WO2022210386A1 - 冷媒回収システムおよび冷媒充填システム - Google Patents

冷媒回収システムおよび冷媒充填システム Download PDF

Info

Publication number
WO2022210386A1
WO2022210386A1 PCT/JP2022/014532 JP2022014532W WO2022210386A1 WO 2022210386 A1 WO2022210386 A1 WO 2022210386A1 JP 2022014532 W JP2022014532 W JP 2022014532W WO 2022210386 A1 WO2022210386 A1 WO 2022210386A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
recovery system
separation
reservoir
section
Prior art date
Application number
PCT/JP2022/014532
Other languages
English (en)
French (fr)
Inventor
浩貴 上田
敦史 吉見
英二 熊倉
政貴 田中
雅樹 中山
隆平 加治
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22780599.1A priority Critical patent/EP4317862A1/en
Priority to CN202280025613.3A priority patent/CN117120788A/zh
Publication of WO2022210386A1 publication Critical patent/WO2022210386A1/ja
Priority to US18/373,594 priority patent/US20240019184A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Definitions

  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2017-72284 discloses a system for recovering refrigerant from refrigeration equipment and filling a refrigerant recovery container with the refrigerant.
  • the refrigerant recovery system of the first aspect is a system that separates the first refrigerant from the refrigerant containing the first refrigerant and recovers the refrigerant.
  • a refrigerant recovery system includes a separation section and a storage section. The separation section separates the first refrigerant. The reservoir stores the refrigerant before or after the first refrigerant is separated.
  • the refrigerant recovery system includes a separation section that separates the first refrigerant. According to this configuration, it is possible to selectively separate the first refrigerant, which is a specific component contained in the refrigerant, while recovering the refrigerant. For this reason, in the refrigerant recovery system according to the first aspect, the number of work steps involved in reusing the refrigerant is reduced.
  • the refrigerant recovery system of the second aspect is the refrigerant recovery system of the first aspect, and the separation of the first refrigerant is performed when the refrigerant is recovered from the equipment using the refrigerant.
  • the separation of the first refrigerant is performed when the refrigerant is recovered from the device using the refrigerant.
  • the component separation of the refrigerant can be performed at the site where the refrigerant is recovered. In other words, the components of the recovered refrigerant can be separated without bringing the recovered refrigerant back to the place of business. Therefore, in the refrigerant recovery system according to the second aspect, the number of work processes related to reuse of the refrigerant is reduced.
  • the refrigerant recovery system of the third aspect is the refrigerant recovery system of the first aspect or the second aspect, and the first refrigerant is separated from the refrigerant stored in the reservoir.
  • the refrigerant recovery system can selectively separate the first refrigerant, which is a specific component contained in the recovered refrigerant. According to this configuration, the number of work processes related to refrigerant reuse is reduced.
  • a refrigerant recovery system is the refrigerant recovery system according to any one of the first aspect to the third aspect, wherein the separation unit separates the first refrigerant to adjust the composition of the refrigerant to a different composition. .
  • the separation unit separates the first refrigerant, thereby adjusting the composition of the refrigerant to be different. According to this configuration, the composition of the refrigerant can be adjusted without bringing the refrigerant back to the place of business. Therefore, in the refrigerant recovery system according to the fourth aspect, the number of work processes related to reuse of the refrigerant is reduced.
  • a refrigerant recovery system is the refrigerant recovery system according to any one of the first aspect to the fourth aspect, wherein the separation section has a separation membrane that separates the first refrigerant from the refrigerant. The first refrigerant that permeates the separation membrane is released to the atmosphere.
  • the handling of the first refrigerant separated from the refrigerant for example, it is conceivable to provide a predetermined container in the refrigerant recovery system and store the separated first refrigerant in the container.
  • the amount of the separated first refrigerant and the properties of the first refrigerant even if the first refrigerant is released into the atmosphere, there may be cases where the human body and the global environment are not greatly affected.
  • the first refrigerant is released into the atmosphere. According to this configuration, there is no need to provide a container for storing the separated first refrigerant in the refrigerant recovery system. Alternatively, the size of the container for storing the separated first refrigerant can be reduced. Therefore, in the refrigerant recovery system according to the fifth aspect, the overall size of the refrigerant recovery system can be reduced.
  • a refrigerant recovery system is a refrigerant recovery system according to any one of the first aspect to the fourth aspect, wherein the separating section has an adsorbent that adsorbs the first refrigerant.
  • a refrigerant recovery system is a refrigerant recovery system according to any one of the first aspect to the sixth aspect, and the separating section is a mechanism for distilling the first refrigerant from the refrigerant.
  • a refrigerant recovery system is a refrigerant recovery system according to any one of the first to seventh aspects, and the first refrigerant is CO2.
  • the refrigerant charging system of the ninth aspect is a system that charges equipment with a mixed refrigerant containing the first refrigerant and the second refrigerant.
  • the refrigerant charging system includes a first reservoir, a second reservoir, a mixing section, and a charging section.
  • the first refrigerant is stored in the first reservoir.
  • the second reservoir stores the refrigerant obtained by separating at least part of the first refrigerant from the mixed refrigerant recovered from the other device during or after recovery.
  • the mixing section mixes the first refrigerant supplied from the first reservoir with the refrigerant supplied from the second reservoir to generate a mixed refrigerant.
  • a mixed refrigerant is a refrigerant for charging equipment.
  • the filling section fills the device with the mixed refrigerant from the mixing section.
  • a refrigerant charging system includes a first reservoir storing a first refrigerant and a second reservoir storing a refrigerant obtained by separating at least part of the first refrigerant. Further, in the refrigerant charging system according to the ninth aspect, the equipment is charged with the refrigerant generated by mixing the first refrigerant with the refrigerant from which at least part of the first refrigerant has been separated. According to this configuration, the refrigerant can be refilled without bringing the refrigerant collected from other equipment back to the office. Therefore, in the refrigerant charging system according to the ninth aspect, the number of work processes related to reuse of the refrigerant is reduced.
  • a refrigerant charging system is the refrigerant charging system according to the ninth aspect, wherein the mixing unit adjusts the composition of the refrigerant to a different composition by mixing the first refrigerant to charge the device. to produce a mixed refrigerant.
  • the mixing unit generates a mixed refrigerant in which the composition of the refrigerant is adjusted.
  • the refrigerant can be refilled without bringing the refrigerant collected from other equipment back to the office. Therefore, in the refrigerant charging system according to the tenth aspect, the number of work processes related to reuse of the refrigerant is reduced.
  • the refrigerant charging system of the eleventh aspect is the refrigerant charging system of the ninth or tenth aspect, and the first refrigerant is CO2.
  • the mixing section can generate a mixed refrigerant in which CO2 is mixed.
  • FIG. 1 is a schematic diagram showing the overall configuration of a refrigerant recovery system according to a first embodiment
  • FIG. FIG. 10 is a schematic diagram showing the overall configuration of a refrigerant recovery system according to Modification 1B; It is a schematic diagram showing the whole refrigerant recovery system composition concerning modification 1C.
  • FIG. 10 is a schematic diagram showing the overall configuration of a refrigerant recovery system according to Modification 1D; It is a schematic diagram showing the whole refrigerant charging system composition concerning a 2nd embodiment. It is a schematic diagram showing the whole composition of a refrigerant charging system concerning a 3rd embodiment.
  • FIG. 1 is a diagram schematically showing the overall configuration of a refrigerant recovery system 1 according to this embodiment.
  • the refrigerant recovery system 1 is a system that separates specific components that make up the used refrigerant when recovering the used refrigerant.
  • the used refrigerant refers to the refrigerant filled in the device 100 (see FIG. 1).
  • the device 100 is a refrigeration system installed in a building or the like, such as an air conditioner.
  • the space in which the device 100 is installed may be referred to as a "field".
  • the facility that manages the collected refrigerant may be referred to as "office".
  • the used refrigerant is a mixed refrigerant containing the first refrigerant and the second refrigerant.
  • the first refrigerant is CO2, for example.
  • the second refrigerant is HFO, for example.
  • a specific non-limiting example of HFO for use as the second refrigerant is R1234Ze (cis-1,3,3,3-tetrafluoropropene).
  • R1234Ze cis-1,3,3,3-tetrafluoropropene
  • R1234yf (2,3,3,3-tetrafluoropropene
  • the components of the used refrigerant are not limited to this, and can be changed as appropriate without departing from the scope of the present disclosure.
  • the used refrigerant may be a mixed refrigerant composed of three or more components.
  • the refrigerant recovery system 1 includes a flow rate adjustment mechanism 60 , a refrigerant recovery device 50 , a separation section 10 and a storage section 20 .
  • the refrigerant recovery system 1 starts operating, the used refrigerant enclosed in the equipment 100 flows in the direction indicated by the arrow in FIG.
  • the flow rate adjustment mechanism 60 is a mechanism that adjusts the flow rate of the used refrigerant flowing from the device 100 to the reservoir 20 .
  • the flow control mechanism according to this embodiment has a first valve 61 and a second valve 62 .
  • a first valve 61 is arranged between the device 100 and the refrigerant recovery device 50 .
  • a second valve 62 is arranged between the separation section 10 and the storage section 20 .
  • the first valve 61 and the second valve 62 are manual valves whose opening is adjusted by being operated by a person who performs refrigerant recovery work (hereinafter simply referred to as "worker").
  • the configurations of the first valve 61 and the second valve 62 are not limited to this, and may be, for example, electric valves whose opening degrees are adjusted by a controller (not shown).
  • the refrigerant recovery device 50 is a device for recovering the used refrigerant filled in the equipment 100 .
  • the refrigerant recovery device 50 has an expansion mechanism (not shown), a first heat exchanger, an impurity separator, a dryer, a compressor, and a second heat exchanger.
  • the expansion mechanism adjusts the flow rate and pressure of the spent refrigerant.
  • the first heat exchanger evaporates spent refrigerant before being drawn into the compressor.
  • the impurity separator separates impurities (refrigerant oil, dust, etc.) contained in the used refrigerant from the used refrigerant.
  • the dryer removes the moisture contained in the spent refrigerant from the spent refrigerant.
  • the compressor draws in the used refrigerant from the device 100 and compresses it using a compression mechanism (not shown).
  • the second heat exchanger condenses the spent refrigerant discharged from the compressor.
  • the refrigerant condensed in the second heat exchanger flows to separation section 10 .
  • the separation unit 10 is a mechanism for separating specific components contained in the spent refrigerant.
  • the separation unit 10 according to this embodiment has a refrigerant separation vessel 14 to which a separation membrane 15 is attached.
  • the separation membrane 15 is a porous membrane containing zeolite as a raw material, for example.
  • the separation membrane 15 is a porous membrane containing a metal-organic framework (MOF) with high CO2 selectivity as a raw material.
  • MOF metal-organic framework
  • the material contained in the raw material of the separation membrane 15 is not limited to zeolite or MOF, and any material having high CO2 selectivity may be appropriately selected.
  • the porous membrane as the separation membrane 15 is configured to separate CO2 by a molecular sieving action.
  • CO 2 can be separated from the refrigerant passing through the separation membrane 15 .
  • the first refrigerant can be separated from the spent refrigerant flowing from the refrigerant recovery device 50 toward the reservoir 20 .
  • the first refrigerant separated from the spent refrigerant by passing through the separation membrane 15 is introduced into the space 14 a of the refrigerant separation container 14 .
  • the space 14a is a space for releasing the first refrigerant separated from the spent refrigerant to the atmosphere.
  • the first refrigerant introduced into the space 14a is released from the space 14a into the atmosphere.
  • first refrigerant While the first refrigerant is separated from the used refrigerant in the separation section 10 , components other than the first refrigerant (second refrigerant) pass through the separation section 10 .
  • the second refrigerant that has passed through separation section 10 flows into storage section 20 .
  • the separation unit 10 is a mechanism that separates the first refrigerant from the used refrigerant containing the first refrigerant and the second refrigerant. From another point of view, the separation unit 10 can be said to be a mechanism that separates the first refrigerant from the used refrigerant, thereby adjusting the composition of the used refrigerant to a different composition.
  • the reservoir 20 is a refrigerant recovery cylinder having a service valve (not shown), a float sensor, and a fusible plug.
  • the storage unit 20 stores the used refrigerant after the first refrigerant is separated by the separation unit 10 .
  • the second refrigerant is stored in the reservoir 20 .
  • the refrigerant recovery system 1 when the operator recovers the mixed refrigerant of the first refrigerant and the second refrigerant from the equipment 100, Separation takes place.
  • the second refrigerant that is substantially a single refrigerant can be recovered in the operation of recovering the mixed refrigerant.
  • the operation of recovering the refrigerant and the operation of selectively separating the specific component that constitutes the refrigerant can be performed at the same time.
  • a refrigerant recovery system 1 is a system that separates a first refrigerant from a refrigerant containing the first refrigerant and recovers the refrigerant.
  • the refrigerant recovery system 1 includes a separation section 10 and a storage section 20 .
  • the separation unit 10 separates the first refrigerant.
  • the reservoir 20 stores the refrigerant after separating the first refrigerant.
  • the refrigerant recovery system 1 includes a separation section 10 that separates the first refrigerant. According to this configuration, it is possible to selectively separate the first refrigerant, which is a specific component contained in the refrigerant, while recovering the refrigerant. Therefore, in the refrigerant recovery system 1 according to this embodiment, the number of work steps involved in reusing the refrigerant is reduced.
  • the operator does not need to perform any special operation to separate the first refrigerant. Therefore, in the refrigerant recovery system 1 according to this embodiment, the first refrigerant can be easily separated.
  • the separation of the first refrigerant is performed when the refrigerant is recovered from the equipment 100 that uses the refrigerant.
  • separation of the first refrigerant is performed when the refrigerant is recovered from the equipment 100 that uses the refrigerant.
  • the component separation of the refrigerant can be performed at the site (site) where the refrigerant is collected.
  • the components of the recovered refrigerant can be separated without bringing the recovered refrigerant back to the place of business.
  • the number of work processes related to reuse of the refrigerant is reduced.
  • the time and monetary costs incurred in bringing the recovered refrigerant back to the place of business are reduced.
  • the separation unit 10 separates the first refrigerant to adjust the composition of the refrigerant to a different composition.
  • the separation unit 10 separates the first refrigerant so that the composition of the refrigerant is adjusted to a different composition.
  • the composition of the refrigerant can be adjusted without bringing the refrigerant back to the place of business. For this reason, in the refrigerant recovery system 1 according to this embodiment, the number of work processes related to reuse of the refrigerant is reduced.
  • the separation section 10 has the separation membrane 15 that separates the first refrigerant from the refrigerant.
  • the first refrigerant that permeates the separation membrane 15 is released to the atmosphere.
  • the handling of the first refrigerant separated from the refrigerant for example, it is conceivable to provide a predetermined container in the refrigerant recovery system 1 and store the separated first refrigerant in the container.
  • the amount of the separated first refrigerant and the properties of the first refrigerant even if the first refrigerant is released into the atmosphere, there may be cases where the human body and the global environment are not greatly affected.
  • the first refrigerant is released into the atmosphere.
  • the refrigerant recovery system 1 does not need to be provided with a container for storing the separated first refrigerant.
  • the size of the container for example, the refrigerant separation container 14
  • the overall size of the refrigerant recovery system 1 can be reduced.
  • the second refrigerant according to the present embodiment is an HFO refrigerant with a small environmental load, even if a small amount of the HFO refrigerant is released into the atmosphere together with the first refrigerant, it is considered that there will be no major problem.
  • the first refrigerant is CO2.
  • the separation membrane 15 is a porous membrane containing zeolite or MOF as a raw material. According to this configuration, it is possible to selectively separate CO2, which is a specific component contained in the refrigerant, while recovering the refrigerant.
  • the refrigerant recovery system 1B includes a separation section 10B.
  • the separation unit 10B according to this modification has a refrigerant separation container 14B.
  • the refrigerant separation container 14B is filled with an adsorbent 16 that adsorbs and holds the first refrigerant.
  • the first refrigerant is CO2
  • the adsorbent 16 contains zeolite as a raw material.
  • the adsorbent 16 may contain a metal-organic framework (MOF) with high CO2 selectivity as a raw material.
  • MOF metal-organic framework
  • the material contained in the raw material of the adsorbent 16 is not limited to zeolite or MOF, and any material having high CO2 selectivity may be appropriately selected.
  • the first refrigerant contained in the used refrigerant is adsorbed and held by the adsorbent 16 when the used refrigerant passes through the refrigerant separation container 14B.
  • the first refrigerant adsorbed and held by the adsorbent 16 is stored in the refrigerant separation container 14B.
  • the refrigerant recovery system 1C includes a separation section 10C, a storage section 20C, a pump 40C, a first valve 61, and a hose 80C.
  • the reservoir 20C is a cylinder filled with used refrigerant recovered by the refrigerant recovery device 50 or the like.
  • the used refrigerant before separation of the first refrigerant is stored in the reservoir 20C.
  • the refrigerant containing the first refrigerant and the second refrigerant is stored in the reservoir 20C.
  • the separation unit 10C is a mechanism for separating the first refrigerant from the refrigerant filled in the storage unit 20C.
  • the configuration of the separation section 10C is substantially the same as the configuration of the separation section 10B described above, and thus description thereof is omitted here. However, the configuration of the separation section 10C may be the same as the configuration of the separation section 10 described above.
  • the pump 40C sucks the refrigerant stored in the storage portion 20C through the hose 80C.
  • the refrigerant sucked from the storage portion 20C by the pump 40C flows through the hose 80C, passes through the separation portion 10C and the first valve 61, and is stored again in the storage portion 20C.
  • the refrigerant recovery system 1C it is possible to selectively separate the first refrigerant, which is a specific component contained in the recovered refrigerant. According to this configuration, the number of work processes related to refrigerant reuse is reduced.
  • Modification 1D In the above embodiment, the example of separating the first refrigerant when recovering the used refrigerant from the device 100 has been described. Further, in Modification 1C, an example has been described in which the first refrigerant is separated from the used refrigerant stored in the storage portion 20C. However, the mode of separation of the first refrigerant is not limited to these examples. For example, the separation of the first refrigerant may be performed multiple times. Specifically, the separation of the first refrigerant is performed when recovering the used refrigerant from the device 100, and even if it is performed for the used refrigerant stored in the storage unit. good.
  • the refrigerant recovery system 1D has a channel switching valve 70, a refrigerant recovery device 50, a separation section 10C, a first valve 61, a pump 40C, a hose 80C, and a storage section 20C.
  • the flow path switching valve 70 is a valve configured to flow the used refrigerant flowing from the device 100 toward the storage portion 20C and the used refrigerant sucked from the storage portion 20C by the pump 40C to the separation portion 10C. is. Since the configurations of the refrigerant recovery device 50, the separation section 10C, the first valve 61, the pump 40C, the hose 80C and the storage section 20C have already been explained, the explanation thereof will be omitted.
  • separation of the first refrigerant is performed multiple times. According to this configuration, the first refrigerant can be separated with high accuracy.
  • FIG. 5 is a diagram schematically showing the overall configuration of the refrigerant charging system 1000.
  • the refrigerant charging system 1000 is a system that charges the device 200 with a mixed refrigerant containing a first refrigerant and a second refrigerant.
  • Equipment 200 is, for example, an air conditioner.
  • the space in which the device 200 is installed may be referred to as the "site”.
  • the facility that manages the collected refrigerant may be referred to as "office”.
  • the first refrigerant is CO2, for example.
  • the second refrigerant is HFO, for example.
  • a specific, non-limiting example of HFO for use as the second refrigerant is R1234Ze.
  • R1234yf may be used as HFO of the second refrigerant.
  • the components of the mixed refrigerant are not limited to this, and can be changed as appropriate without departing from the gist of the present disclosure.
  • the used refrigerant may be a mixed refrigerant composed of three or more components.
  • the refrigerant charging system 1000 includes a first reservoir 120 , a second reservoir 125 , a mixing section 130 and a filling section 140 .
  • the refrigerant filled in the first reservoir 120 and the second reservoir 125 flows in the direction indicated by the arrows in FIG.
  • First reservoir 120 and second reservoir 125 The first reservoir 120 is a cylinder filled with a new first refrigerant.
  • the second reservoir 125 is a cylinder filled with a second refrigerant.
  • a second refrigerant recovered from a device different from the device 200 is stored in the second reservoir 125 .
  • the second refrigerant stored in the second reservoir 125 is, for example, a refrigerant recovered from the device 100, and is a refrigerant in which at least part of the first refrigerant is separated when recovered (at the time of recovery).
  • the second refrigerant may be a refrigerant from which a portion of the first refrigerant is separated after being recovered from the device 100 (see Variation 1C above).
  • the mixing unit 130 is a mechanism that mixes the first refrigerant supplied from the first storage unit 120 with the second refrigerant supplied from the second storage unit 125 to generate mixed refrigerant.
  • the mixing unit 130 mixes the first refrigerant supplied from the first storage unit 120 with the second refrigerant supplied from the second storage unit 125, thereby adjusting the composition of the second refrigerant to a different composition. It is a mechanism to By adjusting the composition of the second refrigerant to have a different composition by the mixing unit 130 , the mixed refrigerant that fills the device 200 is generated.
  • filling section 140 is a port for filling the equipment 200 with the mixed refrigerant from the mixing section 130 .
  • filling section 140 is connected to service port 201 of device 200 .
  • a refrigerant charging system 1000 is a system that charges a device 200 with a mixed refrigerant containing a first refrigerant and a second refrigerant.
  • the refrigerant charging system 1000 includes a first reservoir 120 , a second reservoir 125 , a mixing section 130 and a charging section 140 .
  • the first refrigerant is stored in the first reservoir 120 .
  • the second storage part 125 stores the refrigerant obtained by separating at least a part of the first refrigerant from the mixed refrigerant recovered from other devices during recovery.
  • the mixing unit 130 mixes the refrigerant supplied from the second reservoir 125 with the first refrigerant supplied from the first reservoir 120 to generate mixed refrigerant.
  • the mixed refrigerant is a refrigerant for filling the equipment 200 .
  • the filling unit 140 fills the device 200 with the mixed refrigerant from the mixing unit 130 .
  • a refrigerant charging system 1000 includes a first reservoir 120 in which a first refrigerant is reserved, and a second reservoir 125 in which refrigerant obtained by separating at least part of the first refrigerant is reserved. Prepare.
  • the device 200 is charged with the refrigerant generated by mixing the first refrigerant with the refrigerant from which at least part of the first refrigerant has been separated.
  • the refrigerant can be recharged without bringing the refrigerant recovered from the other device (here, the device 100) back to the office. Therefore, in the refrigerant charging system 1000 according to the present embodiment, the number of work processes related to refrigerant reuse is reduced.
  • the mixing unit 130 adjusts the composition of the refrigerant to a different composition by mixing the first refrigerant, so that the mixed refrigerant to be charged into the device 200 is Generate.
  • the mixing unit 130 generates mixed refrigerant in which the composition of the refrigerant is adjusted. According to this configuration, it is possible to adjust the components of the mixed refrigerant without bringing back the refrigerant collected from another device (device 100) to the office. In addition, in the refrigerant charging system 1000 according to the present embodiment, the refrigerant can be recharged without bringing the refrigerant collected from another device (the device 100) back to the office. Therefore, in the refrigerant charging system 1000 according to the present embodiment, the number of work processes related to refrigerant reuse is reduced.
  • the first refrigerant is CO2.
  • the mixing section 130 can generate a mixed refrigerant mixed with CO2.
  • a refrigerant charging system is used together with the refrigerant recovery system 1 .
  • the work of recovering the used refrigerant, adjusting the components of the used refrigerant, and recharging the used refrigerant can all be performed on site. Therefore, the number of work processes related to refrigerant reuse is further reduced.
  • FIG. 6 is a diagram schematically showing the overall configuration of the refrigerant charging system 1001.
  • a refrigerant charging system 1001 according to this embodiment is a system that simultaneously performs selective separation of a specific component contained in a mixed refrigerant and refrigerant charging.
  • the refrigerant filling system 1001 includes a storage section 20C, a separation section 10, and a filling section 140. Since the configurations of the storage section 20C, the separation section 10 and the filling section 140 are the same as those already described, detailed description thereof will be omitted.
  • the mixed refrigerant stored in the reservoir 20C flows in the direction indicated by the arrow in FIG. Then, the first refrigerant contained in the mixed refrigerant flowing from the storage section 20 ⁇ /b>C toward the device 200 is separated in the separation section 10 .
  • the device 200 can be filled with the mixed refrigerant from which the first refrigerant has been separated.
  • refrigerant charging and selective separation of specific components that make up the refrigerant are performed simultaneously. Therefore, it is possible to reduce the number of work steps involved in reusing the refrigerant.
  • the present disclosure is not limited to the above embodiments as they are.
  • the present disclosure can be embodied by modifying the constituent elements without departing from the gist thereof.
  • the present disclosure can form various disclosures by appropriately combining a plurality of constituent elements disclosed in each of the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Further, elements may be combined as appropriate in different embodiments. Accordingly, the embodiments are to be considered in all respects only as illustrative and not restrictive, and are intended to include any modifications apparent to those skilled in the art.
  • Refrigerant Recovery System 10 Separation Section 15 Separation Membrane 16 Adsorbent 20 Storage Section 100 Device 120 First Storage Section 125 Second Storage Section 130 Mixing Section 140 Filling Section 200 Device 1000 Refrigerant Charging System

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

冷媒を回収しながら冷媒を構成する特定の成分を選択的に分離する、という技術的思想については、詳細な検討がなされていない。冷媒回収システム(1)は、第1冷媒を含む冷媒から第1冷媒を分離して冷媒の回収を行うシステムである。冷媒回収システム(1)は、分離部(10)と、貯留部(20)と、を備える。分離部(10)は、第1冷媒を分離する。貯留部(20)は、第1冷媒を分離した後の冷媒を貯める。

Description

冷媒回収システムおよび冷媒充填システム
 冷媒回収システムおよび冷媒充填システムに関する。
 従来、冷凍装置などで用いられた使用済みの冷媒を再利用するために、冷凍装置などに封入されている使用済みの冷媒を回収する技術が知られている。例えば、特許文献1(特開2017-72284号公報)には、冷凍機器の冷媒を回収して、冷媒回収容器に充填するシステムが開示されている。
 しかしながら、従来、冷媒を回収しながら冷媒を構成する特定の成分を選択的に分離するといった技術的思想については、詳細な検討がなされていない。言い換えると、冷媒を再利用するうえで、冷媒の回収作業と、冷媒を構成する特定の成分を選択的に分離する作業と、は異なる作業として扱われている。
 第1観点の冷媒回収システムは、第1冷媒を含む冷媒から第1冷媒を分離して冷媒の回収を行うシステムである。冷媒回収システムは、分離部と、貯留部と、を備える。分離部は、第1冷媒を分離する。貯留部は、第1冷媒を分離する前の、あるいは、第1冷媒を分離した後の、冷媒を貯める。
 第1観点に係る冷媒回収システムは、第1冷媒を分離する分離部を備える。この構成によれば、冷媒を回収しながら、冷媒に含まれる特定の成分である第1冷媒を選択的に分離することができる。このため、第1観点に係る冷媒回収システムでは、冷媒の再利用に伴う作業工程が削減される。
 第2観点の冷媒回収システムは、第1観点の冷媒回収システムであって、第1冷媒の分離は、冷媒を用いる機器から冷媒を回収する際に行われる。
 従来の冷媒回収システムでは、回収した冷媒に含まれる特定の成分を回収するためには、回収した冷媒を事業所に持ち帰り、事業所で冷媒の成分分離を行う、といった工程を経る必要がある。
 第2観点に係る冷媒回収システムでは、第1冷媒の分離は、冷媒を用いる機器から冷媒を回収する際に行われる。この構成によれば、冷媒回収が行われる現場で、冷媒の成分分離を行うことができる。言い換えると、回収した冷媒を事業所に持ち帰ることなく、回収した冷媒の成分分離を行うことができる。このため、第2観点に係る冷媒回収システムでは、冷媒の再利用に関する作業工程が削減される。
 第3観点の冷媒回収システムは、第1観点または第2観点の冷媒回収システムであって、第1冷媒の分離は、貯留部に貯留される冷媒に対して行われる。
 第3観点に係る冷媒回収システムでは、回収された冷媒に含まれる特定の成分である第1冷媒を選択的に分離することができる。この構成によれば、冷媒の再利用に関する作業工程が削減される。
 第4観点の冷媒回収システムは、第1観点から第3観点のいずれかに係る冷媒回収システムであって、分離部は、第1冷媒を分離することで、冷媒の組成を異なる組成に調整する。
 回収した冷媒を再利用するためには、回収した冷媒の組成を調整することが考えられる。従来の冷媒回収システムでは、回収した冷媒の組成を調整するためには、回収した冷媒を事業所に持ち帰る必要がある。
 第4観点に係る冷媒回収システムでは、分離部が第1冷媒を分離することで、冷媒の組成が異なる組成に調整される。この構成によれば、冷媒を事業所に持ち帰ることなく、冷媒の組成を調整することができる。このため、第4観点に係る冷媒回収システムでは、冷媒の再利用に関する作業工程が削減される。
 第5観点の冷媒回収システムは、第1観点から第4観点のいずれかに係る冷媒回収システムであって、分離部は、第1冷媒を冷媒から分離する分離膜を有する。分離膜を透過した第1冷媒は、大気に放出される。
 冷媒から分離された第1冷媒の取り扱いに関しては、例えば冷媒回収システムに所定の容器を設けて、当該容器に分離された第1冷媒を貯留することが考えられる。一方で、分離された第1冷媒の量や第1冷媒の性質次第では、第1冷媒を大気に放出したとしても、人体や地球環境に大きな影響を与えることがない場合も考えられる。
 第5観点に係る冷媒回収システムでは、第1冷媒は大気に放出される。この構成によれば、冷媒回収システムに、分離された第1冷媒を貯留するための容器を設ける必要がない。あるいは、分離された第1冷媒を貯留するための容器のサイズを小型化することができる。このため、第5観点に係る冷媒回収システムでは、冷媒回収システムの全体的なサイズを小型化することができる。
 第6観点の冷媒回収システムは、第1観点から第4観点のいずれかに係る冷媒回収システムであって、分離部は、第1冷媒を吸着する吸着剤を有する。
 第7観点の冷媒回収システムは、第1観点から第6観点のいずれかに係る冷媒回収システムであって、分離部は、第1冷媒を冷媒から蒸留させる機構である。
 第8観点の冷媒回収システムは、第1観点から第7観点のいずれかに係る冷媒回収システムであって、第1冷媒は、CO2である。
 第9観点の冷媒充填システムは、第1冷媒および第2冷媒を含む混合冷媒を機器に充填するシステムである。冷媒充填システムは、第1貯留部と、第2貯留部と、混合部と、充填部と、を備える。第1貯留部には、第1冷媒が貯留されている。第2貯留部は、他の機器から回収される混合冷媒から、回収時あるいは回収後に第1冷媒の少なくとも一部が分離された冷媒、を貯留する。混合部は、第2貯留部から供給される冷媒に第1貯留部から供給される第1冷媒を混合して混合冷媒を生成する。混合冷媒は、機器に充填するための冷媒である。充填部は、混合冷媒を混合部から機器に充填する。
 第9観点に係る冷媒充填システムは、第1冷媒が貯留されている第1貯留部と、第1冷媒の少なくとも一部が分離された冷媒が貯留されている第2貯留部とを備える。また、第9観点に係る冷媒充填システムでは、第1冷媒の少なくとも一部が分離された冷媒、に対して第1冷媒を混合することで生成された冷媒が機器に充填される。この構成によれば、他の機器から回収した冷媒を事業所に持ち帰ることなく、冷媒の再充填作業を行うことができる。このため、第9観点に係る冷媒充填システムでは、冷媒の再利用に関する作業工程が削減される。
 第10観点の冷媒充填システムは、第9観点に係る冷媒充填システムであって、混合部は、第1冷媒を混合することによって冷媒の組成を異なる組成に調整することで、機器に充填するための混合冷媒を生成する。
 第10観点に係る冷媒充填システムでは、混合部によって、冷媒の組成が調整された混合冷媒が生成される。この構成によれば、他の機器から回収した冷媒を事業所に持ち帰ることなく、冷媒の再充填作業を行うことができる。このため、第10観点に係る冷媒充填システムでは、冷媒の再利用に関する作業工程が削減される。
 第11観点の冷媒充填システムは、第9観点または第10観点の冷媒充填システムであって、第1冷媒は、CO2である。
 この構成によれば、混合部は、CO2が混合された混合冷媒を生成することができる。
第1実施形態に係る冷媒回収システムの全体構成を示す概略図である。 変形例1Bに係る冷媒回収システムの全体構成を示す概略図である。 変形例1Cに係る冷媒回収システムの全体構成を示す概略図である。 変形例1Dに係る冷媒回収システムの全体構成を示す概略図である。 第2実施形態に係る冷媒充填システムの全体構成を示す概略図である。 第3実施形態に係る冷媒充填システムの全体構成を示す概略図である。
 以下、本開示に係る冷媒回収システムおよび冷媒充填システムの実施形態について、適宜図面を参照しながら説明する。ただし、以下では、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細な説明や、実質的に同一の構成に対する重複した説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。
 <第1実施形態>
 (1)冷媒回収システム1の全体構成
 本開示の一実施形態に係る冷媒回収システム1の概要について、図1を参照しながら説明する。図1は、本実施形態に係る冷媒回収システム1の全体構成を概略的に示した図である。冷媒回収システム1は、使用済み冷媒を回収する際に、使用済み冷媒を構成する特定の成分を分離するシステムである。本実施形態において、使用済み冷媒とは、機器100(図1参照)に充填されている冷媒のことを指す。機器100は、建物などに対して設置されている冷凍装置であり、例えば空気調和装置である。本実施形態では、機器100が設置されている空間のことを「現地」と呼ぶことがある。また、本実施形態では、回収した冷媒を管理する施設のことを、「事業所」と呼ぶことがある。本実施形態において、使用済み冷媒は、第1冷媒と、第2冷媒と、を成分に含む混合冷媒である。第1冷媒は、例えばCO2である。第2冷媒は、例えばHFOである。限定するものではないが、第2冷媒として用いられるHFOの具体例は、R1234Ze(シス-1,3,3,3-テトラフルオロプロペン)である。また、例えば、R1234Zeに代えて、R1234yf(2,3,3,3-テトラフルオロプロペン)が、第2冷媒のHFOとして用いられてもよい。ただし、使用済み冷媒の成分はこれに限定されるものではなく、本開示の趣旨を逸脱しない範囲で適宜変更可能である。また、使用済み冷媒は、3つ以上の成分からなる混合冷媒であってもよい。
 以下では、冷媒回収システム1が現地で用いられる場合を例にして、冷媒回収システム1を構成する各部について詳細に説明する。図1に示すように、本実施形態に係る冷媒回収システム1は、流量調整機構60と、冷媒回収装置50と、分離部10と、貯留部20と、を備える。本実施形態では、冷媒回収システム1が運転を開始すると、機器100に封入されている使用済み冷媒は、図1の矢印に示す方向に従って流れる。
 (2)詳細構成
 (2-1)流量調整機構60
 流量調整機構60は、機器100から貯留部20へと流れる使用済み冷媒の流量を調整する機構である。本実施形態に係る流量調整機構は、第1弁61と第2弁62とを有する。第1弁61は、機器100と冷媒回収装置50との間に配置される。第2弁62は、分離部10と貯留部20との間に配置される。本実施形態において、第1弁61や第2弁62は、冷媒回収作業を行う者(以下、単に「作業者」と呼ぶ)が操作することによって開度が調整される手動式の弁である。ただし、第1弁61や第2弁62の構成はこれに限定されるものではなく、例えば図示しないコントローラによって開度が調整される電動弁であってもよい。
 (2-2)冷媒回収装置50
 冷媒回収装置50は、機器100に充填されている使用済み冷媒を回収するための装置である。冷媒回収装置50は、図示しない膨張機構や、第1熱交換器や、不純物分離器や、ドライヤや、圧縮機や、第2熱交換器を有する。膨張機構は、使用済み冷媒の流量や圧力を調整する。第1熱交換器は、圧縮機に吸入される前の使用済み冷媒を蒸発させる。不純物分離器は、使用済み冷媒に含まれる不純物(冷凍機油や塵など)を使用済み冷媒から分離する。ドライヤは、使用済み冷媒に含まれる水分を使用済み冷媒から除去する。圧縮機は、図示しない圧縮機構によって使用済み冷媒を機器100から吸入して圧縮する。第2熱交換器は、圧縮機から吐出された使用済み冷媒を凝縮させる。第2熱交換器において凝縮した冷媒は、分離部10に流れる。
 (2-3)分離部10
 分離部10は、使用済み冷媒に含まれている特定の成分を分離するための機構である。本実施形態に係る分離部10は、分離膜15が取り付けられている冷媒分離容器14を有する。分離膜15は、例えばゼオライトを原料に含む細孔膜である。あるいは、分離膜15は、CO2の選択性が高い金属有機構造体(MOF)を原料に含む細孔膜である。なお、分離膜15の原料に含まれる素材はゼオライトやMOFに限定されるものではなく、CO2の選択性が高いとされる任意の素材が適宜選択されればよい。
 本実施形態において、分離膜15としての細孔膜は、分子ふるい作用により、CO2を分離するように構成されている。この構成によれば、分離膜15を通過する冷媒から、CO2を分離することができる。言い換えると、冷媒回収装置50から貯留部20に向かって流れる使用済み冷媒から、第1冷媒を分離することができる。分離膜15を透過して使用済み冷媒から分離された第1冷媒は、冷媒分離容器14が有する空間14aに導入される。空間14aは、使用済み冷媒から分離された第1冷媒を大気に開放するための空間である。空間14aに導入された第1冷媒は、空間14aから大気に放出される。
 第1冷媒が分離部10において使用済み冷媒から分離される一方で、第1冷媒以外の成分(第2冷媒)は分離部10を通過する。分離部10を通過した第2冷媒は、貯留部20に流れる。
 以上説明したように、本実施形態に係る分離部10は、第1冷媒と、第2冷媒と、を成分に含む使用済み冷媒から、第1冷媒を分離する機構である。別の視点で考えると、分離部10は、使用済み冷媒から第1冷媒を分離することで、使用済み冷媒の組成を異なる組成に調整する機構であると言える。
 (2-4)貯留部20
 貯留部20は、図示しないサービスバルブやフロートセンサや可溶栓を有する冷媒回収用のボンベである。貯留部20には、分離部10によって第1冷媒が分離された後の使用済み冷媒が貯留される。言い換えると、貯留部20には第2冷媒が貯留される。
 以上説明したように、本実施形態に係る冷媒回収システム1では、作業者が、第1冷媒と第2冷媒との混合冷媒を機器100から回収する際に、第1冷媒と第2冷媒との分離が行われる。この構成によれば、混合冷媒の回収作業において、実質的に単一冷媒となる第2冷媒を回収することができる。また、本実施形態に係る冷媒回収システム1では、冷媒の回収作業と、冷媒を構成する特定の成分を選択的に分離する作業と、を同時に行うことができる。
 (3)特徴
 (3-1)
 本実施形態に係る冷媒回収システム1は、第1冷媒を含む冷媒から第1冷媒を分離して冷媒の回収を行うシステムである。冷媒回収システム1は、分離部10と、貯留部20と、を備える。分離部10は、第1冷媒を分離する。貯留部20は、第1冷媒を分離した後の冷媒を貯める。
 本実施形態に係る冷媒回収システム1は、第1冷媒を分離する分離部10を備える。この構成によれば、冷媒を回収しながら、冷媒に含まれる特定の成分である第1冷媒を選択的に分離することができる。このため、本実施形態に係る冷媒回収システム1では、冷媒の再利用に伴う作業工程が削減される。
 また、本実施形態に係る冷媒回収システム1では、作業者は、第1冷媒を分離するうえで特別な操作を行う必要がない。このため、本実施形態に係る冷媒回収システム1では、第1冷媒を容易に分離することができる。
 (3-2)
 本実施形態に係る冷媒回収システム1では、第1冷媒の分離は、冷媒を用いる機器100から冷媒を回収する際に行われる。
 従来の冷媒回収システムでは、回収した冷媒に含まれる特定の成分を回収するためには、回収した冷媒を事業所に持ち帰り、事業所で冷媒の成分分離を行う、といった工程を経る必要がある。
 本実施形態に係る冷媒回収システム1では、第1冷媒の分離は、冷媒を用いる機器100から冷媒を回収する際に行われる。この構成によれば、冷媒回収が行われる現場(現地)で、冷媒の成分分離を行うことができる。言い換えると、回収した冷媒を事業所に持ち帰ることなく、回収した冷媒の成分分離を行うことができる。このため、本実施形態に係る冷媒回収システム1では、冷媒の再利用に関する作業工程が削減される。
 また、本実施形態に係る冷媒回収システム1では、回収した冷媒を事業所に持ち帰るうえで発生する、時間的および金銭的なコストが削減される。
 (3-3)
 本実施形態に係る冷媒回収システム1では、分離部10は、第1冷媒を分離することで、冷媒の組成を異なる組成に調整する。
 回収した冷媒を再利用するためには、回収した冷媒の組成を調整することが考えられる。従来の冷媒回収システムでは、回収した冷媒の組成を調整するためには、回収した冷媒を事業所に持ち帰る必要がある。
 本実施形態に係る冷媒回収システム1では、分離部10が第1冷媒を分離することで、冷媒の組成が異なる組成に調整される。この構成によれば、冷媒を事業所に持ち帰ることなく、冷媒の組成を調整することができる。このため、本実施形態に係る冷媒回収システム1では、冷媒の再利用に関する作業工程が削減される。
 (3-4)
 本実施形態に係る冷媒回収システム1では、分離部10は、第1冷媒を冷媒から分離する分離膜15を有する。分離膜15を透過した第1冷媒は、大気に放出される。
 冷媒から分離された第1冷媒の取り扱いに関しては、例えば冷媒回収システム1に所定の容器を設けて、当該容器に分離された第1冷媒を貯留することが考えられる。一方で、分離された第1冷媒の量や第1冷媒の性質次第では、第1冷媒を大気に放出したとしても、人体や地球環境に大きな影響を与えることがない場合も考えられる。
 本実施形態に係る冷媒回収システム1では、第1冷媒は大気に放出される。この構成によれば、冷媒回収システム1に、分離された第1冷媒を貯留するための容器を設ける必要がない。あるいは、分離された第1冷媒を貯留するための容器(例えば、冷媒分離容器14)のサイズを小型化することができる。このため、本実施形態に係る冷媒回収システム1では、冷媒回収システム1の全体的なサイズを小型化することができる。
 なお、本実施形態では、分離膜15の性質上、微量の第2冷媒が大気に放出されることも考えられる。しかしながら、本実施形態に係る第2冷媒は、環境負荷が小さいHFO冷媒であることから、微量のHFO冷媒が第1冷媒とともに大気に放出されたとしても、大きな問題はないと考えられる。
 (3-5)
 本実施形態に係る冷媒回収システム1では、第1冷媒は、CO2である。
 また、本実施形態に係る冷媒回収システム1では、分離膜15は、ゼオライトまたはMOFを原料に含む細孔膜である。この構成によれば、冷媒を回収しながら、冷媒に含まれる特定の成分であるCO2を選択的に分離することができる。
 (4)変形例
 第1実施形態の変形例を以下に示す。以下の変形例は、互いに矛盾しない範囲で適宜組み合わされてもよい。なお、上記の第1実施形態と同様の構成については同様の符号を付し、その詳細な説明は省略する。
 (4-1)変形例1A
 上記実施形態では、冷媒回収システム1が、機器100が設置されている空間(現地)において用いられる例について説明した。しかしながら、冷媒回収システム1は現地においてのみ用いられるものではない。例えば、冷媒回収システム1は、事業所において用いられるものであってもよい。この場合、冷媒回収システム1は、所定の容器に充填されている使用済み冷媒を貯留部20に回収するものであってもよい。また、冷媒回収システム1は、冷媒回収装置に代えてポンプを備えるものであってもよい。
 (4-2)変形例1B
 上記実施形態では、分離部10が、分離膜15を有する例について説明した。しかしながら、分離部の構成はこれに限定されるものではない。例えば、分離部は、第1冷媒を吸着する吸着剤16を有するものであってもよい。
 本変形例に係る冷媒回収システム1Bの例を、図2に示す。冷媒回収システム1Bは、分離部10Bを備える。図2に示すように、本変形例に係る分離部10Bは、冷媒分離容器14Bを有する。冷媒分離容器14Bには、第1冷媒を吸着保持する吸着剤16が充填されている。本変形例において、第1冷媒はCO2であり、吸着剤16はゼオライトを原料に含む。あるいは、吸着剤16は、CO2の選択性が高い金属有機構造体(MOF)を原料に含むものであってもよい。なお、吸着剤16の原料に含まれる素材はゼオライトやMOFに限定されるものではなく、CO2の選択性が高いとされる任意の素材が適宜選択されればよい。
 本変形例に係る冷媒回収システム1Bでは、使用済み冷媒が冷媒分離容器14Bを通過する際に、使用済み冷媒に含まれている第1冷媒が吸着剤16に吸着保持される。吸着剤16に吸着保持された第1冷媒は、冷媒分離容器14Bに貯留される。
 本変形例に係る冷媒回収システム1Bでは、上記の冷媒回収システム1で説明した効果と同様の効果を得ることができる。
 (4-3)変形例1C
 上記実施形態では、機器100から使用済み冷媒を回収する際に、第1冷媒を分離する例について説明した。しかしながら、第1冷媒の分離は、貯留部に貯留される冷媒に対して行われるものであってもよい。
 本変形例に係る冷媒回収システム1Cの例を、図3に示す。冷媒回収システム1Cは、分離部10Cと、貯留部20Cと、ポンプ40Cと、第1弁61と、ホース80Cと、を備える。
 貯留部20Cは、冷媒回収装置50などによって回収された使用済み冷媒が充填されているボンベである。貯留部20Cには、第1冷媒を分離する前の使用済み冷媒が貯留されている。言い換えると、貯留部20Cには、第1冷媒と第2冷媒とを成分に含む冷媒が貯留されている。分離部10Cは、貯留部20Cに充填されている冷媒から第1冷媒を分離するための機構である。分離部10Cの構成は、上記の分離部10Bの構成と実質的に同様であるため、ここでは説明を省略する。ただし、分離部10Cの構成は、上記の分離部10の構成と同様のものであってもよい。ポンプ40Cは、ホース80Cを介して貯留部20Cに貯留されている冷媒を吸引する。ポンプ40Cによって貯留部20Cから吸引された冷媒は、ホース80Cを流れ、分離部10Cや第1弁61を通過して、再び貯留部20Cに貯留される。
 本変形例に係る冷媒回収システム1Cでは、回収された冷媒に含まれる特定の成分である第1冷媒を選択的に分離することができる。この構成によれば、冷媒の再利用に関する作業工程が削減される。
 (4-4)変形例1D
 上記実施形態では、機器100から使用済み冷媒を回収する際に第1冷媒を分離する例について説明した。また、変形例1Cでは、貯留部20Cに貯留された使用済み冷媒に対して第1冷媒の分離を行う例について説明した。しかしながら、第1冷媒の分離の態様はこれらの例に限定されるものではない。例えば、第1冷媒の分離は、複数回行われるものであってもよい。具体的には、第1冷媒の分離は、機器100から使用済み冷媒を回収するときに行われるものであり、かつ、貯留部に貯留された使用済み冷媒に対して行われるものであってもよい。
 本変形例に係る冷媒回収システム1Dの例を、図4に示す。冷媒回収システム1Dは、流路切換弁70と、冷媒回収装置50と、分離部10Cと、第1弁61と、ポンプ40Cと、ホース80Cと、貯留部20Cと、を有する。
 流路切換弁70は、機器100から貯留部20Cに向かって流れる使用済み冷媒と、ポンプ40Cによって貯留部20Cから吸引される使用済み冷媒と、を分離部10Cに流すように構成されている弁である。冷媒回収装置50、分離部10C、第1弁61、ポンプ40C、ホース80Cおよび貯留部20Cの構成については既に説明済みであるため、説明は省略する。
 本変形例に係る冷媒回収システムでは、第1冷媒の分離が複数回行われる。この構成によれば、第1冷媒を精度よく分離することができる。
 (4-5)変形例1E
 上記実施形態では、分離部10が分離膜15を有する例について説明した。しかしながら、分離部10の構成はこれに限定されるものではない。例えば、分離部10は、第1冷媒を使用済み冷媒から蒸留させる機構であってもよい。
 本変形例に係る冷媒回収システムでは、上記の冷媒回収システム1で説明した効果と同様の効果を得ることができる。
 (4-6)変形例1F
 上記実施形態では、冷媒回収装置50と貯留部20との間に、分離部10が配置されている例について説明した(図1参照)。しかしながら、冷媒回収システム1の構成はこれに限定されるものではない。例えば、分離部10は、機器100と冷媒回収装置50との間に配置されるものであってもよい。あるいは、分離部10は、例えば冷媒回収装置50に内蔵されているものであってもよい。
 本変形例に係る冷媒回収システムでは、上記の冷媒回収システム1で説明した効果と同様の効果を得ることができる。
 (4-7)変形例1G
 上記実施形態では、第2熱交換器において凝縮させた使用済み冷媒を貯留部20に回収する例について説明した。しかしながら、冷媒回収時における使用済み冷媒の相状態はこれに限定されるものではなく、温度や圧力状況によって、使用済み冷媒はガス状に変化するものであってもよい。
 <第2実施形態>
 (1)冷媒充填システム1000
 本開示の一実施形態に係る冷媒充填システム1000の概要について、図5を参照しながら説明する。図5は、冷媒充填システム1000の全体構成を概略的に示した図である。冷媒充填システム1000は、第1冷媒と第2冷媒とを成分に含む混合冷媒を、機器200に充填するシステムである。機器200は、例えば空気調和装置である。本実施形態では、機器200が設置されている空間のことを、「現地」と呼ぶことがある。また、本実施形態では、回収した冷媒を管理する施設のことを、「事業所」と呼ぶことがある。第1冷媒は、例えばCO2である。第2冷媒は、例えばHFOである。限定するものではないが、第2冷媒として用いられるHFOの具体例は、R1234Zeである。また、R1234Zeに代えて、例えばR1234yfが第2冷媒のHFOとして用いられてもよい。ただし、混合冷媒の成分はこれに限定されるものではなく、本開示の趣旨を逸脱しない範囲で適宜変更可能である。また、使用済み冷媒は、3つ以上の成分からなる混合冷媒であってもよい。
 以下では、冷媒充填システム1000を構成する各部について詳細に説明する。図5に示すように、本実施形態に係る冷媒充填システム1000は、第1貯留部120と、第2貯留部125と、混合部130と、充填部140と、を備える。本実施形態では、冷媒充填システム1000が運転を開始すると、第1貯留部120や第2貯留部125に充填されている冷媒は、図5の矢印に示す方向に従って流れる。
 (2)詳細構成
 (2-1)第1貯留部120および第2貯留部125
 第1貯留部120は、新品の第1冷媒が充填されているボンベである。第2貯留部125は、第2冷媒が充填されているボンベである。第2貯留部125には、機器200とは異なる機器から回収された第2冷媒が貯留されている。第2貯留部125に貯留されている第2冷媒は、例えば機器100から回収された冷媒であって、回収される際(回収時)に第1冷媒の少なくとも一部が分離された冷媒である。ただし、第2冷媒は、機器100から回収された後に、第1冷媒の一部が分離された冷媒であってもよい(上記の変形例1Cを参照)。
 (2-2)混合部130
 混合部130は、第2貯留部125から供給される第2冷媒に、第1貯留部120から供給される第1冷媒を混合して、混合冷媒を生成する機構である。言い換えると、混合部130は、第2貯留部125から供給される第2冷媒に、第1貯留部120から供給される第1冷媒を混合することで、第2冷媒の組成を異なる組成に調整する機構である。混合部130によって第2冷媒の組成が異なる組成に調整されることで、機器200に充填される混合冷媒が生成される。
 (2-3)充填部140
 充填部140は、混合冷媒を、混合部130から機器200に充填するためのポートである。本実施形態において、充填部140は、機器200のサービスポート201と接続されている。
 (3)特徴
 (3-1)
 本実施形態に係る冷媒充填システム1000は、第1冷媒および第2冷媒を含む混合冷媒を機器200に充填するシステムである。冷媒充填システム1000は、第1貯留部120と、第2貯留部125と、混合部130と、充填部140と、を備える。第1貯留部120には、第1冷媒が貯留されている。第2貯留部125は、他の機器から回収される混合冷媒から、回収時に第1冷媒の少なくとも一部が分離された冷媒、を貯留する。混合部130は、第2貯留部125から供給される冷媒に第1貯留部120から供給される第1冷媒を混合して混合冷媒を生成する。混合冷媒は、機器200に充填するための冷媒である。充填部140は、混合冷媒を混合部130から機器200に充填する。
 本実施形態に係る冷媒充填システム1000は、第1冷媒が貯留されている第1貯留部120と、第1冷媒の少なくとも一部が分離された冷媒が貯留されている第2貯留部125とを備える。また、本実施形態に係る冷媒充填システム1000では、第1冷媒の少なくとも一部が分離された冷媒、に対して第1冷媒を混合することで生成された冷媒が機器200に充填される。
 この構成によれば、他の機器(ここでは、機器100)から回収した冷媒を事業所に持ち帰ることなく、冷媒の再充填作業を行うことができる。このため、本実施形態に係る冷媒充填システム1000では、冷媒の再利用に関する作業工程が削減される。
 (3-2)
 本実施形態に係る冷媒充填システム1000では、混合部130は、第1冷媒を混合することによって冷媒の組成を異なる組成に調整することで、混合冷媒は、機器200に充填するための混合冷媒を生成する。
 本実施形態に係る冷媒充填システム1000では、混合部130によって、冷媒の組成が調整された混合冷媒が生成される。この構成によれば、他の機器(機器100)から回収した冷媒を事業所に持ち帰ることなく、混合冷媒の成分調整を行うことができる。また、本実施形態に係る冷媒充填システム1000では、他の機器(機器100)から回収した冷媒を事業所に持ち帰ることなく、冷媒の再充填作業を行うことができる。このため、本実施形態に係る冷媒充填システム1000では、冷媒の再利用に関する作業工程が削減される。
 (3-3)
 本実施形態に係る冷媒充填システム1000では、第1冷媒は、CO2である。
 この構成によれば、混合部130は、CO2が混合された混合冷媒を生成することができる。
 (4)変形例
 第2実施形態の変形例を以下に示す。なお、上記の第2実施形態と同様の構成については同様の符号を付し、その詳細な説明は省略する。
 (4-1)変形例2A
 上記実施形態では、第2貯留部125に、機器100から回収された第2冷媒が貯留されている例について説明した。しかしながら、第2貯留部125の構成はこれに限定されるものではなく、第2貯留部125には、機器200から回収された第2冷媒が貯留されるものであってもよい。また、本変形例に係る冷媒充填システムは、機器200から第2冷媒を回収するにあたり、冷媒回収システム1を用いるものであってもよい。
 本変形例では、冷媒充填システムが冷媒回収システム1とともに用いられる。この構成によれば、使用済み冷媒の回収、使用済み冷媒の成分調整、使用済み冷媒の再充填、といった作業を、全て現地で行うことができる。したがって、冷媒の再利用に関する作業工程がさらに削減される。
 <第3実施形態>
 本開示の第3実施形態に係る冷媒充填システム1001について、図6を参照しながら説明する。図6は、冷媒充填システム1001の全体構成を概略的に示した図である。本実施形態に係る冷媒充填システム1001は、混合冷媒に含まれる特定の成分の選択的分離と、冷媒の充填と、を同時に行うシステムである。
 図6に示すように、冷媒充填システム1001は、貯留部20Cと、分離部10と、充填部140とを備える。貯留部20C、分離部10および充填部140の構成は、既に説明した構成と同様であるため、詳細な説明は省略する。本実施形態に係る冷媒充填システム1001では、貯留部20Cに貯留されている混合冷媒は、図6の矢印に示す方向に従って流れる。そして、貯留部20Cから機器200に向かって流れる混合冷媒に含まれる第1冷媒は、分離部10において分離される。この構成によれば、機器200には、第1冷媒が分離された混合冷媒を充填することができる。
 本実施形態に係る冷媒充填システム1001では、冷媒の充填と、冷媒を構成する特定の成分の選択的分離と、が同時に行われる。このため、冷媒の再利用に係る作業工程を削減することができる。
 <他の実施形態>
 以上、本開示に係る実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 本開示は、上記各実施形態そのままに限定されるものではない。本開示は、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、本開示は、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の開示を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素は削除してもよい。さらに、異なる実施形態に構成要素を適宜組み合わせてもよい。従って、本実施形態はあらゆる点で一例に過ぎず、限定するものではないと考えるべきであり、これにより、当業者に自明のあらゆる修正が実施形態に含まれることが意図される。
1    冷媒回収システム
10   分離部
15   分離膜
16   吸着剤
20   貯留部
100  機器
120  第1貯留部
125  第2貯留部
130  混合部
140  充填部
200  機器
1000 冷媒充填システム
特開2017-72284号公報

Claims (11)

  1.  第1冷媒を含む冷媒から前記第1冷媒を分離して前記冷媒の回収を行う冷媒回収システムであって、
     前記第1冷媒を分離する分離部(10)と、
     前記第1冷媒を分離する前の、あるいは、前記第1冷媒を分離した後の、前記冷媒を貯める貯留部(20)と、
    を備える、
    冷媒回収システム(1)。
  2.  前記第1冷媒の分離は、前記冷媒を用いる機器(100)から前記冷媒を回収する際に行われる、
    請求項1に記載の冷媒回収システム。
  3.  前記第1冷媒の分離は、前記貯留部に貯留される前記冷媒に対して行われる、
    請求項1または2に記載の冷媒回収システム。
  4.  前記分離部は、前記第1冷媒を分離することで、前記冷媒の組成を異なる組成に調整する、
    請求項1から3のいずれかに記載の冷媒回収システム。
  5.  前記分離部は、前記第1冷媒を前記冷媒から分離する分離膜(15)を有し、
     前記分離膜を透過した前記第1冷媒は、大気に放出される、
    請求項1から4のいずれかに記載の冷媒回収システム。
  6.  前記分離部は、前記第1冷媒を吸着する吸着剤(16)を有する、
    請求項1から4のいずれかに記載の冷媒回収システム。
  7.  前記分離部は、前記第1冷媒を前記冷媒から蒸留させる機構である、
    請求項1から6のいずれかに記載の冷媒回収システム。
  8.  前記第1冷媒は、CO2である、
    請求項1から7のいずれかに記載の冷媒回収システム。
  9.  第1冷媒および第2冷媒を含む混合冷媒を機器(200)に充填する冷媒充填システムであって、
     前記第1冷媒が貯留されている第1貯留部(120)と、
     他の機器から回収される前記混合冷媒から、回収時あるいは回収後に前記第1冷媒の少なくとも一部が分離された冷媒、を貯留する第2貯留部(125)と、
     前記第2貯留部から供給される前記冷媒に前記第1貯留部から供給される前記第1冷媒を混合して前記機器に充填するための混合冷媒を生成する混合部(130)と、
     前記混合冷媒を前記混合部から前記機器に充填する充填部(140)と、
    を備える、
    冷媒充填システム(1000)。
  10.  前記混合部は、前記第1冷媒を混合することによって前記冷媒の組成を異なる組成に調整することで、前記機器に充填するための混合冷媒を生成する、
    請求項9に記載の冷媒充填システム。
  11.  前記第1冷媒は、CO2である、
    請求項9または10に記載の冷媒充填システム。
PCT/JP2022/014532 2021-03-30 2022-03-25 冷媒回収システムおよび冷媒充填システム WO2022210386A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22780599.1A EP4317862A1 (en) 2021-03-30 2022-03-25 Refrigerant recovery system and refrigerant filling system
CN202280025613.3A CN117120788A (zh) 2021-03-30 2022-03-25 制冷剂回收系统以及制冷剂填充系统
US18/373,594 US20240019184A1 (en) 2021-03-30 2023-09-27 Refrigerant recovery system and refrigerant filling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-058334 2021-03-30
JP2021058334A JP7177364B2 (ja) 2021-03-30 2021-03-30 冷媒回収システムおよび冷媒充填システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,594 Continuation US20240019184A1 (en) 2021-03-30 2023-09-27 Refrigerant recovery system and refrigerant filling system

Publications (1)

Publication Number Publication Date
WO2022210386A1 true WO2022210386A1 (ja) 2022-10-06

Family

ID=83459194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014532 WO2022210386A1 (ja) 2021-03-30 2022-03-25 冷媒回収システムおよび冷媒充填システム

Country Status (5)

Country Link
US (1) US20240019184A1 (ja)
EP (1) EP4317862A1 (ja)
JP (1) JP7177364B2 (ja)
CN (1) CN117120788A (ja)
WO (1) WO2022210386A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065447A (ja) * 1998-06-11 2000-03-03 Sanyo Electric Co Ltd 冷媒回収装置、冷媒回収方法および冷媒回収装置を備えた冷凍装置
JP2002318038A (ja) * 2001-04-20 2002-10-31 Mitsubishi Electric Corp 冷媒回収装置および回収方法
JP2005127564A (ja) * 2003-10-22 2005-05-19 Daikin Ind Ltd 冷凍装置の施工方法及び冷凍装置
JP2007085586A (ja) * 2005-09-20 2007-04-05 Sanden Corp 冷凍システム
JP2017072284A (ja) 2015-10-06 2017-04-13 三菱電機ビルテクノサービス株式会社 冷媒回収装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123078A (ja) * 1997-06-27 1999-01-26 Sanyo Electric Co Ltd 冷凍装置
JP2000074511A (ja) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd 冷凍回路中の冷媒の制御装置および冷凍回路中の冷媒の制御方法
JP7334455B2 (ja) * 2019-04-23 2023-08-29 三菱電機株式会社 冷媒回収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065447A (ja) * 1998-06-11 2000-03-03 Sanyo Electric Co Ltd 冷媒回収装置、冷媒回収方法および冷媒回収装置を備えた冷凍装置
JP2002318038A (ja) * 2001-04-20 2002-10-31 Mitsubishi Electric Corp 冷媒回収装置および回収方法
JP2005127564A (ja) * 2003-10-22 2005-05-19 Daikin Ind Ltd 冷凍装置の施工方法及び冷凍装置
JP2007085586A (ja) * 2005-09-20 2007-04-05 Sanden Corp 冷凍システム
JP2017072284A (ja) 2015-10-06 2017-04-13 三菱電機ビルテクノサービス株式会社 冷媒回収装置

Also Published As

Publication number Publication date
EP4317862A1 (en) 2024-02-07
JP7177364B2 (ja) 2022-11-24
US20240019184A1 (en) 2024-01-18
JP2022155019A (ja) 2022-10-13
CN117120788A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
JP4007307B2 (ja) 冷凍装置の施工方法
US7452406B2 (en) Device and method for removing water and carbon dioxide from a gas mixture using pressure swing adsorption
EP2463012B1 (en) Method and equipment for selectively collecting process effluent gases
CN102091499B (zh) 一种变温吸附的氧氮联合分离的方法与装置
JP3921203B2 (ja) ガス分離方法および装置
JP3160469B2 (ja) クローズドブレイトンサイクルガスタービンの出力制御方法と装置
RU2630099C2 (ru) Сепаратор кислорода и способ генерации кислорода
CN101721880A (zh) 使用换向鼓风机的vsa气体浓缩器
US11911724B2 (en) Enhanced refrigeration purge system
JP2004000819A (ja) ガス分離方法
JP2005030752A (ja) 冷凍装置の施工方法及び冷凍装置
WO2022210386A1 (ja) 冷媒回収システムおよび冷媒充填システム
KR20210118897A (ko) 유기 용제 회수 시스템
CN112334720A (zh) 增强的制冷净化系统
TW201637706A (zh) 氦氣之純化方法及純化系統
JP2005127564A (ja) 冷凍装置の施工方法及び冷凍装置
JP2003103134A (ja) Sf6ガス捕集装置およびその方法
JP5604149B2 (ja) アンモニア回収装置およびアンモニア回収方法
EP1271046A2 (en) Adsorbent based gas delivery system with integrated purifier
JP2005199223A (ja) ガソリンベーパーの回収方法及び回収装置
US20050263005A1 (en) Means for air fractionization
JP4265369B2 (ja) 冷凍装置の施工方法及び冷凍装置
JP2007139347A (ja) 冷凍装置及び冷凍装置の施工方法
RU2478538C1 (ru) Узел приема и консервации мочи со статическим сепаратором для разделения газожидкостной смеси на борту космического летательного аппарата
JP2019158827A (ja) 放射性同位元素取扱システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022780599

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780599

Country of ref document: EP

Effective date: 20231030