げられる。本実施形態においては、硬化膜の柔軟性の観点から、脂環構脂を有しない脂肪族ポリオールが好ましい。
 炭酸エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート等の脂肪族炭酸エステル、ジフェニルカーボネート等の芳香族炭酸エステル、エチレンカーボネート等の環状炭酸エステルが挙げられる。中でも、入手や製造のしやすさから、脂肪族炭酸エステルが好ましく、ジメチルカーボネートが特に好ましい。
 ポリエーテルポリオールは、一分子中に、エーテル結合(-O-)及び2個以上の水酸基を有する化合物であれば特に制限なく使用可能である。
 具体的な化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類、又はエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン等の低分子ポリアミン類等のような活性水素基を2個以上、好ましくは2~3個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のようなアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。
 なお、本実施形態において、ポリオール化合物は、ポリカプロラクトンポリオール、ポリカーボネートポリオール、及びポリエーテルポリオールのうち、複数に該当する化合物であってもよい。例えば、ポリオール化合物は、エーテル結合とエステル結合とを有するポリエーテルポリエステルポリオール等であってもよい。
 また、ポリオール化合物は、ポリカプロラクトンポリオール、ポリカーボネートポリオール、及びポリエーテルポリオールのうち、複数種を含んでいてもよい。
 ポリオール化合物の水酸基価は、好ましくは50~500mgKOH/g、より好ましくは100~350mgKOH/g、更に好ましくは150~250mgKOH/gである。適度な水酸基の量とすることで、下記の多官能イソシアネート化合物との反応による架橋構造が制御され、硬化膜の柔軟性・弾力性等を一層高めやすくなる。
 本実施形態において、ポリオール化合物の質量平均分子量(Mw)としては、好ましくは450~2,500、より好ましくは、500~1,500、更に好ましくは500~700である。適度な分子量とすることで、柔軟性・弾力性向上による硬化膜の外観変化の抑制と、ガソリン耐性等の硬化膜の耐久性とのより高度に両立しやすくなる。
 防曇層塗布組成物中のポリオール化合物の含有量は、(メタ)アクリル系樹脂100質量部に対して、好ましくは5~200質量部、より好ましくは15~180質量部、更に好ましくは20~150質量部、より更に好ましくは20~100質量部、より、更に好ましくは20~50質量部、より更に好ましくは20~40質量部である。この数値範囲とすることで、ポリオール化合物に由来する性能を得やすくなり、他成分とのバランスを取りやすくなる。
 本実施形態において、ポリオール化合物としては、前述したポリカプロラクトンポリオール、ポリカーボネートポリオール、及びポリエーテルポリオールのうち、ポリカプロラクトンポリオールを含むことが好ましく、ポリカプロラクトンポリオールの中でもポリカプロラクトンジオール(カプロラクトン構造を持ち、かつ、2つの水酸基を持つ化合物)を含むことが特に好ましい。
 これは、成分(A)である(メタ)アクリル系樹脂が前述の一般式(2)の構造、すなわちカプロラクトン構造を持つため、ポリオール化合物としては当該樹脂との相溶性が良好となりやすい傾向があるということと、架橋密度を上げ過ぎずに防曇性能を向上させやすい傾向があるためである。
〔成分(C):多官能イソシアネート化合物〕
 本実施形態の防曇層塗布組成物は、成分(C)として、多官能イソシアネート化合物を含むことが好ましい。塗布組成物が、多官能イソシアネート化合物を含むことにより、成分(A)である(メタ)アクリル系樹脂に含まれる構成単位(a-2)及び構成単位(a-3)が有する水酸基、並びに成分(B)であるポリオール化合物の水酸基と多官能イソシアネート化合物が架橋反応を起こし、防曇耐久性に優れる防曇層となる。
 多官能イソシアネート化合物は、1分子中に2個以上のイソシアネート基(脱離性基で保護されたイソシアネート基を含む)を有する化合物である。好ましくは、多官能イソシアネート化合物は、その官能基数は、より好ましくは1分子あたり2~6個、更に好ましくは1分子あたり2~4個である。
 多官能イソシアネート化合物としては、リジンイソシアネート、ヘキサメチレンジイソシアネート及びトリメチルヘキサンジイソシアネート等の脂肪族ジイソシアネート、水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサン-2,4-(又は2,6)-ジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)及び1,3-(イソシアナトメチル)シクロヘキサン等の環状脂肪族ジイソシアネート、並びに、リジントリイソシアネート等の3官能以上のイソシアネートが挙げられる。
 成分(C)である多官能イソシアネート化合物は、上記のものに加え、その多量体である、ビウレット型、イソシアヌレート型、アダクト型等のものを用いてもよい。中でも、適度な剛直性を有するビウレット型の多官能イソシアネート化合物が好ましい。
 本実施形態において、防曇層塗布組成物中における多官能イソシアネート化合物の含有量は、後述する当量比(NCO)/(OH)に従って配合されれば特に制限はないが、通常、(メタ)アクリル系樹脂100質量部に対して5~100質量部、好ましくは7~75質量部、より好ましくは10~60質量部、更に好ましくは10~50質量部、より更に好ましくは15~40質量部、より更に好ましくは20~30質量部である。この数値範囲とすることで、硬化膜内で必要十分な架橋がなされると考えられる。
 (メタ)アクリル系樹脂およびポリオール化合物が有する水酸基に対する、多官能イソシアネート化合物が含有するイソシアネート基(ブロックイソシアネート基を含む)のモル量(すなわち、当量比(NCO)/(OH))は、好ましくは0.15~0.55の範囲である。当量比(NCO)/(OH)が当該範囲内であると、架橋密度が十分に高くなり、その結果、硬化膜としての防曇性や耐溶剤性などの機能が十分なものとなる。
 当該観点から、当該当量比(NCO)/(OH)は、好ましくは0.25~0.50、より好ましくは0.35~0.45である。
〔防曇層塗布組成物の形態〕
 本実施形態の防曇層塗布組成物は、1液型、すなわち、溶剤以外の全成分が、溶剤に実質的に均一に混合(溶解又は分散)された状態であってよい。多官能イソシアネート化合物がブロックイソシアネートである場合には、1液型が好ましい。
 また、別の態様として、本実施形態の防曇層塗布組成物は、2液型であってもよい。2液型にすることで、防曇層塗布組成物の保存性を高めることができる。
 例えば、本実施形態の防曇層塗布組成物は、(1)(メタ)アクリル系樹脂及び/又はポリオール化合物を含み、多官能イソシアネート化合物を含まないA液と、(2)多官能イソシアネート化合物を含み、(メタ)アクリル系樹脂及びポリオール化合物を含まないB液とから構成され、A液とB液は別々の容器で保存され、使用(塗工)直前にA液とB液を混合する形態であってもよい。
 この場合、(メタ)アクリル系樹脂、ポリオール化合物、及び多官能イソシアネート化合物以外の成分(添加剤等)は、A液に含まれていても、B液に含まれていても、あるいはその他の容器で準備されていてもよい。
 特に、多官能イソシアネート化合物が、ブロックイソシアネートではない場合(すなわち、系中でイソシアネート基が-NCOの形で存在している場合)には、防曇層塗布組成物は2液型であることが好ましい。
〔溶剤〕
 本実施形態の防曇層塗布組成物は、溶剤を含んでもよい。溶剤を用いることにより、塗布組成物の粘度及び固形分量の調整が容易となる。
 溶剤としては、トルエン、及びキシレン等の芳香族炭化水素系溶剤、メタノール、エタノール、イソプロピルアルコール、n-ブタノール、t-ブタノール、イソブタノール、ジアセトンアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸イソブチル等のエステル系溶剤、プロピレングリコールモノメチルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル系溶剤等が挙げられる。
 これらの中でも、イソシアネートとの反応性が低く、溶解性及び乾燥性等の観点から、t-ブタノール、ジアセトンアルコール、メチルエチルケトン、酢酸エチル、及びプロピレングリコールモノメチルエーテルアセテートが好ましい。
 防曇層塗布組成物の溶剤の含有量は、防曇層の膜厚を制御する観点から、好ましくは20~90質量%であり、より好ましくは30~85質量%、更に好ましくは35~80質量%である。
 塗布組成物の固形分中における、成分(A)、(B)及び(C)の合計含有量は、防曇性及び耐擦傷性を向上させる観点から、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上であり、好ましくは100質量%以下であり、例えば100質量%である。
 防曇層塗布組成物の固形分は、より防曇性に優れる眼鏡レンズを得る観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、外観に優れる眼鏡レンズを得る観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
<その他の添加剤>
 防曇層塗布組成物は、必要に応じて、硬化触媒、紫外線吸収剤、光安定剤、界面活性剤、レベリング剤、消泡剤等の添加剤を含んでもよい。
 添加剤の含有量は、例えば、防曇層塗布組成物の全質量に対して、好ましくは0.001~5質量%、より好ましくは0.01~4質量%、更に好ましくは0.1~3質量%である。
 防曇層塗布組成物の粘度は、15℃において、防曇性の観点から、好ましくは15mPa・s以上、より好ましくは20mPa・s以上、更に好ましくは23mPa・s以上であり、液だまり抑制を抑制し、外観に優れる眼鏡レンズを得る観点から、好ましくは80mPa・s以下、より好ましくは65mPa・s以下、更に好ましくは50mPa・s以下である。
 なお、本実施形態における「粘度」とは、振動式粘度計「VM-10A」(株式会社セコニック製)を用いて、JIS Z 8803:2011に準拠して測定した値であり、具体的には実施例に記載の方法により測定した値である。
 防曇層塗布組成物の固形分濃度は、防曇性の観点から、好ましくは10質量%以上、より好ましくは13質量%以上、更に好ましくは15質量%以上であり、液だまり抑制を抑制し、外観に優れる眼鏡レンズを得る観点から、好ましくは30質量%以下、より好ましくは27質量%以下、更に好ましくは25質量%以下である。
 防曇層塗布組成物は、必要に応じて用いられる上記各成分を、溶媒に溶解又は分散させることにより調製することができる。
 各成分は、同時に、または、任意の順序で順次、溶媒に溶解又は分散させることすることができる。具体的な溶解又は分散させる方法には、特に制限はなく、公知の方法を何ら制限なく採用することができる。
<基材>
 基材としては、様々な種類の原料からなる樹脂を用いることができる。
 基材を形成する樹脂としては、例えば、ポリカーボネート樹脂、ウレタンウレア樹脂、(チオ)ウレタン樹脂、ポリスルフィド樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。(チオ)ウレタン樹脂とは、チオウレタン樹脂、及びウレタン樹脂から選ばれる少なくとも1種を意味する。これらの中でも(チオ)ウレタン樹脂、ポリスルフィド樹脂が好ましい。
 また、本実施形態の眼鏡レンズに用いる基材は、屈折率1.50以上であることが好ましく、屈折率1.60以上のプラスチック製基材であることがより好ましい。
 好ましいプラスチック製基材の市販品としては、アリルカーボネート系プラスチックレンズ「HILUX1.50」(HOYA株式会社製、屈折率1.50)、チオウレタン系プラスチックレンズ「MERIA」(HOYA株式会社製、屈折率1.60)、チオウレタン系プラスチックレンズ「EYAS」(HOYA株式会社製、屈折率1.60)、チオウレタン系プラスチックレンズ「EYNOA」(HOYA株式会社製、屈折率1.67)、ポリスルフィド系プラスチックレンズ「EYRY」(HOYA株式会社製、屈折率1.70)、ポリスルフィド系プラスチックレンズ「EYVIA」(HOYA株式会社製、屈折率1.74)等が挙げられる。
 基材の厚さ及び直径は、特に限定されるものではないが、厚さは通常1~30mm程度、直径は通常50~100mm程度である。
 基材としては、フィニッシュレンズ、セミフィニッシュレンズのいずれであってもよい。
 基材の表面形状は特に限定されず、平面、凸面、凹面等のいずれであってもよい。
 本開示の眼鏡レンズは、単焦点レンズ、多焦点レンズ、累進屈折力レンズ等のいずれであってもよい。累進屈折力レンズについては、通常、近用部領域(近用部)及び累進部領域(中間領域)が、前述の下方領域に含まれ、遠用部領域(遠用部)が上方領域に含まれる。
<他の層>
 眼鏡レンズには、吸水性防曇層以外の機能層が設けられていてもよい。
 上記機能層としては、ハードコート層、反射防止層、プライマー層等が挙げられる。
 上記機能層は、レンズ基材の第1主面上に設けられていてもよいし、レンズ基材の第2主面上に設けられていてもよいし、レンズ基材の第1主面及び第2主面の両方の上に設けられていてもよい。また、レンズ基材上に上記機能層を設けた後、上記機能層上に吸水性防曇層を設けてもよく、レンズ基材上に吸水性防曇層を設けた後に、上記機能層を設けてもよい。
[眼鏡レンズ]
 眼鏡レンズは、上述の製造方法により得られる眼鏡レンズである。すなわち、基材上に塗布膜を形成する塗布工程を有し、上記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、上記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する、眼鏡レンズの製造方法により得られる眼鏡レンズである。
 眼鏡レンズは、基材の少なくとも一方の面側に、2層以上積層された吸水性防曇層を有する。すなわち、眼鏡レンズは、上記第1塗布工程により形成された塗布膜(x)を硬化して得られる硬化物と、上記第2塗布工程により形成された塗布膜(y)を硬化して得られる硬化物とを有し、塗布膜(x)を硬化して得られる硬化物と塗布膜(y)を硬化して得られる硬化物は直接接する。また、眼鏡レンズは、更に上記第3塗布工程により形成された塗布膜(z)を硬化して得られる硬化物を有してもよく、塗布膜(y)を硬化して得られる硬化物と塗布膜(z)を硬化して得られる硬化物は直接接することが好ましい。
 眼鏡レンズは、基材の両面に、2層以上積層された吸水性防曇層を有してもよい。
 本開示は、上記各成分の例、含有量、各種物性については、発明の詳細な説明に例示又は好ましい範囲として記載された事項を任意に組み合わせてもよい。
 また、実施例に記載した組成に対し、発明の詳細な説明に記載した組成に調整を行えば、クレームした組成範囲全域にわたって実施例と同様に本開示を実施することができる。
 次に、本開示を実施例により更に詳細に説明するが、本開示は、これらの例によってなんら限定されるものではない。
 以下、本開示を実施例により具体的に説明する。
<測定評価>
 以下の実施例1及び2、並びに比較例1で得られた塗布組成物と眼鏡レンズについて、以下の項目の測定評価を行った。
(水酸基価)
 JIS K 0070:1992「化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん化物の試験方法」の、「7.1 中和滴定法」に規定された方法に準じて測定及び算出した。
 なお、水酸基価の算出に用いる酸価の値は、上記JIS規格の「3.1 中和滴定法」に規定された方法に準じて測定及び算出した。
(数平均分子量(Mn)、質量平均分子量(Mw)、多分散度(Mw/Mn))
 ゲルパーミエーションクロマトグラフィー(GPC)により測定、算出した。用いた装置、条件等は以下の通りである。
・使用機器:HLC8220GPC(株式会社東ソー製)
使用カラム:TSKgel SuperHZM-M、TSKgel GMHXL-H、TSKgel G2500HXL、TSKgel G5000HXL(株式会社東ソー製)
・カラム温度:40℃
標準物質:TSKgel 標準ポリスチレンA1000、A2500、A5000、F1、F2、F4、F10(株式会社東ソー製)
・検出器:RI(示差屈折)検出器
・溶離液:テトラヒドロフラン
・流速:1ml/min
(粘度測定)
 振動式粘度計「VM-10A」(株式会社セコニック製)を用い、測定温度15℃にて測定した。なお、測定方法は、JIS Z 8803:2011に準拠した。
(防曇層の膜厚測定)
 得られた眼鏡レンズの防曇層の膜厚は株式会社システムロード製 非接触膜厚測定システムFF8を用いて測定した。
(防曇性評価)
 室温25℃、湿度40%の条件下で、得られた眼鏡レンズの防曇層表面に、10秒間呼気を吹きかけた。呼気を吹きかけ始めから、吹きかけ終わるまでの防曇層の状態について目視観察を行い、以下の評価基準に従って評価を行なった。
A: 曇りが全く認められない(防曇性に優れる)
B: 曇りが1秒以内で消える
C: 曇りが認められ、曇りが解消されるのに10秒以上かかる(防曇性に劣る)
(外観評価)
 眼鏡レンズを蛍光灯下で目視観察し、以下の評価基準に従って評価を行った。
A:防曇層組成物が起因の液だまりが確認できない。
C:防曇層組成物が起因の液だまりが確認できる。
((メタ)アクリル系樹脂の合成)
 撹拌器、温度計、コンデンサーおよび窒素ガス同入管を備えた500ml形のフラスコにプロピレングリコールモノメチルアセテート(PGMAC)150質量部を仕込み、110℃まで昇温した。
 これとは別に、ジメチルアクリルアミド(DMAA)25質量部、ポリカプロラクトン変性ヒドロキシエチルアクリレート(株式会社ダイセル製、プラクセルFA2D)35質量部、2-ヒドロキシルエチルメタクリレート(HEMA)10質量部、片末端メタクリレート変性ポリジメチルシロキサン(JNC株式会社製、サイラプレーンFM-0721、分子量5000)5質量部、メタクリル酸メチル25質量部、及び、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬工業株式会社製、V-40)1質量部を混合した。この混合モノマーを撹拌しながら2時間かけて、上記の500ml形のフラスコに滴下し、5時間反応させた。
 加熱を止めて室温まで冷却し、(メタ)アクリル系樹脂を含む樹脂溶液(固形分比率:約40質量%)を得た。
 得られた(メタ)アクリル系樹脂の水酸基価は57mgKOH/gであり、数平均分子量(Mn)は12,000であり、質量平均分子量(Mw)は44,000であり、多分散度(Mw/Mn)は3.67であった。また、前述のフォックス(Fox)の式に基づいて、使用したモノマーの配合比から計算した(メタ)アクリル系樹脂のガラス転移温度(Tg)は32.8℃であった。
(塗布組成物1の調製)
 上記で得た(メタ)アクリル系樹脂、ポリカプロラクトンジオール(株式会社ダイセル製、プラクセル205U、分子量530、水酸基価207~217mgKOH/g)、多官能イソシアネート化合物(旭化成株式会社製、24A-100、ヘキサメチレンジイソシアネートのビウレットタイプ、イソシアネート基含有率23.5質量%、固形分100質量%)、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、メチルエチルケトン、t-ブタノール、及び酢酸エチルを混合し、混合物を得た。なお、得られた混合物中のそれぞれの含有量は下記のとおりである。
 (メタ)アクリル系樹脂:14.7質量%
 ポリカプロラクトンジオール:4.4質量%
 多官能イソシアネート化合物:3.4質量%
 プロピレングリコールモノメチルエーテルアセテート:28.5質量%
 ジアセトンアルコール:18.5質量%
 メチルエチルケトン:13.5質量%
 t-ブタノール:8.5質量%
 酢酸エチル:8.5質量%
 そして、粘度が75.9mPa・s、固形分が24.5質量%となるように、酢酸エチル、メチルエチルケトン、及びジアセトンアルコールを混合物に添加、混合して調整し、塗布組成物1を得た。
 なお、(メタ)アクリル系樹脂の量は、樹脂溶液(固形分量:質量%)としての量ではなく、樹脂溶液中に含まれる樹脂(固形分)の量を表し、多官能イソシアネート化合物の量も固形分としての量を表している。
 また、上記(メタ)アクリル系樹脂とポリオール化合物とを、上記の量で均一に混合したときの混合物の水酸基価の測定値は93mgKOH/gであった。
(塗布組成物2の調製)
 塗布組成物1の調製において、酢酸エチル、メチルエチルケトン、及びジアセトンアルコールを用いて粘度が180.0mPa・s、固形分が32.5質量%となるように調製したこと以外は同様の操作により、塗布組成物2を得た。
(塗布組成物3の調製)
 塗布組成物1の調製において、酢酸エチル、メチルエチルケトン、及びジアセトンアルコールを用いて粘度が37.3mPa・s、固形分が20.5質量%となるように調製したこと以外は同様の操作により、塗布組成物3を得た。
[実施例1]
 チオウレタン系プラスチックレンズMERIA(HOYA株式会社製、屈折率1.60、度数S-0.00D、厚さ1.8mm、外径75mm)を基材として用い、得られた塗布組成物1をこの基材上にディッピング法(引き上げ速度:5mm/秒)を用いて塗布して塗布膜(x)を形成後、温度100℃で20分加熱した。放冷した後、塗布膜が形成された基材上に、ディッピング法(引き上げ速度:5mm/秒)を用いて塗布組成物1を塗布して塗布膜(y)を形成し、温度100℃で20分加熱した。放冷した後、120℃で120分加熱し、上記基材上に防曇層を有する眼鏡レンズを製造した。得られた眼鏡レンズの評価結果を表1に示す。
[実施例2]
 チオウレタン系プラスチックレンズMERIA(HOYA株式会社製、屈折率1.60、度数S-0.00D、厚さ1.8mm、外径75mm)を基材として用い、得られた塗布組成物1をこの基材上にディッピング法(引き上げ速度:5mm/秒)を用いて塗布して塗布膜(x)を形成後、温度100℃で20分加熱した。放冷した後、塗布膜(x)が形成された基材上に、ディッピング法(引き上げ速度:5mm/秒)を用いて塗布組成物1を塗布して塗布膜(y)を形成し、温度100℃で20分加熱した。放冷した後、塗布膜(y)が形成された基材上に、ディッピング法(引き上げ速度:5mm/秒)を用いて塗布組成物を塗布して塗布膜(z)を形成し、温度100℃で20分加熱した。放冷した後、120℃で120分加熱し、上記基材上に防曇層を有する眼鏡レンズを製造した。得られた眼鏡レンズの評価結果を表1に示す。
[実施例3]
 実施例1において、塗布組成物1の代わりに塗布組成物3を用いたこと以外は同様にして、基材上に防曇層を有する眼鏡レンズを製造した。得られた眼鏡レンズの評価結果を表1に示す。
[比較例1]
 チオウレタン系プラスチックレンズMERIA(HOYA株式会社製、屈折率1.60、度数S-0.00D、厚さ1.8mm、外径75mm)を基材として用い、得られた塗布組成物2をこの基材上にディッピング法(引き上げ速度:5mm/秒)を用いて塗布して塗布膜(x)を形成後、温度100℃で20分加熱した。放冷した後、120℃で120分加熱し、上記基材上に防曇層を有する眼鏡レンズを製造した。得られた眼鏡レンズの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 以上、実施例の方法により、防曇性に優れ、また、液だまりのない、外観に優れる眼鏡レンズが得られることが分かる。一方、比較例1のように、塗布組成物の粘度が高いと吸水性防曇層を厚膜化することは可能であるが、液だまりが発生し、外観が低下する。
 最後に、本開示の実施の形態を総括する。
 本開示の実施の形態である眼鏡レンズの製造方法は、吸水性防曇層を有する眼鏡レンズの製造方法であって、基材上に防曇層組成物を塗布して塗布膜を形成する塗布工程を有し、前記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する。
 上述した実施の態様によれば、防曇層の膜厚が厚膜化され、液だまりの発生が抑制された眼鏡レンズの製造方法を提供することができる。すなわち、防曇性及び外観に優れる眼鏡レンズの製造方法を提供することができる。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 本開示は、上記各成分の例、含有量、各種物性については、発明の詳細な説明に例示又は好ましい範囲として記載された事項を任意に組み合わせてもよい。
 また、実施例に記載した組成に対し、発明の詳細な説明に記載した組成となるように調整を行えば、クレームした組成範囲全域にわたって実施例と同様に開示の実施の形態を実施することができる。

Claims (12)

  1.  吸水性防曇層を有する眼鏡レンズの製造方法であって、
     基材上に塗布膜を形成する塗布工程を有し、
     前記塗布工程は、基材上に防曇層塗布組成物を塗布して塗布膜(x)を形成する第1塗布工程と、
     前記塗布膜(x)上に防曇層塗布組成物を塗布して塗布膜(y)を形成する第2塗布工程と、を有する、眼鏡レンズの製造方法。
  2.  前記吸水性防曇層の膜厚が8μm以上である、請求項1に記載の眼鏡レンズの製造方法。
  3.  前記吸水性防曇層の膜厚が10μm以上50μm以下である、請求項1又は2に記載の眼鏡レンズの製造方法。
  4.  前記吸水性防曇層の膜厚が20μm以上40μm以下である、請求項1~3のいずれか1項に記載の眼鏡レンズの製造方法。
  5.  前記塗布工程の後に、前記塗布膜を加熱する加熱工程を有する、請求項1~4のいずれか1項に記載の眼鏡レンズの製造方法。
  6.  前記第1塗布工程後に、70℃以上150℃以下で加温する第1加温工程を有する、請求項1~5のいずれか1項に記載の眼鏡レンズの製造方法。
  7.  前記第2塗布工程後に、70℃以上150℃以下で加温する第2加温工程を有する、請求項1~6のいずれか1項に記載の眼鏡レンズの製造方法。
  8.  前記塗布膜(y)上に防曇層塗布組成物を塗布して塗布膜(z)を形成する第3塗布工程を有する、請求項1~7のいずれか1項に記載の眼鏡レンズの製造方法。
  9.  前記第3塗布工程後に、70℃以上150℃以下で加温する第3加温工程を有する、請求項8に記載の眼鏡レンズの製造方法。
  10.  ディッピング法により、前記塗布膜を形成する、請求項1~9のいずれか1項に記載の眼鏡レンズの製造方法。
  11.  前記防曇層塗布組成物が、下記の成分(A)~(C)を含む、請求項1~10のいずれか1項に記載の眼鏡レンズの製造方法。
    成分(A):下記一般式(1)で表されるモノマー(a-1)に由来する構成単位、下記一般式(2)で表されるモノマー(a-2)に由来する構成単位、ヒドロキシアルキル(メタ)アクリレート(a-3)に由来する構成単位、及び、下記一般式(3)で表されるモノマー(a-4)に由来する構成単位を有する(メタ)アクリル系樹脂
    成分(B):ポリオール化合物(B)
    成分(C):多官能イソシアネート化合物(C)
    Figure JPOXMLDOC01-appb-C000001

    [一般式(1)中、Rは、水素原子又はメチル基であり、R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基であり、R及びRは同一でも、異なっていてもよい。]
     
    Figure JPOXMLDOC01-appb-C000002

    [一般式(2)中、Rは水素原子又はメチル基であり、mは1~5の整数である。]
    Figure JPOXMLDOC01-appb-C000003

    [一般式(3)中、Rは水素原子又はメチル基であり、Rは2価の有機基であり、nは0又は1以上の整数である。]
  12.  基材の少なくとも一方の面側に、2層構成以上の積層である吸水性防曇層を有する、眼鏡レンズ。
     
PCT/JP2022/016493 2021-03-31 2022-03-31 眼鏡レンズの製造方法及び眼鏡レンズ WO2022211019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280024541.0A CN117083559A (zh) 2021-03-31 2022-03-31 眼镜镜片的制造方法和眼镜镜片
KR1020237033023A KR20230153421A (ko) 2021-03-31 2022-03-31 안경 렌즈의 제조 방법 및 안경 렌즈
JP2023511701A JPWO2022211019A1 (ja) 2021-03-31 2022-03-31
EP22781229.4A EP4318093A1 (en) 2021-03-31 2022-03-31 Method for manufacturing spectacle lens and spectacle lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061574 2021-03-31
JP2021061574 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211019A1 true WO2022211019A1 (ja) 2022-10-06

Family

ID=83456615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016493 WO2022211019A1 (ja) 2021-03-31 2022-03-31 眼鏡レンズの製造方法及び眼鏡レンズ

Country Status (5)

Country Link
EP (1) EP4318093A1 (ja)
JP (1) JPWO2022211019A1 (ja)
KR (1) KR20230153421A (ja)
CN (1) CN117083559A (ja)
WO (1) WO2022211019A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356201A (ja) * 2000-06-16 2001-12-26 Canon Inc 防曇性被覆およびこれを用いた光学部品ならびに防曇性被覆形成方法
JP2005234066A (ja) * 2004-02-17 2005-09-02 Asahi Lite Optical Co Ltd 防曇性眼鏡レンズおよびその製造方法
WO2013005710A1 (ja) 2011-07-06 2013-01-10 東海光学株式会社 防曇性光学物品及びその製造方法
JP2019094468A (ja) * 2017-11-28 2019-06-20 ナトコ株式会社 塗料組成物、硬化膜、硬化膜を備えた物品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005710A (ko) 2011-07-07 2013-01-16 김정탁 실리콘튜브용 노즐

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356201A (ja) * 2000-06-16 2001-12-26 Canon Inc 防曇性被覆およびこれを用いた光学部品ならびに防曇性被覆形成方法
JP2005234066A (ja) * 2004-02-17 2005-09-02 Asahi Lite Optical Co Ltd 防曇性眼鏡レンズおよびその製造方法
WO2013005710A1 (ja) 2011-07-06 2013-01-10 東海光学株式会社 防曇性光学物品及びその製造方法
JP2019094468A (ja) * 2017-11-28 2019-06-20 ナトコ株式会社 塗料組成物、硬化膜、硬化膜を備えた物品

Also Published As

Publication number Publication date
JPWO2022211019A1 (ja) 2022-10-06
CN117083559A (zh) 2023-11-17
EP4318093A1 (en) 2024-02-07
KR20230153421A (ko) 2023-11-06

Similar Documents

Publication Publication Date Title
JP6340539B1 (ja) 塗料組成物、硬化膜、硬化膜を備えた物品
US7662433B2 (en) Abrasion and/or scratch resistant article comprising an impact resistant photochromic polyurethane coating, and process of preparation thereof
JP7295430B2 (ja) 防曇性物品、及びその製造方法
TWI702240B (zh) 胺基甲酸酯(甲基)丙烯酸酯樹脂及積層薄膜
WO2022211019A1 (ja) 眼鏡レンズの製造方法及び眼鏡レンズ
WO2022211033A1 (ja) 眼鏡レンズの製造方法
WO2022211021A1 (ja) 眼鏡レンズ防曇膜用組成物及び眼鏡レンズ
WO2022211043A1 (ja) 眼鏡レンズ及びその製造方法
WO2022211044A1 (ja) 眼鏡レンズ
WO2022211022A1 (ja) 着色眼鏡レンズ
WO2022211018A1 (ja) 眼鏡レンズ
JP6705276B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
WO2022211032A1 (ja) 眼鏡レンズ
WO2023058561A1 (ja) 防曇性プラスチック眼鏡レンズ
CN114846047A (zh) 湿气固化型聚氨酯组合物及层叠体
JP2015074199A (ja) フォトクロミック積層体
WO2023181826A1 (ja) 眼鏡レンズ及びその製造方法
US20200010716A1 (en) Solution set for forming surface protective resin member and surface protective resin member
JP2000009904A (ja) プラスチックレンズの製造方法
JP2013177503A (ja) 被覆用組成物、透明被覆成形品及びその製造方法
JP7447476B2 (ja) 表面保護樹脂部材形成用キット、及び表面保護樹脂部材
CN109312047A (zh) 氨基甲酸酯(甲基)丙烯酸酯树脂和层叠薄膜
JPH09329701A (ja) プラスチックレンズ用プライマー組成物
JP2022110997A (ja) フォトクロミック硬化性組成物
KR101008006B1 (ko) 고굴절 프라이머 조성물, 이의 제조방법, 및 이로부터제조되는 프라이머층을 포함하는 광학제품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511701

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237033023

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280024541.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284183

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022781229

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781229

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE