WO2022210141A1 - 分散液及び複合体、並びにこれらの製造方法 - Google Patents

分散液及び複合体、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2022210141A1
WO2022210141A1 PCT/JP2022/013379 JP2022013379W WO2022210141A1 WO 2022210141 A1 WO2022210141 A1 WO 2022210141A1 JP 2022013379 W JP2022013379 W JP 2022013379W WO 2022210141 A1 WO2022210141 A1 WO 2022210141A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
cnc
dispersion
cellulose
layer
Prior art date
Application number
PCT/JP2022/013379
Other languages
English (en)
French (fr)
Inventor
誠 望月
尚裕 佐古
宏明 田中
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to EP22780356.6A priority Critical patent/EP4317192A1/en
Priority to JP2023511046A priority patent/JP7444332B2/ja
Priority to CN202280026827.2A priority patent/CN117157330A/zh
Publication of WO2022210141A1 publication Critical patent/WO2022210141A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/14Cellulose sulfate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/16Esters of inorganic acids

Definitions

  • the present invention relates to dispersions and composites, and methods for producing them.
  • CNF Cellulose nanofibers
  • CNC Cellulose nanocrystals
  • Raphael Bardet et al. "Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment," Cellulose 2015, 21-22, 22 Xiuxuan Sun et al., "Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties", Cellulose 2018, 25, 1103-111 Pedro Claro et al., “Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils," Cellulose 2019, 26, 2453-2470
  • a composite containing CNF and CNC as described in Non-Patent Documents 1 to 3 is manufactured by applying and/or filtering a dispersion containing CNF and CNC and drying the resulting product.
  • the dispersion liquid is dried to remove the dispersion medium to obtain a dry body, which is transported and / or stored, and the dispersion medium is added to the dry body to obtain the dispersion liquid again. is obtained and used for the manufacture of the composite. Therefore, it is desirable that the dispersion has little change in its physical properties (specifically, viscosity) even after being dried and re-dispersed. It is also desirable that the dispersion have a long pot life.
  • composites containing CNF and CNC are required to have higher breaking strength and oxygen gas barrier properties when used as packaging materials or container materials.
  • the present invention provides a CNF and CNC dispersion that maintains its physical properties even after drying and redispersion and has a long pot life.
  • the present invention also provides composites of CNF and CNC having higher breaking strength and oxygen gas barrier properties. Further, the present invention provides methods of making such dispersions and composites.
  • a dispersion containing cellulose nanofibers having sulfate ester groups and cellulose nanocrystals having sulfate ester groups is provided.
  • a composite that includes cellulose nanofibers having sulfate ester groups and cellulose nanocrystals having sulfate ester groups.
  • a dispersion of cellulose nanofibers having a sulfate ester group and a dispersion of cellulose nanocrystals having a sulfate ester group are subjected to a shear force.
  • a method is provided comprising mixing while adding the
  • a method for producing the composite of the above aspect comprising: (a) forming a first layer comprising one of cellulose nanofibers having sulfate groups or cellulose nanocrystals having sulfate groups and a liquid; (b) supplying a dispersion containing the other of cellulose nanofibers having sulfate ester groups or cellulose nanocrystals having sulfate ester groups onto the first layer to form a second layer on the first layer; , (c) removing liquid from the first layer and the second layer;
  • a method is provided, comprising: This specification includes the disclosure of Japanese Patent Application No. 2021-059274, which is the basis of priority of this application.
  • the dispersion of the present invention maintains its physical properties even after drying and redispersion, and has a long pot life. Also, the composite of the present invention has higher breaking strength and oxygen gas barrier properties.
  • FIG. 1 is a diagram showing an example of sulfated CNF.
  • FIG. 2 is a diagram showing an example of a sulfated CNC.
  • FIG. 3 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 4 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 5 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 6 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 7 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 8 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 9 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 10 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 11 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 12 is a diagram schematically showing a composite according to one embodiment.
  • FIG. 13 is a diagram schematically showing
  • Dispersion contains CNF having a sulfate ester group (also referred to as sulfate esterified CNF) and CNC having a sulfate ester group (also referred to as sulfate esterified CNC) as dispersoids.
  • CNF having a sulfate ester group
  • CNC having a sulfate ester group
  • dispersoids also referred to as sulfate esterified CNC
  • CNF is a fiber composed of cellulose.
  • Cellulose is a polysaccharide in which glucose is ⁇ -1,4-glycosidically linked and is represented by (C 6 H 10 O 5 ) n .
  • CNF usually has a fiber width (fiber diameter (equivalent projected area diameter)) within the range of 4 nm to 100 nm and a fiber length within the range of 0.5 ⁇ m to 100 ⁇ m.
  • an atomic force microscope SPM-9700HT, manufactured by Shimadzu Corporation
  • SPM-9700HT is used to measure the fiber width and fiber length of 50 arbitrarily selected CNFs, and the addition average is obtained. It can be obtained by calculation.
  • a CNC is a needle-like crystal composed of cellulose.
  • CNCs typically have a minor axis length in the range of 4 nm to 100 nm and a major axis length in the range of 50 nm to less than 0.5 ⁇ m.
  • the length of the short axis and the long axis is measured using, for example, an atomic force microscope (SPM-9700HT, manufactured by Shimadzu Corporation), the length of the long axis and the short axis of 50 arbitrarily selected CNCs. can be obtained by calculating the addition average of each.
  • Sulfated CNF is CNF in which at least one OH group in cellulose constituting CNF is substituted with a sulfate ester group.
  • a sulfated CNC is a CNC in which at least one OH group in cellulose constituting the CNC is substituted with a sulfate ester group.
  • the sulfate ester group is represented by formula (1): (wherein M represents a monovalent to trivalent cation). When M is a divalent or trivalent cation, M ionically bonds to two or three -OSO 3 - .
  • Examples of monovalent to trivalent cations include hydrogen ions, metal ions, and ammonium ions.
  • Metal ions include alkali metal ions, alkaline earth metal ions, transition metal ions, and other metal ions.
  • Alkali metals include lithium, sodium, potassium, rubidium, cesium and the like.
  • Alkaline earth metals include calcium, strontium, and the like.
  • Transition metals include iron, nickel, palladium, copper, silver, and the like. Other metals include beryllium, magnesium, zinc, and aluminum.
  • ammonium ions not only NH 4 + but also ammonium ions derived from various amines in which one or more hydrogen atoms of NH 4 + are replaced with organic groups (e.g., quaternary ammonium cations, alkanolamine ions, pyridinium ions ) are also included.
  • the cation may be one of the listed cations, or may be two or more.
  • FIGS. 1 and 2 Examples of sulfated CNF and sulfated CNC are shown in FIGS. 1 and 2, respectively.
  • both the sulfated CNF and the sulfated CNC have sulfate ester groups on the surface, so a large electrostatic repulsion acts on each other. Therefore, the dispersion according to the embodiment has high easy dispersibility and high dispersion stability.
  • the sulfated CNF and the sulfated CNC have similar surface states, and thus have high affinity for each other. Therefore, in the dispersion liquid according to the embodiment, the sulfated CNF and the sulfated CNC are uniformly mixed, and microphase separation into a CNF-rich phase and a CNC-rich phase is unlikely to occur. Due to these, the dispersion according to the embodiment maintains its physical properties even after drying and redispersion, and has a long pot life. Furthermore, the dispersions according to embodiments can be used to produce composites in which CNF and CNC are uniformly mixed, and such composites can have high breaking strength and oxygen gas barrier properties.
  • At least one of the sulfated CNF and the sulfated CNC may have other substituents in addition to the sulfate group.
  • At least one of the OH groups in the cellulose constituting CNF or CNC may be substituted with other substituents.
  • Other substituents may be, for example, anionic substituents and salts thereof, ester groups, ether groups, acyl groups, aldehyde groups, alkyl groups, alkylene groups, aryl groups, or may include two or more of these. good.
  • the other substituent may be an anionic substituent or a salt thereof, or an acyl group.
  • Anionic substituents include a carboxy group, a phosphate group, a phosphite group, and a xanthate group.
  • the salt of the anionic substituent may be sodium salt, potassium salt, or calcium salt.
  • the acyl group may be an acetyl group.
  • the sulfate esterification modification rate in the sulfate esterified CNF can be set to any appropriate value depending on the application.
  • the sulfate esterification modification rate in the sulfate esterified CNF can be represented by the sulfur content (% by mass) in the sulfate esterified CNF.
  • the sulfur content (mass%) in the sulfated CNF is not limited, but is usually 0.05% to 30% by weight, preferably 0.1% to 25% by weight, more preferably 0.5% by weight. ⁇ 22% by weight.
  • Sulfuric esterified CNF having a sulfur content of 30% by weight or less can have sufficient crystallinity and heat resistance.
  • Sulfuric esterified CNF having a sulfur content of 0.05% by weight or more can be produced efficiently. This is because such CNFs electrostatically repel each other due to their sufficient amount of sulfate ester groups, and this causes the sulfate esterified pulp to defibrate and sulfate ester as described later in the manufacturing process. This is to reduce the energy required to obtain the compounded CNF.
  • the sulfate esterification modification rate in the sulfate esterification CNC can be set to any appropriate value depending on the application.
  • the sulfate esterification modification rate in the sulfate esterified CNC can be represented by the sulfur content (% by mass) in the sulfate esterified CNC, and is usually in the range of 0.05% by mass to 15% by mass. is not limited to
  • the sulfur content (% by mass) of sulfated CNF and sulfate CNC can be determined as follows, for example, by combustion absorption-ion chromatography (IC) method.
  • IC combustion absorption-ion chromatography
  • ⁇ Measuring device ICS-1500 manufactured by Nippon Dionex Co., Ltd.
  • ⁇ Measurement conditions A sample is weighed on a magnetic board, burned in an oxygen atmosphere (flow rate: 1.5 L / min) in a tubular furnace (1350 ° C.), and the generated gas component is added to 3% hydrogen peroxide water (20 mL). Absorption liquid is obtained by absorption.
  • the resulting absorption liquid is diluted with pure water to 100 mL, and the diluted liquid is subjected to ion chromatography.
  • the sulfated CNF can be produced by sulfate-esterifying raw material pulp and defibrating the obtained sulfate-esterified pulp.
  • the sulfated CNF thus obtained has a crystalline portion and an amorphous portion.
  • the degree of crystallinity of sulfated CNF depends on its raw material (cotton, wood, etc.).
  • the sulfated CNF typically has a crystallinity of 20% to 99%, preferably 30% to 95%, more preferably 40% to 90%, even more preferably 50% to 85%.
  • Sulfuric esterified CNF having a crystallinity of 20% or more can have sufficient heat resistance and rigidity. Sulfated CNF with crystallinity greater than 99% tend to be difficult to manufacture with sufficient fiber length.
  • Sulfate-esterified CNC can be obtained by hydrolyzing the amorphous portion of raw pulp with sulfuric acid.
  • the crystallinity of sulfated CNC is usually 85-100%, especially 90% or more.
  • the crystallinity of sulfated CNF and sulfated CNC is obtained by dividing the peak area derived from cellulose crystals in the X-ray diffraction pattern by the sum of the halo area derived from amorphous and the peak area derived from crystals. , can be calculated.
  • the mass ratio of the sulfated CNF and the sulfated CNC contained in the dispersion according to the embodiment may be within the range of 1:99 to 99:1. Thereby, the breaking strength and oxygen gas barrier properties of the composite produced using the dispersion liquid are further improved, as shown in the examples described later.
  • the dispersion according to the embodiment further contains a dispersion medium.
  • the dispersion medium can be a polar medium such as water, dimethylsulfoxide, dimethylformamide, ethylene glycol, diethyl ether, dioxane, tetrahydrofuran, methyltetrahydrofuran, or mixtures thereof.
  • the dispersion medium may contain a liquid having a dielectric constant of 38 or higher in an amount within the range of 50 to 100% by volume, preferably 75 to 100% by volume, based on the total volume of the dispersion medium.
  • the dispersion medium may contain a liquid having a dielectric constant of 38 or higher in an amount within the range of 80 to 100% by volume based on the total volume of the dispersion medium. This results in a longer pot life of the dispersion, as shown in the examples below.
  • the dispersion according to the embodiment may optionally further contain an additive as a dispersoid.
  • Additives may be inorganic additives or organic additives.
  • Inorganic additives include silica, mica, talc, clay, carbon, carbonates (e.g. calcium carbonate, magnesium carbonate), oxides (e.g. aluminum oxide, titanium oxide, zinc oxide, iron oxide), ceramics (e.g. ferrite), or It may be an inorganic particulate such as a particulate of a mixture of these.
  • the inorganic fine particles may be contained in an amount of 0.09-5% by mass based on the total weight of the dispersoid. As a result, the breaking strength of the composite produced using the dispersion is further improved, as shown in the examples described later.
  • Organic additives include organic fine particles and functional compounds.
  • the organic fine particles include fine particles of at least one substance selected from the group consisting of resins and rubbers, such as phenol resins, melamine resins, urea resins, alkyd resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and polyethylene resins. (eg, high-density polyethylene, medium-density polyethylene, low-density polyethylene), polypropylene resin, polystyrene resin, acrylic resin, polyvinyl alcohol, acrylamide resin, silicone resin, natural rubber, synthetic rubber, or fine particles of mixtures thereof.
  • Functional compounds include dyes, UV absorbers, antioxidants, antistatic agents, and surfactants.
  • the dispersion liquid according to the embodiment can be dried by any method such as freeze-drying or spray-drying, if necessary.
  • a dispersion liquid can be obtained again by adding a dispersion medium to the dried product and mixing them.
  • a method of preparing a dispersion comprising sulfated CNF and sulfated CNC includes mixing a sulfated CNF dispersion and a sulfated CNC dispersion.
  • the sulfated CNF dispersion may be prepared by any method. For example, a solution containing at least one of acetic anhydride or propionic anhydride, dimethyl sulfoxide, and sulfuric acid is mixed with raw material pulp to obtain sulfate-esterified pulp. The sulfated pulp is then stirred together with the dispersion medium described above. Agitation may be performed, for example, by sonication. Thereby, the sulfated pulp is defibrated to obtain a sulfated CNF dispersion.
  • the sulfated CNC dispersion may be prepared by any method.
  • a sulfuric acid-esterified CNC dispersion can be obtained by hydrolyzing the amorphous portion of cellulose in raw material pulp with sulfuric acid, washing the obtained solid content, and stirring it together with an appropriate dispersion medium. can.
  • the sulfated CNF dispersion and the sulfated CNC dispersion are mixed together. You may further add the additive mentioned above here. Mixing may be performed while applying shear forces. Thereby, the sulfated CNF and the sulfated CNC are well mixed.
  • a composite manufactured using such a well-mixed dispersion can have higher breaking strength and oxygen gas barrier properties, as shown in the examples below.
  • devices such as stirrers, three-roll mills, twin-screw kneaders, three-screw planetary kneaders, dispersers, paint shakers, bead mills, cutter mixers, and planetary mixers may be used.
  • Mixing may be performed under any conditions, for example, at 20°C to 150°C for 5 minutes to 1 hour.
  • the composite according to the embodiment includes sulfated CNF and sulfated CNC.
  • the composite is a mixed composite in which sulfated CNF and sulfated CNC are mixed, as shown schematically in FIG.
  • the composite comprises at least one layer of CNF containing sulfated CNF and at least one layer of CNC and a layer.
  • the mass ratio of the sulfated CNF and the sulfated CNC contained in the mixed complex may be within the range of 1:99 to 99:1. As a result, the breaking strength and oxygen gas barrier properties of the mixed composite are further improved, as shown in the examples described later.
  • the mixed composite may further contain an additive mixed with the sulfated CNF and the sulfated CNC.
  • Additives may be inorganic additives or organic additives.
  • the mixed composite may contain inorganic fine particles as an inorganic additive, as shown in FIG.
  • inorganic fine particles include silica, mica, talc, clay, carbon, carbonates (e.g. calcium carbonate, magnesium carbonate), oxides (e.g. aluminum oxide, titanium oxide, zinc oxide, iron oxide), ceramics (e.g. ferrite), or fine particles of mixtures thereof.
  • the mixed composite may contain inorganic fine particles in an amount within the range of 0.09 to 5% by weight based on the total weight of the mixed composite, thereby further improving the breaking strength of the mixed composite.
  • the mixed composite may contain at least one substance selected from the group consisting of resins and rubbers as an organic additive, as shown in FIG.
  • resins and rubbers include phenolic resins, melamine resins, urea resins, alkyd resins, epoxy resins, unsaturated polyester resins, polyurethane resins, polyethylene resins (e.g., high-density polyethylene, medium-density polyethylene, low-density polyethylene), and polypropylene.
  • At least one substance selected from the group consisting of resins and rubbers can further improve the breaking strength of the mixed composite.
  • the mixed composite may contain functional compounds as organic additives. Functional compounds include dyes, UV absorbers, antioxidants, antistatic agents, and surfactants.
  • the mixed complex may have a crosslinked structure as shown in FIG. Specifically, cross-linking is formed between at least one of the sulfated CNF and at least one substance selected from the group consisting of the sulfated CNF, the sulfated CNC, or the resin and rubber. may be Additionally or alternatively, between at least one of the sulfated CNC and at least one of the sulfated CNF, the sulfated CNC, or at least one material selected from the group consisting of resin and rubber. , a cross-link may be formed.
  • Crosslinking is performed by combining a hydroxy group of cellulose with another hydroxy group of cellulose, or a reactive site (e.g., hydroxy group, aldehyde group, carboxy group, methoxy group) of at least one substance selected from the group consisting of resins and rubbers. , carbonyl group, alkene moiety, ether moiety) can be formed by combining with each other through a condensation reaction or an addition reaction.
  • the type of bond is not particularly limited, but examples include urethane bond, ester bond, ether bond, amide bond, and urea bond.
  • cross-linking containing urethane bonds can improve the oxygen gas barrier properties of the mixed composite.
  • the mixed composite having a crosslinked structure may contain the inorganic fine particles described above, as shown in FIG.
  • crosslinks can be confirmed by any method such as infrared spectroscopy, near-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, gel permeation chromatography, and differential scanning calorimetry.
  • the types of chemical bonds that form crosslinks can be identified by any method such as infrared spectroscopy, near-infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy.
  • the mixed composite may be supported by a substrate, as shown in FIG. That is, a composite according to one embodiment may include a mixed composite containing the above-described sulfated CNF and sulfated CNC, and a substrate supporting the mixed composite.
  • the substrate may be a paper substrate containing cellulose as a main component, such as filter paper, western paper, Japanese paper, pulp sheet, kraft paper, and base paper for corrugated board.
  • the paper substrate may contain inorganic fine particles such as talc, a fluorescent agent, a resin such as polyethylene, and the like.
  • the OH group of cellulose which is the main component of the paper base material, forms a very strong hydrogen bond with the sulfate ester group. Therefore, the mixed composite containing the sulfated CNF and the sulfated CNC and the paper substrate can be bonded with sufficient strength. Also, a composite comprising a paper substrate and a mixed composite supported thereon can have higher gas barrier properties and higher breaking strength than the paper substrate alone. Accordingly, such composites can be used as replacements with enhanced functionality for paper products such as wrapping materials, packing materials (eg corrugated board), container materials and the like.
  • (3-2) Laminate Composite In the laminate composite, at least one CNF layer and at least one CNC layer are adjacent to each other. At least one CNF layer and at least one CNC layer may be alternately stacked.
  • the laminated composite has one CNF layer 1 and one CNC layer 3 thereon, as shown in FIG.
  • the laminate composite has two CNF layers 1 with one CNC layer 3 therebetween, as shown in FIG.
  • the laminated composite has two CNC layers 3 with one CNF layer 1 therebetween, as shown in FIG.
  • Sulfate-esterified CNF and sulfate-esterified CNC both have sulfate ester groups on their surfaces and have similar surface states, so they have high affinity for each other. Therefore, the adhesive strength between the CNF layer and the CNC layer is high, so the mixed composite can have high breaking strength and oxygen gas barrier properties.
  • At least one of the CNF layer and the CNC layer may further contain additives.
  • the additive may be an inorganic additive or an organic additive as described above.
  • At least one of the CNF layer and the CNC layer may contain inorganic fine particles in an amount within the range of 0.09 to 5% by weight based on the total weight of the layer. This further improves the breaking strength of the laminated composite.
  • the interface between the layer containing the inorganic fine particles and the layer adjacent to that layer has irregularities due to the presence of the inorganic fine particles, and this increases the adhesive strength between these mutually adjacent layers due to the anchor effect.
  • At least one of the CNF layer and the CNC layer may further contain at least one substance selected from the group consisting of resin and rubber. This further improves the breaking strength of the laminated composite.
  • resins and rubbers include phenolic resins, melamine resins, urea resins, alkyd resins, epoxy resins, unsaturated polyester resins, polyurethane resins, polyethylene resins (e.g., high-density polyethylene, medium-density polyethylene, low-density polyethylene), and polypropylene.
  • At least one of the CNF layer and the CNC layer may have a crosslinked structure.
  • crosslinks may be formed between at least one of the sulfated CNFs and at least one of the sulfated CNFs or at least one substance selected from the group consisting of resins and rubbers.
  • the CNC layer between at least one of the sulfated CNC and at least one of the sulfated CNC or at least one material selected from the group consisting of resin and rubber, Crosslinks may be formed.
  • Crosslinking is performed by combining a hydroxy group of cellulose with another hydroxy group of cellulose, or a reactive site (e.g., hydroxy group, aldehyde group, carboxy group, methoxy group) of at least one substance selected from the group consisting of resins and rubbers. , carbonyl group, alkene moiety, ether moiety) can be formed by combining with each other through a condensation reaction or an addition reaction.
  • the type of bond is not particularly limited, but examples include urethane bond, ester bond, ether bond, amide bond, and urea bond.
  • a crosslinked structure containing urethane bonds can improve the oxygen gas barrier properties of the laminated composite.
  • crosslinks can be confirmed by any method such as infrared spectroscopy, near-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, gel permeation chromatography, and differential scanning calorimetry.
  • the types of chemical bonds that form crosslinks can be identified by any method such as infrared spectroscopy, near-infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy.
  • the laminated composite may be supported by a substrate. That is, as shown in FIG. 13, the composite according to one embodiment includes a laminated composite 10 including at least one CNF layer 1 and at least one CNC layer 3, and a substrate 5 that supports it. may contain.
  • the substrate 5 may be a paper substrate containing cellulose as a main component, such as filter paper, western paper, Japanese paper, pulp sheet, kraft paper, and cardboard base paper.
  • the paper substrate may contain inorganic fine particles such as talc, a fluorescent agent, a resin such as polyethylene, and the like.
  • the OH group of cellulose which is the main component of the paper base material, forms a very strong hydrogen bond with the sulfate ester group of sulfate-esterified CNF and sulfate-esterified CNC.
  • the laminated composite can adhere with sufficient strength to the paper substrate.
  • a composite comprising a paper substrate and a laminated composite supported thereon can have higher gas barrier properties and higher breaking strength than the paper substrate alone. Accordingly, such composites can be used as replacements with enhanced functionality for paper products such as wrapping materials, packing materials (eg corrugated board), container materials and the like.
  • the mixed composite contains at least one substance selected from the group consisting of resins and rubbers
  • the mixed composite further contains fine particles of at least one substance selected from the group consisting of resins and rubbers. It can be produced by drying the liquid. During drying, the dispersion may be heated and/or pressurized. The dried body after drying may be heated and/or pressurized.
  • a mixed composite containing at least one substance selected from the group consisting of resins and rubbers is obtained by drying a dispersion containing sulfated CNF and sulfated CNC to obtain sulfated CNF and sulfated It can also be produced by obtaining a CNC mixed powder, adding at least one substance selected from the group consisting of resins and rubbers, mixing the mixture, and heating and/or pressurizing the mixture.
  • the mixed composite When the mixed composite has a crosslinked structure, the mixed composite is obtained by adding a cross-linking agent to the dispersion containing the above-mentioned sulfated CNF and sulfated CNC to cause a cross-linking reaction, and then drying the dispersion. , can be manufactured.
  • the mixed composite may be molded into a desired shape depending on the application.
  • the dispersion may be dried on a substrate as described above, especially a paper substrate. Thereby, a composite is produced that includes the mixed composite and the substrate that supports it. Such composites can be produced in a short time because dispersions on paper substrates can dry quickly.
  • a method of manufacturing a laminated composite comprises: (a) forming a first layer comprising one of sulfated CNF or sulfated CNC and a liquid; and (b) on the first layer, sulfated CNF or providing a dispersion comprising the other of the sulfated CNCs to form a second layer on the first layer; and (c) removing liquid from the first and second layers.
  • a layer of a dispersion containing either sulfated CNF or sulfated CNC is formed to form a first layer.
  • the liquid content of the first layer may be greater than 0% by mass, particularly 5% by mass or more. This improves the adhesion between the first layer and the second layer formed thereon, as shown in the examples below. It is considered that this is because the sulfated CNF and the sulfated CNC are mixed and entangled to a predetermined depth or more at the interface between the first layer and the second layer.
  • the liquid content of the first layer may be 30% by mass or less, particularly 20% by mass or less. The liquid content of the first layer can be adjusted by forming a dispersion layer and then drying this layer to reduce the dispersion medium.
  • step (b) a dispersion containing the other of sulfated CNF or sulfated CNC is supplied onto the first layer to form a second layer on the first layer.
  • Step (a) and step (b) may be alternately repeated to form a total of three or more first layers and second layers.
  • the second layer in step (b), the second layer may be dried to adjust the liquid content of the second layer.
  • the liquid content of the second layer after drying may be more than 0% by mass, particularly 5% by mass or more. This improves the adhesion between the second layer and the first layer formed thereon. Further, the liquid content of the second layer after drying may be 30% by mass or less, particularly 20% by mass or less.
  • step (c) the first layer and the second layer are dried to remove the dispersion medium contained in the first layer and the second layer.
  • a drying method any method such as natural drying, reduced pressure drying, warm air drying, or the like can be used.
  • a laminated mixture as described above is obtained.
  • the first layer may be formed on the base material described above, particularly a paper base material.
  • a composite including the laminated composite and the substrate supporting it is manufactured.
  • Such composites can be produced in a short time because dispersions on paper substrates can dry quickly.
  • Sample A Sulfate-esterified CNF dispersion in water 300 g of dimethyl sulfoxide, 33.3 g of acetic anhydride, and 4.3 g of sulfuric acid having a concentration of 98% by weight are mixed in a 1 L flask with a stirrer tip. Stir to mix. Subsequently, 10 g of softwood bleached kraft pulp (NBKP) (“CARIBOO” manufactured by Cariboo Pulp and Paper Company) was added and stirred at room temperature for 4 hours to sulfate the NBKP. After that, a 5% sodium hydroxide aqueous solution was added dropwise to adjust the pH of the reaction mixture to 7.0.
  • NNKP softwood bleached kraft pulp
  • the reaction mixture was filtered through a nylon mesh (“PA-11 ⁇ ” manufactured by AS ONE Co., Ltd.) and rinsed with distilled water at the same time.
  • a sulfate esterified pulp was obtained.
  • the sulfate esterified pulp was transferred to a 1 L flask, distilled water was added so that the solid content concentration was 1%, and ultrasonic treatment was performed. Thereby, a sulfated CNF dispersion in water (Sample A) having a solid content concentration of 1% by mass was obtained.
  • Sample B Sulfuric esterified CNF dispersion in N,N-dimethylformamide (DMF) In the same manner as Sample A, except that DMF was used instead of distilled water, the solid content concentration was 1% by mass, in DMF. A sulfated CNF dispersion (Sample B) was obtained.
  • DMF N,N-dimethylformamide
  • Sample C Sulfate-esterified CNF dispersion in ethylene glycol Sulfate-esterified CNF dispersion in ethylene glycol having a solid content concentration of 1% by mass in the same manner as sample A, except that ethylene glycol was used instead of distilled water. A liquid (Sample C) was obtained.
  • Sample H Sulfate-esterified CNF dispersion in formamide A sulfate-esterified CNF dispersion in formamide having a solid content concentration of 1% by mass (sample H) was obtained.
  • Sample L TEMPO-oxidized CNF dispersion in water 0.25 mmol 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO) and 20 mmol sodium bromide were dissolved in water to give a 500 mL aqueous solution.
  • 10 g of absolutely dry NBKP (“CARIBOO” manufactured by Cariboo Pulp and Paper Company) was added and stirred until the pulp was uniformly dispersed. After the temperature of the mixture was brought to 20° C., 64 mmol of an aqueous sodium hypochlorite solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added to initiate an oxidation reaction.
  • the temperature of the reaction system was kept at 20° C., and the pH was maintained at 10 by successively adding 3N sodium hydroxide aqueous solution. After reacting for 3 hours, the resulting product was filtered through a glass filter and washed thoroughly with water. Thereby, an oxidized pulp was obtained.
  • Sample M Phosphated CNF dispersion in water 10 g urea, 5.53 g sodium dihydrogen phosphate dihydrate, and 4.13 g disodium hydrogen phosphate were dissolved in 10.9 g water and phosphorylated Reagents were prepared.
  • a dried NBKP (“CARIBOO” manufactured by Cariboo Pulp and Paper Company) sheet was processed with a cutter mill and a pin mill to obtain cotton-like fibers.
  • the phosphorylation reagent was evenly sprayed on cotton-like fibers having an absolute dry weight of 10 g, and kneaded by hand to obtain an impregnated pulp.
  • the impregnated pulp was heat-treated for 80 minutes in a blower dryer with a damper heated to 140°C. A phosphorylated pulp was thereby obtained.
  • the sheet and 1 L of ion-exchanged water were stirred until they were uniformly dispersed, and the dispersion was filtered and dehydrated.
  • the resulting sheet was treated in the same way two more times.
  • the obtained sheet and ion-exchanged water were mixed to obtain a slurry of 0.5% by mass.
  • This slurry was defibrated for 180 minutes at 6900 rpm using a fibrillation treatment apparatus (“CLEARMIX-11S” manufactured by M-Technic Co., Ltd.).
  • Ion-exchanged water was added to adjust the solid content concentration of the slurry to 1% by mass. Thereby, a phosphorylated CNF dispersion in water (Sample M) having a solid content concentration of 1% by mass was obtained.
  • Sample N Sulfated CNC Dispersion in Water 800 mL of 58% sulfuric acid was heated to 50° C. in a 2 L flask. 100 g of absolute dry NBKP (“CARIBOO” manufactured by Cariboo Pulp and Paper Company) was added to the flask and stirred for 3 hours. The resulting product was treated at 20,000 G for 10 minutes with a centrifuge ("CT18R" manufactured by Eppendorf Himac Technologies). Subsequently, the supernatant was removed by decantation, and 400 mL of distilled water was added to suspend the pellets. Similar centrifugation, decantation, addition of distilled water, and suspension were performed twice more. A sulfated CNC dispersion in water (Sample N) was thereby obtained.
  • CARIBOO absolute dry NBKP
  • Sample O Sulfuric Acid Esterified CNC Dispersion in DMF Sample N was dried with a freeze dryer (“FDU-12AS” manufactured by AS ONE) to obtain CNC powder. DMF was added to the CNC powder so that the solid content concentration was 1% by mass, and treated with Primix Homodisper 2.5 type for 2 minutes. A CNC dispersion in DMF (Sample O) was thereby obtained with a solids concentration of 1% by weight.
  • FDU-12AS freeze dryer
  • Sample P CNC Dispersion in Ethylene Glycol A CNC dispersion in ethylene glycol (Sample P) having a solid content concentration of 1% by mass was obtained in the same manner as Sample O, except that ethylene glycol was used instead of DMF. rice field.
  • Sample U CNC Dispersion in Formamide A CNC dispersion in formamide (Sample U) having a solid content concentration of 1% by mass was obtained in the same manner as Sample O, except that formamide was used instead of DMF.
  • This dispersion liquid was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and allowed to air dry at room temperature for 2 weeks to form a film.
  • Remove the membrane from the PTFE container, cut it with a sample cutter ("SDL200" manufactured by Dumbbell Co.), and prepare a dumbbell-shaped sample containing sulfated CNF and sulfated CNC (CNF: CNC 50: 50 (mass ratio)).
  • the tested part of the composite had a thickness of 25 ⁇ m, a width of 10 mm and a length of 100 mm.
  • silica fine particles (“HS-208” manufactured by Nippon Steel Chemical & Materials Co., Ltd.)
  • M-110EH microfluidizer
  • FDU-12AS freeze dryer
  • Example 26 4.68 mL of a dispersion of CNF and CNC prepared in the same manner as in Example 1, 1.5 g of polyvinyl alcohol fine particles ("Kuraray Poval” manufactured by Kuraray), and 100 mL of distilled water were stirred in a beaker for 24 hours. , to obtain a dispersion.
  • a radical generator (“Perhexa 25B-40” manufactured by NOF Corporation) was added thereto, and the mixture was placed in a Teflon (registered trademark) tray and dried at 80° C. for 3 days.
  • the resulting product was rolled four times at 100° C. using a three-roll rolling machine (manufactured by Imoto Seisakusho Co., Ltd., model 1983).
  • SDL200 sample cutting machine manufactured by Dumbbell Co.
  • Example 28 4.68 mL of a dispersion of CNF and CNC prepared in the same manner as in Example 1, 1.5 g of polyvinyl alcohol fine particles ("Kuraray Poval" manufactured by Kuraray), and 100 mL of distilled water were stirred in a beaker for 24 hours. , to obtain a dispersion. To the resulting dispersion were added 0.01 g of 1N hydrochloric acid and 0.3 g of a 37 mass % formaldehyde aqueous solution. Thereby, a crosslinked structure was formed via an acetal bond. A dumbbell-shaped composite was produced in the same manner as in Example 1 using the dispersion after the cross-linking reaction.
  • Kuraray Poval manufactured by Kuraray
  • Example 29 41 g of diphenylmethane diisocyanate was added to 150 g of a dispersion of CNF and CNC prepared in the same manner as in Example 9, and the mixture was stirred at 50° C. for 3 hours. Thereby, the OH groups of CNF, CNC, and ethylene glycol reacted with the NCO groups of diphenylmethane diisocyanate to form urethane linkages. As a result, a crosslinked product in which CNF, CNC, and urethane resins are crosslinked via urethane bonds was obtained.
  • the dispersion liquid after the reaction was rolled four times at 100° C. using a three-roll rolling mill (manufactured by Imoto Seisakusho Co., Ltd., model 1983). The resulting membrane was cut with a sample cutter ("SDL200" manufactured by Dumbbell Co.) to prepare a dumbbell-shaped composite.
  • SDL200 sample cutter
  • Example 30 4.68 mL of a CNF and CNC dispersion liquid prepared in the same manner as in Example 1, 1.5 g of polyvinyl alcohol fine particles ("Kuraray Poval” manufactured by Kuraray), 100 mL of distilled water, and 0.05 g of diphenylmethane diisocyanate were added to 50 C. for 24 hours. Thereby, a crosslinked structure was formed via urethane bonds.
  • a dumbbell-shaped composite was produced in the same manner as in Example 1 using the dispersion after the cross-linking reaction.
  • Example 31 20.5 g of diphenylmethane diisocyanate was added to 150 g of a dispersion of CNF and CNC prepared in the same manner as in Example 16, and the mixture was stirred at 50° C. for 3 hours. Thereby, the OH groups of CNF, CNC, and ethylene glycol reacted with the NCO groups of diphenylmethane diisocyanate to form urethane linkages. As a result, a crosslinked product in which CNF, CNC, and urethane resins are crosslinked via urethane bonds was obtained.
  • the dispersion liquid after the reaction was rolled four times at 100° C. using a three-roll rolling mill (manufactured by Imoto Seisakusho Co., Ltd., Model 1983). The resulting membrane was cut with a sample cutter ("SDL200" manufactured by Dumbbell Co.) to prepare a dumbbell-shaped composite.
  • SDL200 sample cutter
  • Example 32 75 mL of sample A was poured into a rectangular PTFE container with internal dimensions of 20 cm ⁇ 20 cm ⁇ 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. 75 mL of sample N was further poured into this PTFE container and air-dried for two weeks. The membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 33 50 mL of sample A was poured into a rectangular PTFE container with internal dimensions of 20 cm ⁇ 20 cm ⁇ 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. 50 mL of sample N was further poured into this PTFE container and air-dried until the liquid content reached 20% by mass. 50 mL of sample A was further poured into this PTFE container and air-dried for two weeks. The membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 34 50 mL of sample N was poured into a rectangular PTFE container with internal dimensions of 20 cm ⁇ 20 cm ⁇ 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. 50 mL of sample A was further poured into this PTFE container and air-dried until the liquid content reached 20% by mass. 50 mL of sample N was further poured into this PTFE container and air-dried for two weeks. The membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 35 500 mL of sample A and 0.0025 g of silica fine particles (“HS-208” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) were mixed for 5 minutes with Primix Homo Disper 2.5 type, and CNF and silica fine particles were dissolved in water. A fine dispersion was obtained. In addition, 500 mL of sample N and 0.0025 g of silica fine particles (“HS-208” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) were mixed for 5 minutes in a Primix Homo Disper 2.5 type, and the CNC and silica fine particles were mixed. A dispersion in water was obtained.
  • a 75 mL dispersion of CNF and fine silica particles was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. 75 mL of dispersion liquid of CNC and fine silica particles was further poured into this PTFE container and air-dried for two weeks. The membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 36 Dumbbell-shaped composites were produced in the same manner as in Example 35, except that the amount of silica fine particles mixed in each of sample A and sample N was 0.005 g.
  • Example 37 Dumbbell-shaped composites were produced in the same manner as in Example 35, except that the amount of silica fine particles mixed in each of sample A and sample N was 0.125 g.
  • Example 38 Dumbbell-shaped composites were produced in the same manner as in Example 35, except that the amount of silica fine particles mixed in each of sample A and sample N was 0.25 g.
  • Example 39 Dumbbell-shaped composites were produced in the same manner as in Example 35, except that the amount of silica fine particles mixed in each of sample A and sample N was set to 0.30 g.
  • Example 40 A dumbbell-shaped composite was produced in the same manner as in Example 35, except that the amount of silica fine particles mixed in sample A was 0.005 g, and the silica fine particles were not mixed in sample N.
  • Example 41 A dumbbell-shaped composite was produced in the same manner as in Example 35, except that sample A was not mixed with silica fine particles and sample N was not mixed with 0.005 g of silica fine particles.
  • Example 42 2.34 mL of sample A, 0.75 g of polyvinyl alcohol fine particles (“Kuraray Poval” manufactured by Kuraray), and 100 mL of distilled water were stirred in a beaker for 24 hours to obtain a dispersion containing CNF and polyvinyl alcohol. .
  • the resulting dispersion was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. 75 mL of sample N was further poured into this PTFE container and air-dried for two weeks. The membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 43 2.34 mL of Sample N, 0.75 g of polyvinyl alcohol fine particles ("Kuraray Poval” manufactured by Kuraray), and 100 mL of distilled water were stirred in a beaker for 24 hours to obtain a dispersion containing CNC and polyvinyl alcohol. .
  • sample A 75 mL was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change.
  • the dispersion liquid containing the above CNC and polyvinyl alcohol was further poured into this PTFE container and air-dried for two weeks.
  • the membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 44 A dispersion containing CNF and polyvinyl alcohol was prepared in the same manner as in Example 42. Further, in the same manner as in Example 43, a dispersion containing CNC and polyvinyl alcohol was prepared.
  • a dispersion liquid containing CNF and polyvinyl alcohol was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change.
  • the dispersion liquid containing the above CNC and polyvinyl alcohol was further poured into this PTFE container and air-dried for two weeks.
  • the membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 45 2.34 mL of sample A, 0.75 g of polyvinyl alcohol fine particles (“Kuraray Poval” manufactured by Kuraray), and 100 mL of distilled water were stirred in a beaker for 24 hours to obtain a dispersion containing CNF and polyvinyl alcohol. . To the resulting dispersion were added 0.01 g of 1N hydrochloric acid and 0.3 g of a 37 mass % formaldehyde aqueous solution. Thereby, a crosslinked structure was formed via an acetal bond.
  • polyvinyl alcohol fine particles (“Kuraray Poval” manufactured by Kuraray)
  • the dispersion liquid containing CNF and polyvinyl alcohol after the cross-linking reaction was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change.
  • a dispersion containing the CNC and polyvinyl alcohol after the cross-linking reaction was further poured into this PTFE container and air-dried for two weeks.
  • the membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 46 2.34 mL of sample A, 0.75 g of polyvinyl alcohol fine particles (“Kuraray Poval” manufactured by Kuraray Co., Ltd.), 100 mL of distilled water, and 0.025 g of diphenylmethane diisocyanate were stirred at 50° C. for 3 hours. Thereby, a crosslinked structure was formed via urethane bonds.
  • the dispersion liquid containing CNF and polyvinyl alcohol after the cross-linking reaction was poured into a rectangular PTFE container with internal dimensions of 20 cm x 20 cm x 5 cm, and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change.
  • a dispersion containing the CNC and polyvinyl alcohol after the cross-linking reaction was further poured into this PTFE container and air-dried for two weeks.
  • the membrane formed in the PTFE container was taken out, and a dumbbell-shaped composite was produced in the same manner as in Example 1.
  • Example 47 A dumbbell-shaped composite was produced in the same manner as in Example 32, except that sample A was naturally dried to a liquid content of 5% by mass instead of being naturally dried to a liquid content of 20% by mass. did.
  • Example 48 In the same manner as in Example 32, except that sample A was dried at 105 ° C. for 3 hours to make the liquid content 0% by mass instead of air drying until the liquid content was 20% by mass. A composite was produced.
  • a sample cutter manufactured by Dumbbell Co.
  • Example 50 A dumbbell-shaped composite was produced in the same manner as in Example 49, except that corrugated board base paper (“LCC120” manufactured by Rengo Co., Ltd.) was used as the paper substrate.
  • corrugated board base paper (“LCC120” manufactured by Rengo Co., Ltd.) was used as the paper substrate.
  • Example 51 A paper base material (qualitative filter paper No. 1, manufactured by Advantech Co., Ltd.) was cut into squares of 19.5 cm ⁇ 19.5 cm and placed in a rectangular PTFE container with internal dimensions of 20 cm ⁇ 20 cm ⁇ 5 cm. 75 mL of sample A was poured into this PTFE container and air-dried until the liquid content reached 20% by mass. Liquid content was monitored by mass change. An additional 75 mL of sample N was poured into the PTFE container and allowed to air dry for two weeks. The paper substrate and membrane were taken out from the PTFE container and cut with a sample cutter ("SDL200" manufactured by Dumbbell Co.). As a result, a dumbbell-shaped composite consisting of a paper substrate, a CNF layer, and a CNC layer was obtained.
  • SDL200 sample cutter
  • Example 52 A dumbbell-shaped composite was produced in the same manner as in Example 51, except that cardboard base paper ("LCC120" manufactured by Rengo Co., Ltd.) was used as the paper base material.
  • cardboard base paper (“LCC120” manufactured by Rengo Co., Ltd.) was used as the paper base material.
  • Tables 1 and 2 simply represent various conditions in Examples 1 to 52 and Comparative Examples 1 and 2.
  • each of the dispersion liquids of Examples 1 to 7, 18 to 24 and Comparative Examples 1 and 2 were frozen at -18°C and dried with a freeze dryer ("FDU1110" manufactured by Tokyo Rika).
  • each of the dispersions of Examples 8 to 17 was centrifuged ("Heraeus Megafuge 8R centrifuge” manufactured by Thermo Fisher) at 10,000 G for 5 minutes, the supernatant was removed, and distilled water was added. This operation was repeated to replace the dispersion medium with water. Thereafter, 100 g of each dispersion liquid was frozen at -18°C and dried with a freeze dryer ("FDU1110" manufactured by Tokyo Rika Kikai Co., Ltd.).
  • a dispersion medium was added to each dry body so that the composition would be the same as when the initial viscosity was measured, and treated with a disper (Homo Disper 2.5 type manufactured by Primix) for 2 minutes to obtain a dispersion liquid.
  • the viscosity of the resulting dispersion was measured three times with a Brookfield viscometer (“TVB10” manufactured by Toki Sangyo Co., Ltd.), and the average was obtained.
  • Viscosity change rate after drying re-dispersion is less than 10%
  • Viscosity change rate after drying re-dispersion is 10% or more and less than 30%
  • Viscosity change rate after drying re-dispersion is 30% or more
  • Viscosity change rate after 3 months is less than 10%
  • Viscosity change rate after 2 months is less than 10%
  • viscosity change rate after 3 months is more than 10%
  • Viscosity after 2 months More than 10% change
  • the oxygen gas barrier properties of the composites of Examples 1 to 52 and Comparative Examples 1 and 2 were evaluated based on the following criteria. The results are shown in Table 3.
  • Oxygen gas permeability less than 0.5 ml/m 2 /day/atm
  • Oxygen gas permeability 0.5 ml/m 2 /day/atm or more and less than 2.5 ml/m 2 /day/atm
  • Oxygen gas permeability of 2.5 ml/m 2 /day/atm or more and less than 4.5 ml/m 2 /day/atm
  • Adhesion of the composites of Examples 32-52 was evaluated based on the following criteria. The results are shown in Table 3. ⁇ : The number of squares where film peeling was observed is less than 3 ⁇ : The number of squares in which film peeling was observed was 3 or more and less than 7 ⁇ : The number of squares in which film peeling was observed was 7 or more and less than 11 ⁇ : The number of squares in which film peeling was observed was 11 or more
  • the dispersions of Examples 1-24 exhibited better dry redispersibility and longer pot life than the dispersions of Comparative Examples 1 and 2.
  • the composites of Examples 1 to 48 exhibited higher breaking strength and higher oxygen gas barrier properties than the composites of Comparative Examples 1 and 2. From this, it was shown that the combination of sulfated CNF and sulfated CNC provides good dry redispersibility, long pot life, high breaking strength, and high oxygen gas barrier properties.
  • the dispersion medium of the dispersion liquid has a dielectric constant of 38 or more, such as water, DMF, ethylene glycol, and formamide, and the total volume of the dispersion medium is An amount within the range of 80-100% by volume as a basis has been shown to result in longer pot life.
  • the composites contained inorganic fine particles such as silica in an amount within the range of 0.09 to 5% by mass based on the total mass of the composites. was shown to provide higher breaking strength.
  • the evaluation results of the composites of Examples 1, 9, 25-31 showed that the addition of resins such as polyurethane and PVA or rubbers such as natural rubber improved the breaking strength of the composites.
  • the composite may have a crosslinked structure, and it was shown that crosslinkage via urethane bonds in particular improves the oxygen gas barrier properties of the composite.
  • Composites having multiple laminated layers such as those of Examples 32 to 48 also exhibited high breaking strength and high oxygen gas barrier properties.
  • At least one of the multiple layers of the composite contains, based on the total weight of the layer, an amount within the range of 0.09 to 5% by weight It was shown that the inclusion of inorganic fine particles brings about higher breaking strength and improves adhesion between layers.
  • the evaluation results of the composites of Examples 32 and 42-46 showed that the addition of resin or rubber improved the breaking strength of the composite.
  • the composite may have a crosslinked structure, and it was shown that crosslinkage via urethane bonds in particular improves the oxygen gas barrier properties of the composite.
  • the lower layer containing liquid (particularly, more than 0% by mass and 30% by mass or less, or 5% by mass
  • the liquid in the lower layer was completely removed by supplying the dispersion liquid for forming the upper layer on the lower layer containing the liquid in an amount exceeding and not more than 25% by mass, and then removing the liquid in the upper layer and the lower layer. It was shown that the adhesion between the top layer and the bottom layer is better than when the top layer is formed later.
  • composites containing biomass-derived paper substrates such as filter paper and cardboard and CNCs and CNFs supported on the paper substrates have high breaking strength and gas barrier properties. , and adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

乾燥及び再分散を経てもその物性が維持されるとともに、長いポットライフを有する、セルロースナノファイバー(CNF)及びセルロースナノクリスタル(CNC)の分散液、及びより高い破断強度及び酸素ガスバリア性を有する、CNF及びCNCの複合体を提供する。 分散液は、硫酸エステル基を有するCNF、及び硫酸エステル基を有するCNCを含む。また、複合体は、硫酸エステル基を有するCNF、及び硫酸エステル基を有するCNCを含む。

Description

分散液及び複合体、並びにこれらの製造方法
 本発明は、分散液及び複合体、並びにこれらの製造方法に関する。
 環境意識の高まりから、バイオマス由来材料の実用化を目指した検討が世界中で行われている。木質(木材チップなど)などに由来するセルロース繊維をナノサイズにまで解繊することによって得られるセルロースナノファイバー(以下、適宜「CNF」とも称する)、及びセルロース繊維の非晶質部を酸で加水分解することによって得られるセルロースナノクリスタル(以下、適宜「CNC」とも称する)は、環境適合型の新材料として注目されている。例えば、特許文献1には、硫酸エステル化CNF及びその製造方法が記載され、非特許文献1~3には、CNF及びCNCを含む複合体膜が記載されている。
特開2020-41255号公報
Raphael Bardetら、「Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment」、Cellulose 2015、22、1227-1241 Xiuxuan Sunら、「Nanocellulose films with combined cellulose nanofibers and nanocrystals:tailored thermal,optical and mechanical properties」、Cellulose 2018、25、1103-1115 Pedro Claroら、「Curaua and eucalyptus nanofiber films by continuous casting:mixture of cellulose nanocrystals and nanofibrils」、Cellulose 2019、26、2453-2470
 非特許文献1~3に記載されるようなCNF及びCNCを含む複合体は、CNF及びCNCを含む分散液を塗布及び/又はろ過し、結果物を乾燥させることによって製造される。複合体の製造コストの低減の観点から、分散液を乾燥して分散媒を除去して乾燥体を得て、これを輸送及び/又は保管し、乾燥体に分散媒を添加して再度分散液を得てこれを複合体の製造に使用することが有利である。そのため、分散液は、乾燥及び再分散を経てもその物性(具体的には粘度)の変化が小さいことが望ましい。また、分散液は、長いポットライフ(可使時間)を有することが望ましい。さらに、CNF及びCNCを含む複合体は包装材料又は容器材料として使用される場合、より高い破断強度及び酸素ガスバリア性を有することが求められる。
 そこで、本発明は、乾燥及び再分散を経てもその物性が維持されるとともに、長いポットライフを有する、CNF及びCNCの分散液を提供する。また、本発明は、より高い破断強度及び酸素ガスバリア性を有する、CNF及びCNCの複合体を提供する。さらに、本発明は、このような分散液及び複合体の製造方法を提供する。
 本発明の一態様に従えば、硫酸エステル基を有するセルロースナノファイバー、及び硫酸エステル基を有するセルロースナノクリスタルを含む、分散液が提供される。
 本発明の一態様に従えば、硫酸エステル基を有するセルロースナノファイバー、及び硫酸エステル基を有するセルロースナノクリスタルを含む、複合体が提供される。
 本発明の一態様に従えば、上記の態様の分散液の調製方法であって、硫酸エステル基を有するセルロースナノファイバーの分散液と硫酸エステル基を有するセルロースナノクリスタルの分散液とを、せん断力を加えながら混合することを含む、方法が提供される。
 本発明の一態様に従えば、上記の態様の複合体の製造方法であって、
(a)硫酸エステル基を有するセルロースナノファイバー又は硫酸エステル基を有するセルロースナノクリスタルの一方、及び液体を含む第1層を形成することと、
(b)第1層上に、硫酸エステル基を有するセルロースナノファイバー又は硫酸エステル基を有するセルロースナノクリスタルの他方を含む分散液を供給して、第1層上に第2層を形成することと、
(c)第1層及び第2層から液体を除去することと、
を含む、方法が提供される。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-059274号の開示内容を包含する。
 本発明の分散液は、乾燥及び再分散を経てもその物性が維持されるとともに、長いポットライフを有する。また、本発明の複合体は、より高い破断強度及び酸素ガスバリア性を有する。
図1は、硫酸エステル化CNFの一例を示す図である。 図2は、硫酸エステル化CNCの一例を示す図である。 図3は、一実施形態に係る複合体を模式的に示す図である。 図4は、一実施形態に係る複合体を模式的に示す図である。 図5は、一実施形態に係る複合体を模式的に示す図である。 図6は、一実施形態に係る複合体を模式的に示す図である。 図7は、一実施形態に係る複合体を模式的に示す図である。 図8は、一実施形態に係る複合体を模式的に示す図である。 図9は、一実施形態に係る複合体を模式的に示す図である。 図10は、一実施形態に係る複合体を模式的に示す図である。 図11は、一実施形態に係る複合体を模式的に示す図である。 図12は、一実施形態に係る複合体を模式的に示す図である。 図13は、一実施形態に係る複合体を模式的に示す図である。
 以下、適宜図面を参照して実施形態を説明する。本発明は、以下の実施形態に限定されず、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。なお、説明の都合上、図面中の各部の寸法比率及び形状が誇張され、実際の寸法比率及び形状とは異なる場合がある。また、本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。
(1)分散液
 実施形態に係る分散液は、硫酸エステル基を有するCNF(硫酸エステル化CNFともいう)及び硫酸エステル基を有するCNC(硫酸エステル化CNCともいう)を分散質として含む。
 CNFは、セルロースから構成される繊維である。セルロースは、グルコースがβ-1,4-グリコシド結合した多糖類であり、(C10で示される。CNFは、通常、4nm~100nmの範囲内の繊維幅(繊維径(投影面積円相当径))、及び0.5μm~100μmの範囲内の繊維長を有する。繊維幅及び繊維長は、例えば、原子間力顕微鏡(SPM-9700HT、株式会社島津製作所製)を用いて、任意に選択した50本のCNFの繊維幅及び繊維長を計測し、それぞれ加算平均を計算することにより求めることができる。
 CNCは、セルロースから構成される針状結晶である。CNCは、通常、4nm~100nmの範囲内の長さの短軸、及び50nm以上0.5μm未満の範囲内の長さの長軸を有する。短軸及び長軸の長さは、例えば、原子間力顕微鏡(SPM-9700HT、株式会社島津製作所製)を用いて、任意に選択した50個のCNCの長軸及び短軸の長さを計測し、それぞれ加算平均を計算することにより求めることができる。
 硫酸エステル化CNFは、CNFを構成するセルロース中のOH基の少なくとも1つが、硫酸エステル基に置換されているCNFである。同様に、硫酸エステル化CNCは、CNCを構成するセルロース中のOH基の少なくとも1つが、硫酸エステル基に置換されているCNCである。ここで、硫酸エステル基は、式(1):
Figure JPOXMLDOC01-appb-C000001
で示される硫酸エステル基(式中、Mは1価~3価の陽イオンを示す)であってよい。なお、Mが2価又は3価の陽イオンである場合、Mは2個又は3個の-OSO にイオン結合する。
 1価~3価の陽イオンとしては、水素イオン、金属イオン、アンモニウムイオンなどが挙げられる。金属イオンとしては、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、その他の金属イオンが挙げられる。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどが挙げられる。アルカリ土類金属としては、カルシウム、ストロンチウムなどが挙げられる。遷移金属としては、鉄、ニッケル、パラジウム、銅、銀などが挙げられる。その他の金属としては、ベリリウム、マグネシウム、亜鉛、アルミニウムなどが挙げられる。アンモニウムイオンとしては、NH だけでなく、NH の1つ以上の水素原子が有機基に置き換わっている各種アミン由来のアンモニウムイオン(例えば、第四級アンモニウムカチオン、アルカノールアミンイオン、ピリジニウムイオン)も挙げられる。陽イオンは、列挙した陽イオンのいずれか1種であってもよいし、2種以上であってもよい。
 硫酸エステルCNF及び硫酸エステル化CNCの一例は、それぞれ、図1及び図2で表される。
 硫酸エステル化CNF及び硫酸エステル化CNCは、いずれも表面に硫酸エステル基を有するため、互いに大きな静電反発力が働く。そのため、実施形態に係る分散液は、易分散性及び分散安定性が高い。また、硫酸エステル化CNF及び硫酸エステル化CNCは、互いに同様の表面状態を有するため、互いに高い親和性を有する。そのため、実施形態に係る分散液において、硫酸エステル化CNFと硫酸エステル化CNCが均一に混合され、CNFリッチな相とCNCリッチな相へのミクロ相分離が起こりにくい。これらに起因して、実施形態に係る分散液は、乾燥及び再分散を経てもその物性が維持されるとともに、長いポットライフを有する。さらに、実施形態に係る分散液を用いて、CNFとCNCが均一に混合された複合体を製造することができ、このような複合体は高い破断強度及び酸素ガスバリア性を有することができる。
 硫酸エステル化CNF又は硫酸エステル化CNCの少なくともいずれか一方は、硫酸エステル基に加えて、その他の置換基を有してもよい。CNF又はCNCを構成するセルロース中のOH基の少なくとも1つが、その他の置換基により置換されてよい。その他の置換基は、例えば、アニオン性置換基及びその塩、エステル基、エーテル基、アシル基、アルデヒド基、アルキル基、アルキレン基、アリール基であってよく、又はこれらの2種以上を含んでもよい。分散性の向上の観点から、その他の置換基は、アニオン性置換基若しくはその塩、又はアシル基であってよい。アニオン性置換基としては、カルボキシ基、リン酸エステル基、亜リン酸エステル基、ザンテート基が挙げられる。分散性の向上の観点から、アニオン性置換基の塩は、ナトリウム塩、カリウム塩、又はカルシウム塩であってよい。また、分散性の向上の観点から、アシル基は、アセチル基であってよい。
 硫酸エステル化CNFにおける硫酸エステル化修飾率は、用途などに応じて任意の適切な値に設定することができる。硫酸エステル化CNFにおける硫酸エステル化修飾率は、硫酸エステル化CNF中の硫黄含有率(質量%)で表すことができる。硫酸エステル化CNF中の硫黄含有率(質量%)は、限定されないが、通常0.05質量%~30質量%、好ましくは0.1重量%~25重量%、より好ましくは0.5重量%~22重量%である。硫黄含有率が30重量%以下である硫酸エステル化CNFは、十分な結晶化度及び耐熱性を有することができる。硫黄含有率が0.05重量%以上である硫酸エステル化CNFは、効率的な製造が可能である。なぜなら、このようなCNFは、その十分な量の硫酸エステル基に起因して互いに静電的に反発し、このことは、製造過程において後述するように硫酸エステル化パルプを解繊して硫酸エステル化CNFを得るために要するエネルギーを減少させるためである。
 硫酸エステル化CNCにおける硫酸エステル化修飾率は、用途などに応じて任意の適切な値に設定することができる。硫酸エステル化CNCにおける硫酸エステル化修飾率は、硫酸エステル化CNC中の硫黄含有率(質量%)で表すことができ、通常、0.05質量%~15質量%の範囲内であるが、これに限定されない。
 硫酸エステル化CNF及び硫酸エステルCNCの硫黄含有率(質量%)は、例えば燃焼吸収-イオンクロマトグラフィー(IC)法により、以下のようにして求めることができる。
・測定装置:日本ダイオネクス株式会社製のICS-1500
・測定条件:磁性ボードに試料を秤量し、酸素雰囲気下(流量:1.5L/分)、環状炉(1350℃)で燃焼させ、発生したガス成分を3%過酸化水素水(20mL)に吸収させて吸収液を得る。得られた吸収液を純水で希釈して100mLにし、希釈液をイオンクロマトグラフィーに供する。測定結果から、試料の硫酸イオン濃度(質量%)を算出し、下記式:
   硫黄含有率(質量%)=硫酸イオン濃度(質量%)×32/96
により、硫黄含有率を計算する。
 硫酸エステル化CNFは、例えば、後述するように、原料パルプを硫酸エステル化し、得られた硫酸エステル化パルプを解繊することにより製造することができる。このようにして得られた硫酸エステル化CNFは、結晶部分と非晶質部分を有する。硫酸エステル化CNFの結晶化度は、その原料(綿、木材など)に依存する。硫酸エステル化CNFは、通常、20%~99%であり、好ましくは30%~95%、より好ましくは40%~90%、さらに好ましくは50%~85%の結晶化度を有する。結晶化度が20%以上である硫酸エステル化CNFは、十分な耐熱性及び剛直性を有することができる。99%を超える結晶化度を有する硫酸エステル化CNFは、十分な繊維長を有するように製造することが難しい傾向がある。
 硫酸エステル化CNCは、原料パルプの非晶質部分を硫酸で加水分解することによって得ることができる。硫酸エステル化CNCの結晶化度は、通常、85~100%、特に90%以上である。
 硫酸エステル化CNF及び硫酸エステル化CNCの結晶化度は、X線回折パターンにおけるセルロースの結晶由来のピーク面積を、非晶質由来のハローの面積と結晶由来のピーク面積の合計で除することにより、算出することができる。
 実施形態に係る分散液に含まれる硫酸エステル化CNFと硫酸エステル化CNCの質量比は、1:99~99:1の範囲内であってよい。それにより、後述する実施例で示されるように、分散液を用いて製造される複合体の破断強度及び酸素ガスバリア性が一層向上する。
 実施形態に係る分散液は、分散媒をさらに含む。分散媒は、極性媒体、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、エチレングリコール、ジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルテトラヒドロフラン、又はこれらの混合物であってよい。特に、分散媒は、比誘電率が38以上である液体を、分散媒の総体積を基準として50~100体積%、好ましくは75~100体積%の範囲内の量で含有してよい。特に、分散媒は、比誘電率が38以上である液体を、分散媒の総体積を基準として80~100体積%の範囲内の量で含有してよい。それにより、後述する実施例で示されるように、分散液のポットライフがより長くなる。
 実施形態に係る分散液は、任意選択的に、分散質として添加物をさらに含んでもよい。添加物は、無機添加物又は有機添加物であってよい。
 無機添加物は、シリカ、マイカ、タルク、クレー、カーボン、炭酸塩(例えば炭酸カルシウム、炭酸マグネシウム)、酸化物(例えば酸化アルミニウム、酸化チタン、酸化亜鉛、酸化鉄)、セラミックス(例えばフェライト)、又はこれらの混合物の微粒子などの無機微粒子であってよい。無機微粒子は、分散質の総重量を基準として、0.09~5質量%の量で含有されてよい。それにより、後述する実施例で示されるように、分散液を用いて製造される複合体の破断強度が一層向上する。
 有機添加物として、有機微粒子、及び機能性化合物が挙げられる。有機微粒子としては、樹脂及びゴムからなる群から選択される少なくとも1種の物質の微粒子、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリエチレン樹脂(例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリビニルアルコール、アクリルアミド樹脂、シリコーン樹脂、天然ゴム、合成ゴム、又はこれらの混合物の微粒子が挙げられる。機能性化合物としては、色素、UV吸収剤、酸化防止剤、帯電防止剤、界面活性剤が挙げられる。
 実施形態に係る分散液は、必要に応じて、凍結乾燥、スプレードライなどの任意の方法で乾燥させることができる。乾燥体に分散媒を添加して混合することにより、再度分散液を得ることができる。
(2)分散液の調製方法
 上記のような硫酸エステル化CNF及び硫酸エステル化CNCを含む分散液の調製方法の例を説明する。実施形態に係る硫酸エステル化CNF及び硫酸エステル化CNCを含む分散液の調製方法は、硫酸エステル化CNF分散液と硫酸エステル化CNC分散液を混合することを含む。
 硫酸エステル化CNF分散液は、任意の方法で調製してよい。例えば、無水酢酸又はプロピオン酸無水物の少なくとも一方、ジメチルスルホキシド、及び硫酸を含む溶液と、原料パルプとを混合して、硫酸エステル化パルプを得る。次いで、硫酸エステル化パルプを上述した分散媒と併せて撹拌する。撹拌は、例えば超音波処理により行ってよい。それにより、硫酸エステル化パルプが解繊されて、硫酸エステル化CNF分散液が得られる。
 硫酸エステル化CNC分散液は、任意の方法で調製してよい。例えば、原料パルプ中のセルロースの非晶質部分を硫酸で加水分解し、得られた固形分を洗浄し、適当な分散媒と併せて撹拌することにより、硫酸エステル化CNC分散液を得ることができる。
 硫酸エステル化CNF分散液と硫酸エステル化CNC分散液を併せて混合する。ここに、上述した添加物をさらに加えてもよい。混合は、せん断力を加えながら行ってよい。それにより、硫酸エステル化CNFと硫酸エステル化CNCが良好に混合される。このように良好に混合された分散液を用いて製造される複合体は、後述する実施例で示されるように、一層高い破断強度及び酸素ガスバリア性を有することができる。混合には、例えば、撹拌機、三本ロール機、二軸混錬機、3軸遊星混錬機、ディスパー、ペイントシェイカー、ビーズミル、カッターミキサー、プラネタリーミキサーなどの装置を使用してよい。
 混合は、任意の条件で行ってよく、例えば、20℃~150℃で、5分~1時間混合してよい。
(3)複合体
 実施形態に係る複合体は、硫酸エステル化CNF、及び硫酸エステル化CNCを含む。一実施形態において、複合体は、図3に模式的に示されるように、硫酸エステル化CNFと硫酸エステル化CNCが混合されている混合複合体である。別の実施形態において、複合体は、図4に模式的に示されるように、硫酸エステル化CNFを含有する、少なくとも1層のCNF層と、硫酸エステル化CNCを含有する、少なくとも1層のCNC層と、を含む積層複合体である。以下、各実施形態を説明する。
(3-1)混合複合体
 硫酸エステル化CNF及び硫酸エステル化CNCは、上で詳細に説明したため、ここでは詳細な説明は省略する。硫酸エステル化CNF及び硫酸エステル化CNCは、いずれも表面に硫酸エステル基を有し、同様の表面状態を有することから、互いに高い親和性を有する。そのため、混合複合体において、硫酸エステル化CNFと硫酸エステル化CNCは、相分離することなく均一に混合された状態であることが可能である。それにより、混合複合体は、高い破断強度及び酸素ガスバリア性を有することができる。
 混合複合体に含まれる硫酸エステル化CNFと硫酸エステル化CNCの質量比は、1:99~99:1の範囲内であってよい。それにより、後述する実施例で示されるように、混合複合体の破断強度及び酸素ガスバリア性が一層向上する。
 混合複合体は、硫酸エステル化CNF及び硫酸エステル化CNCに混合された添加物をさらに含んでよい。添加物は、無機添加物又は有機添加物であってよい。
 混合複合体は、図5に示すように、無機添加物として無機微粒子を含んでよい。無機微粒子の例として、シリカ、マイカ、タルク、クレー、カーボン、炭酸塩(例えば炭酸カルシウム、炭酸マグネシウム)、酸化物(例えば酸化アルミニウム、酸化チタン、酸化亜鉛、酸化鉄)、セラミックス(例えばフェライト)、又はこれらの混合物の微粒子が挙げられる。混合複合体は、混合複合体の総質量を基準として0.09~5質量%の範囲内の量で、無機微粒子を含んでよく、それにより、混合複合体の破断強度が一層向上する。
 混合複合体は、図6に示すように、有機添加物として樹脂及びゴムからなる群から選択される少なくとも1種の物質を含んでよい。樹脂及びゴムとしては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリエチレン樹脂(例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリビニルアルコール、アクリルアミド樹脂、シリコーン樹脂、天然ゴム、合成ゴムが挙げられる。樹脂及びゴムからなる群から選択される少なくとも1種の物質は、混合複合体の破断強度を一層向上させることができる。それに加えて又はそれに代えて、混合複合体は、有機添加物として、機能性化合物を含んでもよい。機能性化合物としては、色素、UV吸収剤、酸化防止剤、帯電防止剤、界面活性剤が挙げられる。
 混合複合体は、図7に示すように、架橋構造を有してもよい。具体的には、硫酸エステル化CNFの少なくとも1つと、硫酸エステル化CNF、硫酸エステル化CNC、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の少なくとも1つとの間に架橋が形成されてよい。それに加えて又はそれに代えて、硫酸エステル化CNCの少なくとも1つと、硫酸エステル化CNF、硫酸エステル化CNC、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の少なくとも1つとの間に、架橋が形成されてよい。架橋は、セルロースのヒドロキシ基と、セルロースの別のヒドロキシ基、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の反応性部位(例えば、ヒドロキシ基、アルデヒド基、カルボキシ基、メトキシ基、カルボニル基、アルケン部位、エーテル部位)とが、縮合反応又は付加反応により結合することにより形成され得る。結合の種類は、特に限定されないが、例えばウレタン結合、エステル結合、エーテル結合、アミド結合、尿素結合が挙げられる。特に、ウレタン結合を含む架橋は、混合複合体の酸素ガスバリア性を向上させることができる。架橋構造を有する混合複合体は、図8に示すように、上述した無機微粒子を含んでもよい。
 架橋の存在は、赤外分光法、近赤外分光法、ラマン分光法、核磁気共鳴分光法、元素分析、ゲル浸透クロマトグラフィー、示差走査熱量測定などの任意の方法により確認することができる。架橋を形成する化学結合の種類は、赤外分光法、近赤外分光法、ラマン分光法、核磁気共鳴分光法などの任意の方法により同定することができる。
 混合複合体は、図9に示されるように、基材に支持されてもよい。すなわち、一実施形態に係る複合体は、上述した硫酸エステル化CNF及び硫酸エステル化CNCを含む混合複合体と、これを支持する基材とを含んでよい。基材は、ろ紙、洋紙、和紙、パルプシート、クラフト紙、段ボール原紙などの、セルロースを主成分とする紙基材であってよい。紙基材は、タルクなどの無機微粒子、蛍光剤、ポリエチレンなどの樹脂などを含有してもよい。
 紙基材の主成分であるセルロースのOH基は、硫酸エステル基と非常に強い水素結合を形成する。そのため、硫酸エステル化CNF及び硫酸エステル化CNCを含む混合複合体と紙基材は、十分な強度で接着し得る。また、紙基材とそれに支持された混合複合体とを含む複合体は、紙基材単体よりも高いガスバリア性及び高い破断強度を有し得る。したがって、このような複合体は、包装材料、梱包材料(例えば段ボール)、容器材料などの紙製品の、向上された機能を有する代替品として使用することができる。
(3-2)積層複合体
 積層複合体において、少なくとも1層のCNF層と少なくとも1層のCNC層は、互いに隣接している。少なくとも1層のCNF層と少なくとも1層のCNC層は、交互に積層されていてよい。例えば、一実施形態において、積層複合体は、図10に示すように、1層のCNF層1と、その上に設けられた1層のCNC層3を有する。別の実施形態において、積層複合体は、図11に示すように、2層のCNF層1と、それらの間に設けられた1層のCNC層3を有する。さらに別の実施形態において、積層複合体は、図12に示すように、2層のCNC層3と、それらの間に設けられた1層のCNF層1を有する。
 硫酸エステル化CNF及び硫酸エステル化CNCは、上で詳細に説明したため、ここでは詳細な説明は省略する。硫酸エステル化CNF及び硫酸エステル化CNCは、いずれも表面に硫酸エステル基を有し、同様の表面状態を有することから、互いに高い親和性を有する。そのため、CNF層とCNC層の間の接着強度が高く、それゆえに混合複合体は高い破断強度及び酸素ガスバリア性を有することができる。
 CNF層又はCNC層の少なくともいずれか一層は、添加物をさらに含んでよい。添加物は、上述した無機添加物又は有機添加物であってよい。CNF層又はCNC層の少なくともいずれか一層は、その層の総質量を基準として0.09~5質量%の範囲内の量で、無機微粒子を含んでよい。それにより、積層複合体の破断強度が一層向上する。また、無機微粒子を含有する層とその層に隣接している層との間の界面は、無機微粒子の存在により凹凸を有し、これは、アンカー効果によりこれら互いに隣接する層の間の接着強度を一層向上させる。
 CNF層又はCNC層の少なくともいずれか一層は、樹脂及びゴムからなる群から選択される少なくとも1種の物質をさらに含んでよい。それにより、積層複合体の破断強度が一層向上する。樹脂及びゴムとしては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリエチレン樹脂(例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリビニルアルコール、アクリルアミド樹脂、シリコーン樹脂、天然ゴム、合成ゴムが挙げられる。
 CNF層又はCNC層の少なくともいずれか1層は、架橋構造を有してもよい。CNF層において、硫酸エステル化CNFの少なくとも1つと、硫酸エステル化CNF、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の少なくとも1つとの間に、架橋が形成されてよい。それに加えて又はそれに代えて、CNC層において、硫酸エステル化CNCの少なくとも1つと、硫酸エステル化CNC、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の少なくとも1つとの間に、架橋が形成されてよい。架橋は、セルロースのヒドロキシ基と、セルロースの別のヒドロキシ基、又は樹脂及びゴムからなる群から選択される少なくとも1種の物質の反応性部位(例えば、ヒドロキシ基、アルデヒド基、カルボキシ基、メトキシ基、カルボニル基、アルケン部位、エーテル部位)とが、縮合反応又は付加反応により結合することにより形成され得る。結合の種類は、特に限定されないが、例えばウレタン結合、エステル結合、エーテル結合、アミド結合、尿素結合が挙げられる。特に、ウレタン結合を含む架橋構造は、積層複合体の酸素ガスバリア性を向上させることができる。
 架橋の存在は、赤外分光法、近赤外分光法、ラマン分光法、核磁気共鳴分光法、元素分析、ゲル浸透クロマトグラフィー、示差走査熱量測定などの任意の方法により確認することができる。架橋を形成する化学結合の種類は、赤外分光法、近赤外分光法、ラマン分光法、核磁気共鳴分光法などの任意の方法により同定することができる。
 積層複合体は、基材に支持されてもよい。すなわち、一実施形態に係る複合体は、図13に示すように、少なくとも1層のCNF層1及び少なくとも1層のCNC層3を含む積層複合体10と、これを支持する基材5とを含んでよい。基材5は、ろ紙、洋紙、和紙、パルプシート、クラフト紙、段ボール原紙などの、セルロースを主成分とする紙基材であってよい。紙基材は、タルクなどの無機微粒子、蛍光剤、ポリエチレンなどの樹脂などを含んでもよい。
 紙基材の主成分であるセルロースのOH基は、硫酸エステル化CNF及び硫酸エステル化CNCの硫酸エステル基と非常に強い水素結合を形成する。そのため、積層複合体は、紙基材に十分な強度で接着し得る。また、紙基材とそれに支持された積層複合体とを含む複合体は、紙基材単体よりも高いガスバリア性及び高い破断強度を有し得る。したがって、このような複合体は、包装材料、梱包材料(例えば段ボール)、容器材料などの紙製品の、向上された機能を有する代替品として使用することができる。
(4)複合体の製造方法
(4-1)混合複合体の製造方法
 上述のような混合複合体は、上述の硫酸エステル化CNF及び硫酸エステル化CNCを含む分散液を乾燥させて、分散媒を除去することにより製造することができる。
 混合複合体が、樹脂及びゴムからなる群から選択される少なくとも1種の物質を含む場合、混合複合体は、樹脂及びゴムからなる群から選択される少なくとも1種の物質の微粒子をさらに含む分散液を乾燥することにより、製造することができる。乾燥時には、分散液を加熱及び/又は加圧してもよい。乾燥後の乾燥体を加熱及び/又は加圧してもよい。あるいは、樹脂及びゴムからなる群から選択される少なくとも1種の物質を含む混合複合体は、硫酸エステル化CNF及び硫酸エステル化CNCを含む分散液を乾燥して、硫酸エステル化CNFと硫酸エステル化CNCの混合粉末を得、これに樹脂及びゴムからなる群から選択される少なくとも1種の物質を加えて混合し、混合物を加熱及び/又は加圧することによって、製造することもできる。
 混合複合体が架橋構造を有する場合、混合複合体は、上述の硫酸エステル化CNF及び硫酸エステル化CNCを含む分散液に、架橋剤を加えて架橋反応させた後、分散液を乾燥することにより、製造することができる。
 混合複合体は、用途に応じて所望の形状に成形してよい。
 分散液は、上述した基材、特に紙基材上で乾燥させてもよい。それにより、混合複合体とそれを支持する基材とを含む複合体が製造される。紙基材上の分散液は、迅速に乾燥することができるため、このような複合体は短時間で製造することができる。
(4-2)積層複合体の製造方法
 上記のような積層複合体の製造方法の例を説明する。積層複合体の製造方法は、(a)硫酸エステル化CNF又は硫酸エステル化CNCの一方、及び液体を含む第1層を形成することと、(b)第1層上に、硫酸エステル化CNF又は硫酸エステル化CNCの他方を含む分散液を供給して、第1層上に第2層を形成することと、(c)第1層及び第2層から液体を除去することと、を含む。
 ステップ(a)において、硫酸エステル化CNF又は硫酸エステル化CNCの一方を含む分散液の層を形成して、第1層を形成する。第1層の含液率は、0質量%超であってよく、特に5質量%以上であってよい。それにより、後述の実施例で示されるように、第1層とその上に形成される第2層と間の接着性が向上する。これは、第1層と第2層の界面において、硫酸エステル化CNFと硫酸エステル化CNCが所定の以上の深さまで混ざり合い、絡まり合うためであると考えられる。また、第1層の含液率は、30質量%以下、特に20質量%以下であってよい。第1層の含液率は、分散液の層を形成した後、この層を乾燥して分散媒を減少させることにより、調整することができる。
 ステップ(b)において、第1層の上に、硫酸エステル化CNF又は硫酸エステル化CNCの他方を含む分散液を供給して、第1層上に第2層を形成する。
 ステップ(a)及びステップ(b)を交互に繰り返して、第1層及び第2層を合計3層以上形成してもよい。この場合、ステップ(b)において、第2層を乾燥して、第2層の含液率を調整してもよい。乾燥後の第2層の含液率は、0質量%超、特に5質量%以上であってよい。それにより、第2層とその上に形成される第1層と間の接着性が向上する。また、乾燥後の第2層の含液率は、30質量%以下、特に20質量%以下であってもよい。
 次いで、ステップ(c)において、第1層及び第2層を乾燥して、第1層及び第2層に含まれる分散媒を除去する。乾燥方法としては、自然乾燥、減圧乾燥、温風乾燥などの任意の方法を利用することができる。こうして、上述のような積層混合体が得られる。
 なお、ステップ(a)において、上述した基材、特に紙基材上に、第1層を形成してもよい。それにより、積層複合体とそれを支持する基材とを含む複合体が製造される。紙基材上の分散液は、迅速に乾燥することができるため、このような複合体は短時間で製造することができる。
 以上、本発明の実施形態について詳述したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の変更を行うことができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(1)試料A~Xの調製
 試料A:水中の硫酸エステル化CNF分散液
 ジメチルスルホキシド300g、無水酢酸33.3g、及び濃度98質量%の硫酸4.3gを、1Lフラスコ中で、スターラーチップで撹拌して混合した。続いて、針葉樹晒クラフトパルプ(NBKP)(Cariboo Pulp and Paper Company製「CARIBOO」)10gを添加し、室温で4時間撹拌して、NBKPを硫酸エステル化した。その後、5%水酸化ナトリウム水溶液を滴下して、反応混合物のpHを7.0にした。続いて、反応混合物をナイロンメッシュ(アズワン株式会社製「PA-11μ」)でろ過し、同時に蒸留水でリンスした。それにより、硫酸エステル化パルプを得た。硫酸エステル化パルプを1Lフラスコに移し、固形分濃度が1%となるように蒸留水を加え、超音波処理を行った。それにより、固形分濃度1質量%の、水中の硫酸エステル化CNF分散液(試料A)を得た。
 試料B:N,N-ジメチルホルムアミド(DMF)中の硫酸エステル化CNF分散液
 蒸留水の代わりにDMFを用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、DMF中の硫酸エステル化CNF分散液(試料B)を得た。
 試料C:エチレングリコール中の硫酸エステル化CNF分散液
 蒸留水の代わりにエチレングリコールを用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、エチレングリコール中の硫酸エステル化CNF分散液(試料C)を得た。
 試料D:水とエタノールの混合物(水:エタノール(体積比)=80:20)中の硫酸エステル化CNF分散液
 蒸留水の代わりに水とエタノールの混合物(水:エタノール(体積比)=80:20)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、水とエタノールの混合物中の硫酸エステル化CNF分散液(試料D)を得た。
 試料E:水とエタノールの混合物(水:エタノール(体積比)=75:25)中の硫酸エステル化CNF分散液
 蒸留水の代わりに水とエタノールの混合物(水:エタノール(体積比)=75:25)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、水とエタノールの混合物中の硫酸エステル化CNF分散液(試料E)を得た。
 試料F:エチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=80:20)中の硫酸エステル化CNF分散液
 蒸留水の代わりにエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=80:20)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、エチレングリコールとエタノールの混合物中の硫酸エステル化CNF分散液(試料F)を得た。
 試料G:エチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=75:25)中の硫酸エステル化CNF分散液
 蒸留水の代わりにエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=75:25)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、エチレングリコールとエタノールの混合物中の硫酸エステル化CNF分散液(試料G)を得た。
 試料H:ホルムアミド中の硫酸エステル化CNF分散液
 蒸留水の代わりにホルムアミドを用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、ホルムアミド中の硫酸エステル化CNF分散液(試料H)を得た。
 試料I:ホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)中の硫酸エステル化CNF分散液
 蒸留水の代わりにホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、ホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)中の硫酸エステル化CNF分散液(試料I)を得た。
 試料J:水とエチレングリコールの混合物(水:エチレングリコール(体積比)=50:50)中の硫酸エステル化CNF分散液
 蒸留水の代わりに蒸留水とエチレングリコールの混合物(水:エチレングリコール(体積比)=50:50)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、水とエチレングリコールの混合物中の硫酸エステル化CNF分散液(試料J)を得た。
 試料K:水とエチレングリコールの混合物(水:エチレングリコール(体積比)=80:20)中の硫酸エステル化CNF分散液
 蒸留水の代わりに蒸留水とエチレングリコールの混合物(水:エチレングリコール(体積比)=80:20)を用いたこと以外は試料Aと同様にして、固形分濃度1質量%の、水とエチレングリコールの混合物中の硫酸エステル化CNF分散液(試料K)を得た。
 試料L:水中のTEMPO酸化CNF分散液
 2,2,6,6-テトラメチルピペリジン-N-オキシド(TEMPO)0.25mmol及び臭化ナトリウム20mmolを水に溶解させて、500mLの水溶液を得た。この水溶液に、絶対乾燥状態(すなわち、含水率0%)のNBKP(Cariboo Pulp and Paper Company製「CARIBOO」)10gを加え、パルプが均一に分散するまで撹拌した。混合物の温度を20℃にした後、次亜塩素酸ナトリウム水溶液(富士フイルム和光純薬株式会社製)64mmolを添加して酸化反応を開始させた。反応中、反応系の温度を20℃に保ち、3N水酸化ナトリウム水溶液を逐次添加することによりpHを10に維持した。3時間反応させた後、結果物をガラスフィルターでろ過し、ろ物を十分に水洗した。それにより、酸化処理されたパルプを得た。
 酸化処理されたパルプに、固形分濃度が1質量%となるように蒸留水を加えてスラリーを得、超高圧ホモジナイザーを用いてこのスラリーを140MPaで3回処理した。それにより、透明なゲル状の、水中のTEMPO酸化CNF分散液(試料L)を得た。
 試料M:水中のリン酸エステル化CNF分散液
 尿素10g、リン酸二水素ナトリウム二水和物5.53g、及びリン酸水素二ナトリウム4.13gを、水10.9gに溶解させて、リン酸化試薬を調製した。乾燥状態のNBKP(Cariboo Pulp and Paper Company製「CARIBOO」)の抄上げシートを、カッターミル及びピンミルで処理し、綿状繊維を得た。絶乾質量10gの綿状繊維にリン酸化試薬をまんべんなくスプレーし、手で練り合わせて含浸パルプを得た。140℃に加熱したダンパー付きの送風乾燥機で含浸パルプを80分間加熱処理した。それにより、リン酸化パルプを得た。
 10gのリン酸化パルプに1Lのイオン交換水を加えて、均一に分散するまで撹拌した後、分散液をろ過脱水した。得られたシートと1Lのイオン交換水を均一に分散するまで撹拌し、分散液をろ過脱水した。得られたシートをもう一回同様に処理した。次いで、得られたシートと1Lのイオン交換水を撹拌しながら、1Nの水酸化ナトリウム水溶液を少しずつ添加し、pHが12~13のパルプスラリーを得た。このパルプスラリーを脱水して、シートを得た。シートと1Lのイオン交換水を均一に分散するまで撹拌し、分散液をろ過脱水した。得られたシートをさらに二回、同様に処理した。得られたシートとイオン交換水を混合して0.5質量%のスラリーを得た。このスラリーを、解繊処理装置(エム・テクニック株式会社製「クレアミックス-11S」)を用いて、6900回転/分の条件で180分間解繊処理した。イオン交換水を添加してスラリーの固形分濃度を1質量%に調整した。それにより、固形分濃度1質量%の、水中のリン酸エステル化CNF分散液(試料M)を得た。
 試料N:水中の硫酸エステル化CNC分散液
 2Lフラスコ中で58%硫酸800mLを50℃に加熱した。絶対乾燥状態のNBKP(Cariboo Pulp and Paper Company製「CARIBOO」)100gをフラスコに投入し、3時間撹拌した。結果物を、遠心分離機(エッペンドルフ・ハイマック・テクノロジーズ株式会社製「CT18R」)で、20,000Gで10分間処理した。続いて、上澄み液をデカンテーションで除去し、蒸留水400mLを添加してペレットを懸濁させた。同様の遠心分離処理、デカンテーション、蒸留水の添加、及び懸濁をさらに二回行った。それにより、水中の硫酸エステル化CNC分散液(試料N)を得た。
 試料O:DMF中の硫酸エステル化CNC分散液
 試料Nを、凍結乾燥機(アズワン製「FDU-12AS」)で乾燥し、CNC粉体を得た。固形分濃度が1質量%になるようにCNC粉体にDMFを添加し、Primix製のホモディスパー2.5型で2分間処理した。それにより、固形分濃度1質量%の、DMF中のCNC散液(試料O)を得た。
 試料P:エチレングリコール中のCNC分散液
 DMFの代わりにエチレングリコールを用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、エチレングリコール中のCNC分散液(試料P)を得た。
 試料Q:水とエタノールの混合物(水:エタノール(体積比)=80:20)中の硫酸エステル化CNC分散液
 DMFの代わりに水とエタノールの混合物(水:エタノール(体積比)=80:20)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、水とエタノールの混合物中の硫酸エステル化CNC分散液(試料Q)を得た。
 試料R:水とエタノールの混合物(水:エタノール(体積比)=75:25)中の硫酸エステル化CNC分散液
 DMFの代わりに水とエタノールの混合物(水:エタノール(体積比)=75:25)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、水とエタノールの混合物中の硫酸エステル化CNC分散液(試料R)を得た。
 試料S:エチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=80:20)中の硫酸エステル化CNC分散液
 DMFの代わりにエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=80:20)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、エチレングリコールとエタノールの混合物中の硫酸エステル化CNC分散液(試料S)を得た。
 試料T:エチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=75:25)中の硫酸エステル化CNC分散液
 DMFの代わりにエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=75:25)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、エチレングリコールとエタノールの混合物中の硫酸エステル化CNC分散液(試料T)を得た。
 試料U:ホルムアミド中のCNC分散液
 DMFの代わりにホルムアミドを用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、ホルムアミド中のCNC分散液(試料U)を得た。
 試料V:ホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)中の硫酸エステル化CNC分散液
 DMFの代わりにホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、ホルムアミドとエチレングリコールの混合物中の硫酸エステル化CNC分散液(試料V)を得た。
 試料W:水とエチレングリコールの混合物(水:エチレングリコール(体積比)=50:50)中の硫酸エステル化CNC分散液
 DMFの代わりに水とエチレングリコールの混合物(水:エチレングリコール(体積比)=50:50)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、水とエチレングリコールの混合物中の硫酸エステル化CNC分散液(試料W)を得た。
 試料X:水とエチレングリコールの混合物(水:エチレングリコール(体積比)=80:20)中の硫酸エステル化CNC分散液
 DMFの代わりに水とエチレングリコールの混合物(水:エチレングリコール(体積比)=80:20)を用いたこと以外は試料Oと同様にして、固形分濃度1質量%の、水とエチレングリコールの混合物中の硫酸エステル化CNC分散液(試料X)を得た。
(2)分散液の調製及び複合体の作製
 実施例1
 300mLのポリプロピレン製ビーカー中で、75mLの試料A及び75mLの試料NをPrimix製のホモディスパー2.5型で5分間混合して、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水(比誘電率80.4)中で分散した分散液を得た。
 この分散液の全量を、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、室温下で2週間自然乾燥させて、膜を形成した。PTFE容器から膜を取り出し、試料裁断機(ダンベル社製「SDL200」)で裁断して、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を作製した。複合体の被試験部の厚さは25μm、幅は10mm、長さは100mmであった。
 実施例2
 75mLの試料A及び75mLの試料Nに代えて、0.75mLの試料A及び149.25mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=0.5:99.5(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=0.5:99.5(質量比))を含むダンベル型の複合体を得た。
 実施例3
 75mLの試料A及び75mLの試料Nに代えて、1.5mLの試料A及び148.5mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=1:99(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=1:99(質量比))を含むダンベル型の複合体を得た。
 実施例4
 75mLの試料A及び75mLの試料Nに代えて、37.5mLの試料A及び112.5mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=25:75(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=25:75(質量比))を含むダンベル型の複合体を得た。
 実施例5
 75mLの試料A及び75mLの試料Nに代えて、112.5mLの試料A及び37.5mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=75:25(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=75:25(質量比))を含むダンベル型の複合体を得た。
 実施例6
 75mLの試料A及び75mLの試料Nに代えて、148.5mLの試料A及び1.5mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=99:1(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=99:1(質量比))を含むダンベル型の複合体を得た。
 実施例7
 75mLの試料A及び75mLの試料Nに代えて、149.25mLの試料A及び0.75mLの試料Nを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=99.5:0.5(質量比))が水中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=99.5:0.5(質量比))を含むダンベル型の複合体を得た。
 実施例8
 75mLの試料A及び75mLの試料Nに代えて、75mLの試料B及び75mLの試料Oを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がDMF(比誘電率38)中で分散した分散液を得た。この分散液を用いて、自然乾燥の代わりに、真空乾燥機(ヤマト科学製「APD200」)で、減圧下、150℃で5時間乾燥を行ったこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例9
 75mLの試料B及び75mLの試料Oに代えて、75mLの試料C及び75mLの試料Pを使用したこと以外は実施例8と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がエチレングリコール(比誘電率38.7)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例10
 75mLの試料A及び75mLの試料Nに代えて、75mLの試料D及び75mLの試料Qを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水(比誘電率80.4)とエタノール(比誘電率25.3)の混合物(水:エタノール(体積比)=80:20)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例11
 75mLの試料A及び75mLの試料Nに代えて、75mLの試料E及び75mLの試料Rを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水とエタノールの混合物(水:エタノール(体積比)=75:25)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例12
 75mLの試料B及び75mLの試料Oに代えて、75mLの試料F及び75mLの試料Sを使用したこと以外は実施例8と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=80:20)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例13
 75mLの試料B及び75mLの試料Oに代えて、75mLの試料G及び75mLの試料Tを使用したこと以外は実施例8と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がエチレングリコールとエタノールの混合物(エチレングリコール:エタノール(体積比)=75:25)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例14
 75mLの試料A及び75mLの試料Nに代えて、75mLの試料H及び75mLの試料Uを使用したこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がホルムアミド(比誘電率110)中で分散した分散液を得た。この分散液を用いて、自然乾燥の代わりに、真空乾燥機(ヤマト科学製「APD200」)で、減圧下、150℃で10時間乾燥を行ったこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例15
 75mLの試料H及び75mLの試料Uに代えて、75mLの試料I及び75mLの試料Vを使用したこと以外は実施例14と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))がホルムアミドとエチレングリコールの混合物(ホルムアミド:エチレングリコール(体積比)=50:50)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例16
 75mLの試料H及び75mLの試料Uに代えて、75mLの試料J及び75mLの試料Wを使用したこと以外は実施例14と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水とエチレングリコールの混合物(水:エチレングリコール(体積比)=50:50)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例17
 75mLの試料H及び75mLの試料Uに代えて、75mLの試料K及び75mLの試料Xを使用したこと以外は実施例14と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水とエチレングリコールの混合物(水:エチレングリコール(体積比)=80:20)中で分散した分散液、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例18
 300mLのポリプロピレン製ビーカー中で、150mLの試料A、150mLの試料N、及び0.0015gのシリカ微粒子(日鉄ケミカル&マテリアル株式会社製「HS-208」)をPrimix製のホモディスパー2.5型で5分間混合して、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:0.05(質量比))が水中で分散した分散液を得た。この分散液の半量を用いて、実施例1と同様にして、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:0.05(質量比))を含むダンベル型の複合体を作製した。
 実施例19
 0.003gのシリカ微粒子を用いたこと以外は実施例18と同様にして、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:0.1(質量比))が水中で分散した分散液、及び硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:0.1(質量比))を含むダンベル型の複合体を得た。
 実施例20
 0.075gのシリカ微粒子を用いたこと以外は実施例18と同様にして、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:2.5(質量比))が水中で分散した分散液、及び硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:2.5(質量比))を含むダンベル型の複合体を得た。
 実施例21
 0.15gのシリカ微粒子を用いたこと以外は実施例18と同様にして、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC=50:50:5.0(質量比))が水中で分散した分散液、及び硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:5.0(質量比))を含むダンベル型の複合体を得た。
 実施例22
 0.18gのシリカ微粒子を用いたこと以外は実施例18と同様にして、硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:6.0(質量比))が水中で分散した分散液、及び硫酸エステル化CNF、硫酸エステル化CNC、及びシリカ微粒子(CNF:CNC:シリカ=50:50:6.0(質量比))を含むダンベル型の複合体を得た。
 実施例23
 375mLの試料A及び375mLの試料Nを、マイクロフルイダイザー(Microfluidics製「M-110EH」)を用いて150MPaで3回処理して混合した。それにより、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水中で分散した分散液を得た。150mLのこの分散液を用いて、実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を作製した。
 実施例24
 75mLの試料A及び75mLの試料Nを、500mLのポリプロピレン製のボトルに入れて密閉し、ボトルを80℃のウォーターバスに24時間静置した。試料A及び試料Nは、熱対流により混合された。それにより、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水中で分散した分散液を得た。この分散液の全量を用いて、実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を作製した。
 比較例1
 試料Aに代えて試料Lを用いたこと以外は実施例1と同様にして、TEMPO酸化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水中で分散した分散液、及びTEMPO酸化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 比較例2
 試料Aに代えて試料Mを用いたこと以外は実施例1と同様にして、リン酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水中で分散した分散液、及びリン酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含むダンベル型の複合体を得た。
 実施例25
 実施例1と同様にして調製したCNF及びCNCの分散液を、凍結乾燥機(アズワン製「FDU-12AS」)で乾燥させて、乾燥粉体を得た。乾燥粉体3gとポリウレタンペレット(BASF製「エラストラン」)97gとを併せて、三本ロール圧延装置(株式会社井元製作所製、1983型)を用いて100℃で4回圧延した。得られた膜を試料裁断機(ダンベル社製「SDL200」)で裁断して、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))、並びにポリウレタン樹脂を含むダンベル型の複合体を作製した。
 実施例26
 実施例1と同様にして調製したCNF及びCNCの分散液4.68mLと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)1.5gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、分散液を得た。得られた分散液を用いて、実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))、並びにポリビニルアルコールを含むダンベル型の複合体を作製した。
 実施例27
 150mLの試料A及び150mLの試料Nを用いたこと以外は実施例1と同様にして、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))が水中で分散した分散液300mLを得た。この分散液と、固形分濃度50質量%の天然ゴムラテックス(ケニス株式会社製)194gとを、常温で混合した。ここにラジカル発生剤(日油株式会社製「パーヘキサ25B-40」)3gを加え、混合物をテフロン(登録商標)のトレイに入れて80℃で3日間乾燥させた。結果物を、三本ロール圧延装置(株式会社井元製作所製、1983型)を用いて100℃で4回圧延した。得られた膜を試料裁断機(ダンベル社製「SDL200」)で裁断して、硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))、並びに天然ゴムを含むダンベル型の複合体を作製した。
 実施例28
 実施例1と同様にして調製したCNF及びCNCの分散液4.68mLと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)1.5gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、分散液を得た。得られた分散液に、1Nの塩酸0.01g及び37質量%のホルムアルデヒド水溶液0.3gを加えた。それにより、アセタール結合を介した架橋構造が形成された。架橋反応後の分散液を用いて、実施例1と同様にして、ダンベル型の複合体を作製した。
 実施例29
 実施例9と同様にして調製したCNF及びCNCの分散液150gに、ジフェニルメタンジイソシアネート41gを加え、50℃で3時間撹拌した。それにより、CNF、CNC、及びエチレングリコールのOH基がジフェニルメタンジイソシアネートのNCO基と反応して、ウレタン結合が形成された。その結果、CNF、CNC、及びウレタン樹脂がウレタン結合を介して架橋されている架橋体が得られた。反応後の分散液を、三本ロール圧延装置(株式会社井元製作所製、1983型)を用いて100℃で4回圧延した。得られた膜を試料裁断機(ダンベル社製「SDL200」)で裁断して、ダンベル型の複合体を作製した。
 実施例30
 実施例1と同様にして調製したCNF及びCNCの分散液4.68mLと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)1.5gと、蒸留水100mLと、ジフェニルメタンジイソシアネート0.05gとを、50℃で24時間撹拌した。それにより、ウレタン結合を介した架橋構造が形成された。架橋反応後の分散液を用いて、実施例1と同様にして、ダンベル型の複合体を作製した。
 実施例31
 実施例16と同様にして調製したCNF及びCNCの分散液150gに、ジフェニルメタンジイソシアネート20.5gを加え、50℃で3時間撹拌した。それにより、CNF、CNC、及びエチレングリコールのOH基がジフェニルメタンジイソシアネートのNCO基と反応して、ウレタン結合が形成された。その結果、CNF、CNC、及びウレタン樹脂がウレタン結合を介して架橋されている架橋体が得られた。反応後の分散液を、三本ロール圧延装置(株式会社井元製作所製、1983型)を用いて100℃で4回圧延した。得られた膜を試料裁断機(ダンベル社製「SDL200」)で裁断して、ダンベル型の複合体を作製した。
 実施例32
 75mLの試料Aを、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に75mLの試料Nをさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例33
 50mLの試料Aを、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に50mLの試料Nをさらに流し込み、含液率が20質量%になるまで自然乾燥した。このPTFE容器に50mLの試料Aをさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例34
 50mLの試料Nを、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に50mLの試料Aをさらに流し込み、含液率が20質量%になるまで自然乾燥した。このPTFE容器に50mLの試料Nをさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例35
 500mLの試料A及び0.0025gのシリカ微粒子(日鉄ケミカル&マテリアル株式会社製「HS-208」)をPrimix製のホモディスパー2.5型で5分間混合して、CNF及びシリカ微粒子が水中で分散した分散液を得た。また、500mLの試料N及び0.0025gのシリカ微粒子(日鉄ケミカル&マテリアル株式会社製「HS-208」)をPrimix製のホモディスパー2.5型で5分間混合して、CNC及びシリカ微粒子が水中で分散した分散液を得た。
 CNF及びシリカ微粒子の分散液75mLを、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に、CNC及びシリカ微粒子の分散液75mLをさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例36
 試料A及び試料Nに混合するシリカ微粒子の量をそれぞれ0.005gとしたこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例37
 試料A及び試料Nに混合するシリカ微粒子の量をそれぞれ0.125gとしたこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例38
 試料A及び試料Nに混合するシリカ微粒子の量をそれぞれ0.25gとしたこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例39
 試料A及び試料Nに混合するシリカ微粒子の量をそれぞれ0.30gとしたこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例40
 試料Aに混合するシリカ微粒子の量を0.005gとし、試料Nにはシリカ微粒子を混合しなかったこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例41
 試料Aにはシリカ微粒子を混合せず、試料Nに混合するシリカ微粒子の量を0.005gとしなかったこと以外は実施例35と同様にして、ダンベル型の複合体を作製した。
 実施例42
 2.34mLの試料Aと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、CNFとポリビニルアルコールを含む分散液を得た。
 得られた分散液を、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に75mLの試料Nをさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例43
 2.34mLの試料Nと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、CNCとポリビニルアルコールを含む分散液を得た。
 75mLの試料Aを、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に、上記のCNCとポリビニルアルコールを含む分散液をさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例44
 実施例42と同様にして、CNFとポリビニルアルコールを含む分散液を調製した。また、実施例43と同様にして、CNCとポリビニルアルコールを含む分散液を調製した。
 CNFとポリビニルアルコールを含む分散液を、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に、上記のCNCとポリビニルアルコールを含む分散液をさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例45
 2.34mLの試料Aと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、CNFとポリビニルアルコールを含む分散液を得た。得られた分散液に、1Nの塩酸0.01g及び37質量%のホルムアルデヒド水溶液0.3gを加えた。それにより、アセタール結合を介した架橋構造が形成された。
 2.34mLの試料Nと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLとを、ビーカー中で24時間撹拌して、CNCとポリビニルアルコールを含む分散液を得た。得られた分散液に、1Nの塩酸0.01g及び37質量%のホルムアルデヒド水溶液0.3gを加えた。それにより、アセタール結合を介した架橋構造が形成された。
 架橋反応後のCNFとポリビニルアルコールを含む分散液を、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に、架橋反応後のCNCとポリビニルアルコールを含む分散液をさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例46
 2.34mLの試料Aと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLと、ジフェニルメタンジイソシアネート0.025gとを、50℃で3時間撹拌した。それにより、ウレタン結合を介した架橋構造が形成された。
 2.34mLの試料Nと、ポリビニルアルコール微粒子(クラレ製「クラレポバール」)0.75gと、蒸留水100mLと、ジフェニルメタンジイソシアネート0.025gとを、50℃で3時間撹拌した。それにより、ウレタン結合を介した架橋構造が形成された。
 架橋反応後のCNFとポリビニルアルコールを含む分散液を、内寸20cm×20cm×5cmの角型PTFE容器に流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。このPTFE容器に、架橋反応後のCNCとポリビニルアルコールを含む分散液をさらに流し込み、2週間自然乾燥した。PTFE容器中に形成された膜を取り出し、実施例1と同様にしてダンベル型の複合体を作製した。
 実施例47
 試料Aを含液率が20質量%になるまで自然乾燥する代わりに、含液率が5質量%になるまで自然乾燥したこと以外は実施例32と同様にして、ダンベル型の複合体を作製した。
 実施例48
 試料Aを含液率が20質量%になるまで自然乾燥する代わりに、105℃で3時間乾燥して含液率を0質量%としたこと以外は実施例32と同様にして、ダンベル型の複合体を作製した。
 実施例49
 紙基材(定性ろ紙No.1、株式会社アドバンテック製)を19.5cm×19.5cmのサイズの正方形に切り、内寸20cm×20cm×5cmの角型PTFE容器内に置いた。このPTFE容器に、実施例1と同様にして調製したCNF及びCNCの分散液の全量を流し込み、室温下で2週間自然乾燥させて、膜を形成した。PTFE容器から紙基材及び膜を取り出し、試料裁断機(ダンベル社製「SDL200」)で裁断した。それにより、紙基材、及び硫酸エステル化CNF及び硫酸エステル化CNC(CNF:CNC=50:50(質量比))を含む膜からなるダンベル型の複合体を得た。
 実施例50
 紙基材として段ボール原紙(レンゴー株式会社製「LCC120」)を用いたこと以外は実施例49と同様にしてダンベル型の複合体を作製した。
 実施例51
 紙基材(定性ろ紙No.1、株式会社アドバンテック製)を19.5cm×19.5cmのサイズの正方形に切り、内寸20cm×20cm×5cmの角型PTFE容器内に置いた。このPTFE容器に75mLの試料Aを流し込み、含液率が20質量%になるまで自然乾燥した。含液率は質量変化によりモニタリングした。PTFE容器に75mLの試料Nをさらに流し込み、2週間自然乾燥した。PTFE容器から紙基材及び膜を取り出し、試料裁断機(ダンベル社製「SDL200」)で裁断した。それにより、紙基材、CNF層、及びCNC層からなるダンベル型の複合体を得た。
 実施例52
 紙基材として段ボール原紙(レンゴー株式会社製「LCC120」)を用いたこと以外は実施例51と同様にしてダンベル型の複合体を作製した。
 表1、2は、実施例1~52及び比較例1、2における各種条件を簡単に表している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
(3)分散液の乾燥再分散性の評価
 実施例1~24及び比較例1、2の分散液の初期粘度を、B型粘度計(東機産業製「TVB10」)で3回測定して、平均を求めた。
 続いて、実施例1~7、18~24及び比較例1、2の分散液各100gを-18℃で凍結させ、凍結乾燥機(東京理化製「FDU1110」)で乾燥させた。また、実施例8~17の各分散液を、遠心分離機(サーモフィッシャー製「Heraeus Megafuge 8R centrifuge」)で、10,000Gで5分間処理し、上澄みを除去し、蒸留水を添加した。この操作を繰り返して、分散媒を水に置換した。その後、分散液各100gを-18℃で凍結させ、凍結乾燥機(東京理化器械製「FDU1110」)で乾燥させた。
 初期粘度を測定したときと同じ組成になるように、各乾燥体に分散媒を加え、ディスパー(Primix製のホモディスパー2.5型)で2分間処理して、分散液を得た。得られた分散液の粘度を、B型粘度計(東機産業製「TVB10」)で3回測定し、平均を求めた。
 乾燥及び再分散後の粘度の変化率を求め、以下の基準に基づいて、実施例1~20及び比較例1、2の各分散液の乾燥再分散性を評価した。結果を表3中に示す。
〇:乾燥再分散後の粘度変化率が10%未満
△:乾燥再分散後の粘度変化率が10%以上、且つ30%未満
×:乾燥再分散後の粘度変化率が30%以上
(4)分散液のポットライフの評価
 実施例1~24及び比較例1、2の分散液の初期粘度を、B型粘度計(東機産業製「TVB10」)で3回測定して、平均を求めた。各分散液を室温で保管し、1か月毎に分散液の粘度をB型粘度計(東機産業製「TVB10」)で3回測定して、平均を求めた。
 保管後の分散液の粘度の変化率を求め、以下の基準に基づいて、実施例1~24及び比較例1、2の各分散液のポットライフを評価した。結果を表3中に示す。
〇:3か月後の粘度変化率が10%未満
△:2か月後の粘度変化率が10%未満、且つ3か月後の粘度変化率が10%超
×:2か月後の粘度変化率が10%超
(5)複合体の破断強度の評価
 実施例1~52及び比較例1、2のダンベル型の複合体の破断強度を、テンシロン万能材料試験機(株式会社エー・アンド・デイ製「RTF-2410」)を用いて、JIS C2151、ASTM D882に準じて3回測定し、平均を求めた。破断強度測定において、グリップ間隔は50mm、引張速度は200mm/分とした。
 以下の基準に基づいて、実施例1~52及び比較例1、2の複合体の破断強度を評価した。結果を表3中に示す。
◎:破断強度が140MPa以上
〇:破断強度が120MPa以上、且つ140MPa未満
△:破断強度が100MPa以上、且つ120MPa未満
×:破断強度が100MPa未満
(6)複合体の酸素ガスバリア性の評価
 実施例1~52及び比較例1、2の複合体の酸素ガス透過率を、酸素ガス透過率計(MOCON製「OX-TRAN 2/22」)を用いて、JIS K7126-2(温湿度条件:23℃、50%)に準じて、温度23℃、湿度50%の条件下で3回測定し、平均を求めた。
 以下の基準に基づいて、実施例1~52及び比較例1、2の複合体の酸素ガスバリア性を評価した。結果を表3中に示す。
◎:酸素ガス透過率が0.5ml/m/day/atm未満
〇:酸素ガス透過率が0.5ml/m/day/atm以上、且つ2.5ml/m/day/atm未満
△:酸素ガス透過率が2.5ml/m/day/atm以上、且つ4.5ml/m/day/atm未満
×:酸素ガス透過率が4.5ml/m/day/atm以上
(7)複合体の接着性の評価
 実施例32~52の複合体を5cm×5cmに切断し、両面テープ(ニチバン製「ナイスタック」)で平滑なアクリル板に貼り付け1時間養生した。続いてJIS K5600-5-6に従いクロスカット試験を行った。具体的には、カッターナイフで複合体に2mm間隔で切込みを形成し、10×10のグリッドを形成した。複合体にセロハンテープを貼り、次いで、セロハンテープの端をつかんで45°の方向に迅速に引いて、セロハンテープを剥がした。複合体の表面を目視で観察し、下層又は基材からの膜剥がれの有無を確認した。
 以下の基準に基づき、実施例32~52の複合体の接着性を評価した。結果を表3中に示す。
◎:膜剥がれが観察されたマスの数が3個未満 
〇:膜剥がれが観察されたマスの数が3個以上、7個未満
△:膜剥がれが観察されたマスの数が7個以上、11個未満
×:膜剥がれが観察されたマスの数が11個以上
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
 実施例1~24の分散液は、比較例1、2の分散液よりも良好な乾燥再分散性及び長いポットライフを示した。また、実施例1~48の複合体は、比較例1、2の複合体よりも高い破断強度及び高い酸素ガスバリア性を示した。このことから、硫酸エステル化CNFと硫酸エステル化CNCの組み合わせが、良好な乾燥再分散性、長いポットライフ、高い破断強度、及び高い酸素ガスバリア性をもたらすことが示された。
 実施例1~7の複合体の評価結果から、硫酸エステル化CNFと硫酸エステル化CNCの質量比が1:99~99:1の範囲内であることにより、より高い破断強度及びより高い酸素ガスバリア性がもたらされることが示された。
 実施例1、8~17の分散液の評価結果から、分散液の分散媒が、水、DMF、エチレングリコール、ホルムアミドのような比誘電率が38以上である液体を、分散媒の総体積を基準として80~100体積%の範囲内の量で含有することにより、より長いポットライフがもたらされることが示された。
 実施例1、18~22の複合体の評価結果から、複合体が、複合体の総質量を基準として0.09~5質量%の範囲内の量で、シリカのような無機微粒子を含むことにより、より高い破断強度がもたらされることが示された。
 実施例1、23、24の複合体の評価結果から、ディスパー及びマイクロフルイダイザーのような手段を用い、せん断力を利用して分散液を調製することにより、より高い破断強度及びより高い酸素ガスバリア性を有する複合体を製造することができることが示された。
 実施例1、9、25~31の複合体の評価結果から、ポリウレタン、PVAのような樹脂又は天然ゴムのようなゴムの添加が、複合体の破断強度を向上させることが示された。また、複合体は架橋構造を有してよく、特にウレタン結合を介した架橋が複合体の酸素ガスバリア性を向上させることが示された。
 実施例32~48のような積層された複数の層を有する複合体も、高い破断強度及び高い酸素ガスバリア性を示した。
 実施例32、35~41の複合体の評価結果から、複合体の複数の層のうち少なくとも1層が、その層の総質量を基準として0.09~5質量%の範囲内の量で、無機微粒子を含むことにより、より高い破断強度及がもたらされるとともに、層間の接着性を向上させることが示された。
 実施例32、42~46の複合体の評価結果から、樹脂又はゴムの添加が、複合体の破断強度を向上させることが示された。また、複合体は架橋構造を有してよく、特にウレタン結合を介した架橋が複合体の酸素ガスバリア性を向上させることが示された。
 実施例32、47、48の複合体の評価結果から、積層された上層及び下層を有する複合体の製造において、液体を含む下層(特に、0質量%超且つ30質量%以下、又は5質量%超且つ25質量%以下の量で液体を含む下層)上に、上層を形成するための分散液を供給し、その後上層及び下層の液体を除去することにより、下層中の液体を完全に除去した後に上層を形成する場合と比べて、上層と下層の間の接着性が良好となることが示された。
 実施例49~52の複合体の評価結果から、ろ紙や段ボールのようなバイオマス由来の紙基材と、紙基材上に支持されたCNC及びCNFを含む複合体は、高い破断強度、ガスバリア性、及び接着性を有することが示された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (18)

  1.  硫酸エステル基を有するセルロースナノファイバー、及び硫酸エステル基を有するセルロースナノクリスタルを含む、分散液。
  2.  前記分散液の分散媒が、比誘電率が38以上である液体を、前記分散媒の総体積を基準として75~100体積%の量で含有する、請求項1に記載の分散液。
  3.  硫酸エステル基を有するセルロースナノファイバー、及び硫酸エステル基を有するセルロースナノクリスタルを含む、複合体。
  4.  前記セルロースナノファイバー及び前記セルロースナノクリスタルが混合されている、請求項3に記載の複合体。
  5.  前記複合体が、前記複合体の総質量を基準として0.09~5質量%の量で無機微粒子をさらに含む、請求項4に記載の複合体。
  6.  前記セルロースナノファイバー又は前記セルロースナノクリスタルの少なくとも1つと、前記セルロースナノファイバー又は前記セルロースナノクリスタルの少なくとも1つとの間に、架橋が形成されている、請求項4又は5に記載の複合体。
  7.  樹脂及びゴムからなる群から選択される少なくとも1種の物質をさらに含む、請求項4~6のいずれか一項に記載の複合体。
  8.  前記セルロースナノファイバー又は前記セルロースナノクリスタルの少なくとも1つと、前記樹脂及びゴムからなる群から選択される少なくとも1種の物質との間に、架橋が形成されている、請求項7に記載の複合体。
  9.  前記架橋が、ウレタン結合を含む、請求項6又は8に記載の複合体。
  10.  前記セルロースナノファイバーを含有する、少なくとも1層のセルロースナノファイバー層と、
     前記セルロースナノクリスタルを含有する、少なくとも1層のセルロースナノクリスタル層と、
    を含み、前記少なくとも1層のセルロースナノファイバー層と前記少なくとも1層のセルロースナノクリスタル層とが互いに隣接している、請求項3に記載の複合体。
  11.  前記少なくとも1層のセルロースナノファイバー層又は前記少なくとも1層のセルロースナノクリスタル層の少なくとも1層が、該層の総質量を基準として0.09~5質量%の量で無機微粒子をさらに含む、請求項10に記載の複合体。
  12.  前記少なくとも1層のセルロースナノファイバー層又は前記少なくとも1層のセルロースナノクリスタル層の少なくとも1層が、樹脂及びゴムからなる群から選択される少なくとも1種の物質をさらに含む、請求項10又は11に記載の複合体。
  13.  前記少なくとも1層のセルロースナノファイバー層又は前記少なくとも1層のセルロースナノクリスタル層の少なくとも1層が、架橋構造を有する、請求項10~12のいずれか一項に記載の複合体。
  14.  前記架橋構造が、ウレタン結合を含む、請求項13に記載の複合体。
  15.  前記セルロースナノファイバー、及び前記セルロースナノクリスタルを支持する紙基材をさらに含む、請求項3~14のいずれか一項に記載の複合体。
  16.  請求項1又は2に記載の分散液の調製方法であって、硫酸エステル基を有するセルロースナノファイバーの分散液と硫酸エステル基を有するセルロースナノクリスタルの分散液とを、せん断力を加えながら混合することを含む、方法。
  17.  請求項10~14のいずれか一項に記載の複合体の製造方法であって、
    (a)硫酸エステル基を有するセルロースナノファイバー又は硫酸エステル基を有するセルロースナノクリスタルの一方、及び液体を含む第1層を形成することと、
    (b)第1層上に、硫酸エステル基を有するセルロースナノファイバー又は硫酸エステル基を有するセルロースナノクリスタルの他方を含む分散液を供給して、第1層上に第2層を形成することと、
    (c)第1層及び第2層から液体を除去することと、
    を含む、方法。
  18.  第1層の含液率が0質量%超、30質量%以下であるときにステップ(b)を行う、請求項17に記載の方法。
PCT/JP2022/013379 2021-03-31 2022-03-23 分散液及び複合体、並びにこれらの製造方法 WO2022210141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22780356.6A EP4317192A1 (en) 2021-03-31 2022-03-23 Dispersion, composite, and production methods therefor
JP2023511046A JP7444332B2 (ja) 2021-03-31 2022-03-23 分散液及び複合体、並びにこれらの製造方法
CN202280026827.2A CN117157330A (zh) 2021-03-31 2022-03-23 分散液和复合体、以及它们的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059274 2021-03-31
JP2021059274 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210141A1 true WO2022210141A1 (ja) 2022-10-06

Family

ID=83455345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013379 WO2022210141A1 (ja) 2021-03-31 2022-03-23 分散液及び複合体、並びにこれらの製造方法

Country Status (4)

Country Link
EP (1) EP4317192A1 (ja)
JP (1) JP7444332B2 (ja)
CN (1) CN117157330A (ja)
WO (1) WO2022210141A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117903490A (zh) * 2024-03-19 2024-04-19 北京大学 一种空心球增强纤维素气凝胶绝热材料及其制备方法
CN117903490B (zh) * 2024-03-19 2024-06-07 北京大学 一种空心球增强纤维素气凝胶绝热材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012629A1 (ja) * 2016-07-14 2018-01-18 東洋製罐グループホールディングス株式会社 セルロースナノファイバー含有セルロース繊維及び製造方法
WO2018131721A1 (ja) * 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
KR20190092876A (ko) * 2018-01-31 2019-08-08 율촌화학 주식회사 가스배리어성을 갖는 셀룰로오스 나노파이버를 포함하는 코팅액 조성물
WO2020059525A1 (ja) * 2018-09-21 2020-03-26 東洋製罐グループホールディングス株式会社 ナノセルロース及びその製造方法
WO2020196175A1 (ja) * 2019-03-22 2020-10-01 東洋製罐グループホールディングス株式会社 ナノセルロース分散液及びその製造方法
JP2021059274A (ja) 2019-10-09 2021-04-15 日産自動車株式会社 ヘッドアップディスプレイ装置の車両搭載構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074340A1 (ja) * 2008-12-26 2010-07-01 花王株式会社 ガスバリア用材料及びガスバリア性成形体とその製造方法
CN112912430B (zh) * 2018-10-22 2023-06-20 东洋制罐集团控股株式会社 阻气性组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012629A1 (ja) * 2016-07-14 2018-01-18 東洋製罐グループホールディングス株式会社 セルロースナノファイバー含有セルロース繊維及び製造方法
WO2018131721A1 (ja) * 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
JP2020041255A (ja) 2017-01-16 2020-03-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーの製造方法
KR20190092876A (ko) * 2018-01-31 2019-08-08 율촌화학 주식회사 가스배리어성을 갖는 셀룰로오스 나노파이버를 포함하는 코팅액 조성물
WO2020059525A1 (ja) * 2018-09-21 2020-03-26 東洋製罐グループホールディングス株式会社 ナノセルロース及びその製造方法
WO2020196175A1 (ja) * 2019-03-22 2020-10-01 東洋製罐グループホールディングス株式会社 ナノセルロース分散液及びその製造方法
JP2021059274A (ja) 2019-10-09 2021-04-15 日産自動車株式会社 ヘッドアップディスプレイ装置の車両搭載構造

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PEDRO CLARO ET AL.: "Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils", CELLULOSE, vol. 26, 2019, pages 2453 - 2470, XP036728915, DOI: 10.1007/s10570-019-02280-9
RAPHAEL BARDET ET AL.: "Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment", CELLULOSE, vol. 22, 2015, pages 1227 - 1241, XP035462720, DOI: 10.1007/s10570-015-0547-9
TYAGI PREETI; LUCIA LUCIAN A.; HUBBE MARTIN A.; PAL LOKENDRA: "Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS , LTD BARKING, GB, vol. 206, 31 October 2018 (2018-10-31), GB , pages 281 - 288, XP085556411, ISSN: 0144-8617, DOI: 10.1016/j.carbpol.2018.10.114 *
XIUXUAN SUN ET AL.: "Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties", CELLULOSE, vol. 25, 2018, pages 1103 - 1115, XP036430337, DOI: 10.1007/s10570-017-1627-9

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117903490A (zh) * 2024-03-19 2024-04-19 北京大学 一种空心球增强纤维素气凝胶绝热材料及其制备方法
CN117903490B (zh) * 2024-03-19 2024-06-07 北京大学 一种空心球增强纤维素气凝胶绝热材料及其制备方法

Also Published As

Publication number Publication date
CN117157330A (zh) 2023-12-01
JP7444332B2 (ja) 2024-03-06
JPWO2022210141A1 (ja) 2022-10-06
EP4317192A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
Alves et al. Composites of nanofibrillated cellulose with clay minerals: A review
JP4965528B2 (ja) ガスバリア用材料
EP2897810B1 (en) Coating composition of nano cellulose, its uses and a method for its manufacture
EP2395027B1 (en) Suspension of cellulose fibers and method for producing same
JP5162438B2 (ja) ガスバリア用材料
WO2011065371A1 (ja) 膜状体及びその製造方法並びに該膜状体の形成用水性分散液
JP5644864B2 (ja) 微細繊維状セルロースコンポジットプリプレグシートの製造方法、微細繊維状セルロースコンポジットシートの製造方法及び微細繊維状セルロースコンポジット積層シートの製造方法
CA2923675C (en) Water, grease and heat resistant bio-based products and method of making same
JP2018531298A6 (ja) Ncc膜およびこれをベースにした製品
JP2010179579A (ja) ガスバリア性積層体とその製造方法
JP5665487B2 (ja) 膜状体及びその製造方法
JP2010179580A (ja) ガスバリア性積層体とその製造方法
Bai et al. Mussel-inspired cellulose-based adhesive with underwater adhesion ability
JP5350776B2 (ja) ガスバリア性積層体
WO2022210141A1 (ja) 分散液及び複合体、並びにこれらの製造方法
Chi et al. Electrostatically complexed natural polysaccharides as aqueous barrier coatings for sustainable and recyclable fiber-based packaging
CN110670408B (zh) 一种疏水浆料及其制备方法与应用
Maria Santos Chiromito et al. Water-based processing of fiberboard of acrylic resin composites reinforced with cellulose wood pulp and cellulose nanofibrils
JP7183627B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
US20240183107A1 (en) Dispersion, composite, and producing methods therefor
JP2012097236A (ja) ガスバリア性膜状体の形成用水性分散液
JP6604448B1 (ja) 繊維状セルロース含有組成物、液状組成物及び成形体
JP7057218B2 (ja) 積層体
JP6429978B2 (ja) 樹脂組成物及びその製造方法
KR20210040430A (ko) 섬유상 셀룰로오스 함유 조성물, 액상 조성물 및 성형체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022780356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18284306

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022780356

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE