WO2022210591A1 - 紡錘形の炭素繊維含有集合体及びその製造方法、並びに、再生炭素繊維を含有する炭素繊維強化熱可塑性樹脂ペレット及びその製造方法 - Google Patents
紡錘形の炭素繊維含有集合体及びその製造方法、並びに、再生炭素繊維を含有する炭素繊維強化熱可塑性樹脂ペレット及びその製造方法 Download PDFInfo
- Publication number
- WO2022210591A1 WO2022210591A1 PCT/JP2022/015146 JP2022015146W WO2022210591A1 WO 2022210591 A1 WO2022210591 A1 WO 2022210591A1 JP 2022015146 W JP2022015146 W JP 2022015146W WO 2022210591 A1 WO2022210591 A1 WO 2022210591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- fibers
- aggregate
- carbon
- recycled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/02—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
- B29B7/06—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
- B29B7/10—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
- B29B7/12—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
- B29B7/16—Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft with paddles or arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/885—Adding charges, i.e. additives with means for treating, e.g. milling, the charges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
- B29B7/905—Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/66—Recycling the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/26—Scrap or recycled material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
Definitions
- the present disclosure relates to a spindle-shaped carbon fiber-containing aggregate and a method for producing the same (“Invention 1").
- the present disclosure relates to a spindle-shaped carbon fiber aggregate that is produced from recycled carbon fibers (recycled carbon fibers) and has excellent feedability, and a method for producing the same (“Invention 1a”).
- the present disclosure also relates to a spindle-shaped aggregate of thermoplastic resin fibers and carbon fibers, and a method for producing the same ("Invention 1b").
- the present disclosure also relates to carbon fiber reinforced thermoplastic resin pellets containing recycled carbon fibers manufactured using waste materials of carbon fiber reinforced resin moldings ("Invention 2").
- Carbon fibers are excellent in specific strength and specific modulus and are lightweight, and are therefore used as reinforcing fibers for thermosetting resins and thermoplastic resins (especially thermoplastic resins).
- Carbon fiber reinforced resin composite materials or carbon fiber reinforced plastics, CFRP are used not only for sports and general industrial applications, but also for a wide range of applications such as aerospace applications and automobile applications.
- carbon fibers which are raw materials for carbon fiber-containing products such as carbon fiber reinforced resin composite materials
- methods of granulating particulate carbon fiber aggregates from carbon fibers and sizing agents have been studied.
- Such a carbon fiber aggregate can exhibit relatively good feedability (feedability) when producing a carbon fiber-containing product by extrusion molding or the like, compared to the case where carbon fibers are used as they are.
- Patent Document 1 describes a method of producing carbon fiber pellets by contacting agglomerates of carbon fibers bundled with a sizing agent to an inclined rotating surface.
- Patent Document 2 describes a method for producing carbon fiber pellets from recycled carbon fibers using a mixer with an inclined rotating vessel.
- Patent Documents 3 and 4 describe a method for producing a columnar carbon fiber aggregate from recycled carbon fibers by a wet extrusion granulation method.
- Carbon fiber reinforced resin composite material is carbon fiber reinforced thermoplastic resin pellets.
- Carbon fiber reinforced thermoplastic resin pellets are produced by cutting (cutting) resin strands in which continuous carbon fibers are coated with thermoplastic resin, and discontinuous carbon fibers are kneaded with thermoplastic resin.
- Short-fiber-reinforced thermoplastic resin pellets are widely used as a method for producing them at low cost, although they are inferior in mechanical properties to long-fiber-reinforced thermoplastic resin pellets.
- Patent Documents 5 and 6 describe a method of producing a recycled carbon fiber-containing composite from carbon fibers by melt-kneading.
- the carbon fibers used in this method are coated with residual carbon, which is recovered from waste materials of carbon fiber reinforced resin composite materials by a thermal decomposition method and carbonized as a matrix component.
- Patent Document 7 describes a carbon fiber assembly that has improved feedability by adding a fiber treatment agent to recycled carbon fibers recovered from carbon fiber reinforced composite materials and forming them into a columnar shape with an extrusion granulator.
- the object of Invention 1 according to the present disclosure is to provide a carbon fiber assembly that exhibits improved feedability.
- the object of invention 1a according to the present disclosure is to provide a carbon fiber aggregate containing recycled carbon fibers and exhibiting improved feedability.
- thermoplastic resin is supplied to a kneader or the like in addition to the carbon fiber aggregate (primary intermediate material). Kneading is performed to produce pellets (secondary intermediate material) containing carbon fibers and thermoplastic resin. Then, the pellets are supplied to an injection molding machine or the like to manufacture a carbon fiber-containing molded product.
- the carbon fiber sometimes broke when manufacturing the secondary intermediate material.
- the thermoplastic resin can be added to the carbon fiber aggregate in advance, the kneading process for manufacturing the secondary intermediate material can be omitted, and the carbon fiber and thermoplastic resin aggregate can be directly used to form a molded product.
- the object of invention 1b according to the present disclosure is to provide an aggregate of carbon fibers and a thermoplastic resin that is excellent in handleability and can be directly used in the production of carbon fiber-containing moldings, and a method for producing the same.
- Methods of decomposing used carbon fiber reinforced resin composite materials to obtain recycled carbon fibers include a method of decomposing the resin component by heat treatment (thermal decomposition method), a method of dissolving and removing using a solvent, and an electrolysis method. Among the methods, etc., a widely used method is a method of heat treatment to decompose.
- thermoplastic resin pellets were produced using conventional recycled carbon fibers obtained by heat treatment and decomposition, it was difficult to demonstrate sufficient reinforcement performance.
- Invention 2 provides recycled carbon fiber-reinforced thermoplastic resin pellets that can be used for manufacturing molded articles having excellent mechanical strength, using recycled carbon fibers obtained by a method of heat treatment and decomposition as a raw material. intended to
- ⁇ Aspect A6> According to any one of aspects A1 to A5, wherein the average length of the carbon fiber aggregate is 1.2 to 4.0 times the average length of the recycled carbon fibers contained in the carbon fiber aggregate. described method.
- ⁇ Aspect A7> The method according to any one of aspects A1 to A6, wherein the rotating body is a stirring blade.
- ⁇ Aspect A8> A method according to any one of aspects A1 to A7, wherein the preparation of said precursor is carried out in a non-inclined vessel.
- Mode A9 wherein the spindle-shaped carbon fiber aggregate has an average length in the long axis direction of 1.2 to 4.0 times the average length of the recycled carbon fibers contained in the spindle-shaped carbon fiber aggregate.
- the carbon fiber aggregate according to .
- the recycled carbon fiber contains a residual carbon component, The content of the residual carbon component is more than 0% by weight and 5.0% by weight or less with respect to the recycled carbon fiber.
- ⁇ Aspect B1> A spindle-shaped aggregate of thermoplastic resin fibers and carbon fibers comprising carbon fibers, thermoplastic resin fibers, and a binder, An aggregate in which the carbon fibers and the thermoplastic resin fibers contained in the aggregate are oriented along the longitudinal direction of the aggregate.
- ⁇ Aspect B2> The aggregate according to aspect B1, wherein the aggregate has an average length of 1.5 mm to 60 mm.
- thermoplastic resin fibers are selected from polyolefin resin fibers, polyester resin fibers, polyamide resin fibers, polyetherketone resin fibers, polycarbonate resin fibers, phenoxy resin fibers, polyphenylene sulfide resin fibers, and mixtures thereof.
- ⁇ Aspect B10> providing a mixture comprising at least carbon fibers, thermoplastic resin fibers, and a binder-containing liquid; producing a spindle-shaped precursor by tumbling the mixture in a container and drying the precursor; including, A method for producing an aggregate according to any one of aspects B1 to B9.
- ⁇ Aspect B11> The method of aspect B10, wherein the spindle-shaped precursor is produced by tumbling the mixture in a vessel with a clearance between an inner wall of the vessel and a rotating body within the vessel.
- the carbon fibers comprise recycled carbon fibers.
- ⁇ Aspect B13> The method of aspect B12, wherein the carbon fibers are recycled carbon fibers.
- ⁇ Aspect B14> The method according to aspect B12 or B13, comprising decomposing a plastic component contained in a carbon fiber-containing plastic product by a semiconductor thermal activation method to produce the recycled carbon fiber.
- a carbon fiber reinforced thermoplastic resin pellet containing recycled carbon fiber and a thermoplastic resin The recycled carbon fiber has a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more, and the recycled carbon fiber contains a residual carbon component, and the content of the residual carbon component is more than 0% by weight and 5.0% by weight or less with respect to the recycled carbon fiber;
- thermoplastic resin is selected from polyolefin resins, polyester resins, polyamide resins, polyetherketone resins, polycarbonate resins, phenoxy resins and polyphenylene sulfide resins, and mixtures thereof.
- thermoplastic resin pellets are selected from polyolefin resins, polyester resins, polyamide resins, polyetherketone resins, polycarbonate resins, phenoxy resins and polyphenylene sulfide resins, and mixtures thereof.
- Thermoplastic resin pellets ⁇ Aspect C4> The carbon fiber-reinforced thermoplastic resin pellet according to any one of aspects C1 to C3, which has a longitudinal length of 3 mm or more and 10 mm or less.
- ⁇ Aspect C5> The carbon fiber-reinforced thermoplastic resin pellet according to any one of aspects C1 to C4, wherein the residual average fiber length of the recycled carbon fiber contained in the carbon fiber-reinforced thermoplastic resin pellet is 300 ⁇ m or more.
- ⁇ Aspect C6> Carbon fiber reinforcement according to any one of aspects C1 to C5, characterized in that it is used for producing molded articles having a tensile strength of 90 MPa or more, a flexural strength of 140 MPa or more and a flexural modulus of 7100 MPa or more. Thermoplastic resin pellets.
- Invention 1 of the present disclosure it is possible to provide a carbon fiber aggregate exhibiting improved feedability.
- invention 1a According to invention 1a according to the present disclosure, it is possible to provide a carbon fiber assembly that contains recycled carbon fibers and exhibits improved feedability.
- invention 1b According to invention 1b according to the present disclosure, it is possible to provide an aggregate of carbon fibers and a thermoplastic resin that is excellent in handleability and can be directly used in the production of carbon fiber-containing moldings, and a method for producing the same.
- thermoplastic resin pellets that can be used for manufacturing molded articles having excellent mechanical properties using recycled carbon fibers obtained by a method of heat treatment and decomposition as raw materials. can be provided.
- thermoplastic resin pellet of Invention 2 manufactured from carbon fiber-reinforced thermoplastic resin pellets manufactured using virgin carbon fiber (ordinary carbon fiber that is not recycled carbon fiber) as a raw material Molded articles can be produced that have mechanical strength equivalent to that of molded articles.
- FIG. 1 is a schematic diagram of one embodiment of an agitating granulator that can be used in the present disclosure
- FIG. FIG. 2 is a conceptual cross-sectional view for explaining the disassembly method according to Invention 2 of the present disclosure.
- FIG. 3 is a schematic cross-sectional view schematically showing one embodiment of the decomposition method according to Invention 2 of the present disclosure.
- FIG. 4 is a photograph of a plurality of carbon fiber aggregates according to Example A1.
- FIG. 5 is a photograph of one carbon fiber aggregate according to Example A1.
- FIG. 6 is a photograph of the carbon fiber aggregate obtained in Comparative Example A2.
- FIG. 7 is a photograph of a plurality of aggregates according to Example B2.
- FIG. 8 is a photograph of one assembly according to Example B2.
- FIG. 9 is a photograph showing the resulting material of Comparative Example B1.
- FIG. 10 is a photograph of the CFRP plate before heat treatment.
- FIG. 11 is a photograph of the CFRP plate after undergoing the treatment according to Reference Example 4.
- FIG. 12 is a photograph of the CFRP plate after undergoing the treatment according to Reference Comparative Example 2.
- a method for manufacturing a spindle-shaped aggregate according to Invention 1 of the present disclosure includes: providing a mixture comprising at least carbon fibers and a binder-containing liquid; producing a spindle-shaped precursor by tumbling the mixture in a vessel; drying the precursor; including.
- invention 1 of the present disclosure is It contains a spindle-shaped assembly containing carbon fibers and a binder.
- the aggregate according to invention 1 of the present disclosure contains carbon fibers and a binder and has a spindle shape.
- the aggregate containing carbon fibers has a spindle shape, it is considered that the flow characteristics of the carbon fiber aggregate are improved as a result of the reduced contact resistance, and as a result, the feedability can be improved.
- the spindle shape means a shape that is thick at the center and tapers toward both ends.
- the spindle-shaped aggregate (spindle-shaped carbon fiber-containing aggregate) according to Invention 1 of the present disclosure is particularly a spindle-shaped carbon fiber aggregate, or a spindle-shaped aggregate of thermoplastic resin fibers and carbon fibers. .
- a method for manufacturing a carbon fiber aggregate according to invention 1a of the present disclosure includes: providing a mixture comprising at least recycled carbon fibers and a binder-containing liquid (providing step); Producing a spindle-shaped precursor by rolling the mixture in a container with a clearance between the inner wall of the container and a rotating body in the container (granulation step), and drying the precursor ( drying process), including
- the recycled carbon fiber contains a residual carbon component, the content of the residual carbon component is more than 0% by weight and 5.0% by weight or less with respect to the recycled carbon fiber, and the average length of the recycled carbon fiber is 1 mm not less than 30 mm, characterized by
- a feeder when molding carbon fiber-containing products, can be used to supply carbon fibers to an extruder or the like, and in particular, a fixed amount of carbon fibers can be supplied using a fixed amount feeder.
- a stable supply of carbon fibers is important for stably producing molded products with high accuracy.
- recycled carbon fibers are usually obtained by pyrolyzing a carbon fiber reinforced resin composite material, they have a certain amount or more of residual carbon derived from the resin material, so that the fibers are relatively strong to each other.
- the stress applied by the granulator does not easily loosen this bonding state, so the binder-containing liquid cannot penetrate between the fibers, As a result, it is considered impossible to obtain a carbon fiber aggregate having a spindle shape.
- recycled carbon fibers having a residual carbon content of 5% by weight or less are used as raw materials for carbon fiber aggregates. While not intending to be bound by theory, in such recycled carbon fibers, the fibers are relatively weakly bonded (or not bonded) to each other such that under stress applied from a granulator or the like, binder-containing It is believed that the liquid easily permeates between the fibers. In this case, a spindle-shaped carbon fiber aggregate having excellent flow characteristics can be obtained.
- the length of the recycled carbon fiber which is the raw material
- the average length of the recycled carbon fibers is 1 mm or more and less than 30 mm, so it is believed that the uniform orientation of the fibers is promoted.
- a carbon fiber aggregate having excellent feedability can be obtained. Since the carbon fiber aggregates produced by the production method according to invention 1a of the present disclosure have a spindle-shaped particle shape with good flow characteristics, for example, when supplied to a quantitative feeder, it does not block the quantitative feeder. , can be stably and quantitatively supplied.
- the spindle-shaped carbon fiber aggregate produced by the method according to invention 1a of the present disclosure is an aggregate composed of at least recycled carbon fibers and a binder.
- the carbon fiber aggregate consists essentially of recycled carbon fibers and a binder.
- the recycled carbon fibers are bound together by a binder.
- the amount of binder in the carbon fiber aggregate is preferably 0.1 wt% to 10 wt%, particularly 0.5 wt% to 8 wt%, or 1 wt% relative to the carbon fiber aggregate. may be ⁇ 6% by weight.
- the carbon fiber aggregate obtained by the method according to invention 1a of the present disclosure has a spindle shape.
- a carbon fiber aggregate having a spindle shape exhibits good feedability.
- carbon fiber aggregates having a spindle shape have a relatively low contact resistance and therefore can flow relatively smoothly through the feeder without clogging the feeder.
- the recycled carbon fibers are preferably oriented along the long axis direction of the spindle shape. This orientation of the recycled carbon fibers does not necessarily have to be the same (parallel) to the longitudinal direction of the carbon fiber assembly, but is preferably substantially parallel. 45° or less, 40° or less, 30° or less, 20° or less, 10° or less, 5° or less, 2° or less, 1° or less with respect to the longitudinal direction of the carbon fiber aggregate , 0.5° or less, or 0.1° or less.
- the average extending direction of the recycled carbon fibers with respect to the long axis direction of the carbon fiber assembly is preferably close to 0°, and the lower limit is not particularly limited, but for example, it may be more than 0° or 0.01° or more. good.
- the average extending direction of the fibers in the carbon fiber aggregate can be determined using a digital camera, an optical microscope, or the like in a cross section parallel to the longitudinal direction of the carbon fiber aggregate.
- the average length of the carbon fiber aggregates may be 1.5 mm to 60 mm.
- the average length of the carbon fiber aggregates is 1.8 mm or more, 2 mm or more, 3 mm or more, 4 mm or more, 5 mm or more, 6 mm or more, 7 mm or more, 8 mm or more, 9 mm or more, 10 mm or more, 11 mm or more, or 12 mm. and/or not greater than 50 mm, not greater than 40 mm, not greater than 30 mm, or not greater than 25 mm.
- good feedability can be obtained.
- the average length of the carbon fiber aggregates is obtained by visually using a vernier caliper or the like, or measuring the length in the longitudinal direction of 50 carbon fiber aggregates in an image obtained with a digital camera or an optical microscope, It can be calculated by averaging the measurements.
- the average length of the carbon fiber aggregates is 1.2 to 4.0 times the average length of the recycled carbon fibers.
- the average length of the carbon fiber aggregates is 1.4 times or more, 1.5 times or more, or 1.6 times or more the average length of the recycled carbon fibers, and/or3. 5 times or less, or 3.0 times or less.
- the average length of the carbon fiber aggregates is within the above range, particularly good feedability can sometimes be obtained.
- the average maximum width of the carbon fiber aggregate may be 0.1 mm to 3.0 mm.
- the aggregate has an average length of 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more, and/or 2.5 mm or less, 2.0 mm or less; 8 mm or less, or 1.6 mm or less.
- the average maximum width of the carbon fiber aggregate is the average of the longest lengths (widths) in the direction perpendicular to the length direction. When the average maximum width of the carbon fiber aggregates is within the above range, good feedability can be obtained.
- the average maximum width of the carbon fiber aggregates is visually measured using a vernier caliper or the maximum length in the minor axis direction of 50 carbon fiber aggregates in an image obtained with a digital camera or an optical microscope. can be calculated by averaging the measured values.
- the aspect ratio of the carbon fiber aggregate may be 2-150, 2-100, or 2-50. Also, the aspect ratio of the carbon fiber assembly is preferably 2-20, or 3-15, or particularly 4-10. When the aspect ratio is within this range (especially within this preferred range), it may be possible to obtain a carbon fiber aggregate that is particularly excellent in shape stability and feedability.
- the aspect ratio is the value obtained by dividing the major axis of the spindle-shaped carbon fiber aggregate by the minor axis, that is, major axis/minor axis.
- the aspect ratio increases as the degree of elongation increases.
- the aspect ratio can be obtained by measuring the major axis and minor axis of the carbon fiber aggregate visually using a vernier caliper or the like, or using a digital camera, an optical microscope, or the like, and calculating the major axis/minor axis. .
- the maximum length (width) in the direction perpendicular to the direction of the major axis can be defined as the "minor axis".
- a mixture comprising at least recycled carbon fibers and a binder-containing liquid is provided.
- the amount of the binder-containing liquid in the mixture is preferably 20 wt% to 60 wt%, particularly preferably 25 wt% to 55 wt%, or 30 wt% to 50 wt%.
- the recycled carbon fibers are bundled particularly well due to the liquid contained in the binder.
- the amount of liquid contained in the binder does not become excessive, so the load of the drying process can be reduced.
- the binder-containing liquid contains a solvent or a dispersion medium.
- the content of solvent or dispersion medium (especially water) in the mixture is from 20% to 60% by weight, in particular from 25% to 55% by weight, or from 30% to 50% by weight. be.
- the content of solvent or dispersion medium (particularly water) in the mixture is 20% to 45%, 20% to 40%, or 20% to 30% by weight.
- the solvent or dispersion medium (particularly water) content is relatively low in this way, the load for drying can be reduced particularly effectively.
- a recycled carbon fiber is a raw material of a carbon fiber aggregate, and contains a carbon fiber component and a residual carbon component. Generally, in recycled carbon fibers, the residual carbon component adheres to the surface of the carbon fiber component.
- the recycled carbon fiber is not particularly limited, but may be, for example, recycled carbon fiber obtained by heat-treating a carbon fiber-containing plastic product such as carbon fiber reinforced plastic (CFRP).
- CFRP carbon fiber reinforced plastic
- the recycled carbon fiber may be the recycled carbon fiber described later with respect to invention 2.
- the recycled carbon fiber is a recycled carbon fiber obtained by a semiconductor thermal activation method. That is, a particularly preferred embodiment of the method according to the present disclosure includes decomposing the plastic components contained in the carbon fiber-containing plastic product by the semiconductor thermal activation method to produce recycled carbon fibers.
- the "semiconductor thermal activation method” is a method of decomposing a compound to be decomposed such as a polymer using the thermal activation of semi-conductors (TASC) of a semiconductor.
- TASC method for the method of producing recycled carbon fiber by decomposing the plastic component contained in the carbon fiber-containing plastic product by the semiconductor thermal activation method, see, for example, the descriptions of Japanese Patent No. 4517146 and Japanese Patent Application Laid-Open No. 2019-189674. can do.
- the method for producing recycled carbon fiber by the semiconductor thermal activation method it is also possible to refer to the description of Invention 2 of the present disclosure, which will be described later.
- the carbon fiber component in the recycled carbon fiber is usually derived from the carbon fiber contained in the carbon fiber-containing product or the like that is the raw material of the recycled carbon fiber.
- the carbon fiber component in the recycled carbon fiber may be modified by being subjected to heat treatment or the like during the manufacturing process of the recycled carbon fiber.
- the carbon fiber component in the recycled carbon fiber may be, for example, PAN-based carbon fiber or pitch-based carbon fiber.
- the residual carbon component contained in the recycled carbon fiber is, in particular, residual carbon derived from the resin contained in the carbon fiber-containing plastic product used as a raw material when producing the recycled carbon fiber.
- the residual carbon component is more than 0% by weight and 5.0% by weight or less with respect to the recycled carbon fiber. In this case, a carbon fiber aggregate with improved feedability can be obtained.
- the residual carbon component is more than 0% by weight and 5.0% by weight or less, contamination due to a relatively large amount of carbon components (especially charcoal) can be avoided, and the carbon fiber assembly can be It is possible to reduce the carbon component that may become a foreign substance when manufacturing a carbon fiber-containing product or the like as a material, and it is possible to improve the uniform distribution of fibers in the carbon fiber-containing product.
- the residual carbon component is 4.0% by weight or less, 3.0% by weight or less, or 2.0% by weight or less with respect to the recycled carbon fiber. It is preferable that the residual carbon component is reduced as much as possible. 0.8% by weight or more, 1.0% by weight or more, or 1.2% by weight or more.
- the content of residual carbon components in the recycled carbon fiber can be measured by thermogravimetric analysis (TGA method).
- thermogravimetric analysis can be performed by the following procedure: (i) A sample piece of 1 to 4 mg obtained by pulverizing recycled carbon fiber was measured with a thermogravimetric analyzer at an air supply rate of 0.2 L / min, a heating rate of 5 ° C / min, and 1/ At a recording speed of 6s, temperature increase from room temperature to 100° C., hold at 100° C. for 30 minutes, raising the temperature from 100°C to 400°C, and Perform thermogravimetric analysis with a step of holding at 400 ° C. for a total of 300 minutes, (ii) In a graph plotting the weight loss rate against time, identify the inflection point of the slope, and subtract the weight loss rate during the holding period at 100 ° C. from the weight loss rate value at the inflection point. Calculate the amount of residual carbon by
- thermogravimetric analysis is performed for a total of about 600 minutes accompanied by holding at 400 ° C. for 480 minutes. Further, instead of holding at 400° C. for 480 minutes, it may be held at a specific temperature in the range of greater than 400° C. and up to and including 500° C. for 480 minutes.
- the residual carbon component can be measured by the above method after removing the resin.
- the average length of the recycled carbon fibers is 2 mm or more and 20 mm or less, particularly 3 mm or more and 15 mm or less. In this case, particularly good feedability is obtained.
- the average length of recycled carbon fibers is obtained by visually measuring the length of 50 recycled carbon fibers using a vernier caliper or in an image obtained with a digital camera or an optical microscope, and averaging the measured values. can be calculated by
- the binder-containing liquid is a binder dispersion or binder solution and contains a binder and a solvent or dispersion medium.
- solvent or dispersion medium is not particularly limited as long as it is a liquid capable of dissolving or dispersing the binder.
- Solvents or dispersion media include water, alcohols (eg methanol or ethanol), ketones (eg methyl ethyl ketone or acetone), hydrocarbons (eg cyclohexane, toluene or xylene), halogenated hydrocarbons (eg dichloromethane), amides (eg N- methylpyrrolidone or dimethylformamide), ethers (eg tetrahydrofuran).
- the solvent or dispersion medium is particularly preferably water.
- the binder-containing liquid used in the present disclosure can be prepared, for example, by further adding a solvent or dispersion medium to a relatively concentrated commercially available sizing agent composed of a binder and a solvent or dispersion medium.
- a binder-containing liquid can be prepared by adding a dispersion medium (particularly water) to a sizing agent having a binder and a dispersion medium (particularly water).
- the sizing agent (and the binder-containing liquid obtained by adding a solvent or dispersion medium to the sizing agent) may be, for example, in the form of a water emulsion in which the binder is dispersed in water, and particularly may be a water-based polyurethane.
- the amount of the binder may be 0.1% by weight or more, 0.5% by weight or more, 1% by weight or more, or 1.5% by weight or more and/or 20% by weight with respect to the binder-containing liquid. 15% by weight or less, 10% by weight or less, 8% by weight or less, or 7% by weight or less.
- the amount of binder is particularly preferably 1% to 10% by weight, or 2% to 8% by weight, relative to the binder-containing liquid.
- the amount of the solvent or dispersion medium is 80% by weight or more, 85% by weight or more, 90% by weight or more, 92% by weight or more, or 93% by weight or more with respect to the binder-containing liquid, and/or may be 99.9 wt% or less, 99.5 wt% or less, 99 wt% or less, or 98.5 wt% or less.
- the amount of the binder is preferably 0.1 wt% to 10 wt%, particularly preferably 0.5 wt% to 8 wt%, or 1 wt% to 7 wt%, relative to the recycled carbon fiber. %.
- a fiber-opening treatment can be performed in advance on the recycled carbon fibers. By performing the fiber opening treatment, it may be possible to eliminate the entanglement of the fibers and promote the orientation of the fibers in one direction in the granulation step.
- the method of obtaining the mixture from the recycled carbon fiber and the binder-containing liquid is not particularly limited.
- the recycled carbon fiber and the binder-containing liquid can be put into a container used in the granulation step in the form of a mixture.
- the binder-containing liquid may be poured into a mass of recycled carbon fibers, optionally stirred to obtain a mixture, and the mixture may be charged into a container.
- the recycled carbon fiber and the binder-containing liquid may be separately charged into a container and mixed in the container to form a mixture. Mixing and granulation may be performed simultaneously.
- the recycled carbon fiber and the binder-containing liquid in the mixture do not necessarily have to be uniformly distributed in the mixture.
- the mixture can be agitated during the granulation process to improve homogeneity.
- the fibers are oriented in a particular direction. It is conceivable that the precursors having a fusiform shape can be obtained as a result.
- the method for rolling the mixture in the clearance between the inner wall of the container and the rotating body inside the container is not particularly limited. An exemplary method for this is described below with reference to FIG.
- FIG. 1 is a schematic diagram of one embodiment of an agitating granulator that can be used in the present disclosure.
- the stirring granulator 100 of FIG. 1 has a cylindrical container portion 120 as a container and a stirring blade 140 as a rotating body.
- the stirring granulator 100 of FIG. 1 is of a horizontal type, and the opening of the container part 120 opens sideways in normal use.
- FIG. 1 is a view looking into the inside of the container.
- a shaft portion 160 is attached to the inner wall of the container portion 120 facing the opening (the wall on the far side from the viewpoint described above).
- the shaft portion 160 extends horizontally.
- the stirring blade 140 can be rotated around the shaft portion 160 (in the example of FIG. 1, the rotation is counterclockwise ("A"), but it may be rotated clockwise). That is, the stirring blade 140 in FIG. 1 is configured to rotate within a plane parallel to the direction of gravity.
- an auxiliary blade for opening the fibers can be installed inside the container part 120 .
- the mixture containing the recycled carbon fiber and the binder-containing liquid is optionally mixed and stirred by the stirring blade 140 rotating in the container part 120, and the inner wall of the container part 120 and the stirring blade 140 inside the container part 120 are mixed and stirred. (indicated by symbol “C” in FIG. 1).
- the container of the present disclosure is not particularly limited as long as it is suitable for holding the mixture therein and subjecting the mixture to the granulation process described above.
- the container is preferably made of a rigid and durable material.
- the inner wall of the container is preferably made of a material that does not cause abrasion or the like during rolling of the mixture, or is surface-treated for that purpose.
- the rotating body is configured to roll the mixture containing the recycled carbon fibers and the binder-containing liquid between itself and the inner wall of the container by rotating within the container.
- the rotating body is, for example, attached to a shaft installed in the container, and configured to be able to rotate about the shaft.
- the rotating body preferably has the form of a blade (vane).
- the rotating body is particularly preferably a stirring blade (stirring vane).
- the stirring blade is preferably made of a material with excellent rigidity and durability, and in particular, it should be made of a material that does not cause abrasion during rolling of the mixture, or it should be surface-treated for that purpose. is preferred.
- the size of the clearance between the inner wall of the container and the rotating body may be constant, or may vary continuously or discontinuously. There may be.
- the size of the clearance between the inner wall of the container and the rotating body in the container that is, the distance between the inner wall of the container and the rotating body can be appropriately set according to the desired size of the carbon fiber aggregate. It can be, for example, 1-10 mm.
- agitation granulator A known agitating granulator can be used as the device having the container and the rotating body.
- the stirring granulator is not particularly limited, but for example, a Henschel-type granulator (Henschel mixer), a bag mill-type granulator, or an Eirich-type stirring granulator can be used. Both vertical and horizontal type stirring granulators can be used.
- spindle precursor contains recycled carbon fibers and a binder, and contains liquid (especially water) derived from the binder-containing liquid. Liquids (particularly moisture) in the precursor can be removed in the drying step described below.
- the method for drying the precursor is not particularly limited, and the temperature and time conditions can be determined as appropriate according to the moisture content of the obtained precursor.
- the spindle-shaped precursor may be dehydrated after the granulation step and before the drying step.
- Invention 1a of the present disclosure includes the following carbon fiber aggregates: A carbon fiber aggregate composed of at least recycled carbon fibers and a binder, The average length of the recycled carbon fibers is 1 mm or more and less than 30 mm, and The average length of the carbon fiber aggregate is 1.5 mm to 60 mm, characterized by A spindle-shaped carbon fiber aggregate.
- this carbon fiber aggregate Due to its shape, this carbon fiber aggregate exhibits particularly good feedability.
- a method for producing this carbon fiber aggregate is not particularly limited.
- the carbon fiber aggregate according to invention 1a of the present disclosure can be produced, for example, by the method described above according to the present disclosure.
- the above description of the method for producing the carbon fiber aggregate can be referred to.
- the carbon fiber aggregate according to Invention 1a of the present disclosure is preferably 50 g/L or more, 75 g/L or more, or 100 g/L or more, and/or 500 g/L or less, 400 g/L or more, and 300 g/L or less. , or has a bulk density of 200 g/L or less.
- Bulk density can be measured as follows: Using a funnel with an outlet inner diameter of 18 mm, the sample is poured from a height of 63 mm into a 200 ml container with an inner diameter of 63 mm and filled up to a heap. Then measure the weight of the sample at the level volume. Based on this weight and the volume of the container, the bulk density is calculated.
- the spindle-shaped aggregate of thermoplastic resin fibers and carbon fibers according to invention 1b of the present disclosure is including carbon fiber, thermoplastic resin fiber, and binder;
- the carbon fibers and thermoplastic resin fibers contained in the aggregate are oriented along the longitudinal direction of the aggregate.
- the aggregate according to Invention 1b of the present disclosure contains thermoplastic resin fibers, that is, fibrous thermoplastic resin.
- thermoplastic resin fibers that is, fibrous thermoplastic resin.
- the fibrous nature of the thermoplastic resin makes it easier for the carbon fibers and thermoplastic fibers to be aligned along a certain direction, and as a result, aggregate into granular aggregates.
- the shape of the spindle is formed.
- the aggregates can be used to improve handleability when manufacturing carbon fiber-containing moldings.
- aggregates having a spindle shape have particularly good feedability (feedability) when using such aggregates to produce carbon fiber-containing products.
- aggregates having a spindle shape have a relatively low contact resistance, so that they can flow relatively smoothly through the feed port of an extruder or the like without clogging the feed port. It is possible.
- the aggregate according to invention 1b of the present disclosure has thermoplastic resin fibers in addition to carbon fibers, unlike conventional carbon fiber aggregates containing only carbon fibers, the carbon fiber aggregate and the heat The step of kneading with a plastic resin to produce pellets can be omitted, and carbon fiber-containing moldings can be produced directly.
- the aggregate according to the invention 1b of the present disclosure it is possible to omit the step of producing pellets that was necessary in the case of the conventional carbon fiber aggregate, so that the carbon fibers are produced when producing the pellets. breakage can be avoided. Therefore, it is believed that by producing carbon fiber-containing molded articles using aggregates according to the present disclosure, molded articles having improved physical properties can be obtained.
- thermoplastic resin fibers and carbon fibers The aggregate of thermoplastic resin fibers and carbon fibers according to invention 1b of the present disclosure is spindle-shaped, including carbon fiber, thermoplastic resin fiber, and binder; The carbon fibers and thermoplastic resin fibers contained in the aggregate are oriented along the longitudinal direction of the aggregate.
- the assembly according to Invention 1b of the present disclosure includes carbon fibers, thermoplastic resin fibers, and binders.
- fiber components composed of carbon fibers and thermoplastic resin are bound together by a binder.
- the aggregate is preferably substantially composed of carbon fibers, thermoplastic resin fibers and binder, and particularly preferably composed of these components.
- the amount of binder in the aggregate is preferably 0.1% to 10% by weight, in particular 0.5% to 9%, or 1% to 8% by weight, relative to the aggregate. %.
- the aggregate is 1 part by weight to 1000 parts by weight, 5 parts by weight to 900 parts by weight, 10 parts by weight to 750 parts by weight, 20 parts by weight to 500 parts by weight, or 50 parts by weight with respect to 100 parts by weight of the carbon fiber. It can contain ⁇ 250 parts by weight of thermoplastic fibers.
- the assembly according to the present disclosure has a spindle shape.
- the spindle shape means a shape that is thick in the center and tapers toward both ends.
- the fiber components (carbon fibers and thermoplastic resin fibers) contained in the aggregate are oriented along the major axis direction of the spindle shape.
- the fibers are oriented along the long axis of the spindle shape means that the fibers contained in the aggregate have a deformed spindle shape. It means oriented along the axis of the aggregate. This orientation of the fibers does not necessarily have to be the same (parallel) to the longitudinal direction of the aggregate, but is preferably substantially parallel.
- the average extending direction of the fibers is , with respect to the longitudinal axis of the spindle-shaped mass, an angle of 45° or less, 40° or less, 30° or less, 20° or less, or 10° or less.
- the average extending direction of the fibers with respect to the longitudinal direction of the spindle-shaped assembly is preferably close to 0°, and the lower limit is not particularly limited, but for example, it is more than 0°, 1° or more, or 2° or more. good.
- the orientation of the fibers and the extending direction of the fibers can be determined with respect to the axis of the assembly.
- Aggregate length and aspect ratio can be determined in a similar manner.
- the aggregates according to invention 1b of the present disclosure may have an average length of 1.5 mm to 60 mm.
- the aggregate has an average length of 1.8 mm or more, 2.0 mm or more, 3.0 mm or more, 4.0 mm or more, 5.0 mm or more, 6.0 mm or more, 7.0 mm or more, 8.0 mm or more. , 9.0 mm or more, 10 mm or more, 11 mm or more, 12 mm or more, or 15 mm or more, and/or 50 mm or less, 40 mm or less, 30 mm or less, or 25 mm or less.
- the average length of aggregates is within the above range, it is considered that particularly good feedability can be obtained.
- the average length of the aggregate is measured visually using a vernier caliper or the like, or in an image obtained with a digital camera or an optical microscope, measuring the length in the longitudinal direction of 50 aggregates, and averaging the measured values. can be calculated by
- the average length of the aggregate is 1.2 to 5.0 times the average length of the carbon fibers and the average length of the thermoplastic resin fibers contained in the aggregate.
- the average length of aggregates is within the above range, particularly good feedability can sometimes be obtained.
- the average length of the aggregate is 1.4 times or more, 1.5 times or more, or 1.6 times or more the average length of the carbon fibers and the average length of the thermoplastic resin fibers, and/or 4.5 times or less, 4.0 times or less, 3.5 times or less, 3.0 times or less, or 2.5 times or less.
- the average length of aggregates is within the above range, particularly good feedability can sometimes be obtained.
- the average length of the carbon fibers and the average length of the thermoplastic resin fibers are each 50 fibers, visually using a vernier caliper or the like, or in an image obtained with a digital camera or an optical microscope. It can be calculated by taking measurements and averaging the measurements.
- the average maximum width of the carbon fiber aggregate may be 0.1 mm to 5.0 mm.
- the aggregate has an average length of 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 1.0 mm or more, 1.5 mm or more, or 2.0 mm or more, and / Or 4.5 mm or less, or 4.0 mm or less.
- the average maximum width of the carbon fiber aggregate is the average of the longest lengths (widths) in the direction perpendicular to the length direction. When the average maximum width of the carbon fiber aggregates is within the above range, good feedability can be obtained.
- the average maximum width of the carbon fiber aggregates is visually measured using a vernier caliper or the maximum length in the minor axis direction of 50 carbon fiber aggregates in an image obtained with a digital camera or an optical microscope. can be calculated by averaging the measured values.
- the aspect ratio of the carbon fiber aggregate may be 2-150, 2-100, or 2-50. Also, the aspect ratio of the aggregate is preferably 2-20, 3-15, or 4-10. When the aspect ratio is within this range (particularly within this preferred range), aggregates with particularly excellent shape stability and feedability can sometimes be obtained.
- the aspect ratio is the value obtained by dividing the major axis of the spindle-shaped aggregate by the minor axis, that is, major axis/minor axis.
- the aspect ratio increases as the degree of elongation increases.
- the aspect ratio can be obtained by measuring the major axis and minor axis of the aggregate visually using vernier calipers, etc., or using a digital camera, optical microscope, etc., and calculating the major/minor axis.
- the maximum length (width) in the direction perpendicular to the direction of the major axis can be defined as the "minor axis".
- the method for manufacturing the aggregate according to Invention 1b of the present disclosure is not particularly limited.
- the aggregate according to invention 1b of the present disclosure can be produced, for example, by a method according to invention 1b of the present disclosure, which will be described later.
- the aggregate according to invention 1b of the present disclosure is preferably 50 g/L or more, 75 g/L or more, or 100 g/L or more, and/or 500 g/L or less, 400 g/L or less, 300 g/L or less, or It has a bulk density of 200 g/L or less.
- Carbon fibers are raw materials for aggregates, and include ordinary carbon fibers (carbon fibers that are not recycled carbon fibers, so-called virgin carbon fibers), recycled carbon fibers, and mixtures thereof. Carbon fibers may be, for example, PAN-based carbon fibers or pitch-based carbon fibers.
- the form of carbon fibers is not particularly limited, but may be in the form of carbon fiber bundles composed of a plurality of single yarns (single fibers, filaments).
- the number of filaments constituting the carbon fiber bundle may range from 1,000 to 80,000 or from 3,000 to 50,000.
- the diameter of the filaments constituting the carbon fibers may be 0.1 ⁇ m to 30 ⁇ m, 1 ⁇ m to 10 ⁇ m, or 3 ⁇ m to 8 ⁇ m.
- Regenerated carbon fibers contain carbon fiber components and carbon components other than the carbon fiber components (in particular, residual carbon components). Generally, in recycled carbon fibers, carbon components other than the carbon fiber components adhere to the surface of the carbon fiber components.
- the recycled carbon fiber is not particularly limited, but may be, for example, recycled carbon fiber obtained by heat-treating a carbon fiber-containing plastic product such as carbon fiber reinforced plastic (CFRP).
- CFRP carbon fiber reinforced plastic
- the recycled carbon fiber may be the recycled carbon fiber described later with respect to invention 2.
- the recycled carbon fiber is a recycled carbon fiber obtained by the semiconductor thermal activation method.
- a particularly preferred embodiment of the following method according to the present disclosure includes decomposing a plastic component contained in a carbon fiber-containing plastic product by a semiconductor thermal activation method to produce recycled carbon fiber.
- TSC method semiconductor thermal activation method
- the carbon fiber component in the recycled carbon fiber may be modified by undergoing heat treatment during the manufacturing process of the recycled carbon fiber.
- the above description of the carbon fiber can be referred to.
- the residual carbon component in recycled carbon fiber is usually derived from the resin contained in the carbon fiber-containing plastic product used as a raw material when manufacturing recycled carbon fiber.
- the plastic component is thermally decomposed during the heat treatment of the carbon fiber-containing plastic product, and residual carbon remains on the surface of the carbon fiber component.
- the residual carbon component is more than 0% by weight and 5.0% by weight or less, contamination due to a relatively large amount of carbon components (especially charcoal) can be avoided, and the aggregate is used as a material It is possible to reduce the carbon component that may become a foreign substance when manufacturing a carbon fiber-containing product or the like, and to improve the uniform distribution of fibers in the carbon fiber-containing product.
- the residual carbon component is 4.0% by weight or less, 3.0% by weight or less, or 2.0% by weight or less with respect to the recycled carbon fiber. It is preferable that the residual carbon component is reduced as much as possible. It may be 8% by weight or more, 1.0% by weight or more, or 1.2% by weight or more.
- the content of residual carbon components in the recycled carbon fiber can be measured by thermogravimetric analysis (TGA method).
- invention 1a For the method of measuring the residual carbon component by thermogravimetric analysis, the above description of invention 1a can be referred to.
- Thermoplastic resin fibers include polyolefin resin fibers (e.g., polypropylene resin fibers and polyethylene), polyester resin fibers (e.g., polyethylene terephthalate resin fibers, polybutylene terephthalate resin fibers, and polylactic acid), polyamide resin fibers, and polyether ketone resins. fibers, polycarbonate resin fibers, phenoxy resin fibers, and polyphenylene sulfide resin fibers.
- the thermoplastic resin fibers may be of only one type, or may be a mixture of two or more thermoplastic resin fibers.
- the carbon fibers can have an average length of 1 mm or more and less than 30 mm. Fibers having lengths in this range can be obtained, for example, by cutting fibers having relatively long dimensions.
- the average length of the carbon fibers may be 2 mm or more, 3 mm or more, or 4 mm or more, respectively, and/or 29 mm or less, 28 mm or less, 27 mm or less, 26 mm or less, 25 mm or less, 24 mm or less, 23 mm or less, 22 mm. 21 mm or less, 20 mm or less, 15 mm or less, or 10 mm or less.
- the carbon fibers may have an average length of 8 mm to 25 mm, or 9 mm to 20 mm.
- the average length of the carbon fibers is 2 mm or more and 20 mm or less, particularly 3 mm or more and 15 mm or less. In this case, particularly good feedability is obtained.
- the average length of the carbon fibers is more than 6 mm and less than 30 mm, particularly 8 mm or more and 25 mm or less.
- the assembly according to the present disclosure it may be possible to obtain a carbon fiber-containing product that is particularly excellent in physical properties such as strength.
- the thermoplastic resin fibers can have an average length of 1 mm or more and less than 30 mm. Fibers having lengths in this range can be obtained, for example, by cutting fibers having relatively long dimensions.
- the thermoplastic resin fibers may each have an average length of 1.5 mm or more, 2 mm or more, or 3 mm or more and/or 28 mm or less, 26 mm or less, 24 mm or less, 22 mm or less, 20 mm or less, 18 mm or less It may be 16 mm or less, 14 mm or less, 12 mm or less, 10 mm or less, or 8 mm or less.
- the average length of the carbon fibers and thermoplastic resin fibers is 1 mm or more and less than 30 mm, uniform orientation of the fibers is promoted, and it is believed that an aggregate on the spindle with particularly good feedability can be obtained.
- the average length of the raw material fibers is sufficiently long, the fibers are easily oriented along one direction, and a spindle-shaped aggregate can be obtained. it is conceivable that.
- the sufficiently short average length of the fibers prevents the fibers from entangling with each other, and as a result, promotes uniform orientation of the fibers.
- the average lengths of carbon fibers and thermoplastic resin fibers are each measured visually using a vernier caliper or the like, or in an image obtained with a digital camera or an optical microscope, and measuring the length of 50 fibers. can be calculated by averaging
- ⁇ Method for producing aggregate ⁇ Invention 1b of the present disclosure includes a manufacturing method for manufacturing an assembly according to Invention 1b of the present disclosure, comprising: providing a mixture composed of at least carbon fibers, thermoplastic resin fibers, and a binder-containing liquid (providing step); Producing a spindle-shaped precursor by tumbling the mixture in a vessel (granulation step) and drying the precursor (drying step).
- a mixture comprising at least carbon fibers, thermoplastic resin fibers, and a binder-containing liquid is provided.
- the mixture consists in particular of carbon fibers, thermoplastic fibers and a binder-containing solution.
- the content of solvent or dispersion medium (particularly water) in the mixture is 20% to 45%, 20% to 40%, or 20% to 30% by weight.
- the solvent or dispersion medium (particularly water) content is relatively low in this way, the load for drying can be reduced particularly effectively.
- the amount of carbon fiber and thermoplastic resin fiber in the mixture can be appropriately set so that the weight ratio of these fibers in the resulting aggregate is the desired value.
- the content of carbon fiber and thermoplastic resin fiber in the mixture may be 2.5 wt% to 80 wt%, 5 wt% to 70 wt%, or 10 wt% to 60 wt%, respectively. .
- the amount of the binder may be 0.5% by weight or more, 1% by weight or more, 1.5% by weight or more, 2.0% by weight or more, or 3.0% by weight with respect to the binder-containing liquid. and/or may be 20 wt% or less, 15 wt% or less, 10 wt% or less, 9 wt% or less, or 8 wt% or less.
- the amount of binder is particularly preferably 1% to 10% by weight, or 2% to 8% by weight, relative to the binder-containing liquid.
- the amount of the solvent or dispersion medium may be 80% by weight or more, 85% by weight or more, 90% by weight or more, 92% by weight or more, or 93% by weight or more, and/or 99% by weight of the binder-containing liquid. .9 wt.% or less, 99.5 wt.% or less, 99 wt.% or less, or 98.5 wt.% or less.
- the amount of the binder is preferably 0.1% by weight to 10% by weight, particularly preferably 0.5% by weight to 9.0% by weight, based on the total amount of carbon fibers and thermoplastic resin fibers. , 1.0% to 8.0% by weight, or 2.0% to 7.0% by weight.
- Fiber components particularly carbon fibers
- fiber opening process reference can be made to the above description of invention 1a.
- a method of obtaining a mixture from carbon fibers, thermoplastic resin fibers, and a binder-containing liquid is not particularly limited.
- the carbon fiber, thermoplastic resin fiber and binder-containing liquid can be put into a container used in the granulation step in the form of a mixture.
- the binder-containing liquid may be poured into a mass of carbon fibers and thermoplastic resin fibers, optionally stirred to obtain a mixture, and the mixture may be charged into a container.
- the carbon fiber, the thermoplastic resin fiber, and the binder-containing liquid may be separately charged into a container and mixed in the container to form a mixture. Mixing and granulation may be performed simultaneously.
- the carbon fibers, thermoplastic resin fibers, and binder-containing liquid in the mixture do not necessarily have to be uniformly distributed in the mixture.
- the mixture can be agitated during the granulation process to improve homogeneity.
- a spindle-shaped precursor is produced by tumbling the mixture in a container (hereinafter, this treatment may be referred to as “granulation treatment”).
- the method of rolling the mixture in the container is not particularly limited, and a known method (especially a known granulation method) can be used.
- a spindle-shaped precursor is produced by rolling the mixture in a container with a clearance between the inner wall of the container and the rotating body in the container. While not intending to be limited by theory, by rolling a mixture containing carbon fibers and thermoplastic resin fibers and a binder-containing liquid in the clearance between the inner wall of the container and a rotating body within the container, the fibers are formed into a specific It is believed that the precursors are oriented in the direction and bound to each other via the binder, and as a result, a precursor having a spindle shape can be obtained particularly efficiently.
- the method for rolling the mixture in the clearance between the inner wall of the container and the rotating body inside the container is not particularly limited.
- the spindle-shaped precursor contains carbon fibers and thermoplastic resin fibers and a binder, and contains a liquid (especially water) derived from the binder-containing liquid. Liquids (particularly moisture) in the precursor can be removed in the drying step described below.
- the method for drying the precursor is not particularly limited, and the temperature and time conditions can be determined as appropriate according to the moisture content of the obtained precursor.
- the spindle-shaped precursor may be dehydrated after the granulation step and before the drying step.
- the carbon fiber reinforced thermoplastic resin pellet according to Invention 2 of the present disclosure includes recycled carbon fiber and a thermoplastic resin, This recycled carbon fiber Having a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more, and containing a residual carbon component, the content of the residual carbon component is more than 0% by weight of the recycled carbon fiber and 5.0 % by weight or less, characterized by
- thermoplastic resin pellets are obtained by melt-kneading a thermoplastic resin and carbon fibers in a twin-screw extruder or the like. May be crushed. If the average fiber length of the carbon fibers in the obtained pellets is less than 300 ⁇ m, the effect of reinforcing mechanical properties will be reduced.
- the recycled carbon fiber according to Invention 2 of the present disclosure has a high Weibull shape factor in single fiber tensile strength, so that the variation in tensile strength is small, and general tensile strength having the same tensile strength Since there are few single fibers with low tensile strength compared to virgin carbon fibers, single fiber breakage of recycled carbon fibers is considered to be relatively suppressed.
- carbon fiber aggregates can be used as a supply source of recycled carbon fibers when producing pellets according to Invention 2 of the present disclosure.
- the carbon fiber aggregate contains recycled carbon fibers and a binder.
- a particularly preferred embodiment of the method associated with the present disclosure is a spindle-shaped carbon fiber assembly.
- thermoplastic resins By using the spindle-shaped carbon fiber assembly as a supply source for recycled carbon fibers, even recycled carbon fibers with a low residual carbon content can be supplied particularly stably to thermoplastic resins.
- the spindle-shaped carbon fiber aggregates can be relatively easily defibrated by kneading in an extruder and can be suitably dispersed in a thermoplastic resin.
- Short fiber reinforced thermoplastic resin pellets can be produced without kneading. Therefore, it is possible to further increase the proportion of carbon fibers having a relatively long fiber length in the short fiber reinforced thermoplastic resin pellets, and it is believed that pellets exhibiting particularly excellent mechanical properties can be produced.
- Recycled carbon fiber (recycled carbon fiber material)>
- Regenerated carbon fibers contain carbon fiber components and carbon components other than the carbon fiber components (in particular, residual carbon components). Generally, in recycled carbon fibers, carbon components other than the carbon fiber components adhere to the surface of the carbon fiber components.
- the recycled carbon fiber according to the present disclosure has a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more, and contains a residual carbon component, and the content of the residual carbon component is It is characterized by being more than 0% by weight and not more than 5.0% by weight with respect to the carbon fiber.
- the method of regeneration is not particularly limited as long as the recycled carbon fiber has such characteristics.
- it may be a recycled carbon fiber obtained by heat-treating a carbon fiber-containing plastic product such as carbon fiber reinforced plastic (CFRP). .
- CFRP carbon fiber reinforced plastic
- the recycled carbon fiber is a recycled carbon fiber obtained by the semiconductor thermal activation method (TASC method). That is, a particularly preferred embodiment of the present disclosure includes recycled carbon fibers produced by decomposing plastic components contained in carbon fiber-containing plastic products by a semiconductor thermal activation method.
- TASC method semiconductor thermal activation method
- the remaining average fiber length of the recycled carbon fibers in the carbon fiber reinforced thermoplastic pellets is determined by removing the base material matrix resin in the pellets by a known decomposition method (e.g., sulfuric acid decomposition method, thermal decomposition method, or solvent decomposition method), After filtration, the fiber length of 300 or more single fibers is measured using a microscope, and the number average value can be calculated.
- a known decomposition method e.g., sulfuric acid decomposition method, thermal decomposition method, or solvent decomposition method
- the frequency of appearance of single fibers of 300 ⁇ m or less can be obtained by measuring the fiber length of single fibers in the same manner as the measurement of the residual average fiber length, and calculating the ratio of the number of fibers of 300 ⁇ m or less. .
- Single fiber tensile strength is preferably 3.1 GPa or more, 3.2 GPa or more, 3.3 GPa or more, or 3.4 GPa or more.
- the upper limit of the single fiber tensile strength is not particularly limited, it may be 6.0 GPa or less.
- Single fiber tensile strength can be measured in accordance with JIS R7606 as follows: taking at least 30 single fibers from the fiber bundle; Measure the diameter of the single fiber in the side image of the single fiber taken with a digital microscope, calculate the cross-sectional area, Fixing the sampled single fiber to a perforated mount with an adhesive, The mount on which the single fibers are fixed is attached to a tensile tester, and a tensile test is performed with a sample length of 10 mm and a strain rate of 1 mm/min to measure the tensile breaking stress. Calculate the tensile strength from the cross-sectional area and tensile breaking stress of the single fiber, The average tensile strength of at least 30 single fibers is taken as the single fiber tensile strength.
- the Weibull shape factor is preferably 6.5 or greater, 7.0 or greater, 7.5 or greater, 8.0 or greater, or 8.5 or greater. Although the upper limit of the Weibull shape factor is not particularly limited, it may be 15.0 or less.
- a high Weibull shape factor of the single fiber tensile strength means that the variation of the single fiber tensile strength is small.
- F is the fracture probability determined by the symmetric sample cumulative distribution method
- ⁇ is the single fiber tensile strength (MPa)
- m is the Weibull shape factor
- C is a constant.
- the carbon fiber component in the recycled carbon fiber may be, for example, PAN-based carbon fiber or pitch-based carbon fiber.
- the residual carbon component contained in the recycled carbon fiber is, in particular, residual carbon derived from the resin contained in the carbon fiber-containing plastic product used as a raw material when producing the recycled carbon fiber.
- the residual carbon component is 4.0% by weight or less, 3.0% by weight or less, or 2.0% by weight or less with respect to the recycled carbon fiber. It is preferable that the residual carbon component is reduced as much as possible. 0.8% by weight or more, 1.0% by weight or more, or 1.2% by weight or more.
- the content of residual carbon components in the recycled carbon fiber can be measured by thermogravimetric analysis (TGA method).
- thermoplastic resins contained in the carbon fiber reinforced thermoplastic resin pellets according to Invention 2 of the present disclosure include, for example, polyolefin resins (e.g., polypropylene resins and polyethylene resins), polyester resins (e.g., polyethylene terephthalate resins, polybutylene terephthalate resins, and polylactic acid resins), polyamide resins, polyetherketone resins, polycarbonate resins, phenoxy resins, and polyphenylene sulfide resins.
- the thermoplastic resin may be of only one type, or may be a mixture of two or more thermoplastic resins.
- a carbon fiber reinforced thermoplastic resin pellet according to Invention 2 of the present disclosure includes recycled carbon fibers and a thermoplastic resin.
- the length in the longitudinal direction of the pellet is preferably 3 mm or more and 10 mm or less. Particularly preferably, it may be 5 mm or less.
- the content of recycled carbon fibers in the carbon fiber-reinforced thermoplastic pellets according to Invention 2 of the present disclosure is preferably 30% by weight or less, less than 30% by weight, and 20% by weight or less with respect to the carbon fiber-reinforced thermoplastic resin pellets. , 15 wt % or less, and/or 5 wt % or more, 7 wt % or more, 8 wt % or more, or 10 wt % or more.
- the carbon fibers can be particularly uniformly dispersed in the pellets. Moreover, when the content of the recycled carbon fiber is 5% by weight or more with respect to the carbon fiber-reinforced thermoplastic resin pellet, a particularly good mechanical property reinforcing effect of the pellet can be obtained.
- the method for producing carbon fiber reinforced thermoplastic resin pellets according to Invention 2 of the present disclosure is not particularly limited, but can be obtained, for example, by a production method including the following: providing recycled carbon fiber; providing a thermoplastic resin; and kneading the recycled carbon fiber and the molten thermoplastic resin; here,
- the recycled carbon fiber has a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more, and the recycled carbon fiber contains a residual carbon component, and the content of the residual carbon component is It is more than 0% by weight and 5.0% by weight or less with respect to the carbon fiber.
- thermoplastic resin as a base material resin is supplied through a main feeder of a twin-screw kneading extruder, and extruded.
- Recycled carbon fibers (especially spindle-shaped recycled carbon fiber aggregates) are supplied from a biaxial feeder into the resin kneaded and melted in the machine, and the extruded kneaded material is cooled in a water-cooled bath and then cut. to obtain carbon fiber reinforced thermoplastic resin pellets.
- a molded article can be produced by molding the carbon fiber reinforced thermoplastic resin pellets according to the present disclosure using an extruder or the like. Molded articles molded using the pellets according to the present disclosure exhibit good physical properties, particularly good mechanical properties.
- molded articles manufactured according to ISO 178 by the methods shown in the examples exhibit a bending strength of 140 MPa or more, particularly preferably 140 MPa to 160 MPa, 140 MPa to 150 MPa, or 140 MPa to 145 MPa.
- the molded article produced by the method shown in the examples in accordance with ISO 178 exhibits a flexural modulus of 7100 MPa or more, particularly preferably 7100 MPa to 8000 MPa, 7100 MPa to 7500 MPa, or 7100 MPa to 7400 MPa. .
- a method for decomposing a plastic-containing material according to the present disclosure comprises: The plastic-containing material is heated to a first surface temperature in the presence of a semiconductor material in an atmosphere in a heating furnace into which a low-oxygen gas having an oxygen concentration of less than 10% by volume is introduced, and the plastic in the plastic-containing material is to decompose including.
- FIG. 2 is a conceptual cross-sectional view for explaining the disassembly method according to the present invention.
- the decomposition mechanism of the plastic-containing material according to the present invention will be described below. No theory is intended to limit the present invention.
- the inventors of the present invention have found that even in the presence of a semiconductor material, by setting the oxygen concentration to a relatively low value, it is possible to efficiently heat-treat the plastic while suppressing excessive oxidation heat generation. I found what I can do.
- the heat treatment is efficiently performed at a relatively low oxygen concentration, so even in the initial stage of decomposition, excessive oxidation heat generation can be suppressed. .
- the heat treatment is performed in the presence of the semiconductor material, good decomposition efficiency can be obtained even with a relatively low oxygen concentration, and the oxygen concentration in the heating furnace is relatively low.
- the value it is possible to suppress excessive oxidation heat generation and achieve a decomposition treatment with improved stability.
- FIG. 3 is a cross-sectional view schematically showing one embodiment of the disassembly method according to the present disclosure.
- the heating furnace 20 shown in FIG. 3 has a heat source (heater) 23 , a gas supply section 24 , an exhaust port 25 and an internal space 26 .
- a porous carrier 21 is arranged in the interior space 26 of the heating furnace 20 and the semiconductor material is carried on the surface of the carrier 21 .
- a plastic-containing material 22 is placed in contact with this carrier 21 .
- the temperature of the atmosphere in the interior space 26 of the furnace 20 can be controlled via the heat source (heater) 23 of the furnace 20 so that the surface temperature of the plastic-containing material 22 is at a specific temperature. .
- the surface temperature of the plastic-containing material 22 can be measured via a temperature sensor 27 placed within 5 mm of the surface of the plastic-containing material 22 .
- a low oxygen concentration gas having an oxygen concentration of less than 10% by volume is introduced into the internal space 26 of the heating furnace 20 through the gas supply section 24 .
- the hypoxic gas can be forced into the furnace, for example, via a gas supply provided in the furnace, or can be sucked into the furnace by applying suction pressure to the exhaust port 25. can be done.
- a low oxygen concentration gas is, for example, a mixed gas of air and nitrogen gas. By selecting the ratio of air and nitrogen gas, the oxygen concentration in the furnace can be controlled.
- the plastic-containing material is heated to a first surface temperature, for example, a first surface temperature of 300°C to 600°C in an atmosphere in which the oxygen concentration is controlled to less than 10% by volume by introducing a low oxygen concentration gas.
- a first surface temperature for example, a first surface temperature of 300°C to 600°C in an atmosphere in which the oxygen concentration is controlled to less than 10% by volume by introducing a low oxygen concentration gas.
- the plastic contained in the plastic-containing material 22 is decomposed into cracked gases such as water vapor, carbon dioxide, and methane, and the cracked gases are discharged from the exhaust port 25 of the heating furnace 20 .
- a heat treatment with an oxygen concentration of 10% by volume or more can be further performed.
- inorganic materials contained in plastic-containing materials can be recovered after heat treatment.
- the plastic-containing material contains plastic.
- the plastic-containing material may be a plastic material or a plastic composite material.
- Plastics contained in plastic-containing materials include thermoplastic resins and thermosetting resins.
- thermoplastic resin contained in the plastic-containing material examples include polycarbonate (PC) resin, polyethylene (PE) resin, polypropylene (PP) resin, polyvinyl chloride (PVC) resin, polystyrene (PS) resin, polyethylene terephthalate ( PET) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide (PA) resin, polylactic acid (PLA) resin, polyimide (PI) resin, polymethyl methacrylate (PMMA) resin, methacrylic resin, polyvinyl alcohol (PVA) resin , polyacetal resin, petroleum resin, AS resin, modified polyphenylene ether resin, polybutylene terephthalate (PBT) resin, polybutene (PB) resin, fluorine resin, polyacrylate resin, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin.
- PC polycarbonate
- PE polyethylene
- PP polypropylene
- PVC poly
- thermosetting resins contained in plastic-containing materials include phenol resins, urethane foam resins, polyurethane resins, urea resins, epoxy resins, unsaturated polyester resins, melamine resins, alkyd resins, vinyl ester resins, and cyanate resins. mentioned.
- the plastic-containing material can contain at least one selected from the group consisting of the above thermoplastic resins and thermosetting resins.
- Plastic-containing materials are, in particular, plastic composite materials.
- the plastic composite material is, for example, fiber reinforced plastic (FRP).
- FRP fiber reinforced plastic
- Examples of reinforcing fibers contained in fiber-reinforced plastics include carbon fibers.
- Carbon fiber reinforced plastic Plastic composite materials are in particular carbon fiber-containing plastic products such as carbon fiber reinforced plastics (CFRP). Carbon fiber reinforced plastics contain plastic and carbon fiber material (carbon fibres). Carbon fiber reinforced plastics may contain other members and/or materials (for example, reinforcing fibers other than carbon fibers, resin moldings, metals, ceramics, etc.).
- the carbon fibers contained in the carbon fiber reinforced plastic are not particularly limited, but include PAN-based carbon fibers and pitch-based carbon fibers.
- the carbon fiber may be of one type or may be composed of two or more types.
- the carbon fiber material contained in the carbon fiber reinforced plastic may be in any form, such as a carbon fiber bundle, a woven fabric formed from carbon fiber bundles, or a carbon fiber nonwoven fabric.
- a low oxygen concentration gas having an oxygen concentration of less than 10% by volume is introduced into the atmosphere of the heating furnace.
- the oxygen concentration of the low oxygen concentration gas introduced into the atmosphere of the heating furnace is more than 0% by volume, 1% by volume or more, 2% by volume or more, 3% by volume or more, or 4% by volume or more, and/or , 9% by volume or less, 8% by volume or less, or 7% by volume or less.
- the timing of introducing the low oxygen concentration gas into the heating furnace can be determined according to the type of plastic contained in the plastic-containing material and the surface temperature at which the plastic starts to decompose. In addition, the timing of introducing the low-oxygen concentration gas into the heating furnace can be determined based on previously acquired data regarding the self-heating of the plastic-containing material.
- low oxygen concentration gas is introduced into the atmosphere of the heating furnace while the surface temperature of the plastic-containing material held in the heating furnace is less than 300°C.
- the oxygen concentration is less than 10% by volume.
- a hypoxic gas is introduced.
- a low oxygen concentration gas having an oxygen concentration of less than 10% by volume is introduced into the atmosphere of the furnace holding the plastic-containing material having a surface temperature of less than 300° C., thereby to less than 10% by volume of oxygen.
- the lower limit of the surface temperature of the plastic-containing material held in the heating furnace when introducing a low oxygen concentration gas having an oxygen concentration of less than 10% by volume into the atmosphere of the heating furnace is not particularly limited, but for example , 0° C. or higher, 10° C. or higher, 20° C. or higher, or room temperature or higher.
- a low oxygen concentration gas having an oxygen concentration of less than 10% by volume is introduced into the atmosphere of the heating furnace, particularly into the atmosphere of the heating furnace holding the plastic-containing material having a surface temperature of less than 300 ° C. introduced, thereby reducing the oxygen concentration in the atmosphere in the heating furnace to more than 0 vol%, 1 vol% or more, 2 vol% or more, 3 vol% or more, or 4 vol% or more, and/or 9 vol% Thereafter, the content is controlled to 8% by volume or less, or 7% by volume or less.
- the oxygen concentration in the heating furnace can be directly measured by an oxygen concentration meter (oxygen monitor), or it can be determined based on the volume inside the furnace and the amount of gas introduced into the furnace.
- the oxygen concentration in the furnace is preferably the average oxygen concentration over the course of the heat treatment.
- Introduction of the low-oxygen gas into the furnace can be performed, for example, by pushing the low-oxygen gas into the furnace via a gas supply provided in the heating furnace, or a suction provided in the furnace. This can be done by providing suction through a port (or exhaust port) so that gas flows into the furnace from a gas supply provided at a location different from the suction port.
- the gas supply of the furnace may, for example, have openings and/or comprise a gas permeable material.
- the amount of gas introduced into the furnace can be set according to the capacity of the heating furnace, the desired oxygen concentration, etc., based on the unit resin amount of the resin (for example, epoxy resin) to be decomposed.
- the amount of gas introduced into the furnace per unit amount of resin is in the range of 1 to 1000 (L/min)/kg or less, preferably in the range of 2 to 700 (L/min)/kg or less. can be done. Also, the time for replacing the atmosphere in the furnace with the introduced gas can be determined based on the determined amount of gas to be introduced and the volume of the heating furnace to be used.
- the introduction amount of the low oxygen concentration gas is set with respect to the volume of the furnace so that the atmosphere in the heating furnace is maintained while the surface temperature of the plastic-containing material held in the heating furnace is less than 300 ° C. , can be replaced by the introduced hypoxic gas.
- the low-oxygen concentration gas introduced into the heating furnace can contain a diluent gas, particularly a mixed gas of air and diluent gas.
- a diluent gas particularly a mixed gas of air and diluent gas.
- the diluent gas include nitrogen gas, carbon dioxide gas, steam, and superheated steam.
- superheated steam is steam heated to a temperature equal to or higher than the boiling point.
- Superheated steam has the advantage of relatively high heat transfer to the object to be decomposed.
- the heating furnace may be a combustion furnace or an electric furnace.
- the heating furnace has, for example, an internal space for containing the plastic-containing material and the semiconductor material, a heat source (heater) for heating the atmosphere in the heating furnace, and a gas supply for introducing a low oxygen concentration gas into the heating furnace.
- a gas supply for introducing a low oxygen concentration gas into the heating furnace.
- an exhaust port for discharging cracked gases
- a suction port for applying suction pressure to the interior of the furnace.
- one structure can also be used as an exhaust port and a suction port.
- As an exhaust port and/or a suction port for example, one or a plurality of openings provided in the heating furnace can be used.
- the "surface temperature" of the plastic-containing material can be determined by measuring the temperature within 5 mm of the plastic-containing material during heat treatment.
- the surface temperature of the plastic-containing material can be controlled, for example, by controlling the temperature in the furnace via the heat source of the furnace, and/or by introducing a cold gas into the furnace, and/ Alternatively, it can be controlled by lowering the oxygen concentration to suppress oxidation heat generation.
- the surface temperature of the plastic-containing material can be measured with higher accuracy. can also be controlled.
- data on the correlation between the temperature in the heating furnace and/or the output of the heat source and the surface temperature measured by the sensor is obtained in advance, and the heat treatment may be performed based on this data.
- a method according to the present disclosure includes: The plastic-containing material is heated to a first surface temperature in the presence of a semiconductor material in an atmosphere in a heating furnace into which a low-oxygen gas having an oxygen concentration of less than 10% by volume is introduced, and the plastic in the plastic-containing material is to decompose including.
- this heat treatment is performed in an atmosphere in which the oxygen concentration is less than 10% by volume by introducing a low oxygen concentration gas having an oxygen concentration of less than 10% by volume. performed at an oxygen concentration of vol% or more, 2 vol% or more, 3 vol% or more, or 4 vol% or more, and/or at an oxygen concentration of 9 vol% or less, 8 vol% or less, or 7 vol% or less conduct.
- First surface temperature is the surface temperature of the plastic-containing material.
- the “first surface temperature” can be determined by measuring the temperature within 5 mm around the plastic-containing material during heat treatment, similarly to the "surface temperature” above.
- the first surface temperature may be 300°C or higher, 325°C or higher, or 350°C or higher, and/or may be 600°C or lower, 550°C or lower, 500°C or lower, or 450°C or lower.
- the first surface temperature is, for example, 300°C to 600°C, 300°C to 550°C, 300°C to 500°C, or 300°C to 450°C.
- first surface temperature is less than the above range, decomposition of the plastic may not occur. Further, when the first surface temperature exceeds the above range, when the plastic-containing material contains a valuable substance such as carbon fiber, the valuable substance such as carbon fiber deteriorates and/or burns away due to heating in the presence of oxygen. can be pronounced.
- the first surface temperature is set to a relatively low temperature, the effect of suppressing excessive oxidation heat generation is further enhanced.
- the first surface temperature is set to a temperature of 450°C or higher during heat treatment at an oxygen concentration of less than 10% by volume.
- the heating temperature is relatively low, the carbides formed on the surface of the plastic-containing material may inhibit further decomposition of the plastic. Carbide can be removed even if the is low. Therefore, it becomes possible to further improve the decomposition efficiency of the plastic.
- the heat treatment is performed for a predetermined time under the introduction of a low oxygen concentration gas having an oxygen concentration of less than 10% by volume.
- This predetermined time may be between 1 minute and 600 minutes, preferably between 30 minutes and 300 minutes, more preferably between 60 minutes and 180 minutes.
- the time when the temperature of the heating furnace reaches 300° C. or the time when the start of decomposition of the plastic is confirmed can be set as the starting point of the above-mentioned “predetermined time”.
- the semiconductor material may be placed in the furnace together with the plastic-containing material, or the semiconductor material may be placed in the furnace beforehand and the plastic-containing material then placed adjacent to or in contact with the semiconductor material. can be placed.
- the plastic-containing material and the semiconductor material that are to undergo heat treatment are placed apart from each other by a distance of 50 mm or less.
- spacers arranged between the plastic-containing material and the semiconductor material can be used.
- the lower limit of the distance is not particularly limited, but may be over 0 mm, over 1 mm, over 5 mm, or over 10 mm.
- the distance between the plastic-containing material and the semiconductor material can be measured at the point where the two are closest.
- the plastic-containing material and the semiconductor material to be subjected to heat treatment are placed in contact with each other.
- the mode of contact between the plastic-containing material and the semiconductor material is not particularly limited.
- the two can be brought into contact by placing a plastic-containing material over the semiconductor material.
- a plastic-containing material may also be placed over the semiconductor material carried on the surface of the carrier.
- the two can be brought into contact by surrounding or covering at least a portion or the entirety of the plastic-containing material with a semiconducting material.
- the semiconductor material is not particularly limited as long as it is stable at the temperature and oxygen concentration of the present invention.
- the semiconductor material contains, for example, at least one selected from the group consisting of the following substances: BeO , MgO, CaO, SrO , BaO , CeO2 , ThO2 , UO3 , U3O8 , TiO2 , ZrO2 , V2O5 , Y2O3 , Y2O2S , Nb2O5 , Ta2O5 , MoO3 , WO3 , MnO2 , Fe2O3 , MgFe2O4 , NiFe2O4 , ZnFe2O4 , ZnCo2O4 , ZnO , CdO , Al2O3 , MgAl 2O4 , ZnAl2O4 , Tl2O3 , In2O3 , SiO2 , SnO2 , PbO2 ,
- the semiconductor material is an oxide semiconductor material.
- oxide semiconductor materials include chromium oxide, titanium oxide, zinc oxide, vanadium oxide, tungsten oxide, molybdenum oxide, cobalt oxide, iron oxide, and copper oxide.
- the form of the semiconductor material is not particularly limited, and may be plate-like, granular, or honeycomb-like, for example. From the viewpoint of promoting decomposition of the plastic, it is preferable that the semiconductor material is supported on the surface of the air-permeable carrier.
- the air-permeable carrier may be a porous body made of ceramics or the like, a honeycomb-shaped support, or the like.
- the semiconductor material may be a semiconductor sintered body.
- a heat treatment method comprises: heating the plastic-containing material subjected to the heat treatment at the first surface temperature in the presence of the semiconductor material in an atmosphere having an oxygen concentration of 10% by volume or more; including.
- Heat treatment at an oxygen concentration of 10% by volume or more is preferably performed at an oxygen concentration of more than 10% by volume, 12% by volume or more, 15% by volume or more, or 20% by volume or more, and / or 30% by volume. or less, or at an oxygen concentration of 25% by volume or less.
- the plastic-containing material heat-treated at a relatively low oxygen concentration is further heat-treated under an increased oxygen concentration.
- the heat treatment at relatively low oxygen concentration is followed by the heat treatment with increased oxygen concentration. That is, at the stage when the decomposition of the plastic has progressed and the amount of the plastic has been reduced, the heating is performed with the oxygen concentration increased, so it is possible to suppress the generation of excessive oxidation heat.
- part of the plastic may remain as carbide without being vaporized.
- the oxygen concentration is increased and the heat treatment is further performed, so the remaining carbide can be efficiently decomposed and removed, and as a result, the decomposition efficiency is improved. It can be improved further.
- the heat treatment under introduction of a low oxygen concentration gas with an oxygen concentration of less than 10% by volume and the heat treatment with an oxygen concentration of 10% by volume or more can be performed continuously in the same heating furnace. That is, for example, after heating the plastic-containing material to the first surface temperature, the oxygen concentration can be increased to 10% by volume or more in the same heating furnace, and heat treatment can be further performed.
- the conventional plastic decomposition method it was necessary to perform processing such as shredding of the object to be processed following batch processing.
- An atmosphere with an oxygen concentration of 10% by volume or more can be formed, for example, by introducing a high oxygen concentration gas with an oxygen concentration of 10% by volume or more into the heating furnace, in particular, air and / or oxygen gas into the heating furnace.
- the oxygen concentration of the oxygen-rich gas may be more than 10% by volume, 12% by volume or more, 15% by volume or more, or 20% by volume or more, and/or 30% by volume or less, or 25% by volume or less. you can
- the semiconductor material used in the heat treatment at the first surface temperature can be used.
- the plastic-containing material that has been subjected to the heat treatment at the first surface temperature is heated to the second surface temperature in the presence of the semiconductor material in an atmosphere having an oxygen concentration of 10% by volume or more.
- “Second surface temperature” is the surface temperature of the plastic-containing material to be processed.
- the “second surface temperature” can be determined by measuring the temperature within 5 mm around the plastic-containing material during heat treatment, similarly to the above “surface temperature” and "first surface temperature”.
- the second surface temperature may range from 400°C to 600°C. More preferably, the second surface temperature is between 425°C and 575°C, or between 450°C and 550°C.
- the decomposition efficiency may not be improved. Further, when the second surface temperature exceeds the above range, when the plastic-containing material contains valuables such as carbon fibers, the valuables such as carbon fibers are deteriorated and/or burned away due to heating in the presence of oxygen. can be pronounced.
- the second surface temperature may be substantially the same temperature as the first surface temperature.
- the second surface temperature may be greater than or equal to the first surface temperature, or at least 5°C, at least 10°C, at least 25°C, at least 50°C, or at least 75°C higher than the first surface temperature. good.
- the upper limit of the difference between the first surface temperature and the second surface temperature is not particularly limited, but may be, for example, 200° C. or less or 100° C. or less.
- the heat treatment can be performed at an oxygen concentration of 10% by volume or more for a predetermined period of time.
- This predetermined time can be, for example, 1 minute to 600 minutes, 60 minutes to 360 minutes, or 90 minutes to 300 minutes.
- the decomposition method according to the present disclosure can also be applied to volatile organic compounds (VOC), flue gas, particulate matter (PM), etc., and can be used for exhaust gas treatment.
- VOC volatile organic compounds
- PM particulate matter
- the plastic-containing material which is a plastic composite material, contains plastic and inorganic material
- the recovery method comprises: recovering the inorganic material by decomposing the plastic in the plastic-containing material by the decomposition method; including.
- the decomposition method according to the present disclosure can efficiently decompose plastic. Therefore, according to the recovery method according to the present disclosure, the plastic contained in the plastic composite material can be efficiently and selectively decomposed, so that inorganic materials having good physical properties can be efficiently recovered. can.
- the inorganic material can be recovered without crushing the plastic composite material. It should be noted that crushing of the plastic composite material is not specifically excluded and crushing can be carried out at will.
- the plastic-containing material as a plastic composite is subjected to two-step heating. That is, the plastic is decomposed by heating the plastic composite material under introduction of a low oxygen concentration gas (having an oxygen concentration of less than 10%) and then subjecting it to heat treatment at an oxygen concentration of 10% by volume or more. to recover the inorganic material.
- a low oxygen concentration gas having an oxygen concentration of less than 10%
- the method of recovering inorganic materials via two-step heat treatment can ensure better physical properties of the recovered inorganic materials.
- Plastic composite materials containing inorganic materials and plastics include fiber reinforced plastics (FRP), especially carbon fiber reinforced plastics.
- FRP fiber reinforced plastics
- the inorganic material is, in particular, carbon fiber (carbon fiber material).
- Carbon fiber The carbon fibers contained in the carbon fiber reinforced plastic are not particularly limited, but include PAN-based carbon fibers and pitch-based carbon fibers.
- the carbon fiber may be of one type or may be composed of two or more types.
- the carbon fibers contained in the carbon fiber reinforced plastic may be in any form, for example, carbon fiber bundles, woven fabrics formed from carbon fiber bundles, or carbon fiber nonwoven fabrics.
- the plastic-derived residual carbon recovered together with the inorganic material is reduced, and in particular, the residual carbon is 5% by weight or less of the recovered inorganic material. is.
- the residual carbon is 4 wt% or less, 3 wt% or less, 2 wt% or less, 1 wt% or less, 0.9 wt% or less, 0.5 wt% or less, or It is 0.1% by weight or less.
- the residual carbon content is preferably reduced as much as possible, but the lower limit may be 0.001% by weight or more.
- the amount of residual carbon in the recovered inorganic material can be measured in the same manner as the amount of residual carbon in the recycled carbon fiber, which will be described later.
- carbon fibers having a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more can be obtained as inorganic materials from carbon fiber reinforced plastics.
- Single fiber tensile strength is preferably 3.1 GPa or more, 3.2 GPa or more, 3.3 GPa or more, or 3.4 GPa or more.
- the upper limit of the single fiber tensile strength is not particularly limited, it may be 6.0 GPa or less.
- Single fiber tensile strength can be measured in accordance with JIS R7606 as follows: taking at least 30 single fibers from the fiber bundle; Measure the diameter of the single fiber in the side image of the single fiber taken with a digital microscope, calculate the cross-sectional area, Fixing the sampled single fiber to a perforated mount with an adhesive, The mount on which the single fibers are fixed is attached to a tensile tester, and a tensile test is performed with a sample length of 10 mm and a strain rate of 1 mm/min to measure the tensile breaking stress. Calculate the tensile strength from the cross-sectional area and tensile breaking stress of the single fiber, The average tensile strength of at least 30 single fibers is taken as the single fiber tensile strength.
- the Weibull shape factor is preferably 6.5 or greater, 7.0 or greater, 7.5 or greater, 8.0 or greater, or 8.5 or greater. Although the upper limit of the Weibull shape factor is not particularly limited, it may be 15.0 or less.
- a high Weibull shape factor of the single fiber tensile strength means that the variation of the single fiber tensile strength is small.
- F is the fracture probability determined by the symmetric sample cumulative distribution method
- ⁇ is the single fiber tensile strength (MPa)
- m is the Weibull shape factor
- C is a constant.
- Weibull plotting is performed with lnln ⁇ 1/(1 ⁇ F) ⁇ and ln ⁇ , and the Weibull shape factor m can be obtained from the linearly approximated slope.
- the recycled carbon fiber (recycled carbon fiber material) according to the present disclosure can be produced by recovering carbon fiber from carbon fiber reinforced plastic.
- this recycled carbon fiber can have better physical properties than the carbon fiber before manufacturing the carbon fiber reinforced plastic.
- recycled carbon fibers can be produced by recovering recycled carbon fibers from carbon fiber reinforced plastics by the recovery method according to the present disclosure.
- the recycled carbon fiber has a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more.
- Single fiber tensile strength and Weibull shape factor can be measured and determined by the methods previously described.
- the single fiber tensile strength of the recycled carbon fiber is preferably 3.1 GPa or more, 3.2 GPa or more, 3.3 GPa or more, or 3.4 GPa or more.
- the upper limit of the single fiber tensile strength is not particularly limited, it may be 6.0 GPa or less.
- the Weibull shape factor of the recycled carbon fiber is preferably 6.5 or more, 7.0 or more, 7.5 or more, 8.0 or more, or 8.5 or more. Although the upper limit of the Weibull shape factor is not particularly limited, it may be 15.0 or less.
- a method for producing a recycled carbon fiber comprises: The plastic-containing material is heated to a first surface temperature in the presence of a semiconductor material in an atmosphere in a heating furnace into which a low-oxygen gas having an oxygen concentration of less than 10% by volume is introduced, and the plastic in the plastic-containing material is to decompose including
- the plastic-containing material is carbon fiber reinforced plastic containing carbon fibers.
- the fiber has a single fiber tensile strength of 3.0 GPa or more and a Weibull shape factor of 6.0 or more, and the content of the residual carbon component is more than 0% by weight and 5.0% by weight with respect to the recycled carbon fiber.
- a method for producing recycled carbon fibers is A plastic-containing material is heated to a first surface temperature in the presence of a semiconductor material in an atmosphere in a heating furnace into which a low oxygen concentration gas having an oxygen concentration of less than 10% by volume is introduced, and at the first surface temperature Decomposing the plastic in the plastic-containing material by heating the plastic-containing material that has been subjected to the heat treatment in the presence of the semiconductor material in an atmosphere with an oxygen concentration of 10% by volume or more; including
- plastic containing is carbon fiber reinforced plastic containing carbon fiber.
- low-oxygen gas is introduced into the atmosphere of the heating furnace while the plastic-containing surface temperature is below 300°C.
- the recycled carbon fiber according to the present disclosure has a reduced amount of residual carbon, and in particular, the residual carbon is 5% by weight or less with respect to the recycled carbon fiber. More preferably, the residual carbon is 4% by weight or less, 3% by weight or less, 2% by weight or less, 1% by weight or less, 0.9% by weight or less, 0.5% by weight or less with respect to the recycled carbon fiber, Or it is 0.1% by weight or less.
- residual carbon is a carbonized component derived from plastic contained in carbon fiber reinforced plastic, which is the raw material for manufacturing recycled carbon fiber.
- the amount of residual carbon in recycled carbon fibers can be determined by thermogravimetric analysis (TGA).
- recycled carbon fiber a recycled carbon fiber having a residual carbon content of 1.4% by weight obtained by the semiconductor thermal activation method was used.
- thermogravimetric analysis TGA method as follows: (i) A sample piece of 1 to 4 mg obtained by pulverizing recycled carbon fiber was measured with a thermogravimetric analyzer at an air supply rate of 0.2 L / min, a heating rate of 5 ° C / min, and 1/ Thermogravimetry with the steps of ramping from room temperature to 100°C, holding at 100°C for 30 minutes, ramping from 100°C to 400°C, and holding at 400°C for 480 minutes at a recording speed of 6s.
- the recycled carbon fibers had an average length of 5 mm.
- ⁇ Granulation treatment> For the granulation process, a Henschel-type horizontal stirring granulator (20 L Lödige mixer, manufactured by Matsubo) was used. This agitating granulator had an agitating blade. The stirring blade was connected to a shaft horizontally attached to the lateral inner wall of the vessel of the stirring granulator, and was configured to rotate around this shaft. In addition, the stirring blade was configured to have a minimum clearance of about 2 mm and a maximum clearance of about 5 mm between itself and the inner wall of the container.
- the agitating granulator also had auxiliary blades to promote fiber opening.
- the moisture content in the mixture was 37.0% by weight.
- the rotation speed of the stirring blade was 320 rpm and the rotation speed of the auxiliary blade was 3000 rpm.
- FIGS. 4 and 5 Photographs of the carbon fiber aggregate according to Example A1 are shown in FIGS. 4 and 5.
- FIG. As seen in these figures, the carbon fiber aggregate according to Example A1 had a spindle shape.
- binder content The binder content in the carbon fiber aggregate of Example A1 was 1.0% by weight.
- the bulk density of the carbon fiber aggregate according to Example A1 was measured. Specifically, the sample was poured into a 200 ml container with an inner diameter of 63 mm from a height of 63 mm using a funnel with an outlet inner diameter of 18 mm, and the container was filled to a heaped state. The sample weight at the level volume was then measured. Based on this weight and the volume of the container, the bulk density was calculated. As a result, the bulk density was 181 g/L.
- Feedability of the carbon fiber aggregate according to Example A1 was evaluated. Specifically, the carbon fiber aggregate according to Example A1 was supplied to a capacitive coil feeder (CFD-111, manufactured by Technobel) at a supply rate of 1 g/min, and feedability was evaluated. In Table 1 below, the case where the supply could be continued for 10 minutes is described as " ⁇ ".
- FIG. 6 A photograph of the carbon fiber assembly according to Comparative Example A2 is shown in FIG. As can be seen in FIG. 6, the carbon fiber aggregate obtained in Comparative Example A2 had a plate-like shape, and a spindle-shaped carbon fiber aggregate could not be obtained. Most of the carbon fiber aggregates obtained in Comparative Example A2 retained the shape of the cut recycled carbon fibers, and the recycled carbon fibers were bound to each other to form a bundle. Moreover, in Comparative Example A2, elliptical particles with non-uniform sizes were also observed. Production conditions and results are shown in Table 1 below.
- thermogravimetric analysis TGA method as follows: (i) For a 4 mg sample piece obtained by pulverizing recycled carbon fiber, in a thermogravimetric analyzer, an air supply rate of 0.2 L / min, a heating rate of 5 ° C. / min, and a heating rate of 1/6 s Thermogravimetric analysis was performed with the steps of ramping from room temperature to 100° C., holding at 100° C. for 30 minutes, ramping from 100° C. to 400° C., and holding at 400° C. for 480 minutes at recording speed.
- the recycled carbon fibers had an average length of 10 mm.
- thermoplastic resin fiber As thermoplastic resin fibers, polyphenylene sulfide resin fibers (PPS resin fibers, single filament fineness of 4.4 denier) having an average length of 5 mm were used.
- the PPS resin fiber as the thermoplastic resin fiber used in Example B1 was 70 g, and the recycled carbon fiber as the carbon fiber was 30 g.
- a binder-containing liquid (water emulsion sizing agent) containing 88.5 g of water as a dispersion medium for 6.5 g of urethane resin as a binder was prepared.
- the agitating granulator also had auxiliary blades to promote fiber opening.
- the moisture content in the mixture was 45.4% by weight.
- the rotation speed of the stirring blade was 600 rpm and the rotation speed of the auxiliary blade was 600 rpm.
- thermoplastic resin fibers and carbon fibers according to Example B1 had a spindle shape. Further, the thermoplastic resin fibers and carbon fibers contained in the aggregate were oriented along the longitudinal direction of the aggregate.
- the absolute values of the angles of the fibers with respect to the axial direction are respectively measured, and the obtained measured values are averaged to determine the average extending direction of the fibers with respect to the long axis direction of the aggregate ("fiber orientation degree ”) was calculated.
- fuzzy fibers fibers partially detached from aggregates
- binder content The binder content for the assembly of Example B1 was 6.1% by weight.
- the aspect ratio (major axis/minor axis) of the assembly of Example B1 was calculated.
- the major axis is the length of the aggregate.
- the minor axis was measured at the point where the width of the aggregate was maximum.
- the aggregate according to Example B1 had an average length of 20.0 mm and an average maximum width of 3.7 mm. Since the average length of the recycled carbon fibers was 10 mm, the average length of aggregates was 2.0 times the average length of the recycled carbon fibers. Moreover, since the average length of the PPS resin fibers was 5 mm, the average length of the aggregate was 4.0 times the average length of the PPS resin fibers.
- the bulk density of the assembly according to Example B1 was measured. Specifically, the sample was poured into a 200 ml container with an inner diameter of 63 mm from a height of 63 mm using a funnel with an outlet inner diameter of 18 mm, and the container was filled to a heaped state. The sample weight at the level volume was then measured. Based on this weight and the volume of the container, the bulk density was calculated. As a result, the bulk density was 164 g/L.
- Carbon fiber As the carbon fiber, a recycled carbon fiber having a residual carbon content of 1.4% by weight obtained by the semiconductor thermal activation method was used in the same manner as in Example B1. The recycled carbon fibers had an average length of 5 mm.
- thermoplastic resin fiber As thermoplastic resin fibers, polyphenylene sulfide resin fibers (PPS resin fibers, single filament fineness of 4.4 denier) having an average length of 5 mm were used.
- the PPS resin fiber as the thermoplastic resin fiber used in Example B2 was 350 g, and the recycled carbon fiber as the carbon fiber was 150 g.
- a binder-containing liquid (water emulsion sizing agent) containing 21.0 g of urethane resin as a binder and 256 g of water as a dispersion medium was prepared.
- the stirring granulator had a stirring blade and also had an auxiliary blade for promoting fiber opening.
- the moisture content in the mixture was 32.9% by weight.
- the rotation speed of the stirring blade was 235 rpm and the rotation speed of the auxiliary blade was 3,000 rpm.
- ⁇ Aggregate> 7 and 8 are photographs of aggregates according to Example B2. As seen in these figures, the aggregate of thermoplastic resin fibers and carbon fibers according to Example B2 had a spindle shape. Further, the thermoplastic resin fibers and carbon fibers contained in the aggregate were oriented along the longitudinal direction of the aggregate. When the degree of fiber orientation was calculated for Example B2 in the same manner as in Example B1, it was 7°.
- binder content The binder content for the assembly of Example B2 was 4.0% by weight.
- the aspect ratio (major axis/minor axis) of the assembly of Example B2 was calculated.
- the major axis is the length of the aggregate.
- the minor axis was measured at the point where the width of the aggregate was maximum.
- the aggregate according to Example B2 had an average length of 17.4 mm and an average maximum width of 2.6 mm. Since the average length of the recycled carbon fibers was 5 mm, the average length of aggregates was 3.5 times the average length of the recycled carbon fibers. Moreover, since the average length of the PPS resin fibers was 5 mm, the average length of the aggregate was 3.5 times the average length of the PPS resin fibers.
- the bulk density of the assembly according to Example B2 was measured in the same manner as in Example B1. As a result, the bulk density was 189 g/L.
- Table 2 below shows the manufacturing conditions and evaluation results of the assembly according to Example B2.
- FIG. 9 is a photograph showing the material obtained as a result of Comparative Example B1.
- the material obtained in Comparative Example B1 mainly consisted of aggregates of carbon fibers having irregular shapes and sizes and PPS powder, which existed separately from each other. Since the material according to Comparative Example B1 is not a dispersed mixture of PPS resin and carbon fiber, in order to produce a carbon fiber-containing molded product using the material according to Comparative Example B1, a kneading step is performed to produce pellets. need to convert.
- recycled carbon fiber the average length of 5 mm, the average single fiber diameter of 7.0 ⁇ m, the single fiber tension A recycled carbon fiber having a strength of 4.2 GPa, a Weibull shape factor of 8.7, and a residual carbon content of 0.3% by weight was used.
- the single fiber tensile strength was measured according to JIS R7606 as follows: taking at least 30 single fibers from the fiber bundle; Measure the diameter of the single fiber in the side image of the single fiber taken with a digital microscope, calculate the cross-sectional area, Fixing the sampled single fiber to a perforated mount with an adhesive, The mount on which the single fibers are fixed is attached to a tensile tester, and a tensile test is performed with a sample length of 10 mm and a strain rate of 1 mm/min to measure the tensile breaking stress. Calculate the tensile strength from the cross-sectional area and tensile breaking stress of the single fiber, The average tensile strength of at least 30 single fibers was taken as the single fiber tensile strength.
- thermogravimetric analysis TGA method
- TGA method thermogravimetric analysis
- a 4 mg sample piece obtained by pulverizing recycled carbon fiber in a thermogravimetric analyzer, an air supply rate of 0.2 L / min, a heating rate of 5 ° C. / min, and a heating rate of 1/6 s
- Thermogravimetric analysis was performed with the steps of ramping from room temperature to 100° C., holding at 100° C. for 30 minutes, ramping from 100° C. to 400° C., and holding at 400° C. for 480 minutes at recording speed.
- a spindle-shaped carbon fiber aggregate was obtained from the above recycled carbon fiber by the method according to the present invention. That is, after fibrillating the regenerated carbon fiber with a mixer, it is stirred and mixed with an aqueous epoxy resin dispersion as a binder using a stirring granulator, and the resulting spindle-shaped precursor is dried in a dryer. Thus, a spindle-shaped carbon fiber aggregate was obtained. In addition, 2% by weight of epoxy resin was added to the recycled carbon fiber.
- the resulting spindle-shaped carbon fiber aggregates were measured in the same manner as in Example A1 of Invention 1a above, and the average length of the aggregates was 10.8 mm, the average maximum width of the aggregates was 1.4 mm, and the average maximum width of the aggregates was 1.4 mm. was 132 g/L. Also, the aspect ratio of the aggregate was 7.7.
- thermoplastic resin A polycarbonate resin (L1225WP, manufactured by Teijin Limited: molecular weight 218,000) was used as the base thermoplastic resin.
- thermoplastic resin pellets ⁇ Production of carbon fiber reinforced thermoplastic resin pellets>
- the above polycarbonate which is a thermoplastic resin
- the recycled carbon fiber aggregate obtained above is supplied from a side feeder, dispersed in a polycarbonate resin as a base material and pelletized, A carbon fiber reinforced thermoplastic resin pellet according to Example C1 was obtained.
- thermoplastic resin and the recycled carbon fiber put into the extruder was measured, and the fiber weight ratio (% by weight) of the pellets according to Example C1 ((recycled carbon fiber (g) / (recycled carbon fiber ( g) + thermoplastic resin (g))) x 100) was calculated.
- the tensile strength, flexural strength, and flexural modulus of the obtained dumbbell pieces were 99 MPa, 142 MPa, and 7.2 GPa, respectively.
- Tensile strength, flexural strength, and flexural modulus were measured as follows.
- the average remaining fiber length of the recycled carbon fibers in the pellet was 348 ⁇ m, and the appearance frequency of single fibers of 300 ⁇ m or less was 36%.
- the average fiber length (remaining average fiber length) of the recycled carbon fibers in the carbon fiber reinforced thermoplastic resin pellets is obtained by removing the base material matrix resin in the pellets by the sulfuric acid decomposition method, filtering, and then using a microscope. The fiber length of 300 or more single fibers was measured and calculated as a number average value.
- the frequency of occurrence of single fibers of 300 ⁇ m or less was calculated by measuring the fiber length of single fibers in the same manner as in the measurement of the average fiber length, and calculating the ratio of the number of single fibers of 300 ⁇ m or less.
- Example C1 The results of Example C1 are shown in Table 3 below.
- a recycled carbon fiber having a residual carbon content of 7.1% by weight obtained by a conventional pyrolysis method without using a semiconductor was used.
- the single fiber tensile strength and Weibull shape factor could not be measured because the amount of residual carbon was 5% by weight or more.
- Comparative Example C1 pellets and dumbbells were produced in the same manner as in Example C1, except that recycled carbon fibers were supplied to the twin-screw extruder as chopped recycled carbon fibers without mixer treatment and production of carbon fiber aggregates. Strips were produced and evaluated. The results are shown in Table 3 below.
- the carbon fiber regenerated by the conventional pyrolysis method chopped recycled carbon fiber according to Comparative Example C1 is converged by the remaining carbide, it is possible to supply it from the side feeder to the twin-screw kneading extruder. there were.
- the molded article according to Example C1 exhibited better mechanical properties than the molded article according to Comparative Example C1.
- the reason for this is that the recycled carbon fiber of Example C1 had a lower amount of residual carbon than the recycled carbon fiber of Comparative Example C1, and the adhesion between the carbon fiber and the resin was good. Things are mentioned.
- Example C1 contained recycled carbon fibers, it exhibited mechanical properties equivalent to those of the molded article according to Comparative Example C2.
- the appearance frequency of single fibers crushed to 300 ⁇ m or less was 36%, which was lower than 55% in Comparative Example C2.
- Example C1 a high mechanical property reinforcing effect is obtained, and despite the use of recycled carbon fibers with low single fiber tensile strength, mechanical properties equivalent to those of Comparative Example C2 using virgin carbon fibers are exhibited.
- Example C1 the reason why the appearance frequency of the single fibers crushed to 300 ⁇ m or less in Example C1 was relatively low is that the recycled carbon fibers used in Example C1 were made by the semiconductor thermal activation method. Compared to Comparative Example C2, the variation in single yarn tensile strength was small and the Weibull shape factor was relatively high (8.7).
- Reference Example 1 was carried out as follows.
- the semiconductor material As the semiconductor material, a carrier having a honeycomb structure and chromium oxide (Cr 2 O 3 , purity of 99% or more, manufactured by Junsei Chemical Co., Ltd.) applied to the surface was used.
- the carrier with honeycomb structure had 13 cells/25 mm.
- a CFRP plate with an epoxy resin content of 41% by weight was used as the plastic-containing material.
- the volume inside the heating furnace was 9L. Inside the heating furnace, a CFRP plate was placed on a carrier carrying chromium oxide as a semiconductor material. The carrier and CFRP plate were placed in contact with each other.
- the surface temperature of the CFRP plate was measured by a sensor placed within 5 mm from the surface of the CFRP plate.
- the internal temperature of the furnace was increased by controlling the internal temperature of the furnace via the heater output of the furnace.
- a mixed gas of air and nitrogen gas with an oxygen concentration of 6% by volume was introduced into the heating furnace.
- the mixed gas is introduced into the heating furnace by sucking from the suction port provided in the upper part of the heating furnace at a gas introduction rate of 70 L / min, and the mixed gas is introduced from the gas supply port provided in the lower part of the heating furnace. This was done by inflowing
- the oxygen concentration in the heating furnace was measured by an oxygen monitor.
- Heat treatment was performed for 30 minutes in an atmosphere in which the oxygen concentration was controlled to 6% by volume by introducing the mixed gas. During the heat treatment, the heater power of the heating furnace was adjusted to raise the surface temperature of the CFRP plate to a first surface temperature of 376°C.
- ⁇ Reference Example 2> The same as Reference Example 1 except that the carrier and the CFRP plate were separated from each other by 30 mm in the heating furnace, and the surface temperature of the CFRP plate was raised to 377° C. during the heat treatment. Then, the heat treatment and evaluation of Reference Example 2 were performed. Table 4 shows the results.
- FIGS. 11 and 12 Photographs of the samples after undergoing the treatment according to Reference Example 4 and Reference Comparative Example 2 are shown in FIGS. 11 and 12, respectively. Also, a photograph of the sample before treatment is shown in FIG.
- Reference Example 4 in which heat treatment was performed under a semiconductor material under the introduction of a low oxygen concentration gas with an oxygen concentration of 6% by volume, is a semiconductor material under the introduction of a low oxygen concentration gas with an oxygen concentration of 6% by volume. Compared to Reference Comparative Example 2 in which heat treatment was performed without any material, high plastic decomposition efficiency was exhibited.
- Reference Example 5 was carried out as follows.
- the semiconductor material As the semiconductor material, a carrier having a honeycomb structure and chromium oxide (Cr 2 O 3 , purity of 99% or more, manufactured by Junsei Chemical Co., Ltd.) applied to the surface was used.
- the carrier with honeycomb structure had 13 cells/25 mm.
- a CFRP plate with an epoxy resin content of 41% by weight was used as the plastic-containing material.
- Table 6 shows the physical properties of the carbon fibers contained in the CFRP plate before treatment as Reference Example 1.
- the furnace internal volume of the heating furnace was 0.0525 m 3 .
- a CFRP plate was placed on a carrier carrying chromium oxide as a semiconductor material. The carrier and CFRP plate were placed in contact with each other.
- the surface temperature of the CFRP plate was measured by a sensor placed within 5 mm from the surface of the CFRP plate.
- the internal temperature of the furnace was increased by controlling the internal temperature of the furnace via the heater output of the furnace. Then, before the surface temperature of the CFRP plate reached 300° C., a mixed gas of air and nitrogen gas with an oxygen concentration of 8% by volume was introduced into the heating furnace.
- the mixed gas was introduced into the heating furnace by sucking at a gas introduction rate of 190 L/min and allowing the mixed gas to flow from a gas supply section provided in the heating furnace.
- Heat treatment was performed for 120 minutes in an atmosphere in which the oxygen concentration was controlled to 8% by volume by introducing the mixed gas. During the heat treatment, the heater power of the heating furnace was adjusted to raise the surface temperature of the CFRP plate to a first surface temperature of 450°C.
- Thermogravimetric analysis was performed as follows: (i) For a sample piece of 1 to 4 mg obtained by pulverizing the recovered carbon fiber, in a thermogravimetric analyzer, an air supply rate of 0.2 L / min, a heating rate of 5 ° C. / min, and 1 Thermogravimetric analysis with the steps of ramping from room temperature to 100°C, holding at 100°C for 30 minutes, ramping from 100°C to 400°C, and holding at 400°C at a recording rate of /6 s. , for a total of 300 minutes, (ii) In a graph plotting the weight loss rate against time, identify the inflection point of the slope, and subtract the weight loss rate during the holding period at 100 ° C. from the weight loss rate value at the inflection point. The amount of residual carbon was calculated by
- the single fiber tensile strength was measured according to JIS R7606 as follows: taking at least 30 single fibers from the fiber bundle; Measure the diameter of the single fiber in the side image of the single fiber taken with a digital microscope, calculate the cross-sectional area, Fixing the sampled single fiber to a perforated mount with an adhesive, The mount on which the single fibers are fixed is attached to a tensile tester, and a tensile test is performed with a sample length of 10 mm and a strain rate of 1 mm/min to measure the tensile breaking stress. Calculate the tensile strength from the cross-sectional area and tensile breaking stress of the single fiber, The average tensile strength of at least 30 single fibers was taken as the single fiber tensile strength.
- the fiber single yarn diameter is the average diameter of the single fibers measured for at least 30 single fibers as described above.
- the pressure vessel treated in Reference Example 6 had an aluminum liner and 44 wt% FRP (fiber reinforced plastic), which contained 31 wt% reinforcing fibers and 13% epoxy resin. .
- the reinforcing fibers consisted primarily of carbon fibers with minor amounts of glass fibers.
- the volume of the pressure vessel was 2.0L.
- the amount of FRP treated in Reference Example 6 was 0.47 kg.
- the processing amount with respect to the furnace internal volume was 9.0 kg/m 3 .
- Table 4 shows the evaluation results of the plastic decomposition efficiency and the evaluation results of the physical properties of the recovered carbon fibers for Reference Example 6.
- the average oxygen concentration over 180 minutes of secondary heat treatment was 18% by volume, and the maximum oxygen concentration was 20% by volume.
- the internal temperature of the heating furnace and the surface temperature of the sample were controlled via the heater output of the heating furnace and the temperature of the superheated steam.
- Table 6 shows the evaluation results of the plastic decomposition efficiency and the evaluation results of the physical properties of the recovered carbon fibers for Reference Example 7. In the secondary heat treatment, only air was forced into the furnace at 29 L/min.
- the pressure vessel used in Reference Example 8 is the same as the pressure vessel used in Reference Example 6.
- the amount of FRP treated in Reference Example 8 was 0.47 kg.
- the throughput for the volume inside the furnace was 3.3 kg/m 3 .
- Table 6 shows the evaluation results of the plastic decomposition efficiency and the evaluation results of the physical properties of the recovered carbon fibers for Reference Example 8. In the secondary heat treatment, only air was forced into the furnace at 29 L/min.
- Table 6 shows the evaluation results of the plastic decomposition efficiency for Reference Example 9 and the evaluation results of the physical properties of the recovered carbon fibers.
- the amount of air was increased, and gas with an oxygen concentration of 11% by volume was forced into the furnace at 38 L/min.
- Table 6 shows the physical properties of the carbon fiber contained in the above CFRP plate according to Reference Example 9 before treatment as Reference Example 3.
- the treatment was performed in the same manner as in Reference Example 6, except that no semiconductor material was used.
- the amount of FRP processed in Reference Comparative Example 4 was 0.47 kg.
- the processing amount with respect to the furnace internal volume was 9.0 kg/m 3 .
- Table 6 shows the evaluation results of physical properties of the collected carbon fibers.
- the average oxygen concentration over 180 minutes of secondary heat treatment was 18% by volume, and the maximum oxygen concentration was 20% by volume.
- the carbon fibers recovered in Reference Examples 5 to 9 retain the same fiber single yarn diameter and single fiber tensile strength as compared to the carbon fibers before treatment (Reference Examples 1 to 3). and the Weibull shape factor of single fiber tensile strength was high. That is, in Reference Examples 5 to 9, carbon fibers having better physical properties than the carbon fibers before the production of the carbon fiber reinforced plastic were recovered.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
炭素繊維は、比強度・比弾性率に優れ、軽量であるため、熱硬化性樹脂及び熱可塑性樹脂(特には熱可塑性樹脂)の強化繊維などとして用いられている。炭素繊維強化樹脂複合材料(又は、炭素繊維強化プラスチック、CFRP)は、スポーツ・一般産業用途だけでなく、航空・宇宙用途、自動車用途など、幅広い用途に利用される。
炭素繊維強化樹脂複合材料の一つの形態として、炭素繊維強化熱可塑性樹脂ペレットがある。炭素繊維強化熱可塑性樹脂ペレットは、連続炭素繊維を熱可塑性樹脂で被覆処理した樹脂ストランドをカット(切断)することで製造される長繊維強化ペレットと、不連続炭素繊維を熱可塑性樹脂に混錬分散した樹脂ストランドをカットすることで製造される短繊維強化ペレットの2つがある。短繊維強化熱可塑性樹脂ペレットは、長繊維強化熱可塑性樹脂ペレットに対して、機械物性は劣るものの安価に製造できる方法として広く採用されている。
従来の炭素繊維集合体は、フィード性が不十分である場合があった。
再生炭素繊維を用いて製造される従来の炭素繊維集合体は、フィード性が不十分である場合があった。
一般に、上記のような炭素繊維集合体を用いて炭素繊維含有成形品を製造する際には、炭素繊維集合体(1次中間材料)に加えて熱可塑性樹脂を混錬機などに供給して混錬を行い、炭素繊維及び熱可塑性樹脂を含有するペレット(2次中間材料)を製造する。そして、このペレットを射出成型機などに供給して、炭素繊維含有成形品を製造する。
使用済みの炭素繊維強化樹脂複合材料を分解し、再生炭素繊維を得る方法には、樹脂成分を熱処理して分解する方法(熱分解法)、溶剤を利用して溶解除去する方法、電気分解する方法等があるが、従来広く普及している方法として、熱処理して分解する方法が挙げられる。
本開示の発明1に係る下記の態様によれば、発明1に係る上記の課題を解決することができる:
<態様1>
炭素繊維、及びバインダ含有液から少なくとも構成される混合物を提供すること、
前記混合物を、容器中で転動させることによって、紡錘形の前駆体を製造すること、並びに、
前記前駆体を乾燥させること、
を含む、紡錘形の集合体の製造方法。
<態様2>
炭素繊維及びバインダを含む、紡錘形の集合体。
本開示の発明1aに係る下記の態様A1~A13によれば、発明1aに係る上記の課題を解決することができる:
<態様A1>
再生炭素繊維及びバインダ含有液から少なくとも構成される混合物を提供すること、
前記混合物を、容器中で、前記容器の内壁と前記容器内の回転体との間のクリアランスで転動させることによって、紡錘形の前駆体を製造すること、並びに
前記前駆体を乾燥させること、
を含む、紡錘形の炭素繊維集合体の製造方法であって、
前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下であること、及び
前記再生炭素繊維の平均長さが、1mm以上30mm未満であること、
を特徴とする、
紡錘形の炭素繊維集合体の製造方法。
<態様A2>
前記炭素繊維集合体の平均長さが、1.5mm~60mmである、態様A1に記載の方法。
<態様A3>
前記混合物中の前記バインダ含有液の量が、前記混合物に対して、20重量%~60重量%である、態様A1又はA2に記載の方法。
<態様A4>
前記バインダ含有液に含有されるバインダの量が、前記再生炭素繊維に対して、0.1重量~10重量%である、態様A1~A3のいずれか一項に記載の方法。
<態様A5>
炭素繊維含有プラスチック製品に含有されるプラスチック成分を半導体熱活性法によって分解して、前記再生炭素繊維を製造することを含む、態様A1~A4のいずれか一項に記載の方法。
<態様A6>
前記炭素繊維集合体の平均長さが、前記炭素繊維集合体に含有される再生炭素繊維の平均長さの1.2倍~4.0倍である、態様A1~A5のいずれか一項に記載の方法。
<態様A7>
前記回転体が、攪拌羽根である、態様A1~A6のいずれか一項に記載の方法。
<態様A8>
前記前駆体の製造を、傾斜していない容器内で行う、態様A1~A7のいずれか一項に記載の方法。
<態様A9>
再生炭素繊維及びバインダから少なくとも構成される炭素繊維集合体であって、
前記再生炭素繊維の平均長さが、1mm以上30mm未満であること、及び、
前記炭素繊維集合体の平均長さが、1.5mm~60mmであること、
を特徴とする、
紡錘形の炭素繊維集合体。
<態様A10>
前記紡錘形の炭素繊維集合体の長軸方向の平均長さが、前記紡錘形の炭素繊維集合体に含有される再生炭素繊維の平均長さの1.2倍~4.0倍である、態様A9に記載の炭素繊維集合体。
<態様A11>
前記紡錘形の炭素繊維集合体に含有される再生炭素繊維が、前記紡錘形の炭素繊維集合体の長軸方向に沿って配向している、態様A9又はA10に記載の炭素繊維集合体。
<態様A12>
前記バインダの含有量が、前記紡錘形の炭素繊維集合体に対して、0.1重量~10重量%である、態様A9~A11のいずれか一項に記載の炭素繊維集合体。
<態様A13>
前記再生炭素繊維が、残留炭素成分を含み、
前記残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下である、
態様A9~A12のいずれか一項に記載の炭素繊維集合体。
本開示の発明1bに係る下記の態様B1~B14によれば、発明1bに係る上記の課題を解決することができる:
<態様B1>
炭素繊維、熱可塑性樹脂繊維、及びバインダを含む、熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体であって、
前記集合体に含有される前記炭素繊維及び前記熱可塑性樹脂繊維が、前記集合体の長軸方向に沿って配向している、集合体。
<態様B2>
前記集合体の平均長さが、1.5mm~60mmである、態様B1に記載の集合体。
<態様B3>
前記炭素繊維及び前記熱可塑性樹脂繊維の平均長さが、それぞれ、1mm以上30mm未満である、態様B1又はB2に記載の集合体。
<態様B4>
前記集合体の平均長さが、前記集合体に含有される前記炭素繊維の平均長さ及び前記熱可塑性樹脂繊維の平均長さの1.2倍~5.0倍である、態様B1~B3のいずれか一項に記載の集合体。
<態様B5>
前記バインダの含有量が、前記集合体に対して、0.1重量%~10重量%である、態様B1~B4のいずれか一項に記載の集合体。
<態様B6>
前記熱可塑性樹脂繊維が、ポリオレフィン樹脂繊維、ポリエステル樹脂繊維、ポリアミド樹脂繊維、ポリエーテルケトン樹脂繊維、ポリカーボネート樹脂繊維、フェノキシ樹脂繊維、及びポリフェニレンスルフィド樹脂繊維、並びにこれらの混合物から選択される、態様B1~B5のいずれか一項に記載の集合体。
<態様B7>
前記炭素繊維が、再生炭素繊維を含む、態様B1~B6のいずれか一項に記載の集合体。
<態様B8>
前記炭素繊維が、再生炭素繊維である、態様B1~B7のいずれか一項に記載の集合体。
<態様B9>
前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分が、前記再生炭素繊維に対して0重量%超5.0重量%以下である、態様B7又はB8に記載の集合体。
<態様B10>
炭素繊維、熱可塑性樹脂繊維、及びバインダ含有液から少なくとも構成される混合物を提供すること、
前記混合物を、容器中で転動させることによって、紡錘形の前駆体を製造すること、並びに
前記前駆体を乾燥させること、
を含む、
態様B1~B9のいずれか一項に記載の集合体の製造方法。
<態様B11>
前記混合物を、容器中で、前記容器の内壁と前記容器内の回転体との間のクリアランスで転動させることによって、紡錘形の前駆体を製造する、態様B10に記載の方法。
<態様B12>
前記炭素繊維が、再生炭素繊維を含む、態様B10又はB11に記載の方法。
<態様B13>
前記炭素繊維が、再生炭素繊維である、態様B12に記載の方法。
<態様B14>
炭素繊維含有プラスチック製品に含有されるプラスチック成分を半導体熱活性法によって分解して、前記再生炭素繊維を製造することを含む、態様B12又はB13に記載の方法。
本開示の発明2に係る下記の態様C1~C7によれば、発明2に係る上記の課題を解決することができる:
〈態様C1〉
再生炭素繊維と熱可塑性樹脂とを含む炭素繊維強化熱可塑性樹脂ペレットであって、
前記再生炭素繊維が、3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有すること、並びに
前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下であること、
を特徴とする、炭素繊維強化熱可塑性樹脂ペレット。
〈態様C2〉
前記再生炭素繊維の含有量が前記炭素繊維強化熱可塑性樹脂ペレットに対して5重量%以上30重量%以下である、態様C1に記載の炭素繊維強化熱可塑性樹脂ペレット。
〈態様C3〉
前記熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、フェノキシ樹脂、及びポリフェニレンスルフィド樹脂、並びにこれらの混合物から選択される、態様C1又はC2に記載の炭素繊維強化熱可塑性樹脂ペレット。
〈態様C4〉
長手方向の長さが3mm以上10mm以下である、態様C1~C3のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
〈態様C5〉
前記炭素繊維強化熱可塑性樹脂ペレット中に含まれる前記再生炭素繊維の残存平均繊維長が300μm以上であることを特徴とする態様C1~C4のいずれかに記載の炭素繊維強化熱可塑性樹脂ペレット。
〈態様C6〉
引張強度が90MPa以上、曲げ強度が140MPa以上、曲げ弾性率が7100MPa以上である成形品を製造するために用いられることを特徴とする、態様C1~C5のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
<態様C7>
前記炭素繊維強化熱可塑性樹脂ペレット中の前記再生炭素繊維に関して、300μm以下の単繊維の出現頻度が、40%以下であることを特徴とする、態様C1~C6のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
本開示に係る発明1によれば、改善されたフィード性を示す炭素繊維集合体を提供することができる。
本開示に係る発明1aによれば、再生炭素繊維を含有し、かつ改善されたフィード性を示す炭素繊維集合体を提供することができる。
本開示に係る発明1bによれば、取扱い性に優れ、かつ炭素繊維含有成形品の製造に直接用いることができる炭素繊維及び熱可塑性樹脂の集合体、並びにその製造方法を提供することができる。
本開示に係る発明2によれば、熱処理して分解する方法で得られる再生炭素繊維を原料として、優れた機械的特性を有する成形品の製造に用いることができる再生炭素繊維強化熱可塑性樹脂ペレットを提供することができる。
本開示の発明1に係る紡錘形の集合体の製造方法は、
炭素繊維、及びバインダ含有液から少なくとも構成される混合物を提供すること、
前記混合物を、容器中で転動させることによって、紡錘形の前駆体を製造すること、並びに、
前記前駆体を乾燥させること、
を含む。
炭素繊維及びバインダを含む、紡錘形の集合体
を含む。
本開示の発明1aに係る炭素繊維集合体の製造方法は、
再生炭素繊維及びバインダ含有液から少なくとも構成される混合物を提供すること(提供工程)、
混合物を、容器中において、容器の内壁と容器内の回転体との間のクリアランスで転動させることによって、紡錘形の前駆体を製造すること(造粒工程)、並びに
前駆体を乾燥させること(乾燥工程)、
を含み、
再生炭素繊維が、残留炭素成分を含み、この残留炭素成分の含有量が、再生炭素繊維に対して0重量%超5.0重量%以下であること、及び
再生炭素繊維の平均長さが1mm以上30mm未満であること、
を特徴とする。
本開示の発明1aに係る方法で製造される紡錘形の炭素繊維集合体は、再生炭素繊維及びバインダから少なくとも構成される集合体である。好ましくは、炭素繊維集合体は、実質的に、再生炭素繊維及びバインダからなる。炭素繊維集合体中で、再生炭素繊維が、バインダによって互いに結合している。
本開示の発明1aに係る方法で得られる炭素繊維集合体では、好ましくは再生炭素繊維が、紡錘形の長軸方向に沿って配向している。再生炭素繊維のこの配向は、炭素繊維集合体の長軸方向と同一(平行)である必要は必ずしもないが、実質的に平行であることが好ましく、より具体的には、再生炭素繊維の平均的な延在方向が、炭素繊維集合体の長軸方向に対して、45°以下、40°以下、30°以下、20°以下、10°以下、5°以下、2°以下、1°以下、0.5°以下、又は0.1°以下の角度を有する。炭素繊維集合体の長軸方向に対する再生炭素繊維の平均的な延在方向は、0°に近い程好ましいく、下限は特に限定されないが、例えば0°超、又は0.01°以上であってよい。
炭素繊維集合体の平均長さは、1.5mm~60mmであってよい。好ましくは、炭素繊維集合体の平均長さが、1.8mm以上、2mm以上、3mm以上、4mm以上、5mm以上、6mm以上、7mm以上、8mm以上、9mm以上、10mm以上、11mm以上、若しくは12mm以上であり、かつ/又は、50mm以下、40mm以下、30mm以下、若しくは25mm以下である。炭素繊維集合体の平均長さが上記の範囲である場合には、良好なフィード性を得ることができる。
炭素繊維集合体の平均最大幅は、0.1mm~3.0mmであってよい。好ましくは、集合体の平均長さが、0.2mm以上、0.3mm以上、0.4mm以上、若しくは0.5mm以上であり、かつ/又は、2.5mm以下、2.0mm以下、1.8mm以下、若しくは1.6mm以下である。炭素繊維集合体の平均最大幅は、長さ方向に垂直な方向で最も大きい長さ(幅)の平均である。炭素繊維集合体の平均最大幅が上記の範囲である場合には、良好なフィード性を得ることができる。
炭素繊維集合体のアスペクト比は、2~150、2~100、又は2~50であってよい。また、炭素繊維集合体のアスペクト比は、2~20、若しくは3~15、又は特には4~10であることが好ましい。アスペクト比がこの範囲(特にはこの好ましい範囲)である場合には、形状安定性及びフィード性に特に優れる炭素繊維集合体を得ることができる場合がある。
本開示の発明1aに係る方法では、再生炭素繊維及びバインダ含有液から少なくとも構成される混合物を提供する。
再生炭素繊維は、炭素繊維集合体の原料であり、炭素繊維成分、及び残留炭素成分を含む。通常、再生炭素繊維中で、残留炭素成分は、炭素繊維成分の表面に付着している。
再生炭素繊維中の炭素繊維成分は、通常、再生炭素繊維の原料となった炭素繊維含有製品等に含有されていた炭素繊維に由来する。再生炭素繊維中の炭素繊維成分は、再生炭素繊維の製造の過程で熱処理等を受けることによって改質されていてもよい。
再生炭素繊維に含有される残留炭素成分は、特には、再生炭素繊維を製造する際に原料として用いた炭素繊維含有プラスチック製品に含まれていた樹脂に由来する残留炭素である。
(i)再生炭素繊維を粉砕して得た1~4mgのサンプル片に対して、熱重量分析計において、0.2L/minの空気供給速度、5℃/minの加熱上昇率、及び1/6sの記録速度で、
室温から100℃への昇温、
30分間にわたる100℃での保持、
100℃から400℃への昇温、及び、
400℃での保持
の工程を有し合計300分間にわたる熱重量分析を行い、
(ii)重量減少率を時間に対してプロットしたグラフにおいて、傾きの変曲点を特定し、当該変曲点における重量減少率の値から、100℃での保持期間における重量減少率を差し引くことによって、残留炭素量を算出する。
再生炭素繊維は、1mm以上30mm未満の平均長さを有する。この範囲の長さを有する再生炭素繊維は、例えば、比較的長い寸法を有する再生炭素繊維を切断処理することによって得ることができる。再生炭素繊維の平均長さは、2mm以上、3mm以上、若しくは4mm以上であってよく、かつ/又は、29mm以下、28mm以下、27mm以下、26mm以下、25mm以下、24mm以下、23mm以下、22mm以下、21mm以下、20mm以下、15mm以下、若しくは10mm以下であってよい。特には、再生炭素繊維の平均長さが、8mm~25mm、又は9mm~20mmであってもよい。
バインダ含有液は、バインダ分散液又はバインダ溶液であり、バインダ、及び溶媒又は分散媒を含有する。
バインダは、炭素繊維集合体中で再生炭素繊維を集束させ、炭素繊維集合体の形状を保持する役割を有する。バインダは、特に限定されないが、好ましくは、熱可塑性樹脂又は熱硬化性樹脂である。より具体的には、バインダとしては、エポキシ樹脂、ウレタン変性エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、エポキシ変性ウレタン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂が挙げられる。これらの樹脂は、単独で又は2種以上を組み合わせて用いることができる。
溶媒又は分散媒は、バインダを溶解又は分散することができる液体であれば、特に制限されない。溶媒又は分散媒としては、水、アルコール(例えばメタノール又はエタノール)、ケトン(例えばメチルエチルケトン又はアセトン)、炭化水素(例えばシクロヘキサン、トルエン又はキシレン)、ハロゲン化炭化水素(例えばジクロロメタン)、アミド(例えばN-メチルピロリドン又はジメチルホルムアミド)、エーテル(例えばテトラヒドロフラン)が挙げられる。溶媒又は分散媒は、特に好ましくは、水である。
再生炭素繊維に対して、あらかじめ開繊処理を行うことができる。開繊処理を行うことによって、繊維同士の絡まり合いを解消し、造粒工程において繊維同士が一方向に配向することを促進できる場合がある。
再生炭素繊維及びバインダ含有液から混合物を得る方法は、特に限定されない。再生炭素繊維及びバインダ含有液は、混合物の形態で、造粒工程で用いる容器に投入することができる。例えば、再生炭素繊維の塊にバインダ含有液を注ぎ、随意に攪拌することによって混合物を得、この混合物を容器に投入してよい。あるいは、容器内に、再生炭素繊維及びバインダ含有液を別個に投入し、当該容器内で混合して混合物とすることもできる。混合と造粒を同時に行ってもよい。
本開示に係る方法では、混合物を、容器中において、容器の内壁と容器内の回転体との間のクリアランスで転動させること(以下で、この処理を「造粒処理」と呼ぶこともある。)によって、紡錘形の前駆体を製造する。
本開示の容器は、その中に混合物を保持し、かつ混合物に対して上記の造粒処理を行うことに適していれば、特に限定されない。容器は、剛性及び耐久性に優れる材料でできていることが好ましい。特に、容器の内壁は、混合物の転動の間に摩耗等を生じない材料でできていること、又はそのための表面処理をされていることが好ましい。
回転体は、容器内で回転することによって、それ自体と容器の内壁との間で、再生炭素繊維及びバインダ含有液を含む混合物を転動することができるように構成されている。回転体は、例えば、容器内に設置された軸部に取り付けられ、当該軸部を中心として回転することができるように構成されている。
容器の内壁と回転体との間のクリアランスの大きさ、すなわち、容器の内壁と回転体との間の距離は、一定であってもよく、又は、連続的若しくは不連続的に種々の値であってもよい。
上記の容器及び回転体を有する装置として、公知の攪拌造粒器を用いることができる。攪拌造粒器は、特に限定されないが、例えばヘンシェル型の造粒器(ヘンシェルミキサー)、バグミル型の造粒器、又はアイリッヒ型の攪拌造粒器を用いることができる。攪拌造粒器は、縦型及び横型のいずれも用いることができる。
紡錘形の前駆体は、再生炭素繊維及びバインダを含有し、かつ、バインダ含有液に由来する液体(特には水)を含んでいる。下記の乾燥工程で、前駆体中の液体(特には水分)を除去することができる。
本開示に係る方法では、得られた紡錘形の前駆体を乾燥させる。
本開示の発明1aは、下記の炭素繊維集合体を含む:
再生炭素繊維及びバインダから少なくとも構成される炭素繊維集合体であって、
再生炭素繊維の平均長さが、1mm以上30mm未満であること、及び、
炭素繊維集合体の平均長さが、1.5mm~60mmであること、
を特徴とする、
紡錘形の炭素繊維集合体。
本開示の発明1aに係る炭素繊維集合体は、好ましくは、50g/L以上、75g/L以上、若しくは100g/L以上、かつ/又は、500g/L以下、400g/L以上、300g/L以下、若しくは200g/L以下の嵩密度を有する。
試料を、出口内径18mmの漏斗を用いて、63mmの高さから、内径63mmの200ml容器に流し入れて、山盛り状態にまで充填する。そして、すり切り容量での試料の重量を測定する。この重量と容器の容積とに基づいて、嵩密度を算出する。
本開示の発明1bに係る熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体は、
炭素繊維、熱可塑性樹脂繊維、及びバインダを含み、
集合体に含有される炭素繊維及び熱可塑性樹脂繊維が、集合体の長軸方向に沿って配向している。
本開示の発明1bに係る熱可塑性樹脂繊維及び炭素繊維の集合体は、紡錘形であり、
炭素繊維、熱可塑性樹脂繊維、及びバインダを含み、
集合体に含有される炭素繊維及び熱可塑性樹脂繊維が、集合体の長軸方向に沿って配向している。
本開示の発明1bに係る集合体では、集合体に含有される繊維成分(炭素繊維及び熱可塑性樹脂繊維)が、紡錘形の長軸方向に沿って配向している。なお、集合体が変形した紡錘形(例えば湾曲した紡錘形)である場合、「繊維が紡錘形の長軸方向に沿って配向している」とは、集合体に含有される繊維が、変形した紡錘形の集合体の軸線に沿って配向していることを意味する。繊維のこの配向は、集合体の長軸方向と同一(平行)である必要は必ずしもないが、実質的に平行であることが好ましく、より具体的には、繊維の平均的な延在方向が、紡錘形の集合体の長軸方向に対して、45°以下、40°以下、30°以下、20°以下、又は10°以下の角度を有する。紡錘形の集合体の長軸方向に対する繊維の平均的な延在方向は、0°に近い程好ましいく、下限は特に限定されないが、例えば0°超、1°以上、又は2°以上であってよい。
本開示の発明1bに係る集合体の平均長さは、1.5mm~60mmであってよい。好ましくは、集合体の平均長さが、1.8mm以上、2.0mm以上、3.0mm以上、4.0mm以上、5.0mm以上、6.0mm以上、7.0mm以上、8.0mm以上、9.0mm以上、10mm以上、11mm以上、12mm以上、若しくは15mm以上であり、かつ/又は、50mm以下、40mm以下、30mm以下、若しくは25mm以下である。集合体の平均長さが上記の範囲である場合には、特に良好なフィード性を得ることができると考えられる。
炭素繊維集合体の平均最大幅は、0.1mm~5.0mmであってよい。好ましくは、集合体の平均長さが、0.2mm以上、0.3mm以上、0.4mm以上、0.5mm以上、1.0mm以上、1.5mm以上、若しくは2.0mm以上であり、かつ/又は、4.5mm以下、若しくは4.0mm以下である。炭素繊維集合体の平均最大幅は、長さ方向に垂直な方向で最も大きい長さ(幅)の平均である。炭素繊維集合体の平均最大幅が上記の範囲である場合には、良好なフィード性を得ることができる。
炭素繊維集合体のアスペクト比は、2~150、2~100、又は2~50であってよい。また、集合体のアスペクト比は、2~20、3~15、又は4~10であることが好ましい。アスペクト比がこの範囲(特にはこの好ましい範囲)である場合には、形状安定性及びフィード性に特に優れる集合体を得ることができる場合がある。
本開示の発明1bに係る集合体は、好ましくは、50g/L以上、75g/L以上、若しくは100g/L以上、かつ/又は、500g/L以下、400g/L以下、300g/L以下、若しくは200g/L以下の嵩密度を有する。
炭素繊維は、集合体の原料であり、通常の炭素繊維(再生炭素繊維ではない炭素繊維、いわゆるヴァージン炭素繊維)、再生炭素繊維、及びこれらの混合物が挙げられる。炭素繊維は、例えば、PAN系炭素繊維、又はピッチ系炭素繊維であってよい。
再生炭素繊維(リサイクルされた炭素繊維)は、炭素繊維成分、及び炭素繊維成分以外の炭素成分(特には残留炭素成分)を含む。通常、再生炭素繊維中で、炭素繊維成分以外の炭素成分は、炭素繊維成分の表面に付着している。
熱可塑性樹脂繊維としては、ポリオレフィン樹脂繊維(例えば、ポリプロピレン樹脂繊維及びポリエチレン)、ポリエステル樹脂繊維(例えば、ポリエチレンテレフタレート樹脂繊維、ポリブチレンテレフタレート樹脂繊維、及びポリ乳酸)、ポリアミド樹脂繊維、ポリエーテルケトン樹脂繊維、ポリカーボネート樹脂繊維、フェノキシ樹脂繊維、並びにポリフェニレンスルフィド樹脂繊維が挙げられる。熱可塑性樹脂繊維は、1種のみであってよく、又は、2種以上の熱可塑性樹脂繊維の混合物であってもよい。
炭素繊維は、1mm以上30mm未満の平均長さを有することができる。この範囲の長さを有する繊維は、例えば、比較的長い寸法を有する繊維を切断処理することによって得ることができる。炭素繊維の平均長さは、それぞれ、2mm以上、3mm以上、若しくは4mm以上であってよく、かつ/又は、29mm以下、28mm以下、27mm以下、26mm以下、25mm以下、24mm以下、23mm以下、22mm以下、21mm以下、20mm以下、15mm以下、若しくは10mm以下であってよい。特には、炭素繊維の平均長さが、8mm~25mm、又は9mm~20mmであってもよい。
本開示の発明1bは、本開示の発明1bに係る集合体を製造するための、下記を含む製造方法を含む:
炭素繊維、熱可塑性樹脂繊維、及びバインダ含有液から少なくとも構成される混合物を提供すること(提供工程)、
混合物を、容器中で転動させることによって、紡錘形の前駆体を製造すること(造粒工程)、並びに
前駆体を乾燥させること(乾燥工程)。
本開示の発明1bに係る方法では、炭素繊維、熱可塑性樹脂繊維、及びバインダ含有液から少なくとも構成される混合物を提供する。混合物は、特には、炭素繊維、熱可塑性樹脂繊維、及びバインダ含有溶液からなる。
バインダ含有液及びその成分については、発明1aに関する上記の記載を参照することができる。
繊維成分、特には炭素繊維に対して、あらかじめ開繊処理を行うことができる。開繊処理については、発明1aに係る上記の記載を参照することができる。
炭素繊維、熱可塑性樹脂繊維、及びバインダ含有液から混合物を得る方法は、特に限定されない。炭素繊維、熱可塑性樹脂繊維及びバインダ含有液は、混合物の形態で、造粒工程で用いる容器に投入することができる。例えば、炭素繊維及び熱可塑性樹脂繊維の塊にバインダ含有液を注ぎ、随意に攪拌することによって混合物を得、この混合物を容器に投入してよい。あるいは、容器内に、炭素繊維、熱可塑性樹脂繊維、及びバインダ含有液を別個に投入し、当該容器内で混合して混合物とすることもできる。混合と造粒を同時に行ってもよい。
本開示の発明1bに係る方法では、混合物を、容器中で転動させること(以下で、この処理を「造粒処理」と呼ぶこともある。)によって、紡錘形の前駆体を製造する。
紡錘形の前駆体は、炭素繊維及び熱可塑性樹脂繊維並びにバインダを含有し、かつ、バインダ含有液に由来する液体(特には水)を含んでいる。下記の乾燥工程で、前駆体中の液体(特には水分)を除去することができる。
本開示に係る方法では、得られた紡錘形の前駆体を乾燥させる。
本開示の発明2に係る炭素繊維強化熱可塑性樹脂ペレットは、再生炭素繊維と熱可塑性樹脂とを含み、
この再生炭素繊維が、
3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有すること、並びに
残留炭素成分を含み、残留炭素成分の含有量が、再生炭素繊維に対して0重量%超5.0重量%以下であること、
を特徴とする。
再生炭素繊維(リサイクルされた炭素繊維)は、炭素繊維成分、及び炭素繊維成分以外の炭素成分(特には残留炭素成分)を含む。通常、再生炭素繊維中で、炭素繊維成分以外の炭素成分は、炭素繊維成分の表面に付着している。
好ましくは、炭素繊維強化熱可塑性樹脂ペレット中の再生炭素繊維の残存平均繊維長(すなわち、該ペレット中に存在している再生炭素繊維の平均繊維長)が、300μm以上である。再生炭素繊維の残存平均繊維長は、より好ましくは、320μm以上、330μm以上、又は340μm以上である。再生炭素繊維の残存平均繊維長の上限は特に限定されないが、600μm以下、又は500μm以下であってよい。
炭素繊維強化熱可塑性樹脂ペレット中の再生炭素繊維に関して、300μm以下の単繊維の出現頻度は、好ましくは40%以下である。300μm以下の単繊維の出現頻度は、特に好ましくは、39%以下、38%以下、37%以下、又は36%以下である。300μm以下の単繊維の出現頻度の下限は特に限定されないが、例えば、1%以上、又は10%以上であってよい。
単繊維引張強度は、好ましくは、3.1GPa以上、3.2GPa以上、3.3GPa以上、又は3.4GPa以上である。なお、単繊維引張強度の上限は特に限定されないが、6.0GPa以下であってよい。
繊維束から少なくとも30本の単繊維を採取し、
デジタルマイクロスコープによって撮影した単繊維の側面画像において単繊維の直径を計測して、断面積を算出し、
サンプリングした単繊維を、穴あき台紙に接着剤を用いて固定し、
単繊維を固定した台紙を、引張試験機に取り付け、試長10mm、歪速度1mm/分で引張試験を行って引張破断応力を測定し、
単繊維の断面積及び引張破断応力から引張強度を算出し、
少なくとも30本の単繊維の引張強度の平均を、単繊維引張強度とする。
ワイブル形状係数は、好ましくは、6.5以上、7.0以上、7.5以上、8.0以上、又は8.5以上である。ワイブル形状係数の上限は特に限定されないが、15.0以下であってよい。なお、単繊維引張強度のワイブル形状係数が高いことは、単繊維引張強度のばらつきが小さいことを意味している。
lnln{1/(1-F)}=m×lnσ+C
式中、Fは、対称試料累積分布法により求められる破壊確率、σは、単繊維引張強度(MPa)、mは、ワイブル形状係数、Cは、定数である。
再生炭素繊維中の炭素繊維成分は、通常、再生炭素繊維の原料となった炭素繊維含有製品等に含有されていた炭素繊維に由来する。再生炭素繊維中の炭素繊維成分は、再生炭素繊維の製造の過程で熱処理等を受けることによって改質されていてもよい。
再生炭素繊維に含有される残留炭素成分は、特には、再生炭素繊維を製造する際に原料として用いた炭素繊維含有プラスチック製品に含まれていた樹脂に由来する残留炭素である。
本開示の発明2に係る炭素繊維強化熱可塑性樹脂ペレットに含有される熱可塑性樹脂としては、例えば、ポリオレフィン樹脂(例えば、ポリプロピレン樹脂及びポリエチレン樹脂)、ポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、及びポリ乳酸樹脂)、ポリアミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、フェノキシ樹脂、並びにポリフェニレンスルフィド樹脂が挙げられる。熱可塑性樹脂は、1種のみであってよく、又は、2種以上の熱可塑性樹脂の混合物であってもよい。
本開示の発明2に係る炭素繊維強化熱可塑性樹脂ペレットは、再生炭素繊維と熱可塑性樹脂とを含む。
本開示の発明2に係る炭素繊維強化熱可塑性ペレットにおける再生炭素繊維の含有量は、好ましくは、炭素繊維強化熱可塑性樹脂ペレットに対して、30重量%以下、30重量%未満、20重量%以下、15重量%以下であり、かつ/又は、5重量%以上、7重量%以上、8重量%以上、若しくは10重量%以上である。
本開示の発明2に係る炭素繊維強化熱可塑性樹脂ペレットの製造方法は、特に限定されないが、例えば、下記を含む製造方法によって得ることができる:
再生炭素繊維を提供すること、
熱可塑性樹脂を提供すること、及び
再生炭素繊維と、溶融した熱可塑性樹脂とを混錬すること、
ここで、
再生炭素繊維が、3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有しており、かつ
再生炭素繊維が、残留炭素成分を含み、残留炭素成分の含有量が、再生炭素繊維に対して0重量%超5.0重量%以下である。
本開示に係る炭素繊維強化熱可塑性樹脂ペレットを、押出成形機などを用いて成形することによって、成形品を製造することができる。本開示に係るペレットを用いて成形された成形品は、良好な物性、特には良好な機械的物性を示す。
好ましくは、ISO527に準拠して、実施例で示されている方法で製造された成形品が、90MPa以上、特に好ましくは、92MPa~110MPa、又は95MPa~100MPaの引張強度を示す。
好ましくは、ISO178に準拠して、実施例で示されている方法で製造された成形品が、140MPa以上、特に好ましくは、140MPa~160MPa、140MPa~150MPa、又は140MPa~145MPaの曲げ強度を示す。
好ましくは、ISO178に準拠して、実施例で示されている方法で製造された成形品が、7100MPa以上、特に好ましくは、7100MPa~8000MPa、7100MPa~7500MPa、又は7100MPa~7400MPaの曲げ弾性率を示す。
半導体熱活性法を用いて本開示の発明2に係る特性を有する再生炭素繊維を得る方法について、下記に説明する。下記では、まず、プラスチック含有材料を分解する方法について説明し、そして、この分解方法を用いて、プラスチック及び無機材料(炭素繊維)を含有するプラスチック含有材料から無機材料(炭素繊維)を回収する方法を、説明する。
本開示に係るプラスチック含有材料の分解方法は、
プラスチック含有材料を、酸素濃度10体積%未満である低酸素濃度ガスが導入された加熱炉内の雰囲気中において、半導体材料の存在下、第1表面温度まで加熱して、プラスチック含有材料中のプラスチックを分解すること、
を含む。
プラスチック含有材料は、プラスチックを含有する。プラスチック含有材料は、プラスチック材料又はプラスチック複合材料であってよい。
プラスチック含有材料は、特には、プラスチック複合材料である。プラスチック複合材料は、例えば、繊維強化プラスチック(FRP:Fiber Reinforced Platic)である。繊維強化プラスチックに含有される強化繊維としては、炭素繊維(カーボンファイバー)が挙げられる。
プラスチック複合材料は、特には、炭素繊維強化プラスチック(CFRP)などの炭素繊維含有プラスチック製品である。炭素繊維強化プラスチックは、プラスチック及び炭素繊維材料(炭素繊維)を含有する。炭素繊維強化プラスチックは、他の部材及び/又は材料(例えば、炭素繊維以外の強化繊維、樹脂成型品、金属、セラミックスなど)を含んでいてもよい。
本開示に係る方法では、
酸素濃度10体積%未満である低酸素濃度ガスを、加熱炉の雰囲気中に導入する。
加熱炉は、燃焼炉又は電気炉であってよい。加熱炉は、例えば、プラスチック含有材料及び半導体材料を収容するための内部空間、加熱炉内の雰囲気を加熱するための熱源(ヒーター)、加熱炉内に低酸素濃度ガスを導入するためのガス供給部、分解ガスを排出するための排気口、及び、随意に、加熱炉内部に吸引圧を付与するための吸引口を有することができる。なお、1つの構造を、排気口及び吸引口として使用することもできる。排気口及び/又は吸引口として、例えば、加熱炉に設けられた1又は複数の開口部を用いることができる。
プラスチック含有材料の「表面温度」は、加熱処理中のプラスチック含有材料の周囲5mm以内における温度を計測することによって、決定することができる。
本開示に係る方法は、
プラスチック含有材料を、酸素濃度10体積%未満である低酸素濃度ガスが導入された加熱炉内の雰囲気中において、半導体材料の存在下、第1表面温度まで加熱して、プラスチック含有材料中のプラスチックを分解すること、
を含む。
「第1表面温度」は、プラスチック含有材料の表面温度である。「第1表面温度」は、上記の「表面温度」と同様に、加熱処理中のプラスチック含有材料の周囲5mm以内における温度を計測することによって決定することができる。
半導体材料は、プラスチック含有材料と一緒に加熱炉内に配置してもよく、又は、あらかじめ半導体材料を加熱炉内に配置し、その後に、プラスチック含有材料を、半導体材料に隣接させて若しくは接触させて、配置してもよい。
BeO,MgO,CaO,SrO,BaO,CeO2,ThO2,UO3,U3O8,TiO2,ZrO2,V2O5,Y2O3,Y2O2S,Nb2O5,Ta2O5,MoO3,WO3,MnO2,Fe2O3,MgFe2O4,NiFe2O4,ZnFe2O4,ZnCo2O4,ZnO,CdO,Al2O3,MgAl2O4,ZnAl2O4,Tl2O3,In2O3,SiO2,SnO2,PbO2,UO2,Cr2O3,MgCr2O4,FeCrO4,CoCrO4,ZnCr2O4,WO2,MnO,Mn3O4,Mn2O3,FeO,NiO,CoO,Co3O4,PdO,CuO,Cu2O,Ag2O,CoAl2O4,NiAl2O4,Tl2O,GeO,PbO,TiO,Ti2O3,VO,MoO2,IrO2,RuO2,CdS、CdSe,CdTe、Cu2O、Sb2O3、MnO3、及びCoCrO4。
本開示の1つの好ましい実施態様に係る熱処理方法は、
第1表面温度での加熱処理に供されたプラスチック含有材料を、半導体材料の存在下、酸素濃度10体積%以上の雰囲気中において加熱すること、
を含む。
特には、第1表面温度での加熱処理に供されたプラスチック含有材料を、半導体材料の存在下、酸素濃度10体積%以上の雰囲気中において、第2表面温度まで加熱する。
本開示に係るプラスチック含有材料の分解方法によれば、広範囲な種類のプラスチックを効率的に気化分解することができる。また、本開示に係る分解方法は、揮発性有機化合物(VOC)、排煙、粒子状物質(PM)などにも適用可能であり、排ガス処理にも利用することができる。
プラスチック複合材料に含有される無機材料を回収する本開示に係る方法について、下記で説明する。
上記の分解方法によってプラスチック含有材料中のプラスチックを分解して無機材料を回収すること、
を含む。
本開示に係る回収方法の別の実施態様では、プラスチック複合材料としてのプラスチック含有材料を、二段階加熱に供する。すなわち、プラスチック複合材料を、(酸素濃度10%未満である)低酸素濃度ガス導入下での加熱、及び、それに続く、酸素濃度10体積%以上での加熱処理に供することによって、プラスチックを分解して、無機材料を回収する。
無機材料及びプラスチックを含有するプラスチック複合材料としては、繊維強化プラスチック(FRP)、特には炭素繊維強化プラスチックが挙げられる。
炭素繊維強化プラスチックに含有される炭素繊維としては、特に限定されないが、PAN系炭素繊維、及びピッチ系炭素繊維が挙げられる。炭素繊維は、1種であってもよく、2種以上から構成されるものであってもよい。
本開示に係る回収方法の1つの実施態様によれば、無機材料と共に回収されるプラスチック由来の残留炭素が低減されており、特には、当該残留炭素が、回収される無機材料の5重量%以下である。好ましくは、当該残留炭素が、回収される無機材料の、4重量%以下、3重量%以下、2重量%以下、1重量%以下、0.9重量%以下、0.5重量%以下、又は0.1重量%以下である。なお、残留炭素はできるだけ低減されていることが好ましいが、その下限が0.001重量%以上であってよい。回収される無機材料における当該残留炭素の量は、後述する再生炭素繊維における残留炭素の量と同様にして計測することができる。
単繊維引張強度は、好ましくは、3.1GPa以上、3.2GPa以上、3.3GPa以上、又は3.4GPa以上である。なお、単繊維引張強度の上限は特に限定されないが、6.0GPa以下であってよい。
繊維束から少なくとも30本の単繊維を採取し、
デジタルマイクロスコープによって撮影した単繊維の側面画像において単繊維の直径を計測して、断面積を算出し、
サンプリングした単繊維を、穴あき台紙に接着剤を用いて固定し、
単繊維を固定した台紙を、引張試験機に取り付け、試長10mm、歪速度1mm/分で引張試験を行って引張破断応力を測定し、
単繊維の断面積及び引張破断応力から引張強度を算出し、
少なくとも30本の単繊維の引張強度の平均を、単繊維引張強度とする。
ワイブル形状係数は、好ましくは、6.5以上、7.0以上、7.5以上、8.0以上、又は8.5以上である。ワイブル形状係数の上限は特に限定されないが、15.0以下であってよい。なお、単繊維引張強度のワイブル形状係数が高いことは、単繊維引張強度のばらつきが小さいことを意味している。
lnln{1/(1-F)}=m×lnσ+C
式中、Fは、対称試料累積分布法により求められる破壊確率、σは、単繊維引張強度(MPa)、mは、ワイブル形状係数、Cは、定数である。
本開示に係る回収方法によれば、例えば、繊維強化プラスチック(FRP)、太陽電池パネル、電子回路等のマトリックス樹脂のみを効率的に分解し、強化繊維及びレアメタルなどの有価物を効率的に回収することができる。
本開示に係る再生炭素繊維(再生炭素繊維材料)は、炭素繊維強化プラスチックから炭素繊維を回収することによって、製造することができる。本開示の1つの実施態様では、この再生炭素繊維は、炭素繊維強化プラスチックを製造する前の炭素繊維よりも優れた物性を有することができる。
特には、3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有し、かつ残留炭素成分の含有量が再生炭素繊維に対して0重量%超5.0重量%以下である再生炭素繊維を製造するための方法が、
プラスチック含有材料を、酸素濃度10体積%未満である低酸素濃度ガスが導入された加熱炉内の雰囲気中において、半導体材料の存在下、第1表面温度まで加熱して、プラスチック含有材料中のプラスチックを分解すること、
を含み、
ここで、プラスチック含有材料が、炭素繊維を含有している炭素繊維強化プラスチックである。
プラスチック含有材料を、酸素濃度10体積%未満である低酸素濃度ガスが導入された加熱炉内の雰囲気中において、半導体材料の存在下、第1表面温度まで加熱し、かつ、第1表面温度での加熱処理に供されたプラスチック含有材料を、半導体材料の存在下、酸素濃度10体積%以上の雰囲気中において加熱することによって、プラスチック含有材料中のプラスチックを分解すること、
を含み、
ここで、プラスチック含有が、炭素繊維を含有している炭素繊維強化プラスチックである。
好ましくは、本開示に係る再生炭素繊維では、残留炭素の量が低減されており、特には、残留炭素が、再生炭素繊維に対して、5重量%以下である。さらに好ましくは、当該残留炭素が、再生炭素繊維に対して、4重量%以下、3重量%以下、2重量%以下、1重量%以下、0.9重量%以下、0.5重量%以下、又は0.1重量%以下である。
発明2に関して、紡錘形の炭素繊維集合体及びその製造方法については、発明1aに係る上記の記載を参照することができる。また、炭素繊維集合体に含有される再生炭素繊維の詳細について、発明1aに係る上記の記載を参照することができるとともに、発明2の再生炭素繊維に関する上述の記載を参照することができる。
<材料の調製>
(再生炭素繊維)
再生炭素繊維としては、半導体熱活性法によって得た残留炭素量1.4重量%の再生炭素繊維を用いた。
(i)再生炭素繊維を粉砕して得た1~4mgのサンプル片に対して、熱重量分析計において、0.2L/minの空気供給速度、5℃/minの加熱上昇率、及び1/6sの記録速度で、室温から100℃への昇温、30分間にわたる100℃での保持、100℃から400℃への昇温、及び480分間にわたる400℃での保持からなる工程を有する熱重量分析を、合計約600分間にわたって行い、
(ii)重量減少率を時間に対してプロットしたグラフにおいて、傾きの変曲点を特定し、当該変曲点における重量減少率の値から、100℃での保持期間における重量減少率を差し引くことによって、残留炭素の量を算出した。
バインダとしてのウレタン系樹脂5.05gに対して分散媒としての水297gを有するバインダ含有液を準備した。
造粒処理のために、ヘンシェルタイプの横型攪拌造粒器(20Lレーディゲミキサー、マツボー社製)を使用した。この攪拌造粒器は、攪拌ブレードを有していた。攪拌ブレードは、攪拌造粒器の容器部の側方内壁に水平方向で取り付けられた軸部に接続し、この軸部を中心に回転するように構成されていた。また、攪拌ブレードは、容器部の内壁との間に、最小約2mm、最大約5mmのクリアランスを有するように構成されていた。
得られた前駆体を、乾燥器中で乾燥して、実施例A1に係る炭素繊維集合体を得た。
実施例A1に係る炭素繊維集合体の写真を図4及び図5に示す。これらの図で見られるとおり、実施例A1に係る炭素繊維集合体は、紡錘形の形状を有していた。
実施例A1の炭素繊維集合体に対するバインダの含有量は、1.0重量%であった。
ノギスを用いて、実施例A1の炭素繊維集合体の長径及び短径を計測し、炭素繊維集合体のアスペクト比(長径/短径)を算出した。短径は、炭素繊維集合体の幅が最大となる箇所で計測した。検体数50(N=50)について行った結果、アスペクト比は、7.5であった。
ノギスを用いて検体数50(N=50)で計測したところ、実施例A1に係る炭素繊維集合体の平均長さは、13.5mmであり、平均最大幅は1.8mmであった。再生炭素繊維の平均長さは5mmであったので、炭素繊維集合体の平均長さは、再生炭素繊維の平均長さの2.7倍であった。
実施例A1に係る炭素繊維集合体の嵩密度を計測した。具体的には、試料を、出口内径18mmの漏斗を用いて63mmの高さから、内径63mmの200ml容器に流し入れて、山盛り状態にまで充填した。そして、すり切り容量での試料重量を測定した。この重量と容器の容積とに基づいて、嵩密度を算出した。その結果、嵩密度は、181g/Lであった。
実施例A1に係る炭素繊維集合体のフィード性を評価した。具体的には、実施例A1に係る炭素繊維集合体を、容量式コイルフィーダ(CFD-111、テクノベル社製)に1g/minの供給量で供給し、フィード性を評価した。下記の表1では、10分間にわたって継続して供給を行うことができた場合を、「○」として記載している。
バインダの量及び水分率を表1のとおりに変更したこと以外は、実施例A1と同様にして、実施例A2に係る炭素繊維集合体の製造及び評価を行った。表1に製造条件及び評価結果を示す。
バインダの量及び水分率を表1のとおりに変更したこと以外は、実施例A1と同様にして、実施例A3に係る炭素繊維集合体の製造及び評価を行った。表1に製造条件及び評価結果を示す。
再生炭素繊維の平均長さを10mmとしたこと以外は、実施例A2と同様にして、実施例A4に係る炭素繊維集合体の製造及び評価を行った。表1に製造条件及び評価結果を示す。
再生炭素繊維の平均長さを30mmとしたこと以外は、実施例A2と同様にして、炭素繊維集合体の製造を試みた。しかしながら、造粒器中で再生炭素繊維が互いに絡まり、粒子状の炭素繊維集合体を得ることができなかった。製造条件及び結果を下記の表1に示す。
残留炭素量7.1重量%の再生炭素繊維を用いたこと以外は、実施例A4と同様にして、炭素繊維集合体を製造した。
<材料の調製>
(炭素繊維)
炭素繊維としては、半導体熱活性法によって得た残留炭素量1.4重量%の再生炭素繊維を用いた。
(i)再生炭素繊維を粉砕して得た4mgのサンプル片に対して、熱重量分析計において、0.2L/minの空気供給速度、5℃/minの加熱上昇率、及び1/6sの記録速度で、室温から100℃への昇温、30分間にわたる100℃での保持、100℃から400℃への昇温、及び480分間にわたる400℃での保持からなる工程を有する熱重量分析を、合計約600分間にわたって行い、
(ii)重量減少率を時間に対してプロットしたグラフにおいて、傾きの変曲点を特定し、当該変曲点における重量減少率の値から、100℃での保持期間における重量減少率を差し引くことによって、残留炭素の量を算出した。
熱可塑性樹脂繊維として、平均長さ5mmのポリフェニレンスルフィド樹脂繊維(PPS樹脂繊維、単糸繊度4.4デニール)を用いた。
実施例B1で用いた熱可塑性樹脂繊維としてのPPS樹脂繊維は、70gであり、炭素繊維としての再生炭素繊維は、30gであった。
バインダとしてのウレタン系樹脂6.5gに対して分散媒としての水88.5gを有するバインダ含有液(水エマルジョンサイジング剤)を準備した。
造粒処理のために、ヘンシェルタイプの横型攪拌造粒器(5Lパムアペックスミキサー、大平洋機工社製)を使用した。この攪拌造粒器は、攪拌ブレードを有していた。この攪拌ブレードは、攪拌造粒器の容器部の側方内壁に水平方向で取り付けられた軸部に接続し、この軸部を中心に回転するように構成されていた。また、攪拌ブレードは、容器部の内壁との間に約2mmのクリアランスを有するように構成されていた。
得られた前駆体を、乾燥器中で乾燥して、実施例B1に係る集合体を得た。
実施例B1に係る熱可塑性樹脂繊維及び炭素繊維の集合体は、紡錘形の形状を有していた。また、集合体に含有される熱可塑性樹脂繊維及び炭素繊維が、集合体の長軸方向に沿って配向していた。
実施例B1の集合体に対するバインダの含有量は、6.1重量%であった。
ノギスを用いて、実施例B1の集合体のアスペクト比(長径/短径)を算出した。長径は、集合体の長さである。短径は、集合体の幅が最大となる箇所で計測した。検体数50(N=50)について平均値を計測した結果、アスペクト比は、5.4であった(平均値:長径=20.0mm、下記参照;短径=3.7mm)。
ノギスを用いて検体数50(N=50)で計測したところ、実施例B1に係る集合体の平均長さは、20.0mmであり、平均最大幅は3.7mmであった。再生炭素繊維の平均長さは10mmであったので、集合体の平均長さは、再生炭素繊維の平均長さの2.0倍であった。また、PPS樹脂繊維の平均長さは5mmであったので、集合体の平均長さは、PPS樹脂繊維の平均長さの4.0倍であった。
実施例B1に係る集合体の嵩密度を計測した。具体的には、試料を、出口内径18mmの漏斗を用いて63mmの高さから、内径63mmの200ml容器に流し入れて、山盛り状態にまで充填した。そして、すり切り容量での試料重量を測定した。この重量と容器の容積とに基づいて、嵩密度を算出した。その結果、嵩密度は、164g/Lであった。
≪発明1bについての実施例B2≫
実施例B2に係る集合体を、下記のとおりにして作製した。
(炭素繊維)
炭素繊維として、実施例B1と同様に、半導体熱活性法によって得た残留炭素量1.4重量%の再生炭素繊維を用いた。再生炭素繊維は、5mmの平均長さを有していた。
熱可塑性樹脂繊維として、平均長さ5mmのポリフェニレンスルフィド樹脂繊維(PPS樹脂繊維、単糸繊度4.4デニール)を用いた。
実施例B2で用いた熱可塑性樹脂繊維としてのPPS樹脂繊維は、350gであり、炭素繊維としての再生炭素繊維は、150gであった。
バインダとしてのウレタン系樹脂21.0gに対して分散媒としての水256gを有するバインダ含有液(水エマルジョンサイジング剤)を準備した。
造粒処理のために、竪型攪拌造粒器(30L MTIミキサー、月島機械社製)を使用した。
得られた前駆体を、乾燥器中で乾燥して、実施例B2に係る集合体を得た。
図7及び図8は、実施例B2に係る集合体の写真である。これらの図で見られるとおり、実施例B2に係る熱可塑性樹脂繊維及び炭素繊維の集合体は、紡錘形の形状を有していた。また、集合体に含有される熱可塑性樹脂繊維及び炭素繊維が、集合体の長軸方向に沿って配向していた。実施例B1と同様にして、実施例B2に関して繊維配向度を算出したところ、7°であった。
実施例B2の集合体に対するバインダの含有量は、4.0重量%であった。
ノギスを用いて、実施例B2の集合体のアスペクト比(長径/短径)を算出した。長径は、集合体の長さである。短径は、集合体の幅が最大となる箇所で計測した。検体数50(N=50)について平均値を計測した結果、アスペクト比は、6.7であった(平均値:長径=17.4mm、下記参照;短径=2.6mm)。
ノギスを用いて検体数50(N=50)で計測したところ、実施例B2に係る集合体の平均長さは、17.4mmであり、平均最大幅は2.6mmであった。再生炭素繊維の平均長さは5mmであったので、集合体の平均長さは、再生炭素繊維の平均長さの3.5倍であった。また、PPS樹脂繊維の平均長さは5mmであったので、集合体の平均長さは、PPS樹脂繊維の平均長さの3.5倍であった。
実施例B1と同様にして、実施例B2に係る集合体の嵩密度を計測した。その結果、嵩密度は、189g/Lであった。
PPS樹脂繊維の代わりに、ポリフェニレンスルフィド樹脂の粉体(PPS粉体、メディアン径270μm)を用いたこと以外は、上記の実施例B2と同様にして集合体の製造を試みたところ、紡錘形の集合体を得ることができなかった。
<材料の調製>
(再生炭素繊維)
再生炭素繊維としては、切断処理されたCFRPを原料として、本開示の発明2に係る方法に従って、半導体熱活性法によって再生された、平均長さ5mm、平均単繊維直径7.0μm、単繊維引張強度4.2GPa、ワイブル形状係数8.7、残留炭素量0.3重量%の再生炭素繊維を用いた。
単繊維引張強度は、JIS R7606に準拠して、下記のとおりにして計測した:
繊維束から少なくとも30本の単繊維を採取し、
デジタルマイクロスコープによって撮影した単繊維の側面画像において単繊維の直径を計測して、断面積を算出し、
サンプリングした単繊維を、穴あき台紙に接着剤を用いて固定し、
単繊維を固定した台紙を、引張試験機に取り付け、試長10mm、歪速度1mm/分で引張試験を行って引張破断応力を測定し、
単繊維の断面積及び引張破断応力から引張強度を算出し、
少なくとも30本の単繊維の引張強度の平均を、単繊維引張強度とした。
ワイブル形状係数は、下記の式に従って算出した:
lnln{1/(1-F)}=m×lnσ+C
(式中、Fは、対称試料累積分布法により求められる破壊確率、σは、単繊維引張強度(MPa)、mは、ワイブル形状係数、Cは、定数である。)
lnln{1/(1-F)}とlnσとでワイブルプロットし、1次近似した傾きから、ワイブル形状係数mを求めた。
再生炭素繊維における残留炭素成分の量は、熱重量分析(TGA法)によって、下記のとおりにして決定した:
(i)再生炭素繊維を粉砕して得た4mgのサンプル片に対して、熱重量分析計において、0.2L/minの空気供給速度、5℃/minの加熱上昇率、及び1/6sの記録速度で、室温から100℃への昇温、30分間にわたる100℃での保持、100℃から400℃への昇温、及び480分間にわたる400℃での保持からなる工程を有する熱重量分析を、合計約600分間にわたって行い、
(ii)重量減少率を時間に対してプロットしたグラフにおいて、傾きの変曲点を特定し、当該変曲点における重量減少率の値から、100℃での保持期間における重量減少率を差し引くことによって、残留炭素の量を算出した。
ベース熱可塑性樹脂としては、ポリカーボネート樹脂(L1225WP、帝人株式会社製:分子量21.8万)を使用した。
熱可塑性樹脂である上記のポリカーボネートを二軸混錬押出機に供給し、上記で得られた再生炭素繊維集合体をサイドフィーダーから供給し、母材となるポリカーボネート樹脂に分散してペレット化して、実施例C1に係る炭素繊維強化熱可塑性樹脂ペレットを得た。
上記ダンベル片を用いて、ISO527に準拠し、引張強度を測定した。
上記ダンベル片を用いて、ISO178に準拠し、曲げ強度を測定した。
上記ダンベル片を用いて、ISO178に準拠し、曲げ弾性率を測定した。
炭素繊維強化熱可塑性樹脂ペレット中の再生炭素繊維の平均繊維長(残存平均繊維長)は、硫酸分解法によりペレット中の母材マトリックス樹脂を除去し、ろ過を行った後、マイクロスコープを用いて300本以上の単繊維の繊維長を測定し、数平均値として算出した。
300μm以下の単繊維が出現する頻度は、上記平均繊維長の測定と同様にして単繊維の繊維長を測定し、300μm以下の単繊維の本数の割合を計算することによって、算出した。
比較例C1では、半導体を用いない従来の熱分解法により得られた残留炭素量7.1重量%の再生炭素繊維を用いた。なお、単繊維引張強度とワイブル形状係数は、残留炭素量が5重量%以上となったため、測定できなかった。
比較例C2では、再生炭素繊維の代わりに市販のヴァージン炭素繊維(HT C422、帝人株式会社製)のチョップドファイバーを用いたこと以外は実施例C1と同様にして、ペレット及びダンベル片の製造及び評価を行った。
参考実施例1~3及び参考比較例1では、プラスチック含有材料としての炭素繊維強化プラスチック(CFRP)板を加熱処理し、プラスチック分解効率を評価した。
参考実施例1は、下記のとおりにして行った。
半導体材料としては、ハニカム構造を有する担体の表面に酸化クロム(Cr2O3、純度99%以上、純正化学社製)を適用したものを用いた。ハニカム構造を有する担体は、13セル/25mmであった。
加熱炉のヒーター出力を介して加熱炉の内部温度を制御して、加熱炉の内部温度を上昇させた。
参考実施例1に係る方法におけるプラスチック分解効率の評価は、加熱処理前のCFRP板の重量と加熱処理後のCFRP板の重量との差から重量減少率(wt%)を算出することによって行った。結果を表4に示す。
加熱炉において、担体とCFRP板とを30mmで互いに離して配置したこと、及び、加熱処理の間にCFRP板の表面温度を377℃まで上昇させたことを除いて、参考実施例1と同様にして、参考実施例2の加熱処理及び評価を行った。結果を表4に示す。
加熱処理の時間を60分間としたこと、及び、加熱処理の間にCFRP板の表面温度を371℃まで上昇させたことを除いて、参考実施例1と同様にして、参考実施例3の加熱処理及び評価を行った。結果を表4に示す。
半導体材料を用いなかったこと、及び、加熱処理の間にCFRP板の表面温度を370℃まで上昇させたことを除いて、参考実施例1と同様にして、参考比較例1の加熱処理及び評価を行った。結果を表4に示す。
<参考実施例4>
表面温度500℃で60分間の加熱を行ったこと以外は、参考実施例1と同様にして、参考実施例4に係る処理及び評価を行った。結果を下記の表5に示す。
半導体材料を用いなかったこと以外は、参考実施例4と同様にして、参考比較例2に係る処理及び評価を行った。結果を下記の表5に示す。
参考実施例5~9では、プラスチック含有材料としてのCFRP板又は圧力容器に対して、二段階加熱処理を行った。そして、分解効率を評価し、かつ、加熱処理によって得られた炭素繊維(炭素繊維材料)の物性を評価した。
参考実施例5は、下記のとおりにして行った。
半導体材料としては、ハニカム構造を有する担体の表面に酸化クロム(Cr2O3、純度99%以上、純正化学社製)を適用したものを用いた。ハニカム構造を有する担体は、13セル/25mmであった。
加熱炉のヒーター出力を介して加熱炉の内部温度を制御して、加熱炉の内部温度を上昇させた。そして、CFRP板の表面温度が300℃に到達する前に、酸素濃度8体積%の空気及び窒素ガスの混合ガスを、加熱炉内に導入した。加熱炉内への混合ガスの導入は、ガス導入量190L/minで吸引を行い、加熱炉に設けられたガス供給部から混合ガスを流入させることによって行った。
そして、ガス吸引圧は保持したままで窒素ガスの供給を停止して空気のみを供給し、加熱炉内の酸素濃度が10体積%以上になったことを確認し、さらに加熱処理を行った。260分間にわたる加熱処理の間に、CFRP板の表面温度を500℃にまで上昇させた。なお、260分間にわたる平均酸素濃度は14体積%、最大酸素濃度は18体積%であった。
加熱処理後に回収した炭素繊維(再生炭素繊維)におけるプラスチック由来の残留炭素量を、熱重量分析によって決定した。下記の表6における残留炭素量の値は、炭素繊維に対する残留炭素の量(重量%)を表す。
(i)回収した炭素繊維を粉砕して得た1~4mgのサンプル片に対して、熱重量分析計において、0.2L/minの空気供給速度、5℃/minの加熱上昇率、及び1/6sの記録速度で、室温から100℃への昇温、30分間にわたる100℃での保持、100℃から400℃への昇温、及び400℃での保持からなる工程を有する熱重量分析を、合計300分間にわたって行い、
(ii)重量減少率を時間に対してプロットしたグラフにおいて、傾きの変曲点を特定し、当該変曲点における重量減少率の値から、100℃での保持期間における重量減少率を差し引くことによって、残留炭素量を算出した。
単繊維引張強度は、JIS R7606に準拠して、下記のとおりにして計測した:
繊維束から少なくとも30本の単繊維を採取し、
デジタルマイクロスコープによって撮影した単繊維の側面画像において単繊維の直径を計測して、断面積を算出し、
サンプリングした単繊維を、穴あき台紙に接着剤を用いて固定し、
単繊維を固定した台紙を、引張試験機に取り付け、試長10mm、歪速度1mm/分で引張試験を行って引張破断応力を測定し、
単繊維の断面積及び引張破断応力から引張強度を算出し、
少なくとも30本の単繊維の引張強度の平均を、単繊維引張強度とした。
ワイブル形状係数は、下記の式に従って算出した:
lnln{1/(1-F)}=m×lnσ+C
(式中、Fは、対称試料累積分布法により求められる破壊確率、σは、単繊維引張強度(MPa)、mは、ワイブル形状係数、Cは、定数である。)
加熱炉の炉内容積が0.1435m3であったこと、過熱水蒸気と空気との混合ガスをガス導入量29L/minで加熱炉に導入したこと、並びに、表面温度及び加熱処理の時間を下記の表6のとおりとしたことを除いて、参考実施例5と同様にして、加熱処理を行った。
プラスチック含有材料として圧力容器を用いたこと、並びに、表面温度及び加熱処理の時間を下記の表6のとおりとしたことを除いて、参考実施例7と同様にして、処理を行った。
加熱炉の炉内容積が0.049m3であったこと、過熱水蒸気と空気との混合ガスをガス導入量25L/minで加熱炉に導入したこと、表面温度及び加熱処理の時間を下記の表6のとおりとしたことを除いて、参考実施例7と同様にして、処理を行った。
参考比較例3では、材料の提供及び配置までは参考実施例5と同様に行い、その後に、加熱炉内の雰囲気の酸素濃度の調節を行わずに、加熱炉の内部温度を上昇させた。
120 容器部
140 攪拌ブレード
160 軸部
A 回転方向
C クリアランス
11 半導体材料
12 プラスチック含有材料
20 加熱炉
21 半導体材料を有する担体
22 プラスチック含有材料
23 熱源(ヒーター)
24 ガス供給部
25 排気口
26 加熱炉の内部空間
27 温度センサー
Claims (33)
- 炭素繊維及びバインダ含有液から少なくとも構成される混合物を提供すること、
前記混合物を、容器中で転動させることによって、紡錘形の前駆体を製造すること、並びに、
前記前駆体を乾燥させること、
を含む、
紡錘形の集合体の製造方法。 - 前記紡錘形の集合体が、紡錘形の炭素繊維集合体であり、
前記炭素繊維が再生炭素繊維であり、
前記混合物を、容器中で、前記容器の内壁と前記容器内の回転体との間のクリアランスで転動させることによって、紡錘形の前駆体を製造すること
を含み、
前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下であること、及び
前記再生炭素繊維の平均長さが、1mm以上30mm未満であること、
を特徴とする、請求項1に記載の紡錘形の集合体の製造方法。 - 前記炭素繊維集合体の平均長さが、1.5mm~60mmである、請求項2に記載の方法。
- 前記混合物中の前記バインダ含有液の量が、前記混合物に対して、20重量%~60重量%である、請求項2又は3に記載の方法。
- 前記バインダ含有液に含有されるバインダの量が、前記再生炭素繊維に対して、0.1重量~10重量%である、請求項2~4のいずれか一項に記載の方法。
- 前記炭素繊維集合体の平均長さが、前記炭素繊維集合体に含有される再生炭素繊維の平均長さの1.2倍~4.0倍である、請求項2~5のいずれか一項に記載の方法。
- 前記紡錘形の集合体が、熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体であり、
前記混合物が、熱可塑性樹脂繊維をさらに含む、
請求項1に記載の紡錘形の集合体の製造方法。 - 前記混合物を、容器中で、前記容器の内壁と前記容器内の回転体との間のクリアランスで転動させることによって、前記紡錘形の前駆体を製造する、請求項7に記載の方法。
- 前記炭素繊維が、再生炭素繊維を含む、請求項7又は8に記載の方法。
- 前記炭素繊維が、再生炭素繊維である、請求項9に記載の方法。
- 炭素繊維含有プラスチック製品に含有されるプラスチック成分を半導体熱活性法によって分解して、前記再生炭素繊維を製造することを含む、請求項2~6、9又は10に記載の方法。
- 炭素繊維及びバインダを含む、紡錘形の集合体。
- 前記紡錘形の集合体が、再生炭素繊維及びバインダから少なくとも構成される紡錘形の炭素繊維集合体であり、
前記再生炭素繊維の平均長さが、1mm以上30mm未満であること、及び、
前記炭素繊維集合体の平均長さが、1.5mm~60mmであること、
を特徴とする、
請求項12に記載の紡錘形の集合体。 - 前記紡錘形の炭素繊維集合体の長軸方向の平均長さが、前記紡錘形の炭素繊維集合体に含有される再生炭素繊維の平均長さの1.2倍~4.0倍である、請求項13に記載の集合体。
- 前記紡錘形の炭素繊維集合体に含有される再生炭素繊維が、前記紡錘形の炭素繊維集合体の長軸方向に沿って配向している、請求項13又は14に記載の集合体。
- 前記紡錘形の集合体が、炭素繊維、熱可塑性樹脂繊維、及びバインダを含む、熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体であり、
前記集合体に含有される前記炭素繊維及び前記熱可塑性樹脂繊維が、前記集合体の長軸方向に沿って配向している、
請求項12に記載の紡錘形の集合体。 - 前記集合体の平均長さが、1.5mm~60mmである、請求項16に記載の集合体。
- 前記炭素繊維及び前記熱可塑性樹脂繊維の平均長さが、それぞれ、1mm以上30mm未満である、請求項16又は17に記載の集合体。
- 前記集合体の平均長さが、前記集合体に含有される前記炭素繊維の平均長さ及び前記熱可塑性樹脂繊維の平均長さの1.2倍~5.0倍である、請求項16~18のいずれか一項に記載の集合体。
- 前記バインダの含有量が、前記紡錘形の集合体に対して、0.1重量%~10重量%である、請求項12~19のいずれか一項に記載の集合体。
- 前記熱可塑性樹脂繊維が、ポリオレフィン樹脂繊維、ポリエステル樹脂繊維、ポリアミド樹脂繊維、ポリエーテルケトン樹脂繊維、ポリカーボネート樹脂繊維、フェノキシ樹脂繊維、及びポリフェニレンスルフィド樹脂繊維、並びにこれらの混合物から選択される、請求項16~20のいずれか一項に記載の集合体。
- 前記炭素繊維が、再生炭素繊維を含む、請求項16~21のいずれか一項に記載の集合体。
- 前記炭素繊維が、再生炭素繊維である、請求項16~22のいずれか一項に記載の集合体。
- 前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分が、前記再生炭素繊維に対して0重量%超5.0重量%以下である、請求項13~15、22又は23に記載の集合体。
- 再生炭素繊維と熱可塑性樹脂とを含む炭素繊維強化熱可塑性樹脂ペレットであって、
前記再生炭素繊維が、3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有すること、並びに
前記再生炭素繊維が、残留炭素成分を含み、前記残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下であること、
を特徴とする、炭素繊維強化熱可塑性樹脂ペレット。 - 前記再生炭素繊維の含有量が、前記炭素繊維強化熱可塑性樹脂ペレットに対して5重量%以上30重量%以下である、請求項25に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 前記熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、フェノキシ樹脂、及びポリフェニレンスルフィド樹脂、並びにこれらの混合物から選択される、請求項25又は26に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 長手方向の長さが3mm以上10mm以下である、請求項25~27のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 前記炭素繊維強化熱可塑性樹脂ペレット中に含まれる前記再生炭素繊維の残存平均繊維長が300μm以上であることを特徴とする、請求項25~28のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 引張強度が90MPa以上、曲げ強度が140MPa以上、曲げ弾性率が7100MPa以上である成形品を製造するために用いられることを特徴とする、請求項25~29のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 前記炭素繊維強化熱可塑性樹脂ペレット中の前記再生炭素繊維に関して、300μm以下の単繊維の出現頻度が、40%以下であることを特徴とする、請求項25~30のいずれか一項に記載の炭素繊維強化熱可塑性樹脂ペレット。
- 再生炭素繊維を提供すること、
熱可塑性樹脂を提供すること、及び
前記再生炭素繊維と、溶融した前記熱可塑性樹脂とを混錬すること、
を含み、
前記再生炭素繊維が、3.0GPa以上の単繊維引張強度及び6.0以上のワイブル形状係数を有しており、かつ
前記再生炭素繊維が、残留炭素成分を含み、残留炭素成分の含有量が、前記再生炭素繊維に対して0重量%超5.0重量%以下である、
炭素繊維強化熱可塑性樹脂ペレットの製造方法。 - 前記再生炭素繊維を、前記再生炭素繊維を含有する紡錘形の炭素繊維集合体を用いて提供する、請求項32に記載の方法。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202280025751.1A CN117136127A (zh) | 2021-03-31 | 2022-03-28 | 纺锤形的含碳纤维集合体及其制造方法、以及含有再生碳纤维的碳纤维强化热塑性树脂颗粒及其制造方法 |
| EP22780802.9A EP4316766B1 (en) | 2021-03-31 | 2022-03-28 | Spindle-shaped carbon fiber-containing aggregate, manufacturing method for same |
| US18/285,133 US20240262010A1 (en) | 2021-03-31 | 2022-03-28 | Spindle-shaped carbon fiber-containing aggregate, manufacturing method for same, carbon fiber-reinforced thermoplastic resin pellets containing recycled carbon fibers, and manufacturing method for same |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021-060703 | 2021-03-31 | ||
| JP2021060703A JP7724629B2 (ja) | 2021-03-31 | 2021-03-31 | 紡錘形の炭素繊維集合体及びその製造方法 |
| JP2021076821A JP7724635B2 (ja) | 2021-04-28 | 2021-04-28 | 熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体並びにその製造方法 |
| JP2021-076821 | 2021-04-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2022210591A1 true WO2022210591A1 (ja) | 2022-10-06 |
Family
ID=83459320
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2022/015146 Ceased WO2022210591A1 (ja) | 2021-03-31 | 2022-03-28 | 紡錘形の炭素繊維含有集合体及びその製造方法、並びに、再生炭素繊維を含有する炭素繊維強化熱可塑性樹脂ペレット及びその製造方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20240262010A1 (ja) |
| EP (1) | EP4316766B1 (ja) |
| WO (1) | WO2022210591A1 (ja) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023181605A1 (ja) * | 2022-03-25 | 2023-09-28 | 帝人株式会社 | 炭素繊維含有コンクリート若しくはモルタル組成物、並びに炭素繊維強化コンクリート若しくはモルタル構造物、及びその製造方法 |
| US11951656B2 (en) | 2021-10-29 | 2024-04-09 | Vartega Inc. | Fiber-containing particles with dual-tapered shape |
| WO2024128275A1 (ja) | 2022-12-16 | 2024-06-20 | 三菱ケミカル株式会社 | 粒子含有繊維束の製造方法および粒子含有繊維束 |
| WO2024229026A1 (en) * | 2023-05-03 | 2024-11-07 | Vartega Inc. | Methods for preparing fiber-containing particles with recycled reinforcing fibers |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3452363B2 (ja) | 1994-08-05 | 2003-09-29 | アクゾ ノーベル ナムローゼ フェンノートシャップ | カーボンファイバーペレットの製造法、それから得られた高密度流線形ペレット、及び該ペレットを使用する強化熱可塑性樹脂の製造法 |
| WO2009072651A1 (ja) * | 2007-12-07 | 2009-06-11 | Toyota Jidosha Kabushiki Kaisha | 繊維強化プラスチックのリサイクル方法 |
| JP4517146B2 (ja) | 2003-10-17 | 2010-08-04 | 国立大学法人横浜国立大学 | 化合物の分解方法 |
| JP2015081262A (ja) * | 2013-10-21 | 2015-04-27 | 学校法人同志社 | 再生炭素繊維強化プラスチック成形体およびその製造方法 |
| EP2902433A1 (de) | 2014-02-03 | 2015-08-05 | Karl Meyer AG | Kohlenstofffaserpellet-Herstellungsverfahren |
| JP2019155634A (ja) | 2018-03-08 | 2019-09-19 | 三菱重工業株式会社 | 複合材中間材料の製造方法 |
| JP2019189674A (ja) | 2018-04-18 | 2019-10-31 | 株式会社ジンテク | 積層したチップ状または板状プラスチック複合材料の処理方法及び処理装置 |
| JP2020049820A (ja) | 2018-09-27 | 2020-04-02 | 佐久間特殊鋼 株式会社 | リサイクル炭素繊維含有複合体の製造方法 |
| JP2020515658A (ja) * | 2017-04-01 | 2020-05-28 | ザ・ボーイング・カンパニーThe Boeing Company | 複合材料廃棄物から炭素繊維を回収する方法 |
| JP2020180421A (ja) | 2019-04-25 | 2020-11-05 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体及びその製造方法 |
| JP2020196882A (ja) | 2019-05-31 | 2020-12-10 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体 |
| JP2021055198A (ja) | 2019-09-27 | 2021-04-08 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体 |
| WO2022050281A1 (ja) * | 2020-09-01 | 2022-03-10 | 帝人株式会社 | プラスチック含有材料の分解方法、無機材料の回収方法、再生炭素繊維、及び再生炭素繊維の製造方法、混紡糸、当該混紡糸を含む炭素繊維強化熱可塑性樹脂ペレット、及びそれらの製造方法、炭素繊維強化熱可塑性樹脂ストランド、及びその製造方法、並びに炭素繊維強化熱可塑性ペレット |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8663524B2 (en) * | 2009-05-12 | 2014-03-04 | Miller Waste Mills | Controlled geometry composite micro pellets for use in compression molding |
| JP2017002125A (ja) * | 2015-06-05 | 2017-01-05 | 東レ株式会社 | リサイクル炭素繊維束 |
| WO2017203943A1 (ja) * | 2016-05-24 | 2017-11-30 | 住友ベークライト株式会社 | 繊維含有粒状樹脂構造物、繊維含有粒状樹脂構造物の製造方法、繊維強化樹脂硬化物、及び繊維強化樹脂成形品 |
| CN110621633B (zh) * | 2017-02-28 | 2023-05-23 | 宏大水泥工业有限公司 | 宏观水泥组合物、宏观水泥的生产方法和宏观水泥的工程化形式以及制备胶结材料的多级均质工艺 |
-
2022
- 2022-03-28 WO PCT/JP2022/015146 patent/WO2022210591A1/ja not_active Ceased
- 2022-03-28 US US18/285,133 patent/US20240262010A1/en active Pending
- 2022-03-28 EP EP22780802.9A patent/EP4316766B1/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3452363B2 (ja) | 1994-08-05 | 2003-09-29 | アクゾ ノーベル ナムローゼ フェンノートシャップ | カーボンファイバーペレットの製造法、それから得られた高密度流線形ペレット、及び該ペレットを使用する強化熱可塑性樹脂の製造法 |
| JP4517146B2 (ja) | 2003-10-17 | 2010-08-04 | 国立大学法人横浜国立大学 | 化合物の分解方法 |
| WO2009072651A1 (ja) * | 2007-12-07 | 2009-06-11 | Toyota Jidosha Kabushiki Kaisha | 繊維強化プラスチックのリサイクル方法 |
| JP2015081262A (ja) * | 2013-10-21 | 2015-04-27 | 学校法人同志社 | 再生炭素繊維強化プラスチック成形体およびその製造方法 |
| EP2902433A1 (de) | 2014-02-03 | 2015-08-05 | Karl Meyer AG | Kohlenstofffaserpellet-Herstellungsverfahren |
| JP2020515658A (ja) * | 2017-04-01 | 2020-05-28 | ザ・ボーイング・カンパニーThe Boeing Company | 複合材料廃棄物から炭素繊維を回収する方法 |
| JP2019155634A (ja) | 2018-03-08 | 2019-09-19 | 三菱重工業株式会社 | 複合材中間材料の製造方法 |
| JP2019189674A (ja) | 2018-04-18 | 2019-10-31 | 株式会社ジンテク | 積層したチップ状または板状プラスチック複合材料の処理方法及び処理装置 |
| JP2020049820A (ja) | 2018-09-27 | 2020-04-02 | 佐久間特殊鋼 株式会社 | リサイクル炭素繊維含有複合体の製造方法 |
| JP2020180421A (ja) | 2019-04-25 | 2020-11-05 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体及びその製造方法 |
| JP2020196882A (ja) | 2019-05-31 | 2020-12-10 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体 |
| JP2021055198A (ja) | 2019-09-27 | 2021-04-08 | カーボンファイバーリサイクル工業株式会社 | 炭素繊維集合体 |
| WO2022050281A1 (ja) * | 2020-09-01 | 2022-03-10 | 帝人株式会社 | プラスチック含有材料の分解方法、無機材料の回収方法、再生炭素繊維、及び再生炭素繊維の製造方法、混紡糸、当該混紡糸を含む炭素繊維強化熱可塑性樹脂ペレット、及びそれらの製造方法、炭素繊維強化熱可塑性樹脂ストランド、及びその製造方法、並びに炭素繊維強化熱可塑性ペレット |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP4316766A4 |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11951656B2 (en) | 2021-10-29 | 2024-04-09 | Vartega Inc. | Fiber-containing particles with dual-tapered shape |
| WO2023181605A1 (ja) * | 2022-03-25 | 2023-09-28 | 帝人株式会社 | 炭素繊維含有コンクリート若しくはモルタル組成物、並びに炭素繊維強化コンクリート若しくはモルタル構造物、及びその製造方法 |
| JPWO2023181605A1 (ja) * | 2022-03-25 | 2023-09-28 | ||
| JP7756793B2 (ja) | 2022-03-25 | 2025-10-20 | 帝人株式会社 | 炭素繊維含有コンクリート若しくはモルタル組成物、並びに炭素繊維強化コンクリート若しくはモルタル構造物、及びその製造方法 |
| WO2024128275A1 (ja) | 2022-12-16 | 2024-06-20 | 三菱ケミカル株式会社 | 粒子含有繊維束の製造方法および粒子含有繊維束 |
| EP4635700A1 (en) | 2022-12-16 | 2025-10-22 | Mitsubishi Chemical Corporation | Particle-containing fiber bundle production method and particle-containing fiber bundle |
| WO2024229026A1 (en) * | 2023-05-03 | 2024-11-07 | Vartega Inc. | Methods for preparing fiber-containing particles with recycled reinforcing fibers |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4316766A1 (en) | 2024-02-07 |
| EP4316766B1 (en) | 2025-11-26 |
| EP4316766C0 (en) | 2025-11-26 |
| EP4316766A4 (en) | 2024-10-02 |
| US20240262010A1 (en) | 2024-08-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2022210591A1 (ja) | 紡錘形の炭素繊維含有集合体及びその製造方法、並びに、再生炭素繊維を含有する炭素繊維強化熱可塑性樹脂ペレット及びその製造方法 | |
| US10850496B2 (en) | Chemical-free production of graphene-reinforced inorganic matrix composites | |
| CN106459472B (zh) | 使用氧化钛颗粒体从增强塑料回收增强材料的方法 | |
| WO2022050281A1 (ja) | プラスチック含有材料の分解方法、無機材料の回収方法、再生炭素繊維、及び再生炭素繊維の製造方法、混紡糸、当該混紡糸を含む炭素繊維強化熱可塑性樹脂ペレット、及びそれらの製造方法、炭素繊維強化熱可塑性樹脂ストランド、及びその製造方法、並びに炭素繊維強化熱可塑性ペレット | |
| US10629326B2 (en) | Conductive polymer material and molded article using same | |
| EP3406329B1 (en) | Apparatus for manufacturing carbon nanotube pellets | |
| EP2251465A1 (en) | Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers | |
| JP2003239171A (ja) | 炭素繊維その製造方法および炭素繊維強化樹脂組成物 | |
| US5853865A (en) | Treatment of vapor-grown carbon fibers for fiber-polymer matrix composites | |
| CN112759794B (zh) | 玻璃纤维组及玻纤增强树脂基复合材料 | |
| CN112759250B (zh) | 玻璃纤维组及其制造方法、玻纤增强树脂基复合材料及其制造方法 | |
| CN117136127A (zh) | 纺锤形的含碳纤维集合体及其制造方法、以及含有再生碳纤维的碳纤维强化热塑性树脂颗粒及其制造方法 | |
| JP7706296B2 (ja) | 再生炭素繊維及び熱可塑性樹脂繊維の混紡糸を含む炭素繊維強化熱可塑性樹脂ストランド | |
| US12188159B2 (en) | Method for producing carbon nanofiber composite and carbon nanofiber composite | |
| JP2023020666A (ja) | 再生炭素繊維及び熱可塑性樹脂繊維の混紡糸並びに炭素繊維強化熱可塑性樹脂ペレット | |
| KR20180007782A (ko) | 카본나노튜브 제품 건조 및 회수 장치 및 이를 이용한 카본나노튜브 제조방법 | |
| JP2023020682A (ja) | 再生炭素繊維を含有する炭素繊維強化熱可塑性樹脂ペレット | |
| EP1950330A1 (en) | Composite material | |
| JP7402631B2 (ja) | 極細炭素繊維混合物、その製造方法、及び炭素系導電助剤 | |
| JP7724629B2 (ja) | 紡錘形の炭素繊維集合体及びその製造方法 | |
| JP2024003850A (ja) | 炭素繊維含有樹脂成形品の製造方法 | |
| CN117924874A (zh) | 电磁波吸收材料、线材及其制备方法和应用 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780802 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2022780802 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2022780802 Country of ref document: EP Effective date: 20231031 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2022780802 Country of ref document: EP |





