WO2022210974A1 - エラストマー組成物及びその製造方法、架橋物、並びに成形体 - Google Patents

エラストマー組成物及びその製造方法、架橋物、並びに成形体 Download PDF

Info

Publication number
WO2022210974A1
WO2022210974A1 PCT/JP2022/016296 JP2022016296W WO2022210974A1 WO 2022210974 A1 WO2022210974 A1 WO 2022210974A1 JP 2022016296 W JP2022016296 W JP 2022016296W WO 2022210974 A1 WO2022210974 A1 WO 2022210974A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
solvent
organic solvent
elastomer composition
cnts
Prior art date
Application number
PCT/JP2022/016296
Other languages
English (en)
French (fr)
Inventor
慶久 武山
真寛 上野
良一 岸
研 小久保
健郎 山田
Original Assignee
日本ゼオン株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本ゼオン株式会社
Priority to JP2023511529A priority Critical patent/JPWO2022210974A1/ja
Priority to US18/549,167 priority patent/US20240158605A1/en
Priority to CN202280018979.8A priority patent/CN116964144A/zh
Publication of WO2022210974A1 publication Critical patent/WO2022210974A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to an elastomer composition, a method for producing an elastomer composition, a crosslinked product obtained by crosslinking an elastomer composition, and a molded product obtained by molding.
  • an elastomer composition made by mixing an elastomer with a carbon material has been used as a material with excellent properties such as electrical conductivity, thermal conductivity, and strength.
  • carbon nanotubes hereinafter sometimes abbreviated as “CNT”) have attracted attention as a carbon material that is highly effective in improving the above properties.
  • CNTs have excellent individual properties, they are easily bundled (bundles) by van der Waals force when used as a bulk material due to their small outer diameter. Therefore, when producing a molded article using an elastomer composition containing an elastomer and CNTs, it is required to defibrate the CNT bundle structure and to disperse the CNTs satisfactorily in the elastomer matrix. .
  • Patent Document 1 a composition containing a polymer, CNTs, and an organic solvent such as methyl ethyl ketone is kneaded in a subcritical or supercritical carbon dioxide atmosphere.
  • CNTs can be well dispersed in the polymer matrix by kneading the composition in a subcritical or supercritical carbon dioxide atmosphere.
  • an object of the present invention is to provide a new technique for efficiently producing an elastomer composition and a molded article in which carbon nanotubes are well dispersed in the elastomer.
  • the inventors have conducted extensive studies to achieve the above objectives. Then, the present inventors blended a predetermined amount of a solvent containing at least two kinds of organic solvents, each of which satisfies predetermined attributes, as a solvent used in preparing an elastomer composition containing CNTs, and used an elastomer composition as the solvent. CNTs can be easily and satisfactorily dispersed in the elastomer composition by selecting those having a degree of volume swelling of 150% or more when the CNTs are swollen. The present inventors have newly found that the easiness of manufacturing when manufacturing a molded article can be improved by using the above method, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above problems, and an elastomer composition of the present invention is an elastomer composition containing carbon nanotubes, an elastomer, and a solvent, wherein The solvent contains an organic solvent A having a boiling point of 200° C. or lower and having a high affinity with the carbon nanotube and an organic solvent B having a boiling point of 200° C. or lower having a high affinity with the elastomer, per 100 parts by mass of the elastomer.
  • the content of the solvent is 1 part by mass or more and less than 60 parts by mass, the volume swelling degree of the elastomer in the solvent is 150% or more, and the relative energy difference between the Hansen solubility parameter of the carbon nanotube and the solvent (RED CNT ) is 1.5 or less.
  • the solvent contains at least two kinds of organic solvents each satisfying predetermined attributes, and has a volume swelling degree of 150% or more when the elastomer is swollen, and a RED CNT value of 1.5 or less.
  • boiling point means the boiling point at 1 atm.
  • volume swelling degree when the elastomer is swollen with a solvent can be measured by the method described in Examples. A method of calculating the value of the relative energy difference (RED CNT ) of the Hansen solubility parameter between the carbon nanotube and the solvent will be described later.
  • the relative energy difference (RED E ) of the Hansen solubility parameter between the elastomer and the solvent is preferably 2.0 or less.
  • Value of RED E By using an elastomer composition blended with a solvent that satisfies the above-mentioned predetermined conditions, an elastomer composition in which CNTs are better dispersed in the elastomer can be obtained. A method for calculating the value of the relative energy difference (RED E ) of the Hansen solubility parameters of the elastomer and the solvent will be described later.
  • the elastomer composition of the present invention preferably contains 0.1 parts by mass or more and 10 parts by mass or less of the carbon nanotubes per 100 parts by mass of the elastomer.
  • an elastomer composition in which the proportion of CNTs in the elastomer is within the above range it is possible to obtain an elastomer composition in which CNTs are better dispersed in the elastomer, and a molding formed using such an elastomer composition.
  • the body can be made to fully exhibit the desired properties (electrical conductivity, thermal conductivity, strength, etc.).
  • the carbon nanotubes preferably contain single-walled carbon nanotubes.
  • an elastomer composition containing single-walled CNTs as CNTs it is possible to obtain a molded article that is even more excellent in properties such as electrical conductivity, thermal conductivity and strength.
  • the elastomer composition of the present invention can further contain a cross-linking agent.
  • a cross-linking agent By using an elastomer composition containing a cross-linking agent, it is possible to obtain a molded product as a cross-linked product having excellent strength.
  • a method for producing an elastomer composition according to the present invention is a method for producing any one of the elastomer compositions described above, comprising: A step of mixing and dispersing a material containing carbon nanotubes, the elastomer, the organic solvent A, and the organic solvent B is included. Through the above steps, it is possible to efficiently obtain an elastomer composition in which the CNT bundle structure is satisfactorily fibrillated. A compact can be produced efficiently.
  • the step of mixing and dispersing includes mixing the carbon nanotubes with the organic solvent A and the organic solvent B to obtain a mixture, and and C. mixing and dispersing the mixture and the elastomer.
  • the present invention also aims to solve the above problems advantageously, and the cross-linked product of the present invention is obtained by cross-linking any of the elastomer compositions described above.
  • the crosslinked product obtained from any one of the elastomer compositions described above is excellent in ease of production and has excellent properties such as electrical conductivity, thermal conductivity, and strength because CNTs are well dispersed in the elastomer.
  • the present invention also aims to solve the above problems advantageously, and the molded article of the present invention includes the crosslinked product described above.
  • a molded article containing the above-described crosslinked product is excellent in ease of production, and is excellent in properties such as electrical conductivity, thermal conductivity, and strength because the CNTs are well dispersed in the elastomer.
  • an elastomer composition in which carbon nanotubes are easily and satisfactorily dispersed in an elastomer and capable of forming a molded article excellent in ease of production, and a method for producing the same.
  • the elastomer composition of the present invention can be used for producing the crosslinked product and molded article of the present invention. Then, the elastomer composition of the present invention can be prepared, for example, using the method for producing an elastomer composition of the present invention.
  • the elastomer composition of the present invention comprises an elastomer, CNTs, a solvent, and optionally a cross-linking agent and additives.
  • the solvent blended in the elastomer composition of the present invention includes an organic solvent A having a boiling point of 200° C. or lower, which has a high affinity with CNT, and an organic solvent A having a boiling point of 200° C. or lower, which has a high affinity with the elastomer. and an organic solvent B.
  • a solvent has a degree of volume swelling of 150% or more when swelling an elastomer, and a relative energy difference (RED CNT ) of Hansen Solubility Parameter relative to carbon nanotubes of 1.5 or less.
  • the blending ratio of the solvent in the elastomer composition of the present invention is 1 part by mass or more and less than 60 parts by mass per 100 parts by mass of the elastomer.
  • the organic solvent A which has a high affinity for CNTs, promotes defibration of the CNT bundle structure by impregnating the inside of the CNT bundle structure.
  • a similar effect can be obtained from Hansen's reaction between CNT and a solvent (including organic solvents A and B; hereinafter, in the description of this specification, the solvent containing organic solvents A and B may be referred to as a "mixed solvent”). It is also facilitated by a solubility parameter relative energy difference (RED CNT ) of 1.5 or less. This is because the lower the value of the relative energy difference (RED CNT ) of the Hansen Solubility Parameter between the CNT and the mixed solvent, the higher the affinity between the CNT and the mixed solvent.
  • RED CNT solubility parameter relative energy difference
  • the elastomer composition contains an organic solvent B having a high affinity with the elastomer, and the mixed solvent containing the organic solvent A and the organic solvent B swells the elastomer at a volume swelling ratio of 150% or more. It is speculated that the defibrated bundle structure is likely to be well dispersed in the elastomer composition. In addition, since the boiling points of the organic solvents A and B are 200° C. or less, there is no need to excessively raise the drying temperature when removing the organic solvent during the production of the molded product, which improves the ease of manufacturing the molded product. It is presumed that
  • the elastomer is not particularly limited, and any rubber, resin, or mixture thereof can be used, for example.
  • the elastomer and the mixture are adjusted so that the volume swelling degree and the relative energy difference (RED CNT ) of the elastomer are within a predetermined range. Since the basic principle is to select a solvent, the type of elastomer is not particularly limited as long as it satisfies these conditions.
  • the rubber is not particularly limited, and examples include natural rubber; vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), tetrafluoroethylene-purple vinyl ether rubber.
  • Fluorine rubber such as (FFKM); butadiene rubber (BR), isoprene rubber (IR), styrene-butadiene rubber (SBR), hydrogenated styrene-butadiene rubber (H-SBR), nitrile rubber (NBR), hydrogenated nitrile rubber diene rubber such as (H-NBR); acrylic rubber (ACM, AEM); silicone rubber;
  • fluororubbers such as vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), tetrafluoroethylene-purple orovinyl ether rubber (FFKM); nitrile rubber (NBR) more preferred are hydrogenated nitrile rubber (H-NBR), FKM, FEPM, and H-NBR.
  • CNTs are not particularly limited, and single-walled carbon nanotubes and/or multi-walled carbon nanotubes can be used.
  • CNTs are preferably single-walled to five-walled carbon nanotubes. is more preferable. This is because if single-walled CNTs are used, the properties of the molded article (eg, electrical conductivity, thermal conductivity, strength, etc.) are improved even if the blending amount is small.
  • the average diameter of CNTs is preferably 1 nm or more, preferably 60 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less.
  • the average diameter of CNTs is obtained by measuring the diameter (outer diameter) of, for example, 20 CNTs on a transmission electron microscope (TEM) image and calculating the number average value. can ask.
  • TEM transmission electron microscope
  • the CNT has a ratio (3 ⁇ /Av) of more than 0.20 and less than 0.60 to the average diameter (Av) of the value (3 ⁇ ) obtained by multiplying the standard deviation of the diameter ( ⁇ : sample standard deviation) by 3.
  • CNTs are preferably used, more preferably CNTs with a 3 ⁇ /Av value of greater than 0.25, and even more preferably CNTs with a 3 ⁇ /Av value of greater than 0.50.
  • Using CNTs with a 3 ⁇ /Av of more than 0.20 and less than 0.60 can further improve the properties of the molded body (eg electrical conductivity, thermal conductivity, strength, etc.).
  • the average diameter (Av) and standard deviation ( ⁇ ) of CNTs may be adjusted by changing the CNT manufacturing method or manufacturing conditions, or by combining multiple types of CNTs obtained by different manufacturing methods. You may
  • the diameter measured as described above is plotted on the horizontal axis and the frequency is plotted on the vertical axis, and when Gaussian approximation is performed, a normal distribution is usually used.
  • the average length of the CNTs is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, even more preferably 80 ⁇ m or more, preferably 600 ⁇ m or less, and preferably 550 ⁇ m or less. More preferably, it is 500 ⁇ m or less. If the average length of the CNTs is within the above range, the properties of the molded article (eg electrical conductivity, thermal conductivity, strength, etc.) can be sufficiently improved. In the present invention, the "average length" of CNTs can be obtained by measuring the length of, for example, 20 CNTs on a scanning electron microscope (SEM) image and calculating the number average value. can.
  • SEM scanning electron microscope
  • CNTs usually have an aspect ratio of more than 10.
  • the aspect ratio of CNT is determined by measuring the diameter and length of 20 randomly selected CNTs using a scanning electron microscope or transmission electron microscope, and measuring the ratio of the diameter to the length (length/diameter). It can be obtained by calculating the average value.
  • the CNT preferably has a BET specific surface area of 600 m 2 /g or more, more preferably 800 m 2 /g or more, preferably 2000 m 2 /g or less, and 1800 m 2 /g or less. It is more preferably 1600 m 2 /g or less. If the BET specific surface area of CNT is 600 m 2 /g or more, the properties (eg, electrical conductivity, thermal conductivity, strength, etc.) of the molded article can be sufficiently enhanced with a small amount. Further, when the BET specific surface area of CNT is 2000 m 2 /g or less, the CNT bundle structure can be defibrated satisfactorily.
  • the "BET specific surface area” refers to the nitrogen adsorption specific surface area measured using the BET method.
  • CNTs preferably show an upward convex shape in the t-plot obtained from the adsorption isotherm.
  • the "t-plot" can be obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the CNT adsorption isotherm measured by the nitrogen gas adsorption method. That is, the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from a known standard isotherm obtained by plotting the average thickness t of the nitrogen gas adsorption layer against the relative pressure P/P0, and the above conversion is performed. gives a t-plot of CNTs (t-plot method by de Boer et al.). It should be noted that CNTs exhibiting a convex shape in the t-plot obtained from the adsorption isotherm are preferably CNTs that have not undergone opening treatment.
  • the growth of a nitrogen gas adsorption layer on a substance having pores on its surface is classified into the following processes (1) to (3). Then, the slope of the t-plot changes due to the following processes (1) to (3).
  • the t-plot showing an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t becomes large, the plot is on the straight line.
  • position shifted downward from A CNT having such a t-plot shape has a large ratio of internal specific surface area to the total specific surface area of the CNT, indicating that a large number of openings are formed in the carbon nanostructure constituting the CNT.
  • the inflection point of the t-plot of CNT is preferably in the range that satisfies 0.2 ⁇ t (nm) ⁇ 1.5, and is in the range of 0.45 ⁇ t (nm) ⁇ 1.5. is more preferable, and it is even more preferable to be in the range of 0.55 ⁇ t(nm) ⁇ 1.0. If the inflection point of the t-plot of CNT is within this range, it is possible to improve the properties (eg electrical conductivity, thermal conductivity, strength, etc.) of the molded product with a small amount.
  • the "position of the bending point" is the intersection of the approximate straight line A in the process (1) described above and the approximate straight line B in the process (3) described above.
  • the CNT preferably has a ratio (S2/S1) of internal specific surface area S2 to total specific surface area S1 obtained from t-plot of 0.05 or more and 0.30 or less. If the S2/S1 value of CNT is within such a range, it is possible to enhance the properties of the molded article (eg, electrical conductivity, thermal conductivity, strength, etc.) with a small amount.
  • the total specific surface area S1 and the internal specific surface area S2 of CNT can be obtained from the t-plot. Specifically, first, the total specific surface area S1 can be obtained from the slope of the approximate straight line in process (1), and the external specific surface area S3 can be obtained from the slope of the approximate straight line in process (3). By subtracting the external specific surface area S3 from the total specific surface area S1, the internal specific surface area S2 can be calculated.
  • the measurement of the adsorption isotherm of CNT, the creation of the t-plot, and the calculation of the total specific surface area S1 and the internal specific surface area S2 based on the analysis of the t-plot can be performed, for example, by a commercially available measuring device "BELSORP ( (registered trademark)-mini” (manufactured by Nippon Bell Co., Ltd.).
  • CNTs preferably have a Radial Breathing Mode (RBM) peak when evaluated using Raman spectroscopy.
  • RBM Radial Breathing Mode
  • RBM does not exist in the Raman spectrum of multilayer CNTs having three or more layers.
  • the CNT preferably has a ratio (G/D ratio) of G-band peak intensity to D-band peak intensity in the Raman spectrum of 0.5 or more and 5.0 or less. If the G/D ratio is 0.5 or more and 5.0 or less, it is possible to further improve the properties (eg electrical conductivity, thermal conductivity, strength, etc.) of the molded product.
  • CNTs can be produced by known CNT synthesis methods such as an arc discharge method, a laser ablation method, and a chemical vapor deposition method (CVD method), without any particular limitation.
  • CNTs are synthesized, for example, by supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for CNT production on its surface, and synthesizing CNTs by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the CNT obtained by the super-growth method may be referred to as "SGCNT".
  • the CNTs produced by the super-growth method may consist only of SGCNTs, or may contain other carbon nanostructures such as non-cylindrical carbon nanostructures in addition to SGCNTs. good.
  • the amount of CNTs in the elastomer composition is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less per 100 parts by mass of the elastomer. It is more preferably not more than parts by mass.
  • the solvent that constitutes the elastomer composition contains an organic solvent A that satisfies predetermined attributes and an organic solvent B that satisfies predetermined attributes.
  • the organic solvent A and the organic solvent B are different solvents, and the solvent contains at least these two kinds of organic solvents.
  • the solvent needs to have a degree of volume swelling of the elastomer of 150% or more.
  • the relative energy difference (RED CNT ) of the Hansen solubility parameter between the carbon nanotube and the solvent is 1.5 or less.
  • the solvent should have a degree of volumetric swelling of 150% or more, preferably 200% or more, and more preferably 220% or more when swelling the elastomer.
  • degree of volume swelling is at least the above lower limit, the dispersibility of CNTs in the elastomer composition and the resulting molded article can be further enhanced.
  • the upper limit of the degree of volume swelling is not particularly limited.
  • the elastomer may not only swell with the solvent, but may also be dissolved in the solvent.
  • the degree of swelling of an elastomer (on a volume basis) as a result of immersing the elastomer in a solvent for one month is evaluated as the degree of volumetric swelling.
  • the degree of swelling of the elastomer with respect to the solvent is infinite.
  • the combination of the elastomer and the solvent in the present invention can be any combination except that the volume swelling degree of the elastomer in the solvent is less than 150%.
  • the relative energy difference (RED CNT ) of the Hansen solubility parameter between the carbon nanotubes and the mixed solvent should be 1.5 or less, preferably 1.2 or less, and more preferably 1.0 or less.
  • the value of the relative energy difference (RED CNT ) is equal to or less than the above upper limit, the dispersibility of CNTs in the elastomer composition and the resulting molded article can be further enhanced.
  • the lower limit of the value of the relative energy difference (RED CNT ) is not particularly limited, it can be 0 or more, for example.
  • the relative energy difference (RED CNT ) value can be calculated according to procedures 1-3 below.
  • Procedure 1 Calculation of Hansen Solubility Parameter (HSP) parameters of the solvent
  • HSP Hansen Solubility Parameter
  • the HSP parameters of the solvent (mixed solvent) containing solvent A and solvent B follow the volume ratio of each solvent A and B in the mixed solvent.
  • a weighted average value is calculated according to the following formula (1).
  • [dDm, dPm, dHm] [(a ⁇ dD1+b ⁇ dD2), (a ⁇ dP1+b ⁇ dP2),(a ⁇ dH1+b ⁇ dH2)]/(a+b) ⁇ (1 )
  • dDm energy derived from intermolecular dispersion force of solvent
  • dPm energy derived from intermolecular polar force of solvent
  • dHm energy derived from intermolecular hydrogen bonding force of solvent
  • dD1 molecule of solvent
  • a dH1 Energy derived from intermolecular hydrogen bonding force of solvent
  • a dD2 Intermolecular dispersion force of solvent B dP2: Energy derived from intermolecular polar force of solvent B dH2: Energy derived from intermolecular hydrogen bonding force of solvent B
  • a Volume ratio of solvent A in solvent b: in solvent The volume ratio of solvent
  • Hansen solubility parameter (MPa 1/2 ) are described in the following literature. Charles M. Hansen, "Hansen Solubility Parameters: A Users Handbook,” CRC Press, 2007.
  • Hansen solubility parameter For substances whose literature value of Hansen solubility parameter is unknown, it can be easily estimated from its chemical structure by using computer software Hansen Solubility Parameters in Practice (HSPiP). Specifically, for example, using HSPiP version 3, the values are used for substances registered in the database, and the estimated values are used for substances that are not registered.
  • HSPiP Hansen Solubility Parameters in Practice
  • the relative energy difference can be calculated according to the following formula (3).
  • the CNT interaction radius R0 CNT and the elastomer interaction radius R0 E are, for example, based on an experiment of measuring solubility in a solvent with a known HSP value and a simulation using the Sphere function of HSPiP, can be calculated.
  • Ra is the value of Ra CNT or Ra E calculated in the above step, and when calculating the relative energy difference (RED CNT ) of the Hansen solubility parameter of CNT and solvent, substitute the value of Ra CNT , When calculating the relative energy difference (RED E ) of the Hansen Solubility Parameters of elastomer and solvent, the value of Ra E is substituted.
  • R0 when calculating RED CNT , the value of interaction radius R0 CNT of CNT is substituted, and when calculating RED E , the value of interaction radius R0 E of the elastomer is substituted.
  • the relative energy difference (RED E ) of the Hansen solubility parameter between the elastomer and the solvent (mixed solvent) is preferably 2.0 or less, more preferably 1.9 or less, and further preferably 1.8 or less. preferable. If the value of the relative energy difference (RED E ) is equal to or less than the above upper limit, the dispersibility of CNTs in the elastomer composition and the resulting molded article can be further enhanced. Although the lower limit of the value of the relative energy difference (RED E ) is not particularly limited, it can be 0 or more, for example.
  • the organic solvent A is an organic solvent having a boiling point of 200° C. or lower and having a high affinity for CNTs.
  • “having a high affinity with CNT” means that when the relative energy difference (RED A-CNT ) of the Hansen solubility parameter between CNT and organic solvent A is calculated, the value is small.
  • the relative energy difference (RED A-CNT ) value is preferably 1.1 or less, more preferably 1.0 or less.
  • the value of the relative energy difference (RED A-CNT ) can be calculated according to procedures similar to the procedures (1) to (3) described above.
  • the boiling point of the organic solvent A must be 200°C or lower, preferably 180°C or lower, more preferably 170°C or lower.
  • the lower limit of the boiling point of the organic solvent A is not particularly limited, it is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 150°C or higher. This is because, if the boiling point of the organic solvent A is equal to or lower than the above upper limit, there is no need to excessively raise the drying temperature during the production of the molded article, resulting in excellent production efficiency.
  • the organic solvent A will not be excessively vaporized when obtaining the elastomer composition and the molded article, and the molded article obtained from the elastomer composition will contain CNTs. It can be dispersed well in elastomers.
  • the organic solvent A is not particularly limited, and an organic compound having an aromatic ring can be used. More specifically, the organic solvent A includes toluene and its derivatives such as toluene, p-chlorotoluene, o-chlorotoluene, and p-bromotoluene, and benzene derivatives such as 1,2,4-trimethylbenzene. are mentioned. These can be used singly or in combination of two or more. It is presumed that the organic solvent A has an excellent affinity for CNTs, and thus easily fibrillates the bulk structure. Therefore, by including the organic solvent A in the mixed solvent, the CNTs can be better dispersed in the elastomer in the elastomer composition and in the resulting molded article.
  • toluene and its derivatives such as toluene, p-chlorotoluene, o-chlorotoluene, and p-bromotoluene
  • benzene derivatives
  • the content of the organic solvent A in the mixed solvent is not particularly limited as long as the mixed solvent satisfies the conditions described above regarding the "volume swelling degree of the elastomer" and the "relative energy difference (RED CNT )".
  • the content of the organic solvent A in the mixed solvent is preferably 0.40 or more, preferably 0.50 or more, with the total volume of the mixed solvent (organic solvent A and organic solvent B) being 1. is more preferably 0.90 or less, and more preferably 0.80 or less. If the content of the organic solvent A in the mixed solvent is within the above range, the CNTs can be better dispersed in the elastomer in the elastomer composition and in the resulting molded article.
  • the organic solvent B is an organic solvent having a boiling point of 200° C. or lower and having a high affinity with the elastomer.
  • “having a high affinity with the elastomer” means that when the relative energy difference (RED BE ) of the Hansen solubility parameter between the elastomer and the organic solvent B is calculated, the value is small.
  • the relative energy difference (RED BE ) value is preferably 2.0 or less, more preferably 1.7 or less.
  • the value of the relative energy difference (RED BE ) can be calculated according to the procedures (1) to (3) described above.
  • the boiling point of the organic solvent B must be 200°C or lower, preferably 180°C or lower, and more preferably 170°C or lower.
  • the lower limit of the boiling point of the organic solvent B is not particularly limited, it is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 145°C or higher. This is because, if the boiling point of the organic solvent B is equal to or lower than the above upper limit, there is no need to excessively raise the drying temperature during the production of the molded article, resulting in excellent production efficiency.
  • the organic solvent B will not be excessively vaporized when obtaining the elastomer composition and the molded article, and the molded article obtained from the elastomer composition will contain CNTs. It can be dispersed well in elastomers.
  • the organic solvent B ketones, amides, ethers, and esters can be used without particular limitation. More specifically, the organic solvent B includes methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-diethylformamide, tetrahydrofuran, 1,4-dioxane, ethyl acetate, Butyl acetate, and amyl acetate. These can be used singly or in combination of two or more.
  • the organic solvent B Since the organic solvent B has excellent affinity with the elastomer, it functions to allow the elastomer to penetrate into the gaps of the bulk structure defibrated by the action of the organic solvent A. As a result, In the molding, the CNTs can be better dispersed in the elastomer.
  • the content of the organic solvent B in the mixed solvent is not particularly limited as long as the mixed solvent satisfies the conditions described above regarding the "volume swelling degree of the elastomer" and the "relative energy difference (RED CNT )".
  • the content of the organic solvent B in the mixed solvent is preferably 0.10 or more, preferably 0.20 or more, with the total volume of the mixed solvent (organic solvent A and organic solvent B) being 1. is more preferably 0.60 or less, and more preferably 0.50 or less. If the content of the organic solvent B in the mixed solvent is within the above range, the CNTs can be dispersed more favorably in the elastomer in the elastomer composition and in the resulting molded article.
  • the content of the mixed solvent per 100 parts by mass of the elastomer must be 1 part by mass or more and less than 60 parts by mass, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and 30 parts by mass. It is more preferably 1 part or more, preferably 55 parts by mass or less, and more preferably 50 parts by mass or less. If the content of the mixed solvent per 100 parts by mass of the elastomer is within the above range, the CNTs can be dispersed more favorably in the elastomer in the elastomer composition and in the resulting molded article.
  • the cross-linking agent that may optionally be included in the elastomer composition of the present invention is not particularly limited, but any known cross-linking agent capable of cross-linking the elastomer in the elastomer composition can be used.
  • Examples of such cross-linking agents include sulfur-based cross-linking agents, peroxide-based cross-linking agents, bisphenol-based cross-linking agents, and diamine-based cross-linking agents.
  • a crosslinking agent can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the cross-linking agent in the elastomer composition is not particularly limited, and may be the amount normally used in known elastomer compositions.
  • Additives include, but are not limited to, dispersants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, and softeners. , tackifiers, plasticizers, release agents, deodorants, fragrances, and the like.
  • examples of more specific additives include carbon black, silica, talc, barium sulfate, calcium carbonate, clay, magnesium oxide and calcium hydroxide.
  • an additive can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the additive in the elastomer composition is not particularly limited, and may be the amount normally used in known elastomer compositions.
  • the content of the additive in the elastomer composition can be 5 parts by mass or more and 40 parts by mass or less per 100 parts by mass of the elastomer.
  • the elastomer composition of the present invention described above can be prepared, for example, using the method for producing an elastomer composition of the present invention.
  • the method for producing an elastomer of the present invention includes a step of mixing and dispersing materials containing CNT, elastomer, organic solvent A, and organic solvent B.
  • the method for producing the elastomer composition of the present invention may include steps other than the steps described above.
  • the production method of the present invention may include, prior to the above steps, a preparatory step of preparing a mixed solvent as a solvent by mixing organic solvent A and organic solvent B at a predetermined mixing ratio.
  • the material containing the elastomer, CNTs, the organic solvent A, and the organic solvent B is subjected to the mixing and dispersing treatment, the CNT bundle structure is defibrated. , the CNTs can be well dispersed in the elastomer. Furthermore, since both the organic solvent A and the organic solvent B have a boiling point of 200° C. or less, they are relatively easy to remove when producing a molded article using the elastomer composition obtained according to the present invention. Therefore, it is excellent in the easiness of manufacturing the molded product.
  • the mixing and dispersing step materials containing CNT, elastomer, organic solvent A, and organic solvent B are mixed and dispersed to obtain an elastomer composition.
  • the order of addition in the step of mixing and dispersing is not particularly limited as long as an elastomer composition containing CNT, elastomer, organic solvent A, and organic solvent B is finally obtained.
  • the step of mixing and dispersing can include steps of mixing CNT with organic solvent A and organic solvent B to obtain a mixture, and mixing and dispersing the obtained mixture and elastomer.
  • the step of mixing and dispersing the CNTs to be used is divided into two at a predetermined ratio (e.g., 50:50), and one CNT is mixed with an organic solvent A to form a mixture A, and the other CNT is It may include a step of mixing with an organic solvent B to form a mixture B, and a step of adding these mixtures A and B to the elastomer and kneading.
  • a predetermined ratio e.g., 50:50
  • the CNTs are impregnated with the solvent, and the CNT bundle structure is easily fibrillated.
  • the CNTs can be better dispersed in the elastomer while the bundle structure is well defibrated.
  • the mixing of the CNTs and the organic solvent is not particularly limited. Any mixing method, such as solvent spraying, can be used. Above all, from the viewpoint of better dispersing the CNTs in the elastomer composition, it is preferable to mix the CNTs and the organic solvent by impregnating the CNTs with the organic solvent.
  • the CNTs are impregnated with the organic solvent for any period of time. is preferred, and at least 10 hours is more preferred.
  • the temperature at which the CNTs are impregnated with the organic solvent is not particularly limited, and can be, for example, a temperature above the freezing point and below the boiling point of the organic solvent at that pressure.
  • the freezing point and boiling point of the organic solvent can be determined, for example, by differential scanning calorimetry.
  • the impregnation of the CNTs with the organic solvent is not particularly limited, but is usually performed under normal pressure (1 atm).
  • the dispersing method in the mixing and dispersing step is not particularly limited as long as the CNTs can be dispersed in the elastomer, and a known dispersing treatment can be adopted.
  • Such dispersion treatment includes, for example, dispersion treatment by shear stress, dispersion treatment by collision energy, and dispersion treatment by which a cavitation effect is obtained.
  • a two-roll mill, a three-roll mill, or the like can be used as a device that can be used for dispersion treatment by shear stress.
  • Apparatuses that can be used for dispersion treatment by collision energy include bead mills, rotor/stator type dispersers, and the like.
  • a jet mill, an ultrasonic disperser, and the like can be used as devices that can be used for the dispersion treatment to obtain the cavitation effect.
  • the conditions for the dispersion processing are not particularly limited, and can be set as appropriate within the range of normal dispersion conditions for the above-described apparatus, for example.
  • the cross-linked product of the present invention is obtained by cross-linking the above-described elastomer composition of the present invention.
  • the cross-linked product of the present invention can be formed by subjecting the elastomer composition of the present invention to a cross-linking reaction, for example, by heating.
  • the crosslinking temperature is usually 100 to 250°C, preferably 130 to 220°C, more preferably 150 to 200°C, and the crosslinking time is usually 0.1 minute to 10 hours, preferably 1 minute to 5 hours.
  • a method used for cross-linking rubber such as press heating, steam heating, oven heating, and hot air heating, may be appropriately selected.
  • the molded article of the present invention contains the above-described crosslinked product of the present invention.
  • the molded article of the present invention is not particularly limited, and examples thereof include belts, hoses, gaskets, packings, and oil seals. Since the CNTs are well dispersed in the elastomer, the molded article of the present invention is excellent in properties such as electrical conductivity, thermal conductivity and strength.
  • the crosslinking and molding of the elastomer composition are not particularly limited.
  • the cross-linking reaction described later in the section can be carried out to produce a cross-linked molded product.
  • the height of the swollen body inside the cell was measured, and the volume V of the swollen body was calculated from the following formula (1).
  • the swollen body volume V in each mixed solvent was divided by the rubber volume V0 before swelling to calculate the degree of swelling V/V0 ⁇ 100 (%).
  • the dispersion state of CNTs in the elastomer composition was evaluated by measuring the surface resistivity of the masterbatch as follows.
  • the surface resistivity of the masterbatches produced in Examples and Comparative Examples was measured using a low resistivity meter (manufactured by Mitsubishi Chemical Analytech, product name "Loresta-GP").
  • the time when the surface resistivity decreased with the kneading time and reached a constant level was defined as the "kneading time until the resistance value became constant”, and the minimum surface resistivity reached was defined as the "surface resistance value”.
  • Example 1 ⁇ Preparation process> 38.5 parts by mass (36 parts by volume) of p-chlorotoluene (p-CT) as organic solvent A, and 11.5 parts by mass (12.2 parts by volume) of N,N-dimethylacetamide (DMAc) as organic solvent B Part) was added to prepare a p-chlorotoluene/N,N-dimethylacetamide mixed solution (mixed solvent) with a volume ratio of 75:25.
  • p-CT p-chlorotoluene
  • DMAc N,N-dimethylacetamide
  • Example 2 In the preparation step, amyl acetate (AmAc) was used as the organic solvent B instead of N,N-dimethylacetamide (DMAc), and the volume ratio of the organic solvent A:organic solvent B was adjusted to 55:45. Further, in the step of mixing and dispersing, the same operation and operation as in Example 1 were performed except that the amount of the mixed solvent added was adjusted so that the amount of the mixed solvent blended per 100 parts by mass of the elastomer was 40 parts by mass. An evaluation was carried out. Table 1 shows the results.
  • Example 3 In the preparation step, o-chlorotoluene (o-CT) is used as organic solvent A instead of p-chlorotoluene (p-CT), and the volume ratio of organic solvent A:organic solvent B is 70:30.
  • o-CT o-chlorotoluene
  • p-CT p-chlorotoluene
  • Example 1 except that in the step of mixing and dispersing, the amount of the mixed solvent added was adjusted so that the amount of the mixed solvent added was 40 parts by mass per 100 parts by mass of the elastomer. The same operation and evaluation as were performed. Table 1 shows the results.
  • Example 4 In the preparation step, 1,2,4-trimethylbenzene (TMB) is used as organic solvent A instead of p-chlorotoluene (p-CT), and the volume ratio of organic solvent A:organic solvent B is 70:30. Further, in the step of mixing and dispersing, the amount of the mixed solvent added was adjusted so that the amount of the mixed solvent added per 100 parts by mass of the elastomer was 40 parts by mass. The same operations and evaluations as in Example 1 were carried out. Table 1 shows the results. In this example, when the degree of volume swelling was evaluated according to the above, it was confirmed that the elastomer was dissolved in the mixed solvent.
  • TMB 1,2,4-trimethylbenzene
  • p-CT p-chlorotoluene
  • Example 1 In the preparation step, the blending amount is adjusted so that the volume ratio of organic solvent A:organic solvent B is 30:70, and in the step of mixing and dispersing, the blending amount of the mixed solvent per 100 parts by mass of the elastomer is 40 mass. The same operation and evaluation as in Example 1 were carried out, except that the amount of the mixed solvent added was adjusted so as to be 1 part. Table 1 shows the results. In this example, when the degree of volume swelling was evaluated according to the above, it was confirmed that the elastomer was dissolved in the mixed solvent.
  • Example 2 In the preparation step, p-bromotoluene (p-BT) is used as organic solvent A instead of p-chlorotoluene (p-CT), and the volume ratio of organic solvent A:organic solvent B is 99:1.
  • p-BT p-bromotoluene
  • p-CT p-chlorotoluene
  • Table 1 shows the results. In this example, when the degree of volume swelling was evaluated according to the above, it was confirmed that there was no swelling at all (degree of volume swelling: 100%).
  • Example 3 In the step of mixing and dispersing, the same operation as in Example 1 was performed, except that the amount of the mixed solvent added was adjusted so that the amount of the mixed solvent blended per 100 parts by mass of the elastomer was 60 parts by mass. However, regarding the evaluation, the easiness of dispersion could not be evaluated, and the drying of the molded body was not evaluated because no solvent was used. Table 1 shows the results.
  • Example 5 4 parts by mass of CNTs are added to 100 parts by mass of elastomer without performing a preparation step and without using a solvent, and kneaded at room temperature using two rolls to perform a dispersion treatment to obtain a masterbatch. was prepared. The same evaluation as in Example 1 was attempted for the obtained masterbatch. Dispersibility and ease of dispersibility could not be evaluated. Table 1 shows the results.
  • p-CT means p-chlorotoluene
  • o-CT means o-chlorotoluene
  • MMB means methyl p-toluate
  • p-BT means p-bromotoluene
  • DMAc means N,N-dimethylacetamide
  • AmAc means amyl acetate
  • TMB means 1,2,4-trimethylbenzene; each shown.
  • an elastomer composition in which carbon nanotubes are easily and satisfactorily dispersed in an elastomer and capable of forming a molded article excellent in ease of production, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

カーボンナノチューブと親和性の高い沸点が200℃以下の有機溶剤Aと、エラストマーと親和性の高い沸点200℃以下の有機溶剤Bとを含む溶媒であって、エラストマーの体積膨潤度が150%以上であるとともに相対エネルギー差(REDCNT)が1.5以下である溶媒を、エラストマー100質量部あたり1質量部以上60質量部未満の割合で含有する、エラストマー組成物である。

Description

エラストマー組成物及びその製造方法、架橋物、並びに成形体
 本発明は、エラストマー組成物、エラストマー組成物の製造方法、エラストマー組成物を架橋してなる架橋物、及び、成形してなる成形体に関するものである。
 従来、導電性、熱伝導性、及び強度などの特性に優れる材料として、エラストマーにカーボン材料を配合してなるエラストマー組成物が使用されている。そして、近年では、上記特性の向上効果が高いカーボン材料として、カーボンナノチューブ(以下、「CNT」と略記する場合がある。)が注目されている。
 ここで、CNTは、一本一本の特性は優れているものの、外径が小さいため、バルク材料として使用する際にファンデルワールス力によってバンドル化し易い(束になり易い)。そのため、エラストマーとCNTとを含有するエラストマー組成物を用いて成形体を作製するに際しては、CNTのバンドル構造体を解繊し、エラストマーのマトリックス中にCNTを良好に分散させることが求められている。
 そこで、例えば特許文献1では、ポリマーと、CNTと、メチルエチルケトン等の有機溶媒とを含む組成物を、亜臨界状態又は超臨界状態の二酸化炭素雰囲気下で混錬している。そして特許文献1によれば、亜臨界状態又は超臨界状態の二酸化炭素雰囲気下で組成物を混練すれば、ポリマーのマトリックス中にCNTを良好に分散させることができる。
特開2018-203914号公報
 しかしながら近年、エラストマー中に一層良好にCNTを分散させて、諸特性に優れる成形体を効率的に製造するための新たな技術が求められていた。
 そこで、本発明は、カーボンナノチューブがエラストマー中に良好に分散してなるエラストマー組成物及び成形体を効率的に製造するための新たな技術の提供を目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、CNTを含有するエラストマー組成物の調製に際して使用する溶媒として、それぞれ所定の属性を満たす少なくとも2種類の有機溶剤を含む溶媒を所定量配合し、且つ、かかる溶媒としてエラストマーを膨潤させた場合の体積膨潤度が150%以上となるものを選定することにより、エラストマー組成物中におけるCNTの分散を容易且つ良好なものとすることができ、さらに、かかるエラストマー組成物を用いて成形体を製造する際の製造容易性を高めることができることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のエラストマー組成物は、カーボンナノチューブと、エラストマーと、溶媒と、を含むエラストマー組成物であって、前記溶媒は、前記カーボンナノチューブと親和性の高い沸点が200℃以下である有機溶剤Aと、前記エラストマーと親和性の高い沸点が200℃以下である有機溶剤Bとを含み、前記エラストマー100質量部当たりの前記溶媒の含有割合が1質量部以上60質量部未満であり、前記溶媒中での前記エラストマーの体積膨潤度が150%以上であり、前記カーボンナノチューブと前記溶媒のハンセン溶解度パラメータの相対エネルギー差(REDCNT)が1.5以下である、ことを特徴とする。このように、それぞれ所定の属性を満たす少なくとも2種類の有機溶剤を含む溶媒であって、エラストマーを膨潤させた場合の体積膨潤度が150%以上であるとともに、REDCNTの値が1.5以下である、溶媒を所定量配合することにより、カーボンナノチューブをエラストマー中に容易且つ良好に分散させることができるとともに、さらにかかるエラストマー組成物を用いることで、効率的に成形体を得ることができる。
 なお、本明細書において「沸点」は、1atmにおける沸点を意味する。
 また、溶媒によりエラストマーを膨潤させた場合の「体積膨潤度」は、実施例に記載の方法により測定することができる。
 なお、カーボンナノチューブと溶媒のハンセン溶解度パラメータの相対エネルギー差(REDCNT)の値の算出方法については、後述する。
 ここで、本発明のエラストマー組成物は、前記エラストマーと前記溶媒のハンセン溶解度パラメータの相対エネルギー差(RED)が2.0以下であることが好ましい。REDの値上記所定の条件を満たす溶媒を配合したエラストマー組成物を用いれば、CNTがエラストマー中に一層良好に分散したエラストマー組成物を得ることができる。
 なお、エラストマーと溶媒のハンセン溶解度パラメータの相対エネルギー差(RED)の値の算出方法については、後述する。
 また、本発明のエラストマー組成物において、前記エラストマー100質量部当たり、前記カーボンナノチューブを0.1質量部以上10質量部以下含むことが好ましい。エラストマーに対するCNTの配合割合が上記範囲内であるエラストマー組成物を用いれば、CNTがエラストマー中に一層良好に分散したエラストマー組成物を得ることができ、また、かかるエラストマー組成物を用いて形成した成形体に、所期の特性(導電性、熱伝導性、及び強度など)を十分に発揮させることができる。
 そして、本発明のエラストマー組成物において、前記カーボンナノチューブは、単層カーボンナノチューブを含むことが好ましい。CNTとして単層CNTを含むエラストマー組成物を用いれば、導電性、熱伝導性、及び強度などの特性に一層優れる成形体を得ることができる。
 ここで、本発明のエラストマー組成物は、更に架橋剤を含むことができる。架橋剤を含むエラストマー組成物を用いれば、強度などに優れる架橋物としての成形体を得ることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のエラストマー組成物の製造方法は、上述したいずれかのエラストマー組成物を製造する方法であって、前記カーボンナノチューブと、前記エラストマーと、前記有機溶剤Aと、前記有機溶剤Bと、を含む材料を混合分散する工程を含む。上述した工程を経れば、CNTのバンドル構造体が良好に解繊されたエラストマー組成物を効率的に得ることができ、当該エラストマー組成物を用いれば、CNTがエラストマー中に十分良好に分散した成形体を、効率的に製造することができる。
 ここで、本発明のエラストマー組成物の製造方法は、前記混合分散する工程が前記カーボンナノチューブと、前記有機溶剤A及び前記有機溶剤Bと、を混合して混合物を得るステップと、得られた前記混合物と前記エラストマーとを混合分散するステップと、を含むことができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の架橋物は、上述した何れかのエラストマー組成物を架橋してなる。上述した何れかのエラストマー組成物から得られる架橋物は、製造容易性に優れるとともに、CNTがエラストマー中に良好に分散しているため、導電性、熱伝導性、及び強度などの特性に優れる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の成形体は、上述した架橋物を含む。上述した架橋物を含む成形体は、製造容易性に優れるとともに、CNTがエラストマー中に良好に分散しているため、導電性、熱伝導性、及び強度などの特性に優れる。
 本発明によれば、カーボンナノチューブがエラストマー中に容易且つ良好に分散してなる、製造容易性に優れる成形体を形成し得るエラストマー組成物、及びその製造方法を提供することができる。
 また、本発明によれば、カーボンナノチューブがエラストマー中に良好に分散してなる、製造容易性に優れる架橋物及び成形体を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のエラストマー組成物は、本発明の架橋物及び成形体の作製に用いることができる。そして、本発明のエラストマー組成物は、例えば、本発明のエラストマー組成物の製造方法を用いて調製することができる。
(エラストマー組成物)
 本発明のエラストマー組成物は、エラストマーと、CNTと、溶媒とを含み、任意に、架橋剤及び添加剤を更に含有する。
 ここで、本発明のエラストマー組成物に配合される溶媒は、CNTとの親和性が高い、沸点が200℃以下である有機溶剤Aと、エラストマーとの親和性が高い、沸点が200℃以下である有機溶剤Bとを含む。さらに、かかる溶媒は、エラストマーを膨潤させた場合の体積膨潤度が150%以上であるとともに、カーボンナノチューブとのハンセン溶解度パラメータの相対エネルギー差(REDCNT)の値が1.5以下である。さらに、本発明のエラストマー組成物における、溶媒の配合割合は、エラストマー100質量部あたり1質量部以上60質量部未満である。このような条件を満たす溶媒を配合することにより、CNTがエラストマー中に良好に分散してなる、製造容易性に優れる成形体を得ることが可能となる理由は明らかではないが、以下の通りであると推察される。
 CNTとの親和性が高い有機溶剤Aは、CNTのバンドル構造体の内部に含浸することで当該バンドル構造体の解繊を促進する。同様の効果は、CNTと溶媒(有機溶剤A及びBを含む、以下、本明細書の説明において、有機溶剤A及びBを含む溶媒について、「混合溶剤」と称することがある。)とのハンセン溶解度パラメータの相対エネルギー差(REDCNT)が1.5以下であることによっても促進される。CNTと混合溶剤とのハンセン溶解度パラメータの相対エネルギー差(REDCNT)の値が低いほど、CNTと混合溶剤との親和性が高いことを意味するからである。そして、エラストマー組成物中にエラストマーとの親和性が高い有機溶剤Bが存在すること、及び、有機溶剤A及び有機溶剤Bを含んでなる混合溶剤がエラストマーを体積膨潤度150%以上の比率で膨潤させることにより、解繊されたバンドル構造体がエラストマー組成物中において良好に分散し易くなると推察される。また、有機溶剤A及びBの沸点が200℃以下であることで、成形体の製造時において有機溶剤を除去する際の乾燥温度を過度に高める必要がなく、成形体の製造容易性を高めることができると推察される。
<エラストマー>
 また、エラストマーとしては、特に限定されることなく、例えば、任意のゴム、樹脂又はそれらの混合物を用いることができる。本発明においては、エラストマー組成物中におけるCNTの分散性を高めるという効果を得るための方途として、エラストマーの体積膨潤度及び相対エネルギー差(REDCNT)が所定の範囲になるように、エラストマー及び混合溶剤を選定することを基本原理とするため、かかる条件を満たす限りにおいて、エラストマーの種類は特に限定されない。
 具体的には、ゴムとしては、特に限定されることなく、例えば、天然ゴム;フッ化ビニリデン系ゴム(FKM)、テトラフルオロエチレン-プロピレン系ゴム(FEPM)、テトラフルオロエチレン-パープルオロビニルエーテル系ゴム(FFKM)などのフッ素ゴム;ブタジエンゴム(BR)、イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、水素化スチレン-ブタジエンゴム(H-SBR)、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)などのジエンゴム;アクリルゴム(ACM、AEM);シリコーンゴム;等が挙げられる。
 上述した中でも、エラストマーとしては、フッ化ビニリデン系ゴム(FKM)、テトラフルオロエチレン-プロピレン系ゴム(FEPM)、テトラフルオロエチレン-パープルオロビニルエーテル系ゴム(FFKM)などのフッ素ゴム;ニトリルゴム(NBR);水素化ニトリルゴム(H-NBR)、FKM、FEPM、及びH-NBRがより好ましい。これらのエラストマーの少なくとも何れかを含むエラストマー組成物を用いれば、CNTがエラストマー中に一層良好に分散した成形体を得ることができる。
 なお、これらのエラストマーは、1種単独で、又は、2種以上を混合して用いることができる。
<カーボンナノチューブ>
 CNTとしては、特に限定されることなく、単層カーボンナノチューブ及び/又は多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層CNTを用いれば、配合量が少量であっても成形体の特性(例えば、導電性、熱伝導性、強度など)が向上するからである。
 また、CNTの平均直径は、1nm以上であることが好ましく、60nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることが更に好ましい。CNTの平均直径を上記範囲内とすれば、成形体の特性(例えば、導電性、熱伝導性、強度など)を十分に向上させることができる。
 ここで、本発明において、CNTの「平均直径」は、透過型電子顕微鏡(TEM)画像上で、例えば、20本のCNTについて直径(外径)を測定し、個数平均値を算出することで求めることができる。
 また、CNTとしては、平均直径(Av)に対する、直径の標準偏差(σ:標本標準偏差)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満のCNTを用いることが好ましく、3σ/Avが0.25超のCNTを用いることがより好ましく、3σ/Avが0.50超のCNTを用いることが更に好ましい。3σ/Avが0.20超0.60未満のCNTを使用すれば、成形体の特性(例えば、導電性、熱伝導性、強度など)を更に向上させることができる。
 なお、CNTの平均直径(Av)及び標準偏差(σ)は、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
 そして、CNTとしては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
 また、CNTは、平均長さが、10μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることが更に好ましく、600μm以下であることが好ましく、550μm以下であることがより好ましく、500μm以下であることが更に好ましい。CNTの平均長さを上記範囲内とすれば、成形体の特性(例えば、導電性、熱伝導性、強度など)を十分に向上させることができる。
 なお、本発明において、CNTの「平均長さ」は、走査型電子顕微鏡(SEM)画像上で、例えば、20本のCNTについて長さを測定し、個数平均値を算出することで求めることができる。
 更に、CNTは、通常、アスペクト比が10超である。なお、CNTのアスペクト比は、走査型電子顕微鏡又は透過型電子顕微鏡を用いて、無作為に選択したCNT20本の直径及び長さを測定し、直径と長さとの比(長さ/直径)の平均値を算出することにより求めることができる。
 また、CNTは、BET比表面積が、600m/g以上であることが好ましく、800m/g以上であることがより好ましく、2000m/g以下であることが好ましく、1800m/g以下であることがより好ましく、1600m/g以下であることが更に好ましい。CNTのBET比表面積が600m/g以上であれば、少ない配合量で成形体の特性(例えば、導電性、熱伝導性、強度など)を十分に高めることができる。また、CNTのBET比表面積が2000m/g以下であれば、CNTのバンドル構造体を良好に解繊することができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 また、CNTは、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。なお、「t-プロット」は、窒素ガス吸着法により測定されたCNTの吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得ることができる。すなわち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、CNTのt-プロットが得られる(de Boerらによるt-プロット法)。
 なお、吸着等温線から得られるt-プロットが上に凸な形状を示すCNTは、開口処理が施されていないCNTであることが好ましい。
 ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t-プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
 そして、上に凸な形状を示すt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt-プロットの形状を有するCNTは、CNTの全比表面積に対する内部比表面積の割合が大きく、CNTを構成する炭素ナノ構造体に多数の開口が形成されていることを示している。
 なお、CNTのt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。CNTのt-プロットの屈曲点がかかる範囲内にあれば、少ない配合量で成形体の特性(例えば、導電性、熱伝導性、強度など)を高めることができる。
 なお、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
 更に、CNTは、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。CNTのS2/S1の値がかかる範囲内であれば、少ない配合量で成形体の特性(例えば、導電性、熱伝導性、強度など)を高めることができる。
 ここで、CNTの全比表面積S1及び内部比表面積S2は、そのt-プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
 因みに、CNTの吸着等温線の測定、t-プロットの作成、及び、t-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いて行うことができる。
 更に、CNTは、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層CNTのラマンスペクトルには、RBMが存在しない。
 また、CNTは、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が0.5以上5.0以下であることが好ましい。G/D比が0.5以上5.0以下であれば、成形体の特性(例えば、導電性、熱伝導性、強度など)を更に向上させることができる。
 なお、CNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて製造することができる。具体的には、CNTは、例えば、CNT製造用の触媒層を表面に有する基材上に原料化合物及びキャリアガスを供給し、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるCNTを「SGCNT」と称することがある。
 そして、スーパーグロース法により製造されたCNTは、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体を含んでいてもよい。
<<CNTの配合量>>
 エラストマー組成物におけるCNTの配合量は、エラストマー100質量部あたり、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、10質量部以下であることが好ましく、8質量部以下であることがより好ましい。エラストマーに対するCNTの配合割合が上記範囲内であるエラストマー組成物を用いれば、CNTがエラストマー中に一層良好に分散したエラストマー組成物及び成形体を得ることができ、また当該成形体に所期の特性(導電性、熱伝導性、及び強度など)を十分に発揮させることができる。
<溶媒>
 エラストマー組成物を構成する溶媒は、所定の属性を満たす有機溶剤Aと所定の属性を満たす有機溶剤Bとを含有する。ここで、有機溶剤Aと有機溶剤Bとは相異なる溶剤であり、溶媒は、これら少なくとも2種類の有機溶剤を少なくとも含有する。さらに、溶媒は、エラストマーの体積膨潤度が150%以上であることを必要とする。さらに、カーボンナノチューブと溶媒のハンセン溶解度パラメータの相対エネルギー差(REDCNT)が1.5以下であることを必要とする。
<<エラストマーの体積膨潤度>>
 溶媒(混合溶剤)は、エラストマーを膨潤させた場合の体積膨潤度が150%以上である必要があり、200%以上であることが好ましく、220%以上であることがより好ましい。体積膨潤度が上記下限値以上であれば、エラストマー組成物及び得られる成形体中におけるCNTの分散性を一層高めることができる。
 ここで、体積膨潤度の上限値には特に制限されない。言い換えると、エラストマーが溶媒により膨潤することにとどまらず、エラストマーが溶媒に対して溶解した状態であってもよい。本明細書においては、実施例に記載したように、エラストマーを溶媒に対して一か月にわたり浸漬した結果の、エラストマーの膨潤度合い(体積基準)を体積膨潤度として評価している。かかる評価手法においては、エラストマーが溶媒に対して溶解した状態となった場合には、エラストマーの溶媒に対する膨潤度が無限大であったと解釈する。言い換えれば、本発明におけるエラストマーと溶媒との組み合わせは、溶媒中でのエラストマーの体積膨潤度が150%未満となる場合を除いて、あらゆる組み合わせでありうる。
<<相対エネルギー差(REDCNT)>>
 カーボンナノチューブと混合溶剤のハンセン溶解度パラメータの相対エネルギー差(REDCNT)は、1.5以下である必要があり、1.2以下であることが好ましく、1.0以下であることがより好ましい。相対エネルギー差(REDCNT)の値が上記上限値以下であれば、エラストマー組成物及び得られる成形体中におけるCNTの分散性を一層高めることができる。なお、相対エネルギー差(REDCNT)の値の下限値は特に限定されないが、例えば、0以上でありうる。
 相対エネルギー差(REDCNT)の値は、下記の手順1~3に従って算出することができる。
(1)手順1:溶媒のハンセン溶解度(Hansen Solubility Parameter:HSP)パラメータの算出
 溶剤A及び溶剤Bを含む溶媒(混合溶剤)のHSPパラメータは、混合溶剤中における各溶剤A及びBの体積比率に従う重みづけ平均値として、下記式(1)に従って算出する。
 [dDm, dPm, dHm]=[(a×dD1+b×dD2), (a×dP1+b×dP2),(a×dH1+b×dH2)]/(a+b)・・・(1)
上記式において、
 dDm:溶媒の、分子間の分散力に由来するエネルギー
 dPm:溶媒の、分子間の極性力に由来するエネルギー
 dHm:溶媒の、分子間の水素結合力に由来するエネルギー
 dD1:溶剤Aの、分子間の分散力に由来するエネルギー
 dP1:溶剤Aの、分子間の極性力に由来するエネルギー
 dH1:溶剤Aの、分子間の水素結合力に由来するエネルギー
 dD2:溶剤Bの、分子間の分散力に由来するエネルギー
 dP2:溶剤Bの、分子間の極性力に由来するエネルギー
 dH2:溶剤Bの、分子間の水素結合力に由来するエネルギー
 a:溶媒中の溶剤Aの体積比率
 b:溶媒中の溶剤Bの体積比率
をそれぞれ示す。
 なお、ハンセン溶解度パラメータ(MPa1/2)の定義及び計算方法は、下記の文献に記載されている。Charles M. Hansen著、「Hansen Solubility Parameters: A Users Handbook」、CRCプレス、2007年。
 また、ハンセン溶解度パラメータの文献値が未知の物質については、コンピュータソフトウェアHansen Solubility Parameters in Practice(HSPiP)を用いることによって、その化学構造から簡便に推算することができる。
 具体的には、例えば、HSPiPバージョン3を用い、データベースに登録されている物質についてはその値を用い、登録されていない物質については推算値を用いればよい。
(2)手順2:HSP値間距離の算出
 下記式(2)に基づいて、CNTと溶媒(混合溶剤)との間、及び、エラストマーと溶媒(混合溶剤)との間、について、それぞれHSP値間の距離RaCNT、及び、Raの値を算出した。
(Ra) =4(dD2-dD1)+(dP2-dP1)+(dH2-dH1)・・・(2)
上記式(2)において、
 dD1:CNT又はエラストマーの、分子間の分散力に由来するエネルギー
 dP1:CNT又はエラストマーの、分子間の極性力に由来するエネルギー
 dH1:CNT又はエラストマーの、分子間の水素結合力に由来するエネルギー
 dD2:溶媒(混合溶剤)の、分子間の分散力に由来するエネルギー
 dP2:溶媒の、分子間の極性力に由来するエネルギー
 dH2:溶媒の、分子間の水素結合力に由来するエネルギー
をそれぞれ示す。
 なお、dD1、dP1、および、dH1については、CNTと溶媒(混合溶剤)とのHSP値間の距離RaCNTを算出する場合には、CNTに関する値を代入し、エラストマーと溶媒(混合溶剤)とのHSP値間の距離Raを算出する場合には、エラストマーに関する値を代入する。
(3)相対エネルギー差の算出
 相対エネルギー差は、下記式(3)に従って算出することができる。ここで、CNTの相互作用半径R0CNT、及びエラストマーの相互作用半径R0は、例えば、HSP値が既知の溶媒に対する溶解度を測定する実験と、HSPiPのSphereファンクションを使用したシミュレーションとに基づいて、算出することができる。
 (RED)=Ra/R0・・・(3)
 上記式(3)において、
 Raは、上記工程で算出したRaCNT、又は、Raの値であり、CNTと溶媒のハンセン溶解度パラメータの相対エネルギー差(REDCNT)を算出する場合には、RaCNTの値を代入し、エラストマーと溶媒のハンセン溶解度パラメータの相対エネルギー差(RED)を算出する場合には、Raの値を代入する。
 R0の値としては、REDCNTを算出する場合には、CNTの相互作用半径R0CNTの値を代入し、REDを算出する場合には、エラストマーの相互作用半径R0の値を代入する。
<<相対エネルギー差(RED)>>
 エラストマーと溶媒(混合溶剤)のハンセン溶解度パラメータの相対エネルギー差(RED)が2.0以下であることが好ましく、1.9以下であることがより好ましく、1.8以下であることがさらに好ましい。相対エネルギー差(RED)の値が上記上限値以下であれば、エラストマー組成物及び得られる成形体中におけるCNTの分散性を一層高めることができる。なお、相対エネルギー差(RED)の値の下限値は特に限定されないが、例えば、0以上でありうる。
<<有機溶剤A>>
 有機溶剤Aは、CNTと親和性の高い沸点が200℃以下である有機溶剤である。ここで、「CNTと親和性の高い」とは、CNTと有機溶剤Aとのハンセン溶解度パラメータの相対エネルギー差(REDA-CNT)を算出した場合に、その値が小さいことを意味する。例えば、相対エネルギー差(REDA-CNT)の値は、1.1以下であることが好ましく、1.0以下であることがより好ましい。
 ここで、相対エネルギー差(REDA-CNT)の値は、上述した手順(1)~(3)と同様の手順に従って算出することができる。
 有機溶剤Aの沸点は200℃以下である必要があり、180℃以下であることが好ましく、170℃以下であることがより好ましい。有機溶剤Aの沸点の下限値は、特に限定されないが、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。有機溶剤Aの沸点が上記上限値以下であれば、成形体を製造する際の乾燥温度を過度に高める必要がなく、製造効率に優れるからである。また、有機溶剤Aの沸点が上記下限値以上であれば、エラストマー組成物及び成形体を得る際に有機溶剤Aが過度に気化することもなく、エラストマー組成物から得られる成形体において、CNTをエラストマー中に良好に分散させることができる。
 有機溶剤Aとしては、特に限定されることなく、芳香環を有する有機化合物を用いることができる。より具体的には、有機溶剤Aとしては、トルエン、p-クロロトルエン、o-クロロトルエン、及びp-ブロモトルエンなどのトルエン及びその誘導体、並びに、1,2,4-トリメチルベンゼンなどのベンゼン誘導体が挙げられる。これらは、一種を単独で、或いは、二種以上を混合して用いることができる。有機溶剤Aは、CNTとの親和性に優れるためバルク構造体を解繊し易いと推察される。したがって、混合溶剤が有機溶剤Aを含有することにより、エラストマー組成物中、及び得られる成形体中において、CNTをエラストマー中に一層良好に分散させることができる。
-有機溶剤Aの含有割合-
 そして、混合溶剤中における有機溶剤Aの含有割合は、混合溶剤が「エラストマーの体積膨潤度」及び「相対エネルギー差(REDCNT)」に関して記載した上記の条件を満たす限りにおいて特に限定されない。例えば、混合溶剤中における有機溶剤Aの含有割合は、混合溶剤(有機溶剤A及び有機溶剤B)の全体積を1として、体積分率が0.40以上であることが好ましく、0.50以上であることがより好ましく、0.90以下であることが好ましく、0.80以下であることがより好ましい。混合溶剤中における有機溶剤Aの含有割合が上記範囲内であれば、エラストマー組成物中、及び得られる成形体中において、CNTをエラストマー中に一層良好に分散させることができる。
<<有機溶剤B>>
 有機溶剤Bは、エラストマーと親和性の高い沸点が200℃以下である有機溶剤である。ここで、「エラストマーと親和性が高い」とは、エラストマーと有機溶剤Bとのハンセン溶解度パラメータの相対エネルギー差(REDB-E)を算出した場合に、その値が小さいことを意味する。例えば、相対エネルギー差(REDB-E)の値は、2.0以下であることが好ましく、1.7以下であることがより好ましい。
 ここで、相対エネルギー差(REDB-E)の値は、上述した手順(1)~(3)に従って算出することができる。
 有機溶剤Bの沸点は200℃以下である必要があり、180℃以下であることが好ましく、170℃以下であることがより好ましい。有機溶剤Bの沸点の下限値は、特に限定されないが、100℃以上であることが好ましく、120℃以上であることがより好ましく、145℃以上であることがさらに好ましい。有機溶剤Bの沸点が上記上限値以下であれば、成形体を製造する際の乾燥温度を過度に高める必要がなく、製造効率に優れるからである。また、有機溶剤Bの沸点が上記下限値以上であれば、エラストマー組成物及び成形体を得る際に有機溶剤Bが過度に気化することもなく、エラストマー組成物から得られる成形体において、CNTをエラストマー中に良好に分散させることができる。
 有機溶剤Bとしては、特に限定されることなく、ケトン類、アミド類、エーテル類、及び、エステル類を用いることができる。より具体的には、有機溶剤Bとしては、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、酢酸エチル、酢酸ブチル、及び酢酸アミルが挙げられる。これらは、一種を単独で、或いは、二種以上を混合して用いることができる。有機溶剤Bは、エラストマーとの親和性に優れるため、有機溶剤Aの作用により解繊されたバルク構造体の間隙にエラストマーを侵入させるように機能し、その結果、エラストマー組成物中、及び得られる成形体中において、CNTをエラストマー中に一層良好に分散させることができる。
-有機溶剤Bの含有割合-
 そして、混合溶剤中における有機溶剤Bの含有割合は、混合溶剤が「エラストマーの体積膨潤度」及び「相対エネルギー差(REDCNT)」に関して記載した上記の条件を満たす限りにおいて特に限定されない。例えば、混合溶剤中における有機溶剤Bの含有割合は、混合溶剤(有機溶剤A及び有機溶剤B)の全体積を1として、体積分率が0.10以上であることが好ましく、0.20以上であることがより好ましく、0.60以下であることが好ましく、0.50以下であることがより好ましい。混合溶剤中における有機溶剤Bの含有割合が上記範囲内であれば、エラストマー組成物中、及び得られる成形体中において、CNTをエラストマー中に一層良好に分散させることができる。
<<混合溶剤の配合割合>>
 エラストマー100質量部当たりの混合溶剤の含有割合は、1質量部以上60質量部未満である必要があり、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましく、55質量部以下であることが好ましく、50質量部以下であることがより好ましい。エラストマー100質量部当たりの混合溶剤の含有割合が上記範囲内であれば、エラストマー組成物中、及び得られる成形体中において、CNTをエラストマー中に一層良好に分散させることができる。
<架橋剤>
 本発明のエラストマー組成物が任意に含み得る架橋剤としては、特に限定されないが、上記エラストマー組成物中のエラストマーを架橋可能な既知の架橋剤を用いることができる。このような架橋剤としては、例えば、硫黄系架橋剤、パーオキサイド系架橋剤、ビスフェノール系架橋剤、ジアミン系架橋剤が挙げられる。
 なお、架橋剤は、1種単独で、又は、2種以上を混合して用いることができる。
 またエラストマー組成物中の架橋剤の含有量は、特に限定されず、既知のエラストマー組成物中において通常使用する量とすることができる。
<添加剤>
 添加剤としては、特に限定されることなく、分散剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料などを挙げることができる。
 より具体的な添加剤としては、例えば、カーボンブラック、シリカ、タルク、硫酸バリウム、炭酸カルシウム、クレー、酸化マグネシウム、水酸化カルシウムなどが挙げられる。
 なお、添加剤は、1種単独で、又は、2種以上を混合して用いることができる。
 またエラストマー組成物中の添加剤の含有量は、特に限定されず、既知のエラストマー組成物中において通常使用する量とすることができる。例えば、エラストマー組成物中の添加剤の含有量は、エラストマー100質量部当たり5質量部以上40質量部以下とすることができる。
(エラストマー組成物の製造方法)
 上述した本発明のエラストマー組成物は、例えば、本発明のエラストマー組成物の製造方法を用いて調製することができる。本発明のエラストマーの製造方法は、CNT、エラストマー、有機溶剤A、及び有機溶剤Bを含む材料を混合分散する工程を含む。なお、本発明のエラストマー組成物の製造方法は、上述した工程以外の工程を含んでいてもよい。例えば、本発明の製造方法は、上記の工程に先立って、有機溶剤A及び有機溶剤Bを所定の混合比率で混合して溶媒としての混合溶剤を準備する準備工程を含んでいてもよい。
 そして、本発明のエラストマー組成物の製造方法によれば、エラストマー、CNT、有機溶剤A、及び有機溶剤Bを含む材料に対して混合分散処理を施しているので、CNTのバンドル構造体を解繊して、エラストマー中にCNTを良好に分散させることができる。さらに、有機溶剤A及び有機溶剤Bの沸点がともに200℃以下であるため、本発明に従って得られたエラストマー組成物を用いて成形体を製造する際にこれらを除去することが比較的容易であるため、成形体の製造容易性に優れている。
 混合分散する工程では、CNT、エラストマー、有機溶剤A、及び有機溶剤Bを含む材料を混合分散してエラストマー組成物を得る。混合分散する工程における添加順序は、最終的にCNT、エラストマー、有機溶剤A、及び有機溶剤Bを含むエラストマー組成物が得られる限りにおいて特に限定されない。例えば、混合分散する工程は、CNTと、有機溶剤A及び有機溶剤Bと、を混合して混合物を得るステップと、得られた混合物とエラストマーとを混合分散するステップと、を含むことができる。あるいは、例えば混合分散する工程は、使用するCNTを所定の比率(例えば、50:50)に二分して、一方のCNTを有機溶剤Aと混合して混合物Aとするステップと、他方のCNTを有機溶剤Bと混合して混合物Bとするステップと、これらの混合物A及び混合物Bをエラストマーに添加して混練りするステップとを含んでもよい。このように、エラストマーと混合することに先立って、CNTと溶剤とを混合することで、CNTに溶剤が含浸し、CNTのバンドル構造体が解繊され易くなり、混合分散した際に、CNTのバンドル構造体を良好に解繊しつつ、エラストマー中にCNTを更に良好に分散させることができる。
 なお、混合分散する工程では、エラストマー組成物及び成形体の用途に応じて、任意に、材料中に、上述した有機溶剤A及びBとは属性の異なるその他の有機溶剤C、架橋剤、及び/又は添加剤を配合してもよい。
 ここで、CNTと有機溶剤との混合は、特に限定されることなく、例えば、有機溶剤中へのCNTの浸漬、有機溶剤のCNTへの含浸、CNTへの有機溶剤の塗布、CNTへの有機溶剤のスプレー噴霧などの任意の混合方法を用いて行うことができる。中でも、エラストマー組成物中においてCNTを更に良好に分散させ得るようにする観点からは、有機溶剤をCNTに含浸させることによりCNTと有機溶剤とを混合することが好ましい。
 なお、混合分散する工程において有機溶剤をCNTに含浸させる時間は、任意の時間とすることができるが、エラストマー組成物中においてCNTを更に良好に分散させ得るようにする観点からは、少なくとも1時間が好ましく、少なくとも10時間がより好ましい。
 また、有機溶剤をCNTに含浸させる際の温度は、特に限定されることなく、例えば、有機溶剤のその圧力における凝固点以上沸点未満の温度とすることができる。なお、有機溶剤の凝固点及び沸点は、例えば、示差走査熱量測定から決定することができる。
 そして、有機溶剤のCNTへの含浸は、特に限定されないが、通常は常圧(1atm)下で行われる。
 混合分散する工程における分散方法としてはエラストマー中にCNTを分散させることができれば特に限定されず、既知の分散処理を採用することができる。このような分散処理としては、例えば、ずり応力による分散処理、衝突エネルギーによる分散処理、キャビテーション効果が得られる分散処理が挙げられる。
 ずり応力による分散処理に使用し得る装置としては、2本ロールミルや3本ロールミル等が挙げられる。
 衝突エネルギーによる分散処理に使用し得る装置としては、ビーズミル、ローター/ステーター型分散機等が挙げられる。
 キャビテーション効果が得られる分散処理に使用し得る装置としては、ジェットミル、超音波分散機等が挙げられる。
 上記分散処理の条件は特に限定されず、例えば上述した装置における通常の分散条件の範囲内で適宜設定することができる。
(架橋物)
 本発明の架橋物は、上述した本発明のエラストマー組成物を架橋してなる。本発明の架橋物は、本発明のエラストマー組成物を、例えば加熱することにより架橋反応を行って形成することができる。架橋温度は、通常100~250℃、好ましくは130~220℃、より好ましくは150~200℃であり、架橋時間は、通常0.1分~10時間、好ましくは1分~5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、及び熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。
(成形体)
 本発明の成形体は、上述した本発明の架橋物を含む。ここで、本発明の成形体は、特に限定されず、例えばベルト、ホース、ガスケット、パッキン、オイルシールである。
 そして、本発明の成形体は、CNTがエラストマー中に良好に分散しているため、導電性、熱伝導性、及び強度などの特性に優れる。
 なお、エラストマー組成物の架橋及び成形は、特に限定されることなく、例えば、射出成形、押出成形、プレス成形、ロール成形などの任意の成形方法を用いてエラストマー組成物を成形する際又は成形した後に(架橋物)の項目で説明した架橋反応を実施して、架橋物の成形体を製造することができる。
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例及び比較例において、各種の測定及び評価は以下のようにして実施した。
<エラストマーの体積膨潤度>
 3~4mm角の大きさにカットしたエラストマーとしてのフッ化ビニリデン系ゴム(ケマーズ社製、バイトン(登録商標)GBL600S)0.37gを測り取り、セル内に移した。この質量を上記エラストマーの比重:1.84g/cm3で除した値0.2cm3を膨潤前のゴム体積(V0)とした。セルに実施例及び比較例で用いた各組成の混合溶剤3.6mLを加え、室温で1か月放置し、エラストマーを膨潤させた。セル内部の膨潤体の高さを測定し、膨潤体の体積Vを次式(1)より算出した。
 V=セルの光路幅×セルの光路長×膨潤体高さ=1×1×膨潤体高さ(cm3)・・(1)
 そして、各混合溶剤中での膨潤体体積Vを膨潤前のゴム体積V0で除し、膨潤度V/V0×100(%)を算出した。
<相対エネルギー差(RED)>
 上述した手順(1)~(3)に従って、各種の相対エネルギー差の値を算出した。
<混練の可否>
 各実施例、比較例において混練が実施できた場合をAと評価し、エラストマーがロールに巻き付けることが出来ないなどにより実施できなかった場合をBと評価した。
<CNTの分散性>
 エラストマー組成物中におけるCNTの分散状態は、下記のようにマスターバッチの表面抵抗率を測定することで評価した。
 低抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ-GP」)を用いて、実施例、比較例で製造したマスターバッチの表面抵抗率を測定した。混練時間に伴って表面抵抗率が低下してほぼ一定に達したときの時間を「抵抗値が一定になるまでの混錬時間」、到達した最小表面抵抗率を「表面抵抗値」とした。「抵抗値が一定になるまでの混錬時間」が短いほど、CNTがエラストマー組成物中において良好に分散するために要する時間が短いことを意味する。また、「表面抵抗値」の値が小さいほど、エラストマー組成物中においてCNTが良好に分散しており、ひいては、得られる成形体中においてもCNTが良好に分散した状態となることを意味する。
<成形体の乾燥条件>
 成形体の製造容易性に寄与しうる成形体の乾燥条件の評価に際しては、エラストマー組成物に含有される有機溶剤の沸点のうち、最も高い沸点が200℃を超える場合に、200℃超の乾燥条件を適用する必要があり「過酷である」と判断した。
 A:200℃以下の乾燥条件で乾燥可能であり製造効率に優れる。
 B:200℃超の乾燥条件が必要となり過酷である。
(実施例1)
<準備工程>
 有機溶剤Aとしてのp-クロロトルエン(p-CT)38.5質量部(36体積部)に、有機溶剤BとしてのN,N-ジメチルアセトアミド(DMAc)11.5質量部(12.2体積部)を加え、体積比75:25のp-クロロトルエン/N,N-ジメチルアセトアミド混合溶液(混合溶剤)を調製した。
<混合分散する工程>
 次に、得られた混合溶剤40質量部をカーボンナノチューブ(日本ゼオン社製「ZEONANO SG101」、平均直径:3.5nm、BET比表面積:1428m/g)4質量部に加えた後、40℃で15時間保ち十分に含侵させ、混合物としてのカーボンナノチューブ湿潤体を調製した。
 上記に従って得られた混合物としての得られたカーボンナノチューブ湿潤体と、エラストマーとしてのフッ化ビニリデン系ゴム(ケマーズ社製、バイトン(登録商標)GBL600S)100質量部とを、二本ロールを用いて室温で混錬することにより分散処理して、エラストマー組成物としての、マスターバッチを調製した。
 得られたマスターバッチについて上記に従って評価を実施した。結果を表1に示す。
(実施例2)
 準備工程において、有機溶剤Bとして、N,N-ジメチルアセトアミド(DMAc)に代えて酢酸アミル(AmAc)を用い、有機溶剤A:有機溶剤Bの体積比が55:45になるように配合量を調節し、さらに、混合分散する工程において、エラストマー100質量部あたりの混合溶剤の配合量が40質量部となるように、混合溶剤の添加量を調節した以外は、実施例1と同様の操作及び評価を実施した。結果を表1に示す。
(実施例3)
 準備工程において、有機溶剤Aとして、p-クロロトルエン(p-CT)に代えて、o-クロロトルエン(o-CT)を用い、有機溶剤A:有機溶剤Bの体積比が70:30になるように配合量を調節し、さらに、混合分散する工程において、エラストマー100質量部あたりの混合溶剤の配合量が40質量部となるように、混合溶剤の添加量を調節した以外は、実施例1と同様の操作及び評価を実施した。結果を表1に示す。
(実施例4)
 準備工程において、有機溶剤Aとして、p-クロロトルエン(p-CT)に代えて、1,2,4-トリメチルベンゼン(TMB)を用い、有機溶剤A:有機溶剤Bの体積比が70:30になるように配合量を調節し、さらに、混合分散する工程において、エラストマー100質量部あたりの混合溶剤の配合量が40質量部となるように、混合溶剤の添加量を調節した以外は、実施例1と同様の操作及び評価を実施した。結果を表1に示す。
 なお、本例では、上記に従って体積膨潤度を評価したところ、エラストマーが混合溶剤に対して溶解した状態となっていることを確認した。
(比較例1)
 準備工程において、有機溶剤A:有機溶剤Bの体積比が30:70になるように配合量を調節し、さらに、混合分散する工程において、エラストマー100質量部あたりの混合溶剤の配合量が40質量部となるように、混合溶剤の添加量を調節した以外は、実施例1と同様の操作及び評価を実施した。結果を表1に示す。
 なお、本例では、上記に従って体積膨潤度を評価したところ、エラストマーが混合溶剤に対して溶解した状態となっていることを確認した。
(比較例2)
 準備工程において、有機溶剤Aとして、p-クロロトルエン(p-CT)に代えて、p-ブロモトルエン(p-BT)を用い、有機溶剤A:有機溶剤Bの体積比が99:1になるように配合量を調節した以外は、実施例1と同様の操作及び評価を試みた。分散性及び分散容易性については評価不能であった。結果を表1に示す。
 なお、本例では、上記に従って体積膨潤度を評価したところ、まったく膨潤していないことを確認した(体積膨潤度:100%)。
(比較例3)
 混合分散する工程において、エラストマー100質量部あたりの混合溶剤の配合量が60質量部となるように、混合溶剤の添加量を調節した以外は、実施例1と同様の操作をした。ただし、評価に関しては、分散容易性については評価不能であり、溶剤不使用のため成形体の乾燥に関する評価は実施しなかった。結果を表1に示す。
(比較例4)
 準備工程において、有機溶剤Aとして、p-クロロトルエン(p-CT)に代えて、p-トルイル酸メチル(MMB)を用い、有機溶剤Bに相当する成分を配合しなかった。さらに、混合分散する工程において、エラストマー100質量部あたりの有機溶剤Aの配合量が40質量部となるように、有機溶剤Aの添加量を調節した以外は、実施例1と同様の操作及び評価を実施した。結果を表1に示す。
(比較例5)
 準備工程を実施することなく、また、溶剤を使用することなくCNT4質量部をエラストマー100質量部に対して添加し、二本ロールを用いて室温で混錬することにより分散処理して、マスターバッチを調製した。
 得られたマスターバッチについて実施例1と同様の評価を試みた。分散性及び分散容易性については評価不能であった。結果を表1に示す。
 なお、表1中、
 「p-CT」はp-クロロトルエンを、
 「o-CT」はo-クロロトルエンを、
 「MMB」はp-トルイル酸メチルを、
 「p-BT」はp-ブロモトルエンを、
 「DMAc」はN,N-ジメチルアセトアミドを、
 「AmAc」は酢酸アミルを、     
 「TMB」は1,2,4-トリメチルベンゼンを、
それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4では、比較例1~5よりも、カーボンナノチューブがエラストマー中に容易且つ良好に分散してなる、製造容易性に優れる成形体を形成し得たことが分かる。
 本発明によれば、カーボンナノチューブがエラストマー中に容易且つ良好に分散してなる、製造容易性に優れる成形体を形成し得るエラストマー組成物、及びその製造方法を提供することができる。
 また、本発明によれば、カーボンナノチューブがエラストマー中に良好に分散してなる、製造容易性に優れる架橋物及び成形体を提供することができる。

Claims (9)

  1.  カーボンナノチューブと、エラストマーと、溶媒と、を含むエラストマー組成物であって、
     前記溶媒は、前記カーボンナノチューブと親和性の高い沸点が200℃以下である有機溶剤Aと、前記エラストマーと親和性の高い沸点が200℃以下である有機溶剤Bとを含み、
     前記エラストマー100質量部当たりの前記溶媒の含有割合が1質量部以上60質量部未満であり、
     前記溶媒中での前記エラストマーの体積膨潤度が150%以上であり、
     前記カーボンナノチューブと前記溶媒のハンセン溶解度パラメータの相対エネルギー差(REDCNT)が1.5以下である、
    エラストマー組成物。
  2.  前記エラストマーと前記溶媒のハンセン溶解度パラメータの相対エネルギー差(RED)が2.0以下である、請求項1に記載のエラストマー組成物。
  3.  前記エラストマー100質量部当たり、前記カーボンナノチューブを0.1質量部以上10質量部以下含む、請求項1又は2に記載のエラストマー組成物。
  4.  前記カーボンナノチューブは、単層カーボンナノチューブを含む、請求項1~3のいずれかに記載のエラストマー組成物。
  5.  架橋剤をさらに含む、請求項1~4のいずれかに記載のエラストマー組成物。
  6.  請求項1~5のいずれかに記載のエラストマー組成物を製造する方法であって、
     前記カーボンナノチューブと、前記エラストマーと、前記有機溶剤Aと、前記有機溶剤Bと、を含む材料を混合分散する工程を含む、エラストマー組成物の製造方法。
  7.  請求項6に記載のエラストマー組成物の製造方法であって、
     前記混合分散する工程は、
     前記カーボンナノチューブと、前記有機溶剤A及び前記有機溶剤Bと、を混合して混合物を得るステップと、
     得られた前記混合物と前記エラストマーとを混合分散するステップと、
    を含む、エラストマー組成物の製造方法。
  8.  請求項1~5に記載のエラストマー組成物を架橋してなる架橋物。
  9.  請求項8に記載の架橋物を含む、成形体。
PCT/JP2022/016296 2021-03-30 2022-03-30 エラストマー組成物及びその製造方法、架橋物、並びに成形体 WO2022210974A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511529A JPWO2022210974A1 (ja) 2021-03-30 2022-03-30
US18/549,167 US20240158605A1 (en) 2021-03-30 2022-03-30 Elastomer composition and method of producing same, cross-linked material, and shaped object
CN202280018979.8A CN116964144A (zh) 2021-03-30 2022-03-30 弹性体组合物及其制造方法、交联物、以及成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058330 2021-03-30
JP2021-058330 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210974A1 true WO2022210974A1 (ja) 2022-10-06

Family

ID=83459627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016296 WO2022210974A1 (ja) 2021-03-30 2022-03-30 エラストマー組成物及びその製造方法、架橋物、並びに成形体

Country Status (4)

Country Link
US (1) US20240158605A1 (ja)
JP (1) JPWO2022210974A1 (ja)
CN (1) CN116964144A (ja)
WO (1) WO2022210974A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485254B1 (ja) 2022-11-29 2024-05-16 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
JP7491486B1 (ja) 2022-11-29 2024-05-28 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
WO2024116564A1 (ja) * 2022-11-29 2024-06-06 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
WO2024116563A1 (ja) * 2022-11-29 2024-06-06 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083249A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology ナノカーボン配合ゴム組成物分散溶液の製造方法
CN1775839A (zh) * 2005-12-15 2006-05-24 上海交通大学 非酸化处理的碳纳米管/橡胶纳米复合材料制备方法
JP2007063552A (ja) * 2005-08-04 2007-03-15 Tokai Rubber Ind Ltd 導電性エラストマー組成物およびそれを用いた導電性部材
JP2017014314A (ja) * 2015-06-26 2017-01-19 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ及びエラストマー混合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083249A (ja) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology ナノカーボン配合ゴム組成物分散溶液の製造方法
JP2007063552A (ja) * 2005-08-04 2007-03-15 Tokai Rubber Ind Ltd 導電性エラストマー組成物およびそれを用いた導電性部材
CN1775839A (zh) * 2005-12-15 2006-05-24 上海交通大学 非酸化处理的碳纳米管/橡胶纳米复合材料制备方法
JP2017014314A (ja) * 2015-06-26 2017-01-19 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ及びエラストマー混合物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485254B1 (ja) 2022-11-29 2024-05-16 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
JP7491486B1 (ja) 2022-11-29 2024-05-28 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
WO2024116564A1 (ja) * 2022-11-29 2024-06-06 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法
WO2024116563A1 (ja) * 2022-11-29 2024-06-06 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及び成形品の製造方法

Also Published As

Publication number Publication date
JPWO2022210974A1 (ja) 2022-10-06
CN116964144A (zh) 2023-10-27
US20240158605A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2022210974A1 (ja) エラストマー組成物及びその製造方法、架橋物、並びに成形体
EP3441426B1 (en) Fluorinated elastomer composition and molded article
WO2016136275A1 (ja) シリコーンゴム組成物および加硫物
US11161946B2 (en) Method of producing composite resin material and method of producing shaped product
JP2019199583A (ja) 複合材料の製造方法
JP2018203914A (ja) 複合材料の製造方法
JP2017186476A (ja) 含フッ素エラストマー組成物の製造方法およびオイルシール部材の製造方法
WO2020195799A1 (ja) エラストマー組成物および成形体
WO2020241601A1 (ja) 複合材料の評価方法および製造方法、並びに、複合材料
WO2021172555A1 (ja) エラストマー組成物及びその製造方法、並びに架橋物及び成形体
JP7155567B2 (ja) 成形体
JP7151760B2 (ja) ゴム組成物の製造方法
CN116057122B (zh) 弹性体组合物、弹性体组合物的制造方法、交联物、以及成型体
JP2019199584A (ja) 複合材料の製造方法および架橋物の製造方法
JP7276319B2 (ja) 複合材料の製造方法
JP7173023B2 (ja) ゴム組成物
JP6164067B2 (ja) カーボンナノチューブ及びその分散液、並びに自立膜及び複合材料
JP7513024B2 (ja) 複合材料の評価方法および製造方法、並びに、複合材料
JP2021147474A (ja) ゴム組成物の製造方法
JP7243710B2 (ja) 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法
WO2023090403A1 (ja) カーボンナノチューブ分散液、炭素膜の製造方法、エラストマー混合液、複合材料の製造方法、及びエラストマー成形体の製造方法
JP2024091819A (ja) 複合材料
WO2023054716A1 (ja) フッ素ゴム組成物及び成形体
EP3778752A1 (en) Uncrosslinked elastomer composition and crosslinked product of same
WO2023162899A1 (ja) 複合樹脂粒子の製造方法、帯電防止用組成物、及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511529

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280018979.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18549167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781184

Country of ref document: EP

Kind code of ref document: A1