WO2022210539A1 - 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法 - Google Patents

窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法 Download PDF

Info

Publication number
WO2022210539A1
WO2022210539A1 PCT/JP2022/015017 JP2022015017W WO2022210539A1 WO 2022210539 A1 WO2022210539 A1 WO 2022210539A1 JP 2022015017 W JP2022015017 W JP 2022015017W WO 2022210539 A1 WO2022210539 A1 WO 2022210539A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
less
range
peaks
Prior art date
Application number
PCT/JP2022/015017
Other languages
English (en)
French (fr)
Inventor
翔哉 佐野
克之 青木
開 船木
和也 大久保
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to JP2023511262A priority Critical patent/JP7482316B2/ja
Priority to EP22780750.0A priority patent/EP4317106A1/en
Priority to CN202280016624.5A priority patent/CN117043123A/zh
Publication of WO2022210539A1 publication Critical patent/WO2022210539A1/ja
Priority to US18/451,438 priority patent/US20230391677A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/58Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic nitrides
    • F16C2206/60Silicon nitride (Si3N4)l

Definitions

  • the embodiments described later generally relate to silicon nitride sintered bodies, wear-resistant members, and methods for manufacturing silicon nitride sintered bodies.
  • Silicon nitride sintered bodies are used as wear-resistant members such as bearing balls and rollers by utilizing their wear resistance.
  • Silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride-titanium oxide and the like are known as a sintered composition of a conventional silicon nitride sintered body (Patent Document 1: Japanese Unexamined Patent Application Publication No. 2001-328869).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2001-328869
  • a bearing has a structure in which bearing balls are arranged between an outer ring and an inner ring.
  • the bearing life is affected by the life of the bearing balls, outer ring and inner ring.
  • Patent Document 1 the durability of bearing balls made of silicon nitride sintered bodies is improved.
  • bearing steel (SUJ2) is used for the outer and inner rings. Even if the durability of the bearing balls is improved, the durability of the bearing is reduced due to wear of the outer ring and the inner ring.
  • Patent Document 2 a bearing ball made of a silicon nitride sintered body with high thermal conductivity is used. Heat dissipation is improved by increasing the thermal conductivity of the silicon nitride sintered body.
  • the present invention is intended to address such problems, and to provide a silicon nitride sintered body capable of improving the durability of a wear-resistant member.
  • the silicon nitride sintered body according to the embodiment is 400 cm ⁇ 1 or more when Raman spectroscopic analysis of a 20 ⁇ m ⁇ 20 ⁇ m region is performed on an arbitrary cross section of the silicon nitride sintered body having silicon nitride crystal grains and a grain boundary phase. Peaks are detected at 7 or more locations within the range of 1200 cm ⁇ 1 or less, and the strongest peak within the range is not in the range of 515 cm ⁇ 1 or more and 525 cm ⁇ 1 or less.
  • a silicon nitride sintered body includes silicon nitride crystal grains and a grain boundary phase, and when a region of 20 ⁇ m ⁇ 20 ⁇ m in an arbitrary cross section of the silicon nitride sintered body is Raman spectroscopically analyzed, it is 400 cm ⁇ 1 or more. Seven or more peaks are detected within a range of 1200 cm ⁇ 1 or less, and the strongest peak of the seven or more peaks is not within a range of 515 cm ⁇ 1 or more and 525 cm ⁇ 1 or less.
  • FIG. 1 is a diagram showing a part of a cross-sectional structure of a silicon nitride sintered body according to an embodiment.
  • 10 is a silicon nitride sintered body
  • 11 is silicon nitride crystal grains
  • 12 is a grain boundary phase.
  • a silicon nitride sintered body 10 according to the embodiment includes silicon nitride crystal grains 11 and grain boundary phases 12 .
  • the grain boundary phase is formed by reaction between sintering aid powders or by reaction between sintering aid powder and impurities in silicon nitride powder.
  • the grain boundary phase fills the gaps between silicon nitride crystal grains. Thereby, the strength of the sintered body can be improved.
  • peaks are detected within the range of 400 cm ⁇ 1 or more and 1200 cm ⁇ 1 or less when Raman spectroscopic analysis is performed on a region with a unit area of 20 ⁇ m ⁇ 20 ⁇ m in an arbitrary cross section. , wherein the strongest peak among the seven or more peaks is not in the range of 515 cm ⁇ 1 to 525 cm ⁇ 1 .
  • Raman spectroscopy is a method of evaluating substances using Raman scattered light.
  • Raman scattered light is a phenomenon in which light with different wavenumbers corresponding to vibration energy is scattered with respect to excitation light. The wavelength difference corresponds to the molecular vibrational energy of the substance.
  • Raman scattering light with different wavelengths can be obtained from materials with different molecular structures.
  • the Raman scattered light By examining the Raman scattered light, it is possible to identify the vibrational modes of the atoms of the sample and obtain data on the bonding states. For example, even if the composition is the same, the obtained Raman scattered light will be different if the orientation, crystallinity, etc. are different. Therefore, the Raman spectrum of the powdered silicon nitride and the Raman spectrum of the sintered body are different. Moreover, the appearance of the sintered body is not transparent.
  • a measurement area for Raman spectroscopic analysis was set to a unit area of 20 ⁇ m ⁇ 20 ⁇ m. With this size, both silicon nitride crystal grains and grain boundary phases can be included in the measurement area.
  • the Raman spectroscopic analysis uses an inVia Reflex ray microscope manufactured by RENISHAW (resolution: 0.3 cm ⁇ 1 ) or a device having performance equivalent to or higher than that.
  • An LD excitation green laser (wavelength: 532 nm, output: 100 mW) was used as an excitation laser.
  • the irradiation laser beam diameter was set to 0.7 ⁇ m.
  • the exposure time was set to 1 second per measurement point, and the stage movement step was set to 0.4 ⁇ m.
  • Multivariate curve decomposition by image analysis software WiRe4Empty Modeling was used for data analysis.
  • the peaks detected by this analysis software were used.
  • the half width and peak intensity were also obtained by the analysis software.
  • the peak intensity obtained here is a value obtained by subtracting the baseline value from the absolute intensity of the peak. Baseline values can also be obtained by analysis software.
  • the total measurement points were 2601 points. By performing an averaging process on the spectra of these total measurement points, a spectrum with an improved SN ratio (ratio of noise magnitude to spectrum magnitude) was obtained.
  • a Raman spectrum with little dependence on the measurement site was obtained.
  • the air temperature during the measurement was set to 25 degrees Celsius (25°C).
  • peaks are detected within the range of wavenumbers from 400 cm ⁇ 1 to 1200 cm ⁇ 1 .
  • Raman spectroscopic analysis detects the strongest peak of silicon nitride crystal grains in the range of 100 cm ⁇ 1 to 300 cm ⁇ 1 .
  • the peak within the range of 400 cm ⁇ 1 or more and 1200 cm ⁇ 1 or less is different from the strongest peak of silicon nitride crystal grains.
  • the position of the strongest peak at 400 cm ⁇ 1 or more and 1200 cm ⁇ 1 or less is preferably not in the range of 515 cm ⁇ 1 or more and 525 cm ⁇ 1 or less. Note that the strongest peak is the peak with the highest intensity.
  • the strongest peak exists in the range of 400 cm ⁇ 1 to 514 cm ⁇ 1 or 526 cm ⁇ 1 to 1200 cm ⁇ 1 .
  • the strongest peak of silicon nitride crystal grains is detected within the range of 100 cm ⁇ 1 to 300 cm ⁇ 1 .
  • the silicon nitride sintered body according to the embodiment is characterized in that the largest peak among the peaks detected in the range of 400 cm -1 or more and 1200 cm -1 or less is not in the range of 515 cm -1 or more and 525 cm -1 or less. and Peaks detected in the range of 515 cm ⁇ 1 to 525 cm ⁇ 1 include peaks due to free silicon.
  • a large peak in the range of 515 cm ⁇ 1 to 525 cm ⁇ 1 suggests that the amount of free silicon is large.
  • the fact that the intensity of the free silicon peak is the highest in the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 indicates that the existence ratio of free silicon is large.
  • the position of the strongest peak at 400 cm ⁇ 1 or more and 1200 cm ⁇ 1 or less is not in the range of 515 cm ⁇ 1 or more and 525 cm ⁇ 1 or less.
  • Raman spectroscopy detects peaks depending on the bonding state of atoms. Even if the composition is the same, the peak changes depending on the binding state. Durability can be improved by a bonding state in which seven or more peaks are detected within the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 . In particular, contact with the outer ring and inner ring in the bearing can be stabilized.
  • the upper limit of the number of peaks detected in the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 is not particularly limited, but 10 or less is preferable. If there is a peak in the range of 515 cm ⁇ 1 to 525 cm ⁇ 1 , that peak is not the strongest peak in the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 .
  • At least one of the seven or more peaks is preferably within the first range of 440 cm ⁇ 1 to 460 cm ⁇ 1 .
  • the intensity of the strongest peak in the first range be 1.
  • the peak with the highest intensity within the first range is taken as the strongest peak.
  • the strongest peak within the first range is the peak due to silicon nitride crystal grains.
  • the number of peaks in the first range is not particularly limited, but preferably 1 or more and 3 or less. With more than four peaks, it can be difficult to discern the true peak intensity of each peak. More preferably, the number of peaks within the first range is one or two. At least three of the seven or more peaks preferably exist within the second range of 500 cm ⁇ 1 to 830 cm ⁇ 1 .
  • the upper limit of the number of detected peaks is not particularly limited, it is preferably six or less. Too many peaks can make it difficult to control the number of peaks in the third range above 830 cm ⁇ 1 and up to 1200 cm ⁇ 1 .
  • each peak intensity of three or more peaks within the second range is preferably 0.8 or more and 2.0 or less.
  • the peak detected at 400 cm ⁇ 1 to 1200 cm ⁇ 1 outside the above range is not particularly limited. For example, peaks may exist in the range of 410 cm ⁇ 1 to 420 cm ⁇ 1 and the range of 715 cm ⁇ 1 to 725 cm ⁇ 1 .
  • peaks derived from iron, iron compounds, etc. are detected.
  • the iron compound is iron oxide and the like.
  • Other than 400 cm ⁇ 1 to 1200 cm ⁇ 1 even if there are peaks in the range of 270 cm ⁇ 1 to 280 cm ⁇ 1 , the range of 1320 cm ⁇ 1 to 1340 cm ⁇ 1 , the range of 1570 cm ⁇ 1 to 1630 cm ⁇ 1 , etc. good.
  • peaks derived from tungsten or tungsten compounds are detected.
  • the tungsten compound is tungsten oxide or the like.
  • Peaks in the second range are peaks due to silicon nitride crystal grains or grain boundary phases.
  • each peak intensity within the second range is 0.8 times or more and 2.0 times or less than the strongest peak intensity within the first range
  • the silicon nitride crystal grains exhibiting the strongest peak within the first range can be balanced.
  • the orientation of the silicon nitride crystal grains is controlled and the wear resistance is improved.
  • At least three of the seven or more peaks are preferably within the third range.
  • the upper limit of the number of peaks detected in the third range is not particularly limited, it is preferably six or less. Too many peaks can make it difficult to control the number of peaks in the second range.
  • each peak intensity of three or more peaks in the third range is preferably 2.7 or more and 3.7 or less. Peaks within the third range are peaks due to silicon nitride crystal grains or grain boundary phases. When each peak intensity in the third range is 2.7 times or more and 3.7 times or less than the strongest peak intensity in the first range, the silicon nitride crystal grains exhibiting the strongest peak in the first range can be balanced. As a result, the orientation of the silicon nitride crystal grains is controlled and the wear resistance is improved.
  • At least one of the seven or more peaks preferably falls within the range of 500 cm ⁇ 1 to 600 cm ⁇ 1 and has a full width at half maximum of 10 cm ⁇ 1 to 100 cm ⁇ 1 .
  • the full width at half maximum is more preferably 20 cm ⁇ 1 or more and 80 cm ⁇ 1 or less, more preferably 40 cm ⁇ 1 or more and 70 cm ⁇ 1 or less.
  • the “full width at half maximum” is simply referred to as “half width”. More preferably, none of the peaks in the range of 500 cm ⁇ 1 to 600 cm ⁇ 1 and having the half width of 10 cm ⁇ 1 to 100 cm ⁇ 1 are in the range of 515 cm ⁇ 1 to 525 cm ⁇ 1 .
  • none of the peaks having a half width of 40 cm ⁇ 1 or more and 70 cm ⁇ 1 or less is within the range of 515 cm ⁇ 1 or more and 525 cm ⁇ 1 or less.
  • a half - value width of 40 cm ⁇ 1 or more and 70 cm ⁇ 1 or less of the peak in the range of 530 cm ⁇ 1 or more and 600 cm ⁇ 1 or less indicates good crystallinity. Good crystallinity leads to stabilization of suppression of aggression toward the mating member. On the other hand, if the half-value width is less than 10 cm ⁇ 1 , crystallization may proceed excessively, adversely affecting impact resistance.
  • the peaks in the range of 400 cm ⁇ 1 or more and 1200 cm ⁇ 1 or less are mainly due to silicon nitride crystal grains or grain boundary phase compounds. The type of chemical bond can be identified from the positions of peaks detected by Raman spectroscopic analysis. Also, the half width of the peak indicates the degree of crystallinity.
  • the peak intensity is affected by orientation and concentration.
  • the peak shift value is affected by stress and strain. Even if the materials have the same composition, the number of peaks, intensity, and half-value width vary depending on the bonding state, crystallinity, orientation, strain amount, and the like.
  • silicon nitride crystal grains preferably have an average grain size of 2 ⁇ m or less.
  • the area ratio of silicon nitride crystal grains having an aspect ratio of 2 or more is preferably in the range of 20% or more and 70% or less.
  • a scanning electron microscope (SEM) photograph of an arbitrary cross section is used to measure the average grain size of silicon nitride crystal grains.
  • the maximum diameter of silicon nitride crystal grains reflected in the SEM photograph is defined as the major diameter.
  • the minor axis is the length of a line segment vertically extended from the center of the major axis.
  • Particle size (major axis+minor axis)/2.
  • the average grain size of 50 silicon nitride crystal grains is taken as the average grain size.
  • the particle size is calculated based on the observable portion.
  • a SEM photograph of an arbitrary cross section is also used to measure the aspect ratio. The method of determining the major axis and the minor axis is the same as for the particle size.
  • Aspect ratio major axis/minor axis.
  • the area ratio of silicon nitride crystal grains having an aspect ratio of 2 or more in a region of 20 ⁇ m ⁇ 20 ⁇ m in the SEM photograph is determined.
  • the particle size is calculated based on the observable portion. If the contours of the silicon nitride crystal grains are not clearly visible, the grain boundary phase may be removed by etching. Also, titanium nitride (TiN) particles are preferably present in the grain boundary phase. Titanium nitride particles are compounds that strengthen the grain boundary phase. Titanium nitride particles are compounds that easily generate Raman spectral peaks in the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 .
  • FIG. 2 is a diagram schematically illustrating an analysis result by Raman spectroscopy of the silicon nitride sintered body according to the embodiment.
  • the horizontal axis indicates Raman shift (cm ⁇ 1 ) and the vertical axis indicates scattering intensity.
  • the silicon nitride sintered body according to the embodiment is analyzed by Raman spectroscopy, seven peaks P1 to P7 are detected within the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 as shown in FIG. 2, for example. No peak is detected in the range from 515 cm ⁇ 1 to 525 cm ⁇ 1 .
  • a peak P1 is detected within a first range from 440 cm ⁇ 1 to 460 cm ⁇ 1 .
  • Three peaks P2 to P4 are detected within the second range from 500 cm ⁇ 1 to 830 cm ⁇ 1 .
  • Three peaks P5 to P7 are detected within a third range of more than 830 cm ⁇ 1 and less than or equal to 1200 cm ⁇ 1 .
  • the intensity of each of the peaks P2 to P4 within the second range is 0.8 to 2.0 times the intensity of the peak P1 within the first range.
  • the intensity of each of the peaks P5 to P7 within the third range is 2.7 times or more and 3.7 times or less the intensity of the peak P1.
  • the peak P2 is in the range of 530 cm ⁇ 1 to 600 cm ⁇ 1 and the half width of the peak is 40 cm ⁇ 1 to 70 cm ⁇ 1 .
  • the bending strength of the silicon nitride sintered body in a three-point bending test is preferably 700 MPa or more. High strength can improve wear resistance. Therefore, the bending strength is preferably 700 MPa or more, more preferably 900 MPa or more.
  • the three-point bending test is performed according to JIS-R-1601 (2008). Moreover, the bending strength in the three-point bending test is sometimes called three-point bending strength. JIS-R-1601 (2008) corresponds to ISO14704 (2000). According to the silicon nitride sintered body having Raman spectral peaks as described above, wear resistance can be improved. Therefore, durability can be improved by using the silicon nitride sintered body according to the embodiment as a wear-resistant member.
  • Such wear-resistant members include bearing members, roll members, compressor members, pump members, engine members, friction stir welding device members, and the like.
  • a bearing is a combination of bearing members consisting of rolling elements and races.
  • the rolling elements are spherical or roller-shaped members.
  • the rolling element members are called bearing balls.
  • the spherical shape is a ball and the roller shape is a cylinder.
  • a member using spherical rolling elements is called a ball bearing.
  • a member using roller-shaped rolling elements is called a roller bearing.
  • Roller bearings also include needle bearings, tapered roller bearings and spherical roller bearings.
  • the bearing ring has an outer ring and an inner ring. Examples of roll members include rollers for rolling, rollers for feeding parts of electronic equipment, and the like.
  • Compressor or pump members include vanes and the like. Here compressors are distinguished from each other as devices that increase pressure and pumps as devices that reduce pressure.
  • Engine members include cam rollers, cylinders, pistons, check balls, and the like.
  • Examples of friction stir welding device members include tool members for friction stir welding devices.
  • FIG. 3 is a diagram showing an example (bearing ball) of the wear resistant member according to the embodiment.
  • FIG. 4 is a diagram showing another example (bearing) of the wear resistant member according to the embodiment. 3 and 4, 1 is a bearing ball, 2 is a bearing, 3 is an inner ring, and 4 is an outer ring.
  • a bearing 2 has a structure in which bearing balls 1 are arranged between an inner ring 3 and an outer ring 4 . Four or more bearing balls 1 are arranged in the bearing 2 .
  • the inner ring 3 and the outer ring 4 are mating members of the bearing ball 1 .
  • the bearing ball 1 is made of the silicon nitride sintered body according to the embodiment. If necessary, polishing may be performed so that the surface roughness Ra is 0.1 ⁇ m or less.
  • ASTM F2094 of the American Association for Testing Materials defines the surface roughness Ra according to the grade. Therefore, polishing may be applied to the surface roughness according to the grade.
  • ASTM is a standard issued by ASTM International. ASTM International was formerly known as the American Society for Testing and Materials (ASTM). Further, even when the silicon nitride sintered body is applied to wear resistant members other than bearing balls, the surface may be polished as necessary.
  • the wear-resistant member according to the embodiment preferably has a polished surface with a surface roughness Ra of 0.1 ⁇ m or less, more preferably 0.02 ⁇ m or less.
  • Ra surface roughness
  • the rolling life can be increased to 600 hours or more when measured with a thrust type bearing tester under conditions of maximum contact pressure of 5.9 MPa and number of revolutions of 1200 rpm.
  • the bearing 2 also has effects such as suppression of temperature rise during rotation and suppression of increase in sliding noise.
  • inverter-driven motors have become popular. Inverter drive is a method in which the rotation speed of the motor is variable. Generally, the rotational speed of the motor is in the range of 0-15000 rpm. 0 rpm is the state where the motor is stopped. The bearing rotates according to the rotational speed of the motor. By reducing aggression, durability is good even when rotational speed changes.
  • the silicon nitride sintered body according to the embodiment is suitable for a wear resistant member using a mating member. Moreover, since the bearing ball 1 according to the embodiment can reduce aggression toward the mating member, it is possible to suppress the occurrence of electrolytic corrosion. Electrolytic corrosion is a phenomenon in which partial electrical discharge occurs between the bearing balls and the inner ring and between the bearing balls and the outer ring, eroding the surfaces of the inner and outer rings. In bearings, silicon nitride sintered bodies are used for bearing balls, and metals such as bearing steel SUJ2 are used for inner rings and outer rings. When electrolytic corrosion occurs, the inner ring and outer ring made of metal are eroded. As erosion progresses, the function of the bearing deteriorates.
  • Grease has lubricating and insulating properties.
  • Greases vary, such as lithium soap grease.
  • Grease deteriorates when a partial discharge phenomenon occurs between the bearing balls and the inner ring and between the bearing balls and the outer ring.
  • lubricity and insulation deteriorate. This makes it easier for electrolytic corrosion to occur.
  • Discoloration of the grease occurs when the grease deteriorates. For example, lithium soap grease changes from transparent to black.
  • the aggressiveness to the mating member is reduced, so deterioration of the grease can be suppressed.
  • silicon nitride powder is prepared.
  • the silicon nitride powder preferably has an ⁇ conversion rate of 80% by mass or more, an average particle size D50 of 0.4 ⁇ m or more and 2.5 ⁇ m or less, and an impurity oxygen content of 2% by mass or less.
  • the impurity oxygen content is preferably 2% by mass or less, more preferably 1.0% by mass or less.
  • the impurity oxygen content is 0.1% by mass or more and 0.8% by mass or less. If the impurity oxygen content exceeds 2% by mass, a reaction between the impurity oxygen and the sintering aid may occur, resulting in the formation of grain boundary phases more than necessary.
  • sintering aid powder is prepared.
  • the amount of the sintering aid added is preferably in the range of 3% by mass or more and 20% by mass or less.
  • the amount of the sintering aid added is calculated based on the total of the silicon nitride powder and the sintering aid powder being 100% by mass.
  • the sintering aid powder preferably has an average particle size D50 of 1.0 ⁇ m or less, more preferably 0.4 ⁇ m or less.
  • the sintering aid powder is preferably one or more selected from rare earth compounds, aluminum compounds, and titanium compounds.
  • the rare earth compound is preferably one or two selected from yttrium oxides and lanthanide element oxides.
  • the aluminum compound is preferably one or more selected from aluminum oxide, aluminum nitride and aluminum oxynitride.
  • the titanium compound is preferably one or more selected from titanium oxide, titanium nitride and titanium oxynitride.
  • the content of the rare earth compound is preferably 2% by mass or more and 10% by mass or less.
  • the content of the aluminum compound is preferably 2% by mass or more and 10% by mass or less.
  • the content of the titanium compound is preferably 0.1% by mass or more and 5% by mass or less.
  • an alkaline earth compound or the like may be added.
  • the total amount of sintering aids is adjusted to be in the range of 3% by mass or more and 20% by mass or less.
  • an iron compound or a tungsten compound may be used instead of the titanium compound.
  • a raw material powder mixing step of mixing the silicon nitride powder and the sintering aid powder is performed.
  • a bead mill or a ball mill is used to mix the raw material powders.
  • the mixing step is performed using raw material powder slurry in which a binder and a solvent are mixed.
  • the ball mill will be explained.
  • a ball mill is a pulverizer using media with a diameter of 4 to 50 mm.
  • raw material powder slurry and media are placed in a grinding chamber (stirring chamber) called a vessel and ground while rotating. As the vessel rotates, the raw material powder slurry collides with the media, and the raw material powder slurry is pulverized.
  • the mixing step using the ball mill is preferably performed for 20 hours or longer.
  • the ball mill may be of the pot roller type.
  • a device in which both ends of the grinding chamber are fixed and the grinding chamber is rotated may be used.
  • the pot roller type is a device in which a vessel is placed on a substantially cylindrical roller whose rotational speed is controlled, and the vessel rotates as the roller rotates. Further, the pulverization state can be controlled by controlling the rotation speed (rpm) of the vessel. Therefore, for ball mills, the "rotational speed in the stirring process" is defined as the rotational speed of the grinding chamber (vessel). Next, the bead mill will be explained.
  • a bead mill is a grinder using media with a diameter of 3 mm or less.
  • the energy of collision between the raw powder slurry and the media is greater than in the ball mill.
  • the mixing step using the bead mill is preferably performed for 3 hours or longer.
  • pulverization is performed by rotating a propeller-shaped stirrer called a disc.
  • the media are present around this disk portion. As the disk rotates, pulverization or agitation is performed.
  • the upper limit of the time is not particularly limited in any mixing step, it is preferably 100 hours or less. Even if it exceeds 100 hours, no further effect can be obtained, which may cause an increase in cost.
  • the raw material powder slurry can be uniformly mixed in a mixing step using a bead mill or ball mill.
  • the raw material powder is pulverized or pulverized into a uniform mixed state. After that, a uniform mixing state can be maintained by performing a stirring step. If the homogeneously mixed raw material powder slurry is left as it is, the raw material powder will settle against the binder or solvent. When the sedimentation phenomenon occurs, agglomeration of the raw material powder occurs.
  • the stirring step has the effect of preventing sedimentation. If the rotational speed of the stirring step in the ball mill is 50 rpm or more and 150 rpm for 12 hours or more, it is possible to maintain the uniformly mixed state of the raw material powders.
  • the viscosity of the raw material powder slurry can be adjusted by performing such a ball mill stirring step. If the rotation speed is less than 50 rpm, the stirring power may be insufficient. Also, if the rotational speed exceeds 150 rpm, there is a possibility that the uniformly mixed state adjusted in the mixing step will change. Moreover, the viscosity of the raw material powder slurry can be controlled by stirring for 12 hours or longer. This makes it possible to maintain a uniform mixed state of the raw material powders.
  • the stirrer used in the stirring step in the bead mill is a device that rotates a propeller-shaped stirrer at a constant speed and in one direction to stir the inside of the tank. Also, an apparatus that does not mix media is preferable.
  • the bead mill device also has a mechanism for separating the media and the slurry, and the amount of the media in the slurry after the stirring step is controlled to be small.
  • the rotation speed of the stirrer in the bead mill is preferably 500 rpm or more and 2000 rpm or less. More preferably, the rotation speed of the stirrer is 500 rpm or more and 1500 rpm or less. If the rotation speed exceeds 2000 rpm, the motor that rotates the stirrer may be overloaded. If the rotational speed is less than 500 rpm, the stirring process may take too long.
  • a molding process is performed to form a compact using the raw material powder (including raw material powder slurry).
  • a molding method a mold press method, a cold isostatic press (CIP) method, a sheet molding method, or the like can be applied.
  • the sheet forming method includes a doctor blade method, a roll forming method, and the like. Also, these molding methods may be combined.
  • the raw material powder including raw material powder slurry
  • a solvent such as toluene, ethanol, or butanol.
  • raw material powder (including raw material powder slurry) is mixed with an organic binder, if necessary.
  • Organic binders include butyl methacrylate, polyvinyl butyral, polymethyl methacrylate, and the like. Further, when the raw material mixture (the total amount of the silicon nitride powder and the sintering aid powder) is 100 parts by mass, the amount of the organic binder added is preferably 3 parts by mass or more and 17 parts by mass or less. If the amount of the organic binder added is less than 3 parts by mass, the amount of the binder is too small and it becomes difficult to maintain the shape of the molded article. On the other hand, if the content exceeds 17 parts by mass, the pores of the compact after the degreasing step (the compact after degreasing treatment) will become large, making it impossible to obtain a dense sintered compact.
  • the compact is degreased.
  • the degreasing step most of the preliminarily added organic binder is degreased by heating the compact at a temperature of 500° C. to 800° C. for 1 hour to 4 hours in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include a nitrogen gas atmosphere and an argon gas atmosphere. If necessary, it is treated in an oxidizing atmosphere such as an air atmosphere to control the amount of organic matter remaining in the degreased body.
  • the degreased body (the degreased molded body) is placed in a firing vessel, and a sintering process is performed in a firing furnace in a non-oxidizing atmosphere.
  • the temperature of the sintering step is preferably in the range of 1650°C or higher and 1950°C or lower.
  • a nitrogen gas atmosphere or a reducing atmosphere containing nitrogen gas is preferable.
  • the pressure in the firing furnace is preferably a pressurized atmosphere. If the degreased body is sintered at a low sintering temperature of less than 1650° C., grain growth of the silicon nitride crystal grains will not be sufficient, making it difficult to obtain a dense sintered body.
  • the sintering temperature is higher than 1950° C., silicon nitride may decompose into Si and N 2 when the atmosphere pressure in the furnace is low. Therefore, it is preferable to control the sintering temperature within the above range.
  • the sintering time is preferably in the range of 3 hours or more and 12 hours or less.
  • the atmosphere pressure in the furnace is preferably normal pressure or more and 60 MPa or less. More preferably, the furnace atmosphere pressure is 0.2 MPa or more and 30 MPa or less.
  • the sintered compact is preferably subjected to hot isostatic pressing (HIP) treatment.
  • HIP hot isostatic pressing
  • the step of sintering the degreased body is called the first sintering step, and the step of HIPing the sintered body is called the second sintering step.
  • the temperature is preferably in the range of 1600° C. or higher and 1900° C. or lower, and the pressure is preferably in the range of 80 MPa or higher and 200 MPa or lower.
  • the HIP treatment can reduce pores in the sintered body. Thereby, a dense sintered body can be obtained. If the pressure is less than 80 MPa, the effect of applying pressure is insufficient. Moreover, if it exceeds 200 MPa and is high, there is a possibility that the load on the manufacturing apparatus will increase.
  • the obtained silicon nitride sintered body is subjected to a polishing process, if necessary. Moreover, when performing multi-piece production, the silicon nitride sintered body may be subjected to a cutting process or the like.
  • Example 1 (Examples 1-4, Comparative Examples 1-2) Combinations shown in Table 1 were prepared as raw material powders.
  • the silicon nitride powders used in Examples and Comparative Examples had an ⁇ conversion rate of 80% by mass or more, an average particle diameter D50 of 0.4 to 2.5 ⁇ m, and an impurity oxygen content of 2% by mass or less.
  • the average particle size D50 of the sintering aid powders used in Examples 1 to 4 and Comparative Example 1 is 1.0 ⁇ m or less.
  • the average particle size D50 of the sintering aid powder used in Comparative Example 2 is 1.4 ⁇ m.
  • the raw material powder mixing process and stirring process were carried out.
  • a raw material powder slurry was prepared by adding a binder and a solvent to the raw material powder.
  • stirring treatment was not performed.
  • the conditions for each step are as shown in Table 2.
  • a forming step was performed using the obtained raw material powder slurry.
  • the molding process was performed by mold molding. Two types of compacts were made, including one for obtaining bearing balls with a size of 3/8 inch (9.525 mm in diameter) and another for measuring bending strength.
  • the compact was subjected to a degreasing process at a temperature of 500° C. to 800° C. for 1 hour to 4 hours.
  • the degreased body was subjected to a first sintering step. In the first sintering step, sintering was performed for 4 hours to 8 hours at a temperature of 1750° C. to 1870° C. and a pressure of 0.1 MPa to 0.5 MPa.
  • the obtained sintered body was subjected to HIP treatment at a temperature of 1600° C. or more and 1700° C. or less and a pressure of 100 MPa or more and 200 MPa or less for 3 hours or more and 5 hours or less. After the HIP treatment, the sintered body was polished so that the surface roughness Ra was 0.02 ⁇ m or less.
  • Raman spectroscopic analysis was performed on the examples and comparative examples.
  • An arbitrary cross section of the silicon nitride sintered body was used for the Raman spectroscopic analysis.
  • An inVia Reflex ray microscope manufactured by RENISHAW (resolution: 0.3 cm ⁇ 1 ) was used for Raman spectroscopic analysis.
  • An LD excitation green laser (wavelength: 532 nm, output: 100 mW) was used as the excitation laser, the irradiation laser beam diameter was set to 0.7 ⁇ m, the exposure time was set to 1 second per measurement point, and the stage movement step was set to 0.4 ⁇ m.
  • Multivariate curve decomposition (MCR) by image analysis software WiRe4Empty Modeling was used for data analysis.
  • the silicon nitride sintered bodies according to Examples 1 to 3 among the peaks detected in the range of 500 cm -1 to 830 cm -1 , three or more peaks are in the range of 530 cm -1 to 800 cm -1 detected in The intensity of each of these three or more peaks was 0.8 or more and 2.0 or less when the strongest peak intensity at 440 cm ⁇ 1 or more and 460 cm ⁇ 1 or less was 1. In Example 4, three or more peaks were detected in the range from 530 cm ⁇ 1 to 830 cm ⁇ 1 .
  • Example 4 is described as "difference in intensity ratio".
  • Comparative Examples 1 and 2 only 6 peaks were detected in the range of 400 cm ⁇ 1 to 1200 cm ⁇ 1 . In particular, only two peaks were detected in the range from 500 cm ⁇ 1 to 830 cm ⁇ 1 . Among the peaks within the range of 500 cm ⁇ 1 to 600 cm ⁇ 1 , the strongest peak was observed at 530 cm ⁇ 1 to 600 cm ⁇ 1 in all of Examples 1 to 4 and Comparative Example 1.
  • the half width of the strongest peak was 40 cm ⁇ 1 or more and 70 cm ⁇ 1 or less.
  • the half width of the strongest peak was outside the range of 40 cm ⁇ 1 to 70 cm ⁇ 1 .
  • no peak was detected within the range of 500 cm ⁇ 1 to 600 cm ⁇ 1 .
  • the average grain size of silicon nitride crystal grains and the area ratio of silicon nitride crystal grains having an aspect ratio of 2 or more were measured. First, SEM photographs of arbitrary cross sections were taken. The maximum diameter of the silicon nitride crystal grains shown in the SEM photograph was defined as the major diameter.
  • the length of a line segment vertically extended from the center of the major axis was defined as the minor axis.
  • Particle size (major axis+minor axis)/2, and the average value of the particle sizes for 50 pieces was taken as the average particle size.
  • Aspect ratio major axis/minor axis.
  • the area ratio of silicon nitride crystal grains having an aspect ratio of 2 or more in a region of 20 ⁇ m ⁇ 20 ⁇ m was calculated.
  • the three-point bending strength was examined.
  • the 3-point bending strength was measured by a 3-point bending test according to JIS-R-1601 (2008).
  • the Vickers hardness was measured with a test load of 9.807 N (HV1) according to JIS-R-1610 (2003).
  • JIS-R-1610 (2003) corresponds to ISO 14705:2000. Table 4 shows the results.
  • the average grain size of the silicon nitride crystal grains was 2 ⁇ m or less.
  • the area ratio of silicon nitride crystal grains with an aspect ratio of 2 or more was within the range of 20% or more and 70% or less.
  • the three-point bending strength was 600 MPa or more in both the examples and the comparative examples.
  • the Vickers hardness HV1 was 1490 or more.
  • a plate material made of bearing steel SUJ2 was used as the mating member. The time until the surface of the bearing ball peeled off was measured. The upper limit of the measurement time was 600 hours. "600 hours or more" was written as the result of the test in which surface peeling was not confirmed even after 600 hours. The results are shown in Table 5.
  • the bearing balls according to Examples 1 to 4 and Comparative Example 1 exhibited excellent durability.
  • the bearing ball according to Comparative Example 2 had lower durability than those of Examples 1 to 4 and Comparative Example 1.
  • the proportion of silicon nitride crystal grains having an aspect ratio of 2 or more is considered to be lower.
  • bearings were produced using the bearing balls according to Examples and Comparative Examples.
  • the inner and outer rings may be of any type, they were made of bearing steel SUJ2 in this test.
  • Various types of grease can be used, but lithium soap grease, which is widely used as a general-purpose material, was used in this test. Of these lithium soap greases, the one with a clear original color was used.
  • the bearing was assembled using 16 bearing balls.
  • the rate of change in the sliding sound of the bearing and the presence or absence of discoloration of the grease were measured.
  • a rotating shaft was attached to the bearing, and the rotating shaft was rotated at 1200 rpm.
  • the rate of change in the sliding noise was determined by measuring the sliding noise after 10 consecutive hours and after 400 consecutive hours.
  • the rate of change in sliding noise after 400 hours of continuous operation from 10 hours of continuous operation in Comparative Example 1 was defined as 1. Changes in the sliding noise of the bearings according to Examples 1 to 4 and Comparative Example 2 were compared with this rate of change.
  • the rate of change will be a value smaller than one.
  • the bearing was dismantled after 400 hours, and the change in color of the grease was examined. A change in color of the grease indicates that the grease has deteriorated.
  • the discoloration of the grease was examined by lightness. The higher the lightness number, the lighter the grease color, and the lower the lightness number, the darker the grease color. The results are shown in Table 6.
  • a lightness of 9.5 or less and 9 or more was defined as "light gray.”
  • a lightness of less than 9 and greater than or equal to 4 was defined as "dark gray”.
  • a brightness of less than 4 was defined as "black”.
  • the Munsell color system was used as a reference for these brightnesses. The Munsell color system corresponds to JIS Z8721 (1993). As the deterioration of the grease progresses, the lightness becomes a smaller value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)

Abstract

実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子及び粒界相を備え、前記窒化珪素焼結体の任意の断面において20μm×20μmの領域をラマン分光分析した場合に、400cm-1以上1200cm-1以下の範囲内に7つ以上のピークが検出され、前記7つ以上のピークの最強ピークは515cm-1以上525cm-1以下の範囲にないことを特徴とする。また、前記7つ以上のピークの少なくとも3つは、530cm-1以上830cm-1以下の範囲内にあることが好ましい。前記7つ以上のピークの少なくとも1つは、440cm-1以上460cm-1以下の範囲内にあることが好ましい。

Description

窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
 後述する実施形態は、概ね、窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法に関する。
 窒化珪素焼結体は、その耐摩耗性を利用してベアリングボールやローラなどの耐摩耗性部材として使用されている。従来の窒化珪素焼結体の焼結組成としては、窒化珪素-酸化イットリウム-酸化アルミニウム-窒化アルミニウム-酸化チタン系等が知られている(特許文献1:特開2001-328869号公報)。焼結助剤として、酸化イットリウム、酸化アルミニウム、窒化アルミニウム、酸化チタンを使用することにより焼結性が向上し、優れた耐摩耗性を有する窒化珪素焼結体が得られている。
 例えば、ベアリングは、外輪と内輪の間にベアリングボールを配置した構造を有する。ベアリングの寿命は、ベアリングボール、外輪および内輪の寿命に影響を受ける。特許文献1では、窒化珪素焼結体からなるベアリングボールの耐久性を向上させている。一方、外輪と内輪には、軸受鋼(SUJ2)が使われている。ベアリングボールの耐久性を向上させたとしても、外輪および内輪が摩耗してベアリングの耐久性が低下することが発生していた。
 特開2003-65337号公報(特許文献2)では、熱伝導率の高い窒化珪素焼結体からなるベアリングボールを用いていた。窒化珪素焼結体の熱伝導率を上げることにより、放熱性が向上している。
特開2001-328869号公報 特開2003-65337号公報
 ベアリングボールの放熱性を向上させることにより、外輪および内輪の熱膨張を抑制する効果は得られている。しかしながら、それ以上の効果は得られていなかった。この原因を追究したところ、ベアリングボールから相手部材(外輪および内輪)への攻撃性が十分に低減されておらず、耐久性を低下させていることが分かった。
 本発明は、このような問題に対応するためのものであり、耐摩耗性部材の耐久性を向上させることが可能な窒化珪素焼結体を提供するためのものである。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面に対し、20μm×20μmの領域をラマン分光分析したとき、400cm-1以上1200cm-1以下の範囲内で7か所以上にピークが検出され、前記範囲内にある最強ピークが515cm-1以上525cm-1以下の範囲にないこと特徴とするものである。
実施形態に係る窒化珪素焼結体の断面構造の一部を示す図である。 実施形態に係る窒化珪素焼結体のラマン分光による分析結果を模式的に例示する図である。 実施形態に係るベアリングボールの一例を示す図。 実施形態に係るベアリングの一例を示す図。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子及び粒界相を備え、前記窒化珪素焼結体の任意の断面において20μm×20μmの領域をラマン分光分析した場合に、400cm-1以上1200cm-1以下の範囲内に7つ以上のピークが検出され、前記7つ以上のピークの最強ピークは515cm-1以上525cm-1以下の範囲にないことを特徴とする。
 図1は、実施形態に係る窒化珪素焼結体の断面構造の一部を示す図である。
 図1において、10は窒化珪素焼結体、11は窒化珪素結晶粒子、12は粒界相である。図1に示す通り、実施形態に係る窒化珪素焼結体10は、窒化珪素結晶粒子11及び粒界相12を備える。粒界相は、焼結助剤粉末同士が反応したり、焼結助剤粉末と窒化珪素粉末の不純物が反応したりして形成される。粒界相は、窒化珪素結晶粒子同士の隙間を埋めている。これにより、焼結体の強度を向上させることができる。
 実施形態に係る窒化珪素焼結体は、任意の断面において単位面積20μm×20μmの領域をラマン分光分析した場合に、400cm-1以上1200cm-1以下の範囲内に7つ以上のピークが検出され、前記7つ以上のピークのうち最強ピークは515cm-1以上525cm-1以下の範囲にないことを特徴とする。
 ラマン分光分析は、ラマン散乱光を用いて物質の評価を行う方法である。ラマン散乱光は、励起光に対して振動エネルギーに対応する波数の異なった光が散乱される現象のことである。その波長差は、物質が持つ分子振動のエネルギー分に相当する。分子構造の異なる物質間で、異なる波長を持ったラマン散乱光を得ることができる。ラマン散乱光を調べることにより、試料の原子の振動モードを同定し、結合状態に関するデータを得ることができる。例えば、同じ組成であったとしても、配向や結晶性などが異なると、得られるラマン散乱光が異なる。そのため、粉末の窒化珪素のラマンスペクトルと焼結体のラマンスペクトルは異なる。また、焼結体の外観は、透明ではない。
 ラマン分光分析の測定領域は、単位面積20μm×20μmに設定した。このサイズであれば、窒化珪素結晶粒子と粒界相の両方を測定領域に含めることができる。ラマン分光分析で用いる測定装置には、RENISHAW社製inVia Reflex ライマイクロスコープ(分解能:0.3cm-)またはそれと同等以上の性能を有する装置を用いる。励起レーザには、LD励起グリーンレーザ(波長532nm、出力100mW)を用いた。照射レーザビーム径は0.7μmに設定した。露光時間は1測定点あたり1秒に設定し、ステージ移動ステップは0.4μmに設定した。データ解析には、イメージ解析ソフトWiRe4Empty Modellingによる多変量カーブ分解(MCR)を用いた。ここでは、得られたラマンスペクトルにおいて、この解析ソフトによって検出されたものをピークとして用いた。また、半値幅やピーク強度も、前記解析ソフトによって得た。ここで得たピーク強度とは、ピークの絶対強度からベースラインの値を差分した値である。ベースラインの値も、解析ソフトによって得ることができる。また、総測定箇所は、2601カ所であった。これらの総測定箇所のスペクトルについて平均化処理を行うことで、SN比(スペクトルの大きさに対するノイズの大きさの比)を向上させたスペクトルを得た。また、ステージを移動させながら測定を行うことで、測定箇所依存性の少ないラマンスペクトルを得た。測定時の気温は、摂氏25度(25℃)に設定した。
 実施形態に係る窒化珪素焼結体では、400cm-1以上1200cm-1以下の波数の範囲内に7つ以上のピークが検出される。ラマン分光分析では100cm-1以上300cm-1の範囲内に窒化珪素結晶粒子の最強ピークが検出される。400cm-1以上1200cm-1以下の範囲内にあるピークは、窒化珪素結晶粒子の最強ピークとは異なる。また、400cm-1以上1200cm-1以下における最強ピークの位置は、515cm-1以上525cm-1以下の範囲にないことが好ましい。なお、最強ピークとは、最も強度(intensity)の大きなピークのことである。つまり、400cm-1以上1200cm-1以下の範囲内にあるピークの中で、400cm-1以上514cm-1以下または526cm―1以上1200cm-1以下の範囲に最強ピークが存在する。前述のように、100cm-1以上300cm-1以下の範囲内に窒化珪素結晶粒子の最強ピークが検出される。実施形態に係る窒化珪素焼結体は、400cm-1以上1200cm-1以下の範囲内に検出されるピークの中で、最も大きなピークが515cm-1以上525cm-1以下の範囲にないことを特徴とする。
 515cm-1以上525cm-1以下の範囲で検出されるピークとして、遊離シリコン起因のピークなどが挙げられる。そのため、515cm-1以上525cm-1以下の範囲でのピークが大きいことは、遊離シリコンの量が多いことを示唆している。遊離シリコンのピークの強度が400cm-1以上1200cm-1以下の範囲において最も大きくなるということは、遊離シリコンの存在比率が大きいことを示している。つまり、遊離シリコンのピークの強度が400cm-1以上1200cm-1以下の範囲において最も大きい場合には、遊離シリコンの量が多すぎて、窒化珪素焼結体の強度が低下する可能性がある。そのため、400cm-1以上1200cm-1以下における最強ピークの位置は、515cm-1以上525cm-1以下の範囲でない。
 前述のように、ラマン分光分析は、原子の結合状態に応じたピークを検出する。組成が同じであったとしても、結合状態によってピークが変わる。400cm-1以上1200cm-1以下の範囲内で7つ以上のピークが検出される結合状態により、耐久性を向上させることができる。特に、ベアリングにおける外輪および内輪への接触を安定させることができる。400cm-1以上1200cm-1以下の範囲内に検出されるピークの数の上限は、特に限定されないが、10以下が好ましい。
 515cm-1以上525cm-1以下の範囲内にピークが存在する場合には、そのピークは、400cm-1以上1200cm-1以下の範囲内における最強ピークでない。遊離シリコンに由来する515cm-1以上525cm-1以下の波数のピークは、小さければ小さいほど良い。515cm-1以上525cm-1以下にピークが存在しないことがさらに好ましい。
 400cm-1以上1200cm-1以下の範囲内で検出される7つ以上のピークのうち、少なくとも3つのピークは、530cm-1以上830cm-1以下の範囲内に存在することが好ましい。より好ましくは、前記7つ以上のピークのうち、少なくとも3つのピークは、530cm-1以上800cm-1以下の範囲内に存在する。
 また、前記7つ以上のピークの少なくとも1つは、440cm-1以上460cm-1以下の第1範囲内にあることが好ましい。第1範囲内にある最強ピークの強度を1とする。複数のピークが検出されたときは、第1範囲内にある最も強度の大きなピークを最強ピークとする。第1範囲内にある最強ピークは、窒化珪素結晶粒子に基づくピークである。第1範囲におけるピークの数は、特に限定されないが、1つ以上3つ以下が好ましい。4つ以上のピークがあると、各ピークの真のピーク強度を見分けるのが難しくなる可能性がある。より好ましくは、第1範囲内でのピークの数は、1または2である。
 また、前記7つ以上のピークの少なくとも3つは、500cm-1以上830cm-1以下の第2範囲内に存在することが好ましい。検出されるピークの数の上限は、特に限定されないが、6つ以下が好ましい。ピークの数が多すぎると、830cm-1を超えて1200cm-1以下の第3範囲内でのピークの数を制御するのが難しくなる可能性がある。第1範囲内にある最強ピークのピーク強度を1としたとき、第2範囲内に存在する3つ以上のピークの各ピーク強度は、0.8以上2.0以下であることが好ましい。
 実施形態に係る窒化珪素焼結体について、上記範囲以外の400cm-1~1200cm-1で検出されるピークは、とくに限定されない。例えば410cm-1以上420cm-1以下の範囲、715cm-1以上725cm-1以下の範囲などにピークが存在してもよい。これらの範囲では、鉄または鉄化合物などに由来するピークが検出される。鉄化合物は、酸化鉄などである。400cm-1~1200cm-1以外では、270cm-1以上280cm-1以下の範囲、1320cm-1以上1340cm-1以下の範囲、1570cm-1以上1630cm-1以下の範囲などにピークが存在してもよい。これらの範囲では、タングステンまたはタングステン化合物などに由来するピークが検出される。タングステン化合物は、酸化タングステンなどである。
 第2範囲内にあるピークは、窒化珪素結晶粒子または粒界相に基づくピークである。第2範囲内にある各ピーク強度が、第1範囲内での最強ピーク強度の0.8倍以上2.0倍以下であると、第1範囲内にある最強ピークを示す窒化珪素結晶粒子とのバランスが取れる。この結果、窒化珪素結晶粒子の配向性が制御され、耐摩耗性が向上する。
 また、前記7つ以上のピークの少なくとも3つは、第3範囲内に存在することが好ましい。第3範囲で検出されるピークの数の上限は、特に限定されないが、6つ以下が好ましい。ピークの数が多すぎると、第2範囲内のピークの数を制御するのが難しくなる可能性がある。第1範囲内にある最強ピークのピーク強度を1としたとき、第3範囲内に存在する3つ以上のピークの各ピーク強度は、2.7以上3.7以下であることが好ましい。
 第3範囲内にあるピークは、窒化珪素結晶粒子または粒界相に基づくピークである。第3範囲内にある各ピーク強度が、第1範囲内での最強ピーク強度の2.7倍以上3.7倍以下であると、第1範囲内にある最強ピークを示す窒化珪素結晶粒子とのバランスが取れる。この結果、窒化珪素結晶粒子の配向性が制御され、耐摩耗性が向上する。
 前記7つ以上のピークの少なくとも1つは、500cm-1以上600cm-1以下の範囲内にあり、10cm-1以上100cm-1以下の半値全幅を有することが好ましい。半値全幅は20cm-1以上80cm-1以下であることがより好ましい、40cm-1以上70cm-1以下の半値全幅を有することがさらに好ましい。以降では、「半値全幅」を、単に「半値幅」という。
 500cm-1以上600cm-1以下の範囲内にあり、10cm-1以上100cm-1以下の半値幅を有するいずれのピークも、515cm-1以上525cm-1以下の範囲内にないことがより好ましい。40cm-1以上70cm-1以下の半値幅を有するいずれのピークも、515cm-1以上525cm-1以下の範囲内にないことがさらに好ましい。また、530cm-1以上600cm-1以下の範囲内で、40cm-1以上70cm-1以下の半値幅を有するピークが1つ以上検出されることが好ましい。より好ましくは、530cm-1以上600cm-1以下の範囲内で、40cm-1以上70cm-1以下の半値幅を有するピークの数は、1つだけであることがさらに好ましい。530cm-1以上600cm-1以下の範囲内のピークの半値幅が40cm-1以上70cm-1以下であると、半値幅が70cm-1以下であることは結晶性が良いことを示している。結晶性が良いと、相手部材への攻撃性抑制の安定化につながる。一方、半値幅が10cm-1未満であると結晶化が進みすぎて耐衝撃性に悪影響を及ぼす虞がある。
 400cm-1以上1200cm-1以下の範囲内にあるピークは、主に、窒化珪素結晶粒子または粒界相の化合物に基づくピークである。ラマン分光分析によって検出されるピークの位置から、化学結合の種類を特定することができる。また、ピークの半値幅は、結晶化度を示している。ピークの半値幅が小さいほど、結晶性が高い。また、ピーク強度は、配向性や濃度により影響を受ける。ピークシフト値は、応力や歪量に影響を受ける。同じ組成の材料であったとしても、結合状態、結晶性、配向性、歪量などによってピークの数、強度、半値幅が変わる。
 窒化珪素焼結体では、窒化珪素結晶粒子の平均粒径が2μm以下であることが好ましい。アスペクト比2以上の窒化珪素結晶粒子の面積比が、20%以上70%以下の範囲内であることが好ましい。窒化珪素結晶粒子のサイズを制御することにより、配向性や歪量などを均質化することができる。
 窒化珪素結晶粒子の平均粒径の測定では、任意の断面の走査電子顕微鏡(SEM)写真を用いる。SEM写真に写る窒化珪素結晶粒子の最大径を長径とする。長径の中心から垂直に伸ばした線分の長さを短径とする。粒径=(長径+短径)÷2とする。窒化珪素結晶粒子50個の粒径の平均値を平均粒径とする。また、他の窒化珪素結晶粒子と重なって輪郭が確認できない粒子は、観察できる部分に基づいて粒径を算出する。
 アスペクト比の測定についても、任意の断面のSEM写真を用いる。長径と短径の求め方は、粒径と同じである。アスペクト比=長径/短径とする。SEM写真において20μm×20μmの領域に写るアスペクト比2以上の窒化珪素結晶粒子の面積比を求める。また、粒径と同様に、他の窒化珪素結晶粒子と重なって輪郭が確認できない粒子は、観察できる部分に基づいて粒径を算出する。
 窒化珪素結晶粒子の輪郭がはっきり見えないときは、粒界相をエッチングで除去してもよい。
 また、粒界相には、窒化チタン(TiN)粒子が存在することが好ましい。窒化チタン粒子は、粒界相を強化する化合物である。また、窒化チタン粒子は、400cm-1以上1200cm-1以下の範囲内にラマン分光ピークを発生させ易い化合物である。
 図2は、実施形態に係る窒化珪素焼結体のラマン分光による分析結果を模式的に例示する図である。
 図2に示すラマンスペクトルRSにおいて、横軸はラマンシフト(cm-1)を示し、縦軸は散乱強度を示す。実施形態に係る窒化珪素焼結体をラマン分光で分析した場合、例えば図2に示すように、400cm-1以上1200cm-1以下の範囲内に7つのピークP1~P7が検出される。515cm-1以上525cm-1以下の範囲には、ピークが検出されない。440cm-1以上460cm-1以下の第1範囲内に、ピークP1が検出される。500cm-1以上830cm-1以下の第2範囲内に、3つのピークP2~P4が検出される。830cm-1を超えて1200cm-1以下の第3範囲内に、3つのピークP5~P7が検出される。第2範囲内のピークP2~P4のそれぞれの強度は、第1範囲内のピークP1の強度の0.8倍以上2.0倍以下である。第3範囲内のピークP5~P7のそれぞれの強度は、ピークP1の強度の2.7倍以上3.7倍以下である。また、ピークP2が530cm-1以上600cm-1以下の範囲内にあり、そのピークの半値幅は40cm-1以上70cm-1以下である。
 窒化珪素焼結体の3点曲げ試験における抗折強度は、700MPa以上であることが好ましい。強度が高いと耐摩耗性を向上させることができる。このため、抗折強度は700MPa以上、さらには900MPa以上が好ましい。なお、3点曲げ試験は、JIS-R-1601(2008)に準じて行われる。また、3点曲げ試験における抗折強度のことを、3点曲げ強度と呼ぶこともある。JIS-R-1601(2008)は、ISO14704(2000)に対応している。
 上記のようなラマン分光ピークを有する窒化珪素焼結体によれば、耐摩耗性を向上させることができる。このため、実施形態に係る窒化珪素焼結体を耐摩耗性部材に用いることで、耐久性を向上させることができる。特に、実施形態によれば、相手部材への攻撃性を抑制することができるため、相手部材の耐久性をも向上させることができる。このような耐摩耗性部材としては、ベアリング部材、ロール部材、コンプレッサ部材、ポンプ部材、エンジン部材、摩擦攪拌接合装置用部材などが挙げられる。
 ベアリングは、転動体および軌道輪からなる軸受部材の組合せである。転動体は、球体形状またはころ形状の部材である。転動体の部材は、ベアリングボールと呼ばれる。球体形状は玉であり、ころ形状は円柱である。また、球体形状の転動体を使った部材は、玉軸受と呼ばれる。ころ形状の転動体を使った部材はころ軸受と呼ばれる。ころ軸受には、針軸受、円すいころ軸受、球面ころ軸受も含まれる。また、軌道輪には外輪および内輪がある。
 ロール部材として、圧延用ローラ、電子機器の送り部品用ローラなどが挙げられる。コンプレッサ部材またはポンプ部材としては、ベーンなどが挙げられる。ここでは、コンプレッサは圧力を上げる装置であり、ポンプは圧力を下げる装置として互いに区別する。エンジン部材としては、カムローラ、シリンダ、ピストン、チェックボールなどが挙げられる。摩擦攪拌接合装置用部材としては、摩擦攪拌接合装置用ツール部材などが挙げられる。
 図3は、実施形態に係る耐摩耗性部材の一例(ベアリングボール)を示す図である。図4は、実施形態に係る耐摩耗性部材の別の一例(ベアリング)を示す図である。
 図3及び図4において、1はベアリングボール、2はベアリング、3は内輪、4は外輪である。ベアリング2は、内輪3と外輪4の間にベアリングボール1が配置された構造を有する。ベアリング2では、ベアリングボール1が4個以上配置される。内輪3および外輪4は、ベアリングボール1の相手部材である。
 ベアリングボール1は、実施形態に係る窒化珪素焼結体からなる。必要に応じ、表面粗さRaが0.1μm以下になるように研磨加工が施されてもよい。ベアリングボールについて、米国試験材料協会ASTM F2094においてグレードに応じた表面粗さRaが定められている。このため、グレードに応じた表面粗さに研磨加工が施されてもよい。なお、ASTMとは、ASTM Internationalの発行する標準規格である。ASTM Internationalの旧名称は、米国試験材料協会(American Society for Testing and Materials:ASTM)である。また、窒化珪素焼結体がベアリングボール以外の耐摩耗性部材に適用される場合であっても、必要に応じて、表面研磨加工が施されてもよい。言い換えると、実施形態に係る耐摩耗性部材は、表面粗さRaが0.1μm以下、さらにはRaが0.02μm以下の研磨面を具備していることが好ましい。
 実施形態に係る窒化珪素焼結体をベアリングボール1に適用すると、外輪4および内輪3への攻撃性が低減されるため、ベアリング2としての耐久性を向上させることができる。ベアリング2には、複数個のベアリングボール1が用いられる。個々のベアリングボール1から外輪4および内輪3への攻撃性を低減することにより、ベアリング2としての耐久性を向上させることができる。
 また、実施形態に係るベアリングボール1によれば、最大接触圧力5.9MPa、回転数1200rpmの条件下で転がり寿命をスラスト型軸受試験機で測定したとき、転がり寿命を600時間以上にできる。ベアリング2も、回転中の温度上昇の抑制、摺動音の増大抑制といった効果を有する。近年は、インバータ駆動のモータが流行り始めている。インバータ駆動は、モータの回転速度が可変する方法である。一般的には、モータの回転速度は、0~15000rpmの範囲内である。0rpmは、モータが止まった状態である。モータの回転速度に応じてベアリングが回転する。攻撃性を低減することにより、回転速度が変化したときであっても耐久性が良好である。このように、実施形態に係る窒化珪素焼結体は、相手部材を用いる耐摩耗性部材に好適である。
 また、実施形態に係るベアリングボール1は、相手部材への攻撃性を低減できるため、電食の発生を抑制することができる。電食は、ベアリングボールと内輪との間およびベアリングボールと外輪との間で部分的な放電現象が起き、内輪および外輪の表面が浸食される現象である。ベアリングでは、ベアリングボールに窒化珪素焼結体が用いられ、内輪および外輪に軸受鋼SUJ2などの金属が用いられている。電食が起きると、金属からなる内輪および外輪が浸食されていく。浸食が進むと、ベアリングの機能は低下する。機能が低下すると、摺動音の増加などが発生する。
 一般的にベアリングでは、ベアリングボールと内輪との間およびベアリングボールと外輪の間にグリースが充填されている。グリースは、潤滑性と絶縁性を有している。グリースは、リチウム石鹸グリースなど様々である。ベアリングボールと内輪との間およびベアリングボールと外輪との間で部分的な放電現象が起きると、グリースが劣化する。グリースの劣化が起きると、潤滑性および絶縁性が低下する。これにより、電食が起き易くなる。グリースが劣化するとグリースの変色が起きる。例えば、リチウム石鹸グリースでは、透明から黒色に変化していく。実施形態に係るベアリングボールでは、相手部材への攻撃性が低減されているため、グリースの劣化を抑制することができる。この点からも、ベアリングを長寿命化できる。
 グリースの劣化の原因としては、物理的要因、化学的要因、異物の混入などがある。物理的要因は、主に、継時変化である。これは、使い続けることによって起きる劣化である。他の物理的要因としては、機械的せん断、遠心力などが挙げられる。化学的要因は、主に電食である。他の化学的要因としては、熱による酸化などが挙げられる。異物の混入は、主に、ベアリングボールの内輪または外輪への接触が主な要因である。ベアリングボールが内輪または外輪に接触することで、摩耗粉が発生する。
 これらの影響により、グリースが硬化することで潤滑不良、絶縁性低下などを引き起こす。
 実施形態にかかるベアリングボールは、相手部材への攻撃性を抑制できるため、電食または摩耗粉の発生を抑制できる。この結果、グリースの劣化を抑制でき、ベアリングをより長寿命化できる。
 次に、実施形態に係る窒化珪素焼結体の製造方法について説明する。実施形態に係る窒化珪素焼結体は、上記構成を有していれば、その製造方法は特に限定されない。歩留まり良く窒化珪素焼結体を得るための方法として、以下の例が挙げられる。
 まず、窒化珪素粉末を用意する。窒化珪素粉末について、α化率が80質量%以上であり、平均粒径D50が0.4μm以上2.5μm以下であり、不純物酸素含有量が2質量%以下であることが好ましい。不純物酸素含有量は、2質量%以下、さらには1.0質量%以下であることが好ましい。より好ましくは、不純物酸素含有量は、0.1質量%以上0.8質量%以下である。不純物酸素含有量が2質量%を超えて多いと、不純物酸素と焼結助剤との反応が起きて、必要以上に粒界相が形成される可能性がある。
 次に、焼結助剤粉末を用意する。焼結助剤の添加量は3質量%以上20質量%以下の範囲内であることが好ましい。焼結助剤の添加量は、窒化珪素粉末と焼結助剤粉末の合計を100質量%として計算する。焼結助剤粉末について、平均粒径D50が1.0μm以下、さらには0.4μm以下であることが好ましい。
 焼結助剤粉末は、希土類化合物、アルミニウム化合物、チタン化合物から選ばれる1種以上であることが好ましい。希土類化合物は、イットリウムの酸化物またはランタノイド元素の酸化物から選ばれる1種または2種であることが好ましい。アルミニウム化合物は、酸化アルミニウム、窒化アルミニウムまたは酸窒化アルミニウムから選ばれる1種以上が好ましい。チタン化合物は、酸化チタン、窒化チタンまたは酸窒化チタンから選ばれる1種以上が好ましい。また、希土類化合物の含有量は、2質量%以上10質量%以下が好ましい。アルミニウム化合物の含有量は、2質量%以上10質量%以下が好ましい。チタン化合物の含有量は、0.1質量%以上5質量%以下が好ましい。これら以外に、アルカリ土類化合物などが添加されてもよい。焼結助剤の合計量は、3質量%以上20質量%以下の範囲内になるように調整する。また、チタン化合物の代わりに、鉄化合物またはタングステン化合物を用いてもよい。
 次に、窒化珪素粉末と焼結助剤粉末を混合する原料粉末の混合工程を行う。原料粉末の混合工程は、ビーズミルまたはボールミルを用いて行う。また、バインダや溶媒を混合した原料粉末スラリーを用いて混合工程を行う。
 まず、ボールミルについて説明する。ボールミルは、直径4~50mmのメディアを用いた粉砕機である。ボールミルでは、ベッセルと呼ばれる粉砕室(攪拌室)に、原料粉末スラリーとメディアを入れて回転しながら粉砕する。ベッセルの回転に合わせて原料粉末スラリーとメディアがぶつかり合い、原料粉末スラリーが粉砕していく。ボールミルを用いた混合工程は、20時間以上行うことが好ましい。 ボールミルはポットローラ型であってもよい。ボールミルとして、ポットローラ型以外に、粉砕室の両端部を固定し粉砕室を回転させる装置が用いられてもよい。ポットローラ型とは、回転速度が制御された略円柱形状のローラの上にベッセルを配置し、ローラの回転によってベッセルが回転する装置である。また、ベッセルの回転速度(rpm)を制御することで粉砕状況を制御できる。そのため、ボールミルについて、“攪拌工程における回転速度”とは、粉砕室(ベッセル)の回転速度として定義される。
 次に、ビーズミルについて説明する。ビーズミルは、直径3mm以下のメディアを用いた粉砕機である。ビーズミルでは、ボールミルよりも、原料粉末スラリーとメディアがぶつかり合うエネルギーが大きい。ビーズミルを用いた混合工程は、3時間以上行うことが好ましい。ビーズミルでは、ディスクと呼ばれるプロペラ状の撹拌子を回転させることにより粉砕が行われる。メディアは、このディスク部周辺に存在している。ディスクの回転に伴い、粉砕または攪拌などがなされる。
 いずれの混合工程を行う場合においても、時間の上限は特に限定されないが、100時間以下が好ましい。100時間を超えてもそれ以上の効果が得られず、コストアップの要因となる可能性がある。
 ビーズミルまたはボールミルを用いた混合工程で原料粉末スラリーを均一混合することができる。原料粉末の粉砕または解砕が起きて、均一な混合状態となる。その後、撹拌工程を行うことにより、均一混合の状態を維持することができる。均一混合した原料粉末スラリーは、そのまま放置していると、バインダまたは溶媒に対して原料粉末が沈降していく。沈降現象が発生すると、原料粉末の凝集が生じる。撹拌工程は、沈降を防ぐ効果を有する。ボールミルにおける撹拌工程の回転速度が50rpm以上150rpmで12時間以上あれば、原料粉末の均一混合された状態を維持することができる。
 このようなボールミルの撹拌工程を行うと、原料粉末スラリーの粘性を調製することができる。回転速度が50rpm未満であると、攪拌力が不足する可能性がある。また、回転速度が150rpmを超えて大きいと、混合工程で調整した均一混合状態から変化する可能性がある。また、12時間以上撹拌することにより、原料粉末スラリーの粘性を制御することができる。これにより、原料粉末の均一な混合状態を維持することができる。
 ビーズミルにおける撹拌工程に用いる撹拌機は、プロペラ状の撹拌子を一定速度および一方向に回転させて槽内を攪拌する装置である。また、メディアを混合しない装置が好ましい。メディアを混合しないとは、ビーズミルの装置がメディアとスラリーを分離する機構を兼ね備えており、攪拌工程後のスラリー内のメディア量が少なく制御されていることを示す。ビーズミルにおける撹拌子の回転速度は、500rpm以上2000rpm以下であることが好ましい。より好ましくは撹拌子の回転速度が、500rpm以上1500rpm以下である。回転速度が2000rpmを超えると、撹拌子を回転させるモータに負荷がかかりすぎる可能性がある。回転速度が500rpmよりも小さいと、攪拌工程に時間がかかりすぎる可能性がある。
 次に、原料粉末(原料粉末スラリー含む)を用いて成形体をつくる成形工程を行う。成形法としては、金型プレス法、冷間静水圧プレス(CIP)法、シート成形法などを適用できる。シート成形法は、ドクターブレード法、ロール成形法などである。また、これらの成形法を組合せてもよい。必要に応じ、原料粉末(原料粉末スラリー含む)に、トルエン、エタノール、ブタノールなどの溶媒を混合してもよい。また、必要に応じ、原料粉末(原料粉末スラリー含む)を有機バインダと混合する。有機バインダとしては、ブチルメタクリレート、ポリビニルブチラール、ポリメチルメタクリレートなどが挙げられる。また、原料混合体(窒化珪素粉末と焼結助剤粉末との合計量)を100質量部としたとき、有機バインダの添加量は3質量部以上17質量部以下であることが好ましい。有機バインダの添加量が3質量部未満ではバインダ量が少なすぎて成形体の形状を維持するのが困難となる。また、17質量部を超えて多いと、脱脂工程後に成形体(脱脂処理後の成形体)の気孔が大きくなり、緻密な焼結体が得られなくなる。
 次に成形体の脱脂工程を行う。脱脂工程では、非酸化性雰囲気中で、温度500℃以上800℃以下で1時間以上4時間以下、成形体を加熱することで、予め添加していた大部分の有機バインダの脱脂を行う。非酸化性雰囲気としては、窒素ガス雰囲気、アルゴンガス雰囲気などが挙げられる。必要であれば大気雰囲気などの酸化雰囲気で処理し、脱脂体に残存する有機物量を制御する。
 次に、脱脂体(脱脂処理された成形体)を焼成容器内に収容し、焼成炉内において非酸化性雰囲気中で焼結工程を行う。焼結工程の温度は、1650℃以上1950℃以下の範囲内であることが好ましい。非酸化性雰囲気としては、窒素ガス雰囲気、または窒素ガスを含む還元性雰囲気が好ましい。また、焼成炉内の圧力は、加圧雰囲気であることが好ましい。
 焼結温度が1650℃未満の低温状態で脱脂体を焼成すると、窒化珪素結晶粒子の粒成長が十分でなく、緻密な焼結体が得難い。一方、焼結温度が1950℃よりも高温度で焼成すると、炉内雰囲気圧力が低い場合に、窒化珪素がSiとNに分解する可能性がある。このため、焼結温度は上記範囲に制御することが好ましい。また、焼結時間は3時間以上12時間以下の範囲内が好ましい。この際の炉内雰囲気圧力は、常圧以上60MPa以下であることが好ましい。より好ましくは、炉内雰囲気圧力は0.2MPa以上30MPa以下である。
 上記焼結工程の後に、焼結体に対して、熱間静水圧プレス(HIP)処理を行うことが好ましい。前述の脱脂体を焼結する工程を第一焼結工程、焼結体をHIP処理する工程を第二焼結工程と呼ぶ。
 HIP処理において、温度は1600℃以上1900℃以下の範囲内であり、圧力は80MPa以上200MPa以下の範囲内であることが好ましい。HIP処理により、焼結体内の気孔(ポア)を減少させることができる。これにより、緻密な焼結体を得ることができる。圧力が80MPa未満であると、圧力を負荷する効果が不十分である。また、200MPaを超えて高いと、製造装置の負荷が高くなる可能性がある。
 得られた窒化珪素焼結体には、必要に応じ、研磨加工を施す。また、多数個取りを行う際は、窒化珪素焼結体に切断加工などを施してもよい。
(実施例)
(実施例1~4、比較例1~2)
 原料粉末として表1に示す組合せを用意した。実施例および比較例に用いた窒化珪素粉末では、α化率が80質量%以上、平均粒径D50が0.4~2.5μm、不純物酸素含有量が2質量%以下である。実施例1~4および比較例1で用いた焼結助剤粉末の平均粒径D50は、1.0μm以下である。比較例2で用いた焼結助剤粉末の平均粒径D50は、1.4μmである。
Figure JPOXMLDOC01-appb-T000001
 
 次に、原料粉末の混合工程と撹拌工程を行った。原料粉末の混合工程では、原料粉末にバインダと溶媒を添加して原料粉末スラリーを調製したして行った。比較例1~2では、攪拌処理を行わなかった。各工程の条件は、表2に示した通りである。
Figure JPOXMLDOC01-appb-T000002
 
 得られた原料粉末スラリーを用いて成形工程を行った。成形工程は金型成形で行った。サイズが3/8インチ(直径9.525mm)のベアリングボールを得るための成形体と、抗折強度を測定するための成形体と、を含む2種類の成形体を作製した。
 次に、成形体に対して、500℃以上800℃以下、1時間以上4時間以下の範囲内で脱脂工程を行った。次に、脱脂体に対し、第1焼結工程を行った。第1焼結工程では、温度が1750℃以上1870℃以下、圧力が0.1MPa以上0.5MPa以下の条件で、4時間以上8時間以下、焼結を行った。得られた焼結体に対し、温度が1600℃以上1700℃以下、圧力が100MPa以上200MPa以下の条件で、3時間以上5時間以下、HIP処理を行った。HIP処理後の焼結体に対し、表面粗さRaが0.02μm以下になるように研磨加工を施した。
 実施例および比較例に対し、ラマン分光分析を行った。ラマン分光分析では、窒化珪素焼結体の任意の断面を用いた。ラマン分光分析には、RENISHAW社製inVia Reflex ライマイクロスコープ(分解能:0.3cm-1)を用いた。励起レーザとしてLD励起グリーンレーザ(波長532nm、出力100mW)を使用し、照射レーザビーム径を0.7μm、露光時間を1測定点あたり1秒、ステージ移動ステップを0.4μmに設定した。データ解析には、イメージ解析ソフトWiRe4Empty Modellingによる多変量カーブ分解(MCR)を用いた。総測定箇所は、2601カ所であった。また、焼結体表面から離れた場所を測定した。これらの総測定箇所のスペクトルにおいて平均化処理を行うことで、SN比(スペクトルの大きさに対するノイズの大きさの比)を向上させたスペクトルを得た。また、ステージの移動をしながら測定を行うことで、測定箇所依存性の少ないラマンスペクトルを得た。
 その結果を表3に示す。表3に示す波数(cm-1)は、小数点以下を四捨五入した値である。
Figure JPOXMLDOC01-appb-T000003
 
 表3から分かる通り、実施例に係る窒化珪素焼結体では、望ましいラマンピークが検出された。これらの実施例のいずれにおいても、400cm-1以上1200cm-1以下における最強ピークの位置は、515cm-1以上525cm-1以下の範囲ではなかった。また、515cm-1以上525cm-1以下の範囲では、ピークが検出されなかった。
 さらに、実施例1~3に係る窒化珪素焼結体では、500cm-1以上830cm-1以下の範囲で検出されたピークのうち、3つ以上のピークが530cm-1以上800cm-1以上の範囲で検出された。また、これら3つ以上のピークの各強度は、440cm-1以上460cm-1以下の最強ピーク強度を1としたとき、0.8以上2.0以下であった。
 実施例4では、530cm-1以上830cm-1以下の範囲で3つ以上のピークが検出された。しかし、440cm-1以上460cm-1以下の最強ピーク強度を1としたとき、ピーク強度比が530cm-1以上830cm-1以下の範囲であるピークが3つよりも少なかった。このため、実施例4について、表3では、「強度比違い」と記載した。
 比較例1および比較例2では、400cm-1以上1200cm-1以下の範囲で、6つのピークしか検出されなかった。特に、500cm-1以上830cm-1以下の範囲で、2つのピークしか検出されなかった。
 500cm-1以上600cm-1以下の範囲内のピークのうち最強ピークは、実施例1~4および比較例1のいずれにおいても530cm-1以上600cm-1以下に観測された。実施例1~3では、最強ピークの半値幅が40cm-1以上70cm-1以下であった。一方、実施例4および比較例1では、最強ピークの半値幅が40cm-1以上70cm-1以下の範囲外であった。また、比較例2では、500cm-1以上600cm-1以下の範囲内にピークが検出されなかった。
 次に、窒化珪素結晶粒子の平均粒径とアスペクト比2以上の窒化珪素結晶粒子の面積比を測定した。まず、任意の断面のSEM写真を撮影した。SEM写真に写る窒化珪素結晶粒子の最大径を長径とした。長径の中心から垂直に伸ばした線分の長さを短径とした。粒径=(長径+短径)÷2とし、50個分の粒径の平均値を平均粒径とした。アスペクト比=長径/短径とした。20μm×20μmの領域において、アスペクト比2以上である窒化珪素結晶粒子の面積比を算出した。また、3点曲げ強度を調べた。3点曲げ強度は、JIS-R-1601(2008)に準じた3点曲げ試験による抗折強度を測定した。また、ビッカース硬度はJIS-R-1610(2003)に準じて、試験荷重9.807N(HV1)で測定した。JIS-R-1610(2003)は、ISO 14705:2000に対応する。
 その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 実施例では、窒化珪素結晶粒子の平均粒径が2μm以下であった。また、アスペクト比2以上の窒化珪素結晶粒子の面積比も、20%以上70%以下の範囲内であった。また、実施例および比較例のいずれにおいても、3点曲げ強度は600MPa以上であった。また、実施例では、ビッカース硬度HV1が1490以上であった。
 次に、実施例および比較例に係るベアリングボールを用いて耐久性試験を行った。耐久性試験は、スラスト式転がり疲労試験機で、面圧が最大接触圧力5.9MPa、回転数1200rpmの条件下で転がり寿命を測定した。なお、相手部材は軸受鋼SUJ2からなる板材を用いた。ベアリングボールの表面が剥離するまでの時間を測定した。なお、測定時間は600時間を上限とした。試験の結果で600時間経過後も表面剥離が確認されないものを「600時間以上」と表記した。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 
 表から分かる通り、実施例1~4および比較例1に係るベアリングボールは、優れた耐久性を示した。一方、比較例2に係るベアリングボールは、実施例1~4及び比較例1に比べて、耐久性が低下した。実施例1~4および比較例1では、比較例2に比べて、アスペクト比2以上の窒化珪素結晶粒子の割合が低下したためと考えられる。
 次に、実施例および比較例に係るベアリングボールを用いてベアリングを作製した。内輪及び外輪はどのようなものであってもよいが、本試験においては軸受鋼SUJ2で作製した。また、様々なグリースを使用可能であるが、本試験においては汎用材として広く用いられているリチウム石鹸グリースを用いた。このリチウム石鹸グリースの中で、特に元の色が透明なものを用いた。元の色が透明なグリースを用いた場合、グリースの劣化が色の変化として観測できる。また、ベアリングは、16個のベアリングボールを用いて組み立てた。ベアリングの摺動音の変化率、グリースの変色の有無を測定した。
 ベアリングに回転軸を装着し、回転軸を1200rpmで回転させた。摺動音の変化率は、連続10時間後と連続400時間後の摺動音を測定した。比較例1の連続10時間後から連続400時間後の摺動音の変化率を1とした。実施例1~4および比較例2に係るベアリングの摺動音の変化を、この変化率と対比した。摺動音の変化が小さければ、変化率は1より小さな値となる。
 また、400時間後のベアリングを解体し、グリースの色の変化を調べた。グリースが変色したことは、グリースが劣化したことを示す。グリースの変色は、明度で調べた。明度の数値が大きいほど、グリースの色が明るく、明度の数字が小さいほど、グリースの色が暗くなる。
 その結果を表6に示した。表6について、9.5以下9以上の明度を「薄い灰色」と定義した。9よりも小さく4以上の明度を「濃い灰色」と定義した。4よりも小さい明度を「黒色」と定義した。これらの明度の基準には、マンセル表色系を用いた。マンセル表色系は、JIS Z8721(1993)に対応している。グリースの劣化が進むほど、明度は小さな値となる。
Figure JPOXMLDOC01-appb-T000006
 
 表6から分かる通り、実施例では、摺動音の変化率およびグリースの変色が改善されていた。スラスト試験では大きな差が確認されなかったが、摺動音の変化およびグリースの変色の試験では差が確認された。これは、ベアリングによる相手部材への攻撃性が低減したためである。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態はその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…ベアリングボール
2…ベアリング
3…内輪
4…外輪
10…窒化珪素焼結体
11…窒化珪素結晶粒子
12…粒界
RS…ラマンスペクトル
P1~P6…ピーク
 
 

Claims (12)

  1.  窒化珪素結晶粒子及び粒界相を備えた窒化珪素焼結体であって、
     前記窒化珪素焼結体の任意の断面において20μm×20μmの領域をラマン分光分析した場合に、400cm-1以上1200cm-1以下の範囲内に7つ以上のピークが検出され、前記7つ以上のピークの最強ピークは515cm-1以上525cm-1以下の範囲にないことを特徴とする窒化珪素焼結体。
  2.  前記7つ以上のピークの少なくとも3つは、530cm-1以上830cm-1以下の範囲内にあることを特徴とする請求項1に記載の窒化珪素焼結体。
  3.  前記7つ以上のピークの少なくとも1つは、440cm-1以上460cm-1以下の範囲内にあることを特徴とする請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  4.  前記7つ以上のピークについて、500cm-1以上830cm-1以下の範囲内にある少なくとも3つのピークのそれぞれの強度は、440cm1以上460cm1以下の範囲内にある最強ピークの強度の0.8倍以上2.0倍以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素焼結体。
  5.  前記7つ以上のピークについて、830cm-1を超えて1200cm-1以下の範囲内にある少なくとも3つのピークのそれぞれの強度は、440cm1以上460cm1以下の範囲内にある最強ピークの強度の2.7倍以上3.7倍以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化珪素焼結体。
  6.  前記7つ以上のピークの少なくとも1つは、500cm-1以上600cm-1以下の範囲内にあり且つ10cm-1以上100cm-1以下の半値全幅を有することを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素焼結体。
  7.  3点曲げ試験における抗折強度が700MPa以上であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の窒化珪素焼結体。
  8.  請求項1ないし請求項7のいずれか1項に記載の前記窒化珪素焼結体を用いたことを特徴とする耐摩耗性部材。
  9.  前記耐摩耗性部材がベアリングボールであることを特徴とする請求項8記載の耐摩耗性部材。
  10.  前記ベアリングボールは、最大接触圧力5.9MPa、回転数1200rpmの条件下で転がり寿命をスラスト型軸受試験機で測定した場合に、600時間以上の転がり寿命を有することを特徴とする請求項9記載の耐摩耗性部材。
  11.  請求項1ないし請求項7のいずれか1項に記載の窒化珪素焼結体の製造方法であって、
     窒化珪素粉末と焼結助剤粉末を混合した原料粉末を、ボールミルを用いて、攪拌室を50rpm以上150rpm以下の回転速度で12時間以上回転させて混合する工程を備えたことを特徴とする窒化珪素焼結体の製造方法。
  12.  請求項1ないし請求項7のいずれか1項に記載の窒化珪素焼結体の製造方法であって、
     窒化珪素粉末と焼結助剤粉末を混合した原料粉末を、ビーズミルを用いて、撹拌子を500rpm以上2000rpm以下の回転速度で3時間以上回転させて混合する工程を備えたことを特徴とする窒化珪素焼結体の製造方法。
PCT/JP2022/015017 2021-03-30 2022-03-28 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法 WO2022210539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023511262A JP7482316B2 (ja) 2021-03-30 2022-03-28 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
EP22780750.0A EP4317106A1 (en) 2021-03-30 2022-03-28 Silicon nitride sintered body, wear-resistant member, and method for producing silicon nitride sintered body
CN202280016624.5A CN117043123A (zh) 2021-03-30 2022-03-28 氮化硅烧结体、耐磨性构件及氮化硅烧结体的制造方法
US18/451,438 US20230391677A1 (en) 2021-03-30 2023-08-17 Silicon Nitride Sintered Body, Wear-Resistant Member, And Method For Producing Silicon Nitride Sintered Body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057053 2021-03-30
JP2021-057053 2021-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/451,438 Continuation US20230391677A1 (en) 2021-03-30 2023-08-17 Silicon Nitride Sintered Body, Wear-Resistant Member, And Method For Producing Silicon Nitride Sintered Body

Publications (1)

Publication Number Publication Date
WO2022210539A1 true WO2022210539A1 (ja) 2022-10-06

Family

ID=83456270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015017 WO2022210539A1 (ja) 2021-03-30 2022-03-28 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法

Country Status (5)

Country Link
US (1) US20230391677A1 (ja)
EP (1) EP4317106A1 (ja)
JP (1) JP7482316B2 (ja)
CN (1) CN117043123A (ja)
WO (1) WO2022210539A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124771A (ja) * 1988-07-27 1990-05-14 Ngk Spark Plug Co Ltd 転がり軸受材料用窒化珪素基焼結体及びその製造方法
JP2001328869A (ja) 2000-03-16 2001-11-27 Toshiba Corp 耐摩耗性部材およびその製造方法
JP2003065337A (ja) 2001-08-24 2003-03-05 Nsk Ltd 転がり軸受
WO2008032427A1 (fr) * 2006-09-13 2008-03-20 Kabushiki Kaisha Toshiba Élément coulissant et palier utilisant celui-ci
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
JP2012121802A (ja) * 2000-05-09 2012-06-28 Ngk Spark Plug Co Ltd 窒化珪素質焼結体
WO2014104112A1 (ja) * 2012-12-25 2014-07-03 京セラ株式会社 窒化珪素質焼結体および切削工具
WO2018194052A1 (ja) * 2017-04-17 2018-10-25 株式会社 東芝 焼結体、基板、回路基板、および焼結体の製造方法
WO2020121752A1 (ja) * 2018-12-11 2020-06-18 株式会社 東芝 摺動部材、およびそれを用いた軸受、モータ、並びに駆動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124771A (ja) * 1988-07-27 1990-05-14 Ngk Spark Plug Co Ltd 転がり軸受材料用窒化珪素基焼結体及びその製造方法
JP2001328869A (ja) 2000-03-16 2001-11-27 Toshiba Corp 耐摩耗性部材およびその製造方法
JP2012121802A (ja) * 2000-05-09 2012-06-28 Ngk Spark Plug Co Ltd 窒化珪素質焼結体
JP2003065337A (ja) 2001-08-24 2003-03-05 Nsk Ltd 転がり軸受
WO2008032427A1 (fr) * 2006-09-13 2008-03-20 Kabushiki Kaisha Toshiba Élément coulissant et palier utilisant celui-ci
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
WO2014104112A1 (ja) * 2012-12-25 2014-07-03 京セラ株式会社 窒化珪素質焼結体および切削工具
WO2018194052A1 (ja) * 2017-04-17 2018-10-25 株式会社 東芝 焼結体、基板、回路基板、および焼結体の製造方法
WO2020121752A1 (ja) * 2018-12-11 2020-06-18 株式会社 東芝 摺動部材、およびそれを用いた軸受、モータ、並びに駆動装置

Also Published As

Publication number Publication date
EP4317106A1 (en) 2024-02-07
CN117043123A (zh) 2023-11-10
US20230391677A1 (en) 2023-12-07
JP7482316B2 (ja) 2024-05-13
JPWO2022210539A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5752189B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
US20210261467A1 (en) Sliding Member, And Bearing, Motor, And Drive Device Using The Same
JP5886337B2 (ja) 耐摩耗性部材およびそれを用いた耐摩耗性機器
JP5100201B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP5944910B2 (ja) 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング
JP5260158B2 (ja) 工作機械用転がり軸受
WO2022210539A1 (ja) 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
JP5260159B2 (ja) 風力発電装置用転がり軸受
WO2022210533A1 (ja) 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
JP5989602B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにベアリング用転動体
JP7472408B2 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
WO2003084895A1 (fr) Element anti-usure en nitrure de silicium et procede de fabrication correspondant
JP2011140416A (ja) 窒化珪素質焼結体および耐摩耗部材
WO2023145672A1 (ja) 窒化ケイ素焼結体、それを用いた機械部品、および軸受
WO2023032695A1 (ja) 窒化ケイ素焼結体、機械部品および軸受
JP2009138541A (ja) 冷媒圧縮機および軸受
JP4950715B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP2022026799A (ja) 酸化誘起型自己治癒セラミックス製造用の原料粉末の製造方法、及び酸化誘起型自己治癒セラミックス製造用の原料粉末
WO2019078109A1 (ja) 硬質焼結体及びそれを用いた回転工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511262

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280016624.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780750

Country of ref document: EP

Effective date: 20231030