WO2022210126A1 - 機械構造部品用鋼線およびその製造方法 - Google Patents

機械構造部品用鋼線およびその製造方法 Download PDF

Info

Publication number
WO2022210126A1
WO2022210126A1 PCT/JP2022/013281 JP2022013281W WO2022210126A1 WO 2022210126 A1 WO2022210126 A1 WO 2022210126A1 JP 2022013281 W JP2022013281 W JP 2022013281W WO 2022210126 A1 WO2022210126 A1 WO 2022210126A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
cementite
temperature
steel
Prior art date
Application number
PCT/JP2022/013281
Other languages
English (en)
French (fr)
Inventor
洋介 松本
憲史 池田
琢哉 高知
昌之 坂田
辰徳 内田
浩司 山下
悠太 井上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021211501A external-priority patent/JP2022158884A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202280024495.4A priority Critical patent/CN117062932A/zh
Priority to US18/552,755 priority patent/US20240175112A1/en
Priority to KR1020237036186A priority patent/KR20230159707A/ko
Publication of WO2022210126A1 publication Critical patent/WO2022210126A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present disclosure relates to a steel wire for machine structural parts and a manufacturing method thereof.
  • spheroidizing annealing is usually performed to impart cold workability to bar steel including hot-rolled wire rods. Then, the steel wire obtained by the spheroidizing annealing is subjected to cold working, and then subjected to machining such as cutting to form a predetermined component shape. Further, quenching and tempering are performed to adjust the final strength, and the mechanical structural part is manufactured.
  • Patent Document 1 As a method for obtaining a softened steel wire, for example, in Patent Document 1, as a method for producing a medium carbon steel with excellent cold forgeability, heating to an austenitizing temperature range two or more times in a spheroidizing annealing treatment is disclosed. shown to do. According to the manufacturing method of Patent Document 1, it is indicated that a steel for cold forging having a hardness of 83 HRB or less after spheroidizing annealing and a spheroidal carbide ratio in the structure of 70% or more can be obtained.
  • Patent Document 2 discloses a steel material having low deformation resistance after spheroidizing annealing and excellent cold forgeability, and a method for manufacturing the same.
  • steel satisfying a predetermined chemical composition is hot-worked, cooled to room temperature, then heated to a temperature range of A1 point to A1 point + 50 ° C., and after the temperature rise, the A1 After holding for 0 to 1 hour in the temperature range from point to A1 point +50 ° C, the temperature range from the temperature range from A1 point to A1 point +50 ° C to A1 point -100 ° C to A1 point -30 ° C is 10 to 200 ° C.
  • the temperature is raised to the temperature range of A1 point to A1 point + 30 ° C. and held in the temperature range of A1 point to A1 point + 30 ° C.
  • the temperature range from the A1 point to the A1 point + 30 ° C. until the A1 point is reached.
  • the residence time is 10 minutes to 2 hours, and the cooling temperature range from the temperature range of A1 point to A1 point +30 ° C to A1 point -100 ° C to A1 point -20 ° C is an average cooling rate of 10 to 100 ° C/hr. After cooling at , it is shown to be held in the cooling temperature range for 10 minutes to 5 hours and then further cooled.
  • Patent Document 3 describes a steel wire for machine structural parts that can exhibit excellent cold workability by reducing deformation resistance during cold working and improving crack resistance.
  • a steel wire for machine structural parts is disclosed, in which the metallographic structure of the steel is composed of ferrite and cementite, and the number ratio of cementite present in ferrite grain boundaries is 40% or more of the total number of cementite.
  • the manufacturing conditions for the rolled wire rod subjected to spheroidizing annealing are finish rolling at 800°C or higher and 1050°C or lower, first cooling at an average cooling rate of 7°C/sec or higher, and average cooling rate of 1°C.
  • the end and the start of the second cooling are performed within the range of 700 to 750 ° C.
  • the end of the second cooling and the start of the third cooling are performed within the range of 600 to 650 ° C.
  • the end of the third cooling is performed. It is indicated that it is preferable to set the temperature to 400° C. or less.
  • wire rod and “steel bar” refer to wire-shaped and rod-shaped steel materials obtained by hot rolling, and are not subjected to heat treatment such as spheroidizing annealing or wire drawing.
  • steel refers to steel.
  • steel wire refers to a wire rod or steel bar subjected to at least one of heat treatment such as spheroidizing annealing and wire drawing.
  • the wire rod, steel bar and steel wire are collectively referred to as "long steel”.
  • Aspect 1 of the present invention is C: 0.05% by mass to 0.60% by mass, Si: 0.005% by mass to 0.50% by mass, Mn: 0.30% by mass to 1.20% by mass, P: more than 0% by mass, 0.050% by mass or less, S: more than 0% by mass, 0.050% by mass or less, Al: 0.001% by mass to 0.10% by mass, Cr: more than 0% by mass, 1.5% by mass or less, and N: more than 0% by mass, 0.02% by mass or less, the balance being iron and inevitable impurities,
  • the total content (mass%) of Cr and Mn in cementite in the metal structure is ⁇ Cr + Mn ⁇
  • the total content (mass%) of Cr and Mn in steel is [Cr + Mn]
  • the amount of C in steel ( mass %) is represented by [C]
  • the concentration ratio ⁇ Cr + Mn ⁇ / [Cr + Mn] is (0.5 [C] + 0.040) or more
  • Aspect 2 of the present invention is Furthermore, Cu: more than 0% by mass, 0.25% by mass or less, Ni: more than 0% by mass, 0.25% by mass or less, Mo: more than 0% by mass, 0.50% by mass or less and B: more than 0% by mass, 0.01% by mass or less for machine structural parts according to aspect 1, containing one or more selected from the group consisting of Steel wire.
  • Aspect 3 of the present invention is Furthermore, Ti: more than 0% by mass, 0.2% by mass or less, The machine according to aspect 1 or 2, containing one or more selected from the group consisting of Nb: more than 0% by mass and 0.2% by mass or less, and V: more than 0% by mass and 0.5% by mass or less Steel wire for structural parts.
  • Aspect 4 of the present invention is Furthermore, Mg: more than 0% by mass, 0.02% by mass or less, Ca: more than 0% by mass, 0.05% by mass or less, Li: more than 0 mass%, 0.02 mass% or less, and REM: more than 0 mass%, containing one or more selected from the group consisting of 0.05 mass% or less, any one of aspects 1 to 3 1.
  • Aspect 5 of the present invention is the steel wire for machine structural parts according to any one of Aspects 1 to 4, wherein the average ferrite crystal grain size is 30 ⁇ m or less.
  • Aspect 6 of the present invention is A long steel satisfying the chemical composition according to any one of aspects 1 to 4, A method for producing a steel wire for machine structural parts according to any one of aspects 1 to 5, which includes a step of performing spheroidizing annealing including the following steps (1) to (3). (1) After heating to a temperature T1 of (A1 + 8 ° C.) to (A1 + 31 ° C.), heating and holding at the temperature T1 for more than 1 hour and 6 hours or less, (2) Cooling to a temperature T2 above 650 ° C.
  • A1 is calculated by the following formula (1).
  • A1 (° C.) 723+29.1 ⁇ [Si] ⁇ 10.7 ⁇ [Mn]+16.9 ⁇ [Cr] ⁇ 16.9 ⁇ [Ni] (1)
  • [element] represents the content (% by mass) of each element, and the content of elements not included is zero.
  • Aspect 7 of the present invention is 7.
  • FIG. 4 is a diagram illustrating conditions for spheroidizing annealing in the method for manufacturing a steel wire for machine structural parts according to the present embodiment. It is a diagram explaining the heat treatment process of a comparative example.
  • 1 is a diagram illustrating a heat treatment process in the prior art
  • Fig. 3 is a diagram illustrating a heat treatment process in another prior art
  • Fig. 3 is a diagram illustrating a heat treatment process in another prior art
  • the inventors of the present invention have conducted intensive studies to realize a steel wire for machine structural parts that is excellent in cold workability and hardenability. It has been found that the total content of Mn and Cr in the steel should be at least a certain ratio, and the average size of all cementite should be within a certain range according to the amount of C in the steel. Furthermore, in order to achieve the above metallographic structure, it is effective to obtain a metallographic structure in which the chemical composition is within a certain range, and to perform spheroidizing annealing under particularly specified conditions in the method of manufacturing steel wires for machine structural parts. I found that Hereinafter, the metal structure of the steel wire for machine structural parts according to the present embodiment will be described first.
  • metal structure Conventionally, cold workability is ensured by subjecting steel materials to spheroidizing annealing to create a metal structure composed of ferrite and cementite. Furthermore, hardenability cannot be achieved only by using the above metal structure.
  • the present inventors have made intensive studies from various angles in order to realize a steel wire for machine structural parts that has both excellent cold workability and excellent hardenability.
  • the inventors paid attention to the amount of Mn and the amount of Cr in cementite. For example, if spheroidizing annealing is performed under the manufacturing conditions described later to increase the average size of all cementite and increase the Mn and Cr amounts in the cementite, the Mn and Cr amounts in the ferrite are relatively reduced.
  • the total content (% by mass) of Cr and Mn in cementite is ⁇ Cr + Mn ⁇
  • the total content (% by mass) of Cr and Mn in steel is [Cr + Mn]
  • the amount of C in steel (% by mass) is represented by [C]
  • the concentration ratio ⁇ Cr + Mn ⁇ / [Cr + Mn] is (0.5 [C] + 0.040) or more]
  • Cr and Mn are typical elements that easily form a solid solution in cementite. However, a part of it dissolves in the ferrite, and the larger the solid solution amount, the stronger the ferrite matrix and the higher the hardness.
  • the concentration ratio ⁇ Cr+Mn ⁇ /[Cr+Mn] is preferably at least (0.5[C]+0.042).
  • the upper limit of the concentration ratio ⁇ Cr+Mn ⁇ /[Cr+Mn] is approximately 0.5[C]+0.500.
  • the form of the above cementite is not particularly limited, and includes spherical cementite as well as rod-shaped cementite with a large aspect ratio.
  • the aspect ratio is the ratio (major axis/minor axis) of the longest diameter of cementite particles to the longest diameter in the direction perpendicular to the long diameter.
  • the size of the cementite to be measured is not limited, but the size of the cementite that allows the total content of Cr and Mn to be measured is the minimum size, as shown in the examples described later.
  • the cementite remaining on the filter with a pore size of 0.10 ⁇ m is the object of measurement when the electrolytic extraction residue is measured by the method described later in Examples.
  • the total content of Cr and Mn in the steel is the sum of the average Cr content and the average Mn content in the steel, as shown in the examples below. If formed, it refers to the total content of Cr and Mn in mass % in ferrite and cementite.
  • the average equivalent circle diameter of all cementite is (1.668-2.13 [C]) ⁇ m or more, (1.863-2 .13 [C]) ⁇ m or less]
  • the larger the cementite size the smaller the cementite number density and the longer the distance between the cementites.
  • the longer the distance between cementites in the steel the more difficult the precipitation strengthening, and as a result, the hardness can be reduced.
  • the size of cementite to a certain value or more, the effect of reducing hardness by increasing the total content of Cr and Mn in cementite can be easily exhibited.
  • the average equivalent circle diameter of all cementite is (1.668-2.13 [C]) ⁇ m when the amount of C (% by mass) in the steel is represented by [C] That's all.
  • the average equivalent circle diameter of all cementite is preferably (1.669-2.13 [C]) ⁇ m or more.
  • the average equivalent circle diameter of all cementite is set to (1.863-2.13 [C]) ⁇ m or less. Preferably, it is (1.858-2.13 [C]) ⁇ m or less.
  • Patent Document 3 shows that cementite present at ferrite grain boundaries is less strained during cold working than cementite present within ferrite grains, thereby reducing deformation resistance. .
  • the average size of all cementite is not controlled, and as a result, the cementite cannot be sufficiently dissolved during the high temperature holding in the quenching process, resulting in poor hardenability.
  • the present disclosure is to improve both the ratio of the total content of Cr and Mn in cementite and the average size of all cementite. This is the technology we focused on.
  • the metal structure of the steel wire for machine structural parts according to the present embodiment is a spheroidized structure having spheroidized cementite, and is obtained by, for example, performing spheroidizing annealing, which will be described later, on a steel bar that satisfies the chemical composition described later. be able to.
  • the metal structure of the steel wire for machine structural parts of this embodiment is substantially composed of ferrite and cementite.
  • substantially means that the area ratio of ferrite in the metal structure of the steel wire for machine structural parts of the present embodiment is 90% or more, and the area ratio of rod-shaped cementite having an aspect ratio of 3 or more is 5% or less. If the adverse effect on cold workability is small, it means that the area ratio of nitrides such as AlN and inclusions other than nitrides is allowed to be less than 3%. Further, the area ratio of the ferrite may be 95% or more.
  • the term “ferrite” refers to a portion whose crystal structure is the bcc structure, and includes ferrite in pearlite, which is a layered structure of ferrite and cementite.
  • the "ferrite grains” that are the object of measurement of the "ferrite grain size” include grains containing rod-shaped cementite that is insufficiently spheroidized and generated during spheroidizing annealing. Crystal grains containing rod-shaped cementite (pearlite grains) that may remain before annealing are excluded.
  • crystal grains without cementite present in the grains can be confirmed when observed at 1000 times using an optical microscope. It means “crystal grains in which cementite is present in the grains and the shape of the cementite can be observed (that is, the boundary between cementite and ferrite can be clearly observed)". Crystal grains in which the shape of cementite cannot be observed at a magnification of 1000 using the optical microscope (that is, the boundary between cementite and ferrite cannot be clearly observed) are not subject to judgment in the present embodiment, and "ferrite crystal grains” exclude.
  • the average value of the ferrite crystal grain size in the metal structure is 30 ⁇ m or less.
  • the average ferrite grain size is more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less. The smaller the average ferrite crystal grain size, the better, but the lower limit can be about 2 ⁇ m, considering possible production conditions and the like.
  • the steel wire for machine structural parts according to the present embodiment which satisfies the following chemical composition and has the metal structure described above, can achieve both a low hardness that enables good cold working and a high hardness after quenching treatment. .
  • HV Hardness (after spheroidizing annealing) ⁇ 91([C]+[Cr]/9+[Mo]/2)+91 (2) Hardness after quenching treatment (HV) > 380 ln ([C]) + 1010 (3)
  • C is an element that controls the strength of steel materials, and the strength after quenching and tempering increases as the content increases.
  • the lower limit of the amount of C was set to 0.05% by mass.
  • the amount of C is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, and still more preferably 0.20% by mass or more.
  • the upper limit of the amount of C was set at 0.60% by mass.
  • the amount of C is preferably 0.55% by mass or less, more preferably 0.50% by mass or less.
  • Si 0.005% by mass to 0.50% by mass
  • Si is used as a deoxidizer during smelting and contributes to strength improvement.
  • the lower limit of the amount of Si was set to 0.005% by mass.
  • the amount of Si is preferably 0.010% by mass or more, more preferably 0.050% by mass or more.
  • Si contributes to solid-solution strengthening of ferrite and has the effect of considerably increasing the strength after spheroidizing annealing. If the Si content is excessive, the cold workability deteriorates due to the above effect, so the upper limit of the Si content was made 0.50% by mass.
  • the amount of Si is preferably 0.40% by mass or less, more preferably 0.35% by mass or less.
  • Mn 0.30% by mass to 1.20% by mass
  • Mn is an element that effectively acts as a deoxidizer and contributes to the improvement of hardenability.
  • the lower limit of the amount of Mn was set to 0.30% by mass.
  • the Mn content is preferably 0.35% by mass or more, more preferably 0.40% by mass or more.
  • the upper limit of the amount of Mn was set to 1.20% by mass.
  • the Mn content is preferably 1.10% by mass or less, more preferably 1.00% by mass or less.
  • P more than 0% by mass, 0.050% by mass or less
  • P phosphorus
  • the amount of P was set to 0.050% by mass or less.
  • the P content is preferably 0.030% by mass or less, more preferably 0.020% by mass or less. Although the P content is preferably as small as possible, it is usually contained in an amount of 0.001% by mass or more.
  • S more than 0% by mass, 0.050% by mass or less
  • S sulfur
  • the amount of S is set to 0.050% by mass or less.
  • the S content is preferably 0.030% by mass or less, more preferably 0.020% by mass or less.
  • the amount of S is preferably as small as possible, it is usually contained in an amount of 0.001% by mass or more.
  • Al 0.001% by mass to 0.10% by mass
  • Al is an element contained as a deoxidizing agent, and has the effect of reducing impurities accompanying deoxidizing. In order to exhibit this effect, the lower limit of the amount of Al was set to 0.001% by mass.
  • the Al content is preferably 0.005% by mass or more, more preferably 0.010% by mass or more.
  • the upper limit of the amount of Al was set to 0.10% by mass.
  • the Al content is preferably 0.08% by mass or less, more preferably 0.05% by mass or less.
  • Cr more than 0% by mass, 1.5% by mass or less
  • Cr is an element that has the effect of improving the hardenability of steel and increasing the strength, and also has the effect of promoting spheroidization of cementite. Specifically, Cr dissolves in cementite and delays the dissolution of cementite during heating for spheroidizing annealing. Since the cementite does not dissolve and partially remains during heating, rod-shaped cementite having a large aspect ratio is less likely to form during cooling, making it easier to obtain a spheroidized structure. Therefore, the Cr content is more than 0% by mass, preferably 0.01% by mass or more. Further, it may be 0.05% by mass or more, and even more preferably 0.10% by mass or more.
  • the content can be more than 0.30% by mass, and can also be more than 0.50% by mass. If the amount of Cr is excessive, the diffusion of elements including carbon is delayed, and the dissolution of cementite is delayed more than necessary, making it difficult to obtain a spheroidized structure. As a result, the hardness reduction effect of the present invention may be reduced. Therefore, the Cr content is 1.50% by mass or less, preferably 1.40% by mass or less, and more preferably 1.25% by mass or less. From the viewpoint of accelerating the diffusion of the elements, the Cr content can be set to 1.00% by mass or less, 0.80% by mass or less, or 0.30% by mass or less.
  • N is an impurity that is inevitably contained in steel, but when a large amount of solid-solution N is contained in steel, it causes an increase in hardness and a decrease in ductility due to strain aging, and deteriorates cold workability. Therefore, the N content is 0.02% by mass or less, preferably 0.015% by mass or less, and more preferably 0.010% by mass or less.
  • the balance is iron and unavoidable impurities.
  • unavoidable impurities trace elements (for example, As, Sb, Sn, etc.) brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc. are allowed.
  • elements such as P and S, whose content is generally preferably as low as possible and thus are unavoidable impurities, but whose composition range is separately defined as described above.
  • the term "inevitable impurities" constituting the balance is a concept excluding elements whose composition range is separately defined.
  • the steel wire for machine structural parts according to the present embodiment only needs to contain the above elements in its chemical composition.
  • the optional elements described below may not be contained, but by containing them together with the above elements as necessary, it is possible to more easily ensure hardenability and the like.
  • the selected elements are described below.
  • Cu, Ni, Mo and B are all effective elements for increasing the strength of the final product by improving the hardenability of the steel material, and may be contained alone or in combination of two or more. The effect of these elements increases as their content increases.
  • a preferable lower limit for effectively exhibiting the above effects is more than 0% by mass, more preferably 0.02% by mass or more, and still more preferably 0.05% by mass or more for each of Cu, Ni, and Mo. It is more than 0% by mass, more preferably 0.0003% by mass or more, and still more preferably 0.0005% by mass or more.
  • the content of each of Cu and Ni is 0.22% by mass or less, more preferably 0.20% by mass or less, and the content of Mo is more preferably 0.40% by mass or less, and further preferably It is preferably 0.35% by mass or less, and the B content is more preferably 0.007% by mass or less, still more preferably 0.005% by mass or less.
  • Ti, Nb and V form a compound with N and reduce solid solution N to exhibit the effect of reducing deformation resistance.
  • the effect of these elements increases as their content increases.
  • the preferable lower limit for effectively exhibiting the above effects for any element is more than 0% by mass, more preferably 0.03% by mass or more, and still more preferably 0.05% by mass or more.
  • the compounds formed may lead to an increase in deformation resistance, which may rather deteriorate the cold workability.
  • the V content is preferably 0.5% by mass or less.
  • the content of each of Ti and Nb is more preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and the V content is more preferably 0.45% by mass or less, further preferably It is 0.40% by mass or less.
  • Mg more than 0% by mass, 0.02% by mass or less
  • Ca more than 0% by mass, 0.05% by mass or less
  • Li more than 0% by mass, 0.02% by mass or less
  • rare earth elements Rare Earth Metal :REM
  • Mg, Ca, Li and REM are elements effective in spheroidizing sulfide-based inclusions such as MnS and improving the deformability of steel. These effects increase as the content increases.
  • the content of Mg, Ca, Li and REM is preferably more than 0% by mass, more preferably 0.0001% by mass or more, and still more preferably 0.0005% by mass or more. be. However, even if it is contained excessively, the effect is saturated, and the effect corresponding to the content cannot be expected. , more preferably 0.015% by mass or less, and the content of Ca and REM is preferably 0.05% by mass or less, more preferably 0.045% by mass or less, and still more preferably 0.040% by mass or less. is.
  • each of Mg, Ca, Li and REM may be contained alone, or two or more kinds thereof may be contained. Content is fine.
  • the REM is meant to include lanthanoid elements (15 elements from La to Lu), Sc (scandium) and Y (yttrium).
  • the shape of the steel wire for machine structural parts according to this embodiment is not particularly limited. For example, those having a diameter of 5.5 mm to 60 mm can be used.
  • the hot rolling process for producing a wire rod or steel bar to be subjected to spheroidizing annealing is not particularly limited, and a conventional method may be followed.
  • wire drawing may be applied before spheroidizing annealing.
  • the diameter of the wire rod, steel wire, and steel bar to be subjected to spheroidizing annealing is not particularly limited.
  • FIG. 1 shows an example of a diagram explaining the conditions of spheroidizing annealing in the manufacturing method according to the embodiment of the present invention, and the number of repetitions of the cooling-heating process is not limited to this FIG.
  • a method for manufacturing a steel wire for machine structural parts includes a spheroidizing annealing step including steps (1) to (3) below. (1) After heating to a temperature T1 of (A1 + 8 ° C.) to (A1 + 31 ° C.), heating and holding at the temperature T1 for more than 1 hour and 6 hours or less, (2) Cooling to a temperature T2 above 650 ° C.
  • A1 is calculated by the following formula (1).
  • A1 (° C.) 723+29.1 ⁇ [Si] ⁇ 10.7 ⁇ [Mn]+16.9 ⁇ [Cr] ⁇ 16.9 ⁇ [Ni] (1)
  • [element] represents the content (% by mass) of each element, and the content of elements not included is zero.
  • the temperature T1 is preferably (A1+15° C.) or higher, more preferably (A1+20° C.) or higher.
  • the temperature T1 was set to (A1+31° C.) or less.
  • the temperature T1 is preferably (A1+30° C.) or lower, more preferably (A1+29° C.) or lower.
  • the heating and holding time (t1) at the temperature T1 is too short, the rod-shaped cementite will remain in the ferrite crystal grains and the hardness will increase.
  • the heating holding time (t1) should be more than 1 hour and 6 hours or less.
  • the heating and holding time (t1) is preferably 1.5 hours or longer, more preferably 2.0 hours or longer. If the heating holding time (t1) is too long, the heat treatment time will be long and the productivity will be lowered. Therefore, the heating and holding time (t1) is 6 hours or less, preferably 5 hours or less, and more preferably 4 hours or less. Note that the average temperature increase rate during heating ([1] in FIG.
  • the temperature T1 may be increased at an arbitrary rate.
  • the temperature may be raised at a rate of 30° C./hour to 100° C./hour.
  • the temperature at point A1 is calculated by the following formula (1) described on page 273 of Leslie Iron and Steel Materials Science (Maruzen).
  • A1 (° C.) 723+29.1 ⁇ [Si] ⁇ 10.7 ⁇ [Mn]+16.9 ⁇ [Cr] ⁇ 16.9 ⁇ [Ni] (1)
  • [element] represents the content (% by mass) of each element, and the content of elements not included is zero.
  • Temperature T2 is preferably 670° C. or higher.
  • the temperature T2 is too high, the cementite will not precipitate sufficiently, and as a result, Cr and Mn will not be sufficiently concentrated in the cementite, the total content of Cr and Mn in the cementite will decrease, and the hardness will increase. As a result, cold workability deteriorates. Therefore, the upper limit of the temperature T2 is A1-17°C.
  • the temperature T2 is preferably below A1-18°C.
  • the heat treatment time is lengthened. Therefore, it is better not to hold from these points of view. However, in order to equalize temperature variations in the furnace, it may be held for a short period of time.
  • the holding time (t2) at the cooling reaching temperature T2 is preferably within one hour.
  • the average cooling rate during cooling ([3] in FIG. 1) in the cooling-heating process is not particularly limited.
  • the average cooling rate during cooling from temperature T1 or temperature T3 to temperature T2 is preferably 100° C./hour or less.
  • the average cooling rate is set to 5 ° C./hour or more. It is preferable to
  • the average heating rate R is set to 160° C./hour or less.
  • the average heating rate R is preferably 155° C./hour or less, more preferably 150° C./hour or less. Even more preferably 120° C./hour or less, particularly preferably 100° C./hour or less.
  • the average heating rate R is too slow, the cementite will be dissolved more than necessary, resulting in a decrease in the total content of Cr and Mn contained in the cementite.
  • the average heating rate R should be 75° C./hour or more, preferably 80° C./hour or more.
  • the temperature T3 must be (A1+8° C.) or higher.
  • the temperature T3 is preferably (A1+15° C.) or higher, more preferably (A1+20° C.) or higher.
  • the final heating temperature (T3) was set to (A1+31° C.) or lower.
  • the temperature T3 is preferably (A1+30° C.) or lower, more preferably (A1+29° C.) or lower.
  • the temperature After reaching the temperature T3, which is the ultimate heating temperature, the temperature may be maintained at the temperature T3. is likely to re-melt and hardness can increase. On the other hand, if the holding time (t3) at the temperature T3 is too long, the annealing time will be lengthened and the productivity may be lowered. Therefore, the retention time (t3) at the temperature T3 is preferably within 1 hour.
  • the cooling-heating step of the cooling in (2-i) and the heating in (2-ii) is repeated multiple times.
  • Temperature T2 average heating rate R, and temperature T3 must satisfy the above ranges.
  • the magnitude relationship between the temperature T3 and the temperature T1 is not particularly limited.
  • the temperature T3 may be the same temperature as the temperature T1, or the temperature T3 may be higher than the temperature T1. good.
  • the temperature T1 may be higher than the temperature T3 from the viewpoint of sufficiently solidly dissolving the rod-shaped cementite in the austenite.
  • (2-iii) Perform the cooling-heating step a total of 2 to 6 times ([7] in FIG. 1)
  • the concentrations of Mn and Cr in the cementite become insufficient, or the cementite coarsens insufficiently.
  • the cooling-heating process is performed twice or more. It is preferably three times or more.
  • the hardness is reduced as the number of times of implementation is increased, but the effect is saturated even if the number of times of implementation is too large.
  • the annealing time is lengthened and the productivity is lowered. Therefore, the number of cooling-heating steps was set to 6 or less. In the case of FIG. 1, the number of times the cooling-heating steps are performed is four.
  • the temperature T2, which is the temperature reached by cooling each time, the average temperature increase rate R, and the temperature T3, which is the temperature reached by heating, may differ within the respective defined ranges.
  • the average cooling rate and the cooling temperature are not particularly limited. From the viewpoint of further suppressing reprecipitation of rod-shaped cementite, the average cooling rate may be, for example, 100° C./hour or less. In addition, from the viewpoint of further suppressing excessive coarsening of cementite, the average cooling rate may be 5° C./hour or more. Also, the ultimate cooling temperature can be, for example, (A1-30° C.) or less.
  • cooling is performed at the above average cooling rate to a temperature range of (A1-30° C.) or lower and (A1-100° C.) or higher, followed by air cooling.
  • the ultimate cooling temperature may be (A1-250° C.) or higher, further (A1-200° C.) or higher, further (A1-150° C.) or higher.
  • the above spheroidizing annealing may be repeated once or multiple times. From the viewpoint of suppressing excessive coarsening of cementite and securing productivity, for example, it is preferably 4 times or less, more preferably 3 times or less.
  • the spheroidizing annealing is repeated multiple times, it may be repeated under the same conditions or under different conditions within the above specified range.
  • wire drawing may be added between the spheroidizing annealing. For example, wire drawing before spheroidizing annealing to be described later ⁇ first spheroidizing annealing ⁇ wire drawing ⁇ second spheroidizing annealing can be performed in this order.
  • processes other than the spheroidizing annealing process are not particularly limited.
  • a step of wire drawing with a reduction in area of preferably 15% or less may be included for the purpose of adjusting dimensions.
  • the area reduction rate is more preferably 10% or less, still more preferably 8% or less, and even more preferably 5% or less.
  • the wire drawing the wire with a reduction in area of more than 5% before the spheroidizing annealing.
  • the area reduction rate is more preferably 10% or more, still more preferably 15% or more, and even more preferably 20% or more.
  • the area reduction rate is preferably 50% or less.
  • the number of times of wire drawing is not particularly limited, and can be, for example, two times.
  • the above "area reduction rate during wire drawing" is the reduction from the steel material before wire drawing to the steel material after wire drawing is performed multiple times. means area ratio.
  • test material with the chemical composition shown in Table 1 was smelted in a converter
  • the steel slab obtained by casting was subjected to hot rolling to produce a wire rod with a diameter of 12 to 16 mm.
  • sample No. 3 in Table 3 manufactured under manufacturing condition B was "yes" before spheroidizing annealing.
  • the steel wire obtained by drawing the wire with a reduction of area of 25% was subjected to spheroidizing annealing.
  • Annealing was performed using the above wire or steel wire using a laboratory furnace.
  • the wire or steel wire was heated to T1 shown in Table 2 and held for t1.
  • T2 in Table 2 After cooling to temperature T2 in Table 2 at an average cooling rate of 5 to 100° C./hour, heating was performed at an average heating rate R shown in Table 2 to temperature T3. This cooling and heating process was performed for the number of cooling-heating times shown in Table 2. Then, the sample was obtained by cooling from the heating temperature in the final cooling-heating step.
  • the sample No. shown in Table 3. 12 the heat treatment process shown in FIG. 2, that is, the heat treatment process in which the cooling-heating process is performed 0 times, was performed as the manufacturing condition H1. It should be noted that under this manufacturing condition H1, wire drawing was not performed at a rate of area reduction of 25% before annealing.
  • sample No. shown in Table 3. In 13 a steel wire obtained by wire drawing with a reduction in area of 25% before annealing is used as the manufacturing condition H2, and the heat treatment step shown in FIG. carried out.
  • the heat treatment conditions that satisfy the manufacturing conditions of Patent Document 3, specifically, the conditions indicated as SA2 in the example of Patent Document 3 are performed as the manufacturing conditions I, that is, the heat treatment process shown in FIG. 3 is repeated five times. rice field.
  • Sample No. shown in Table 3. 18, as manufacturing conditions M heat treatment conditions satisfying the manufacturing conditions of Patent Document 1, specifically No. 2 in Table 2 of Patent Document 1.
  • the fifth spheroidizing annealing condition in 1 was performed, ie the heat treatment step shown in FIG. 4 was repeated three times.
  • As manufacturing conditions N heat treatment conditions satisfying the manufacturing conditions of Patent Document 2, specifically condition c in Table 2 of Patent Document 2, that is, heat treatment in the pattern shown in FIG. 5 was performed.
  • the annealing parameters T1, T2 and T3 listed in Table 2 are the set temperatures of the heat treatment furnace. A thermocouple was attached to the steel material to test the difference between the actual temperature of the steel material and the set temperature.
  • the average ferrite crystal grain size, the average size of all cementite, and the total content of Cr and Mn in cementite were obtained as follows for evaluation of the metal structure.
  • the hardness after spheroidizing annealing and the hardness after quenching treatment were measured and evaluated by the following methods.
  • the ferrite grain size was measured as follows.
  • the test piece was etched using nital (2% by volume of nitric acid, 98% by volume of ethanol) to expose the structure. Then, with an optical microscope, the structure of the test piece in which the above structure is exposed is observed at a magnification of 400 times, and ferrite grains of an average size representing the structure of the entire steel wire can be observed within the evaluation surface.
  • test material was prepared by cutting or polishing a sample of about 9 g from a portion of the steel wire excluding the surface layer (less than 1 mm) so that it could be electrolyzed.
  • the test material was immersed in an electrolytic solution (10% acetylacetone-1% tetramethylammonium chloride-methanol) and energized to subject about 9 g of the test material to constant current electrolysis.
  • the electrolytic solution after electrolysis was filtered through a filter with a pore size of 0.10 ⁇ m (polycarbonate type membrane filter manufactured by Advantech Toyo Co., Ltd.), and the residue remaining on the filter was obtained as cementite in steel.
  • the residue was dissolved in an acid solution and analyzed by ICP emission spectrometry to determine the amount of Cr and Mn in the cementite. Obtained as ⁇ Cr+Mn ⁇ .
  • the total content of Cr and Mn in mass% in steel was measured as follows. About 4 g of sample was collected from the above sample, dissolved in an acid solution, and then analyzed by ICP emission spectrometry to determine the amount of Cr and Mn in the steel, and the total value [Cr + Mn] was obtained. Then, the total content of Cr and Mn in mass% in the cementite ⁇ Cr+Mn ⁇ is divided by the total content of Cr and Mn in mass% in the steel [Cr+Mn] to obtain a concentration ratio ⁇ Cr+Mn ⁇ / A value of [Cr+Mn] was obtained.
  • the hardness after spheroidizing annealing is determined by the amount of C (% by mass), the amount of Cr (% by mass), and the amount of Mo (% by mass) in the steel [C], [Cr], and [Mo], respectively. (elements not included are zero mass%), the case where the following formula (2) is satisfied is evaluated as "OK” as being excellent in cold workability, and the following formula (2) is not satisfied The case was evaluated as "NG” as being inferior in cold workability.
  • each sample after hardening treatment was measured as follows. First, as a sample for quenching treatment, each sample after spheroidizing annealing is processed so that the thickness (t), which is the length in the rolling direction, is 5 mm so that quenching can be sufficiently performed in the quenching treatment. did. As a quenching treatment, the sample was held at a high temperature of A3+ (30 to 50° C.) for 5 minutes, and then water-cooled after the high temperature holding. A3 is a value derived from the following formula (5). Also, the high temperature holding time here was the time after the furnace temperature reached the set temperature.
  • A3 (°C) 910 - 203 x ⁇ ([C]) - 14.2 x [Ni] + 44.7 x [Si] + 104 x [V] + 31.5 x [Mo] + 13.1 x [W] - 30 ⁇ [Mn] ⁇ 11 ⁇ [Cr] ⁇ 20 ⁇ [Cu]+700 ⁇ [P]+400 ⁇ [Al]+120 ⁇ [As]+400 ⁇ [Ti] (5)
  • [element] represents the content (% by mass) of each element, and an element not contained is calculated as 0%.
  • No. No. 13 is an example in which annealing was performed after wire drawing at a rate of area reduction of 25%. Since the number of cycles was 0, the average size of all cementite could not be increased to a certain value or more, and the hardness after spheroidizing annealing was higher than the reference value, resulting in poor cold workability.
  • No. No. 14 is an example in which annealing is performed under the annealing conditions SA2 of Patent Document 3 as the manufacturing condition I that satisfies the manufacturing conditions shown in Patent Document 3. Under these manufacturing conditions, the cementite was excessively coarsened by annealing, and the hardness after quenching treatment was lower than the reference value, resulting in poor hardenability.
  • No. No. 18 is an example in which annealing is performed under manufacturing condition M, which satisfies the manufacturing conditions shown in Patent Document 1. Under these production conditions, since the heating and holding time at temperature T1 is as short as 0.5 hours, a large amount of small-sized rod-shaped cementite remains in the crystal grains, and the average size of all cementite does not exceed a certain level, resulting in spheroidization. The hardness after annealing was higher than the reference value, resulting in poor cold workability.
  • No. No. 19 is an example in which annealing is performed under the condition c of Patent Document 2 as manufacturing condition N that satisfies the manufacturing conditions shown in Patent Document 2. Under these production conditions, a large amount of rod-shaped cementite with a small size remains in the crystal grains because the temperature T1 is not maintained, and the average size of all cementite does not exceed a certain level. Since R was low, the total content of Cr and Mn in cementite was low, and the hardness after spheroidizing annealing did not fall below the reference value, resulting in poor cold workability.
  • the temperature T3 is 730 ° C., which is lower than (A1 + 8 ° C.), so the total content of Cr and Mn in cementite is low, and the hardness after spheroidizing annealing does not fall below the reference value. It resulted in poor cold workability.
  • the steel wire for machine structural parts according to the present embodiment has low deformation resistance at room temperature when manufacturing various machine structural parts, and can suppress abrasion and breakage of jigs and tools for plastic working such as molds. It exhibits excellent cold workability, such as suppressing the occurrence of cracks during working. Furthermore, since it is excellent in hardenability, high hardness can be secured by hardening treatment after cold working. For these reasons, the steel wire for machine structural parts according to the present embodiment is useful as a steel wire for cold working machine structural parts.
  • the steel wire for machine structural parts according to the present embodiment can be subjected to cold working such as cold forging, cold heading, and cold rolling to obtain various machine structures such as parts for automobiles and parts for construction machinery. Used to manufacture parts.
  • mechanical structural parts include bolts, screws, nuts, sockets, ball joints, inner tubes, torsion bars, clutch cases, cages, housings, hubs, covers, cases, receiving washers, tappets, saddles, bulks, Inner cases, clutches, sleeves, outer races, sprockets, cores, stators, anvils, spiders, rocker arms, bodies, flanges, drums, joints, connectors, pulleys, metal fittings, yokes, mouthpieces, valve lifters, spark plugs, pinion gears, steering Examples include mechanical parts such as shafts and common rails, electrical parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Wire Processing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

C、Si、Mn、P、S、Al、Cr、およびNをそれぞれ所定量含有し、残部が鉄および不可避不純物からなり、金属組織におけるセメンタイト中のCrとMnの合計含有量(質量%)を{Cr+Mn}とし、鋼中のCrとMnの合計含有量(質量%)を[Cr+Mn]とし、かつ鋼中のC量(質量%)を[C]で表したときに、濃度比{Cr+Mn}/[Cr+Mn]が(0.5[C]+0.040)以上であり、更に全セメンタイトの平均円相当直径が、(1.668-2.13[C])μm以上、(1.863-2.13[C])μm以下である、機械構造部品用鋼線。

Description

機械構造部品用鋼線およびその製造方法
 本開示は、機械構造部品用鋼線およびその製造方法に関する。
 自動車用部品、建設機械用部品等の各種機械構造部品を製造するにあたっては、通常、熱間圧延線材を含む条鋼に冷間加工性を付与する目的で球状化焼鈍が施される。そして、球状化焼鈍して得られた鋼線に、冷間加工を施し、その後切削加工などの機械加工を施すことによって、所定の部品形状に成形される。さらに、焼入れ焼戻しを行い最終的な強度調整が行われて、機械構造部品が製造される。
 近年、冷間加工工程において、鋼材の割れの防止や金型寿命を向上させるため、従来よりも更に軟質化された鋼線が望まれている。
 軟質化された鋼線を得る方法として、例えば特許文献1には、冷間鍛造性に優れた中炭素綱の製造方法として、球状化焼鈍処理において2回以上のオーステナイト化温度域への加熱を行うことが示されている。特許文献1の製造方法によれば、球状化焼鈍後の硬さが83HRB以下でかつ組織中の球状炭化物比率が70%以上である冷間鍛造用鋼が得られると示されている。
 特許文献2には、球状化焼鈍後の変形抵抗が低く冷間鍛造性に優れた特性を有する鋼材、およびその製造方法が開示されている。該製造方法として、所定の成分組成を満足する鋼を、熱間加工処理した後、室温まで冷却し、その後、A1点~A1点+50℃の温度域に昇温して、昇温後に前記A1点~A1点+50℃の温度域で0~1hr保持してから、前記A1点~A1点+50℃の温度域からA1点-100℃~A1点-30℃までの温度域を10~200℃/hrの平均冷却速度で冷却する焼鈍処理を2回以上行った後、A1点~A1点+30℃の温度域に昇温して前記A1点~A1点+30℃の温度域で保持してから冷却するにあたり、昇温の際にA1点に達してからA1点~A1点+30℃の温度域に保持した後に冷却する際、A1点に達するまでの前記A1点~A1点+30℃の温度域滞在時間を10分 ~2時間とし、前記A1点~A1点+30℃の温度域からのA1点-100℃~A1点-20℃までの冷却温度域を10~100℃/hrの平均冷却速度で冷却した後、当該冷却温度域で10分~5時間保持してから更に冷却することが示されている。
 特許文献3には、冷間加工時における変形抵抗の低減と共に、耐割れ性の向上を図り、優れた冷間加工性を発揮できる機械構造部品用鋼線として、所定の成分組成を有し、鋼の金属組織が、フェライトおよびセメンタイトより構成され、フェライト結晶粒界に存在するセメンタイトの数割合が、全セメンタイト数に対して40%以上である機械構造部品用鋼線が開示されている。特許文献3では、球状化焼鈍に供する圧延線材の製造条件を、800℃以上、1050℃以下で仕上げ圧延し、平均冷却速度が7℃/秒以上の第1冷却と、平均冷却速度が1℃/秒以上、5℃/秒以下の第2冷却と、平均冷却速度が前記第2冷却よりも速くかつ5℃/秒以上である第3冷却とを、この順で行い、前記第1冷却の終了と前記第2冷却の開始を700~750℃の範囲内で行い、前記第2冷却の終了と前記第3冷却の開始を600~650℃の範囲内で行い、前記第3冷却の終了を400℃以下にすることが好ましいと示されている。
特開2011-256456号公報 特開2012-140674号公報 特開2016-194100号公報
 しかしながら、特許文献1~3に開示されている従来の技術では、球状化焼鈍後の硬さを十分に低減できず、球状化焼鈍後に行われる冷間加工での加工性に劣るか、冷間加工後に行う焼入れ処理で硬さを十分に高めることができない、すなわち焼入れ性に劣る場合があった。つまり、従来、冷間加工性と焼入れ性の双方を高めることに着目した技術はなかった。
 本開示は、このような状況に鑑みてなされたものであり、その目的は、硬さが十分に低く冷間加工性に優れ、かつ焼入れ処理により高い硬さの得られる、すなわち焼入れ性に優れた、機械構造部品用鋼線と、該機械構造部品用鋼線を比較的短時間で製造できる、機械構造部品用鋼線の製造方法とを提供することにある。
 本明細書において、「線材」「棒鋼」とはそれぞれ、熱間圧延して得られた線状、棒状の鋼材であって、球状化焼鈍などの熱処理と伸線加工のいずれも施されていない鋼材をいう。また「鋼線」とは、線材または棒鋼に、球状化焼鈍などの熱処理と伸線加工の少なくとも一つが施されたものをいう。本明細書では、上記線材、棒鋼および鋼線を総称して「条鋼」という。
 本発明の態様1は、
 C :0.05質量%~0.60質量%、
 Si:0.005質量%~0.50質量%、
 Mn:0.30質量%~1.20質量%、
 P :0質量%超、0.050質量%以下、
 S :0質量%超、0.050質量%以下、
 Al:0.001質量%~0.10質量%、
 Cr:0質量%超、1.5質量%以下、および
 N :0質量%超、0.02質量%以下
を含有し、残部が鉄および不可避不純物からなり、
 金属組織におけるセメンタイト中のCrとMnの合計含有量(質量%)を{Cr+Mn}とし、鋼中のCrとMnの合計含有量(質量%)を[Cr+Mn]とし、かつ鋼中のC量(質量%)を[C]で表したときに、濃度比{Cr+Mn}/[Cr+Mn]が(0.5[C]+0.040)以上であり、更に、
 全セメンタイトの平均円相当直径が、鋼中のC量(質量%)を[C]で表したときに、(1.668-2.13[C])μm以上、(1.863-2.13[C])μm以下である、機械構造部品用鋼線である。
 本発明の態様2は、
 更に、
 Cu:0質量%超、0.25質量%以下、
 Ni:0質量%超、0.25質量%以下、
 Mo:0質量%超、0.50質量%以下および
 B :0質量%超、0.01質量%以下よりなる群から選択される1種以上を含有する、態様1に記載の機械構造部品用鋼線である。
 本発明の態様3は、
 更に、
 Ti:0質量%超、0.2質量%以下、
 Nb:0質量%超、0.2質量%以下、および
 V :0質量%超、0.5質量%以下よりなる群から選択される1種以上を含有する、態様1または2に記載の機械構造部品用鋼線である。
 本発明の態様4は、
 更に、
 Mg:0質量%超、0.02質量%以下、
 Ca:0質量%超、0.05質量%以下、
 Li:0質量%超、0.02質量%以下、および
 REM:0質量%超、0.05質量%以下よりなる群から選択される1種以上を含有する、態様1~3のいずれか1つに記載の機械構造部品用鋼線である。
 本発明の態様5は、フェライト結晶粒径の平均値が30μm以下である、態様1~4のいずれか1つに記載の機械構造部品用鋼線である。
 本発明の態様6は、
 態様1~4のいずれか1つに記載の化学成分組成を満たす条鋼に、
下記(1)~(3)の工程を含む球状化焼鈍を施す工程を含む、態様1~5のいずれか1つに記載の機械構造部品用鋼線の製造方法である。
(1)(A1+8℃)~(A1+31℃)の温度T1に加熱した後に、該温度T1で1時間超、6時間以下加熱保持し、
(2)650℃超、(A1-17℃)以下の温度T2まで冷却し、次いで、75℃/時間~160℃/時間の平均昇温速度で(A1+8℃)~(A1+31℃)の温度T3まで加熱する、冷却-加熱工程を合計2~6回実施し、
(3)冷却-加熱工程の最終回の温度T3から冷却する。
 ここで、A1は、下記式(1)で算出される。
 A1(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9×[Ni]・・・(1)
 ただし、[元素]は、各元素の含有量(質量%)を表し、含まれない元素の含有量はゼロとする。
 本発明の態様7は、
 前記条鋼が、線材に、5%超の減面率で伸線加工を施して得られた鋼線である、態様6に記載の機械構造部品用鋼線の製造方法である。
 本開示によれば、冷間加工性に優れるとともに焼入れ性に優れた機械構造部品用鋼線と、該機械構造部品用鋼線の製造方法を提供できる。
本実施形態に係る機械構造部品用鋼線の製造方法における、球状化焼鈍の条件を説明するダイアグラムである。 比較例の熱処理工程を説明するダイアグラムである。 従来技術における熱処理工程を説明するダイアグラムである。 別の従来技術における熱処理工程を説明するダイアグラムである。 別の従来技術における熱処理工程を説明するダイアグラムである。
 本発明者らは、冷間加工性に優れるとともに焼入れ性に優れた機械構造部品用鋼線を実現すべく鋭意研究を行い、その結果、セメンタイト中のMnとCrの合計含有量を、鋼中のMnとCrの合計含有量に対して一定以上の割合とし、かつ全セメンタイトの平均サイズを、鋼中のC量に応じて一定範囲内にすればよいことを見出した。更に、上記金属組織を実現するには、化学成分組成を一定範囲内とした金属組織とするとともに、機械構造部品用鋼線の製造方法において、特に規定の条件で球状化焼鈍を行うことが有効であることを見出した。以下、まず本実施形態に係る機械構造部品用鋼線について、該機械構造部品用鋼線の金属組織から説明する。
 1.金属組織
 従来、鋼材に球状化焼鈍を施して、フェライトとセメンタイトで構成される金属組織とすることで、冷間加工性を確保することが行われているが、より優れた冷間加工性と、更に焼入れ性とを兼備するには、上記金属組織とするだけでは達成できない。こうしたことから本発明者らは、優れた冷間加工性と優れた焼入れ性を兼備した機械構造部品用鋼線を実現すべく、様々な角度から鋭意検討した。まず本発明者らは、セメンタイト中のMn量とCr量に着目した。例えば後述する製造条件で球状化焼鈍を行って、全セメンタイトの平均サイズを一定以上とし、かつセメンタイト中のMn量とCr量を高くすれば、フェライト中のMn量とCr量を相対的に少なくすることができ、固溶強化による硬化を抑制して、低硬度を実現でき冷間加工性を向上できることを見出した。加えて、全セメンタイトの平均サイズを、一定以下に抑えることによって、焼入れ処理工程の高温保持でのセメンタイトの未溶解を抑制でき、焼入れ性を向上できることを見出した。これまで、セメンタイト中のMn量とCr量、および全セメンタイトの平均サイズの双方に着目したものはない。
 [セメンタイト中のCrとMnの合計含有量(質量%)を{Cr+Mn}とし、鋼中のCrとMnの合計含有量(質量%)を[Cr+Mn]とし、鋼中のC量(質量%)を[C]で表したときに、濃度比{Cr+Mn}/[Cr+Mn]が(0.5[C]+0.040)以上]
 CrとMnは、セメンタイト中に固溶しやすい代表的な元素である。しかしながら、一部はフェライト中に固溶し、その固溶量が多いほど、フェライト母相が強化され、硬さが増大する。したがって、鋼中のCrとMnの合計含有量[Cr+Mn]に占める、セメンタイト中のCrとMnの合計含有量{Cr+Mn}の割合、すなわち、濃度比{Cr+Mn}/[Cr+Mn]が大きいほど、セメンタイト以外の相を占めるフェライト中の、CrとMnの合計含有量を少なくすることができ、その結果、CrとMnによるフェライトの固溶強化量が減少し、それに伴い、硬さが低減されて冷間加工性が向上する。濃度比{Cr+Mn}/[Cr+Mn]の下限は、鋼中C量が影響することから、鋼中のC量(質量%)を[C]として、(0.5[C]+0.040)以上とした。濃度比{Cr+Mn}/[Cr+Mn]は、好ましくは(0.5[C]+0.042)以上である。一方、可能な製造条件等を考慮すると、濃度比{Cr+Mn}/[Cr+Mn]の上限は、おおよそ0.5[C]+0.500となる。
 上記セメンタイトについて、形態は特に限定されず、球状のセメンタイトの他、アスペクト比の大きい棒状のセメンタイトが含まれる。上記アスペクト比は、セメンタイト粒子の最長長さである長径と、長径に垂直な方向における最長長さである短径との比(長径/短径)である。尚、測定対象となるセメンタイトの大きさの基準は限定されないが、後述する実施例に示す通り、CrとMnの合計含有量を測定できる、セメンタイトのサイズが最小サイズとなる。具体的には、後述する実施例に示す方法で電解抽出残渣測定したときに、孔径0.10μmのフィルター上に残ったセメンタイトが測定対象となる。また、鋼中のCrとMnの合計含有量とは、後述の実施例に示す通り、鋼中の平均のCr含有量と平均のMn含有量の合計であり、例えば金属組織がフェライトとセメンタイトで形成される場合、フェライトとセメンタイト中の質量%でのCrとMnの合計含有量をいう。
 [全セメンタイトの平均円相当直径が、鋼中のC量(質量%)を[C]で表したときに、(1.668-2.13[C])μm以上、(1.863-2.13[C])μm以下]
 鋼中のセメンタイト量が一定の場合、セメンタイトのサイズが大きくなるほど、セメンタイトの数密度は減少して、セメンタイト間の距離が長くなる。鋼中のセメンタイト間の距離が長いほど析出強化し難くなり、その結果、硬さを低減できる。また、セメンタイトのサイズを一定以上とすることで、セメンタイト中のCrとMnの合計含有量を高めることによる硬さ低減効果を、容易に発揮させることができる。これらの観点から、本開示では、全セメンタイトの平均円相当直径を、鋼中のC量(質量%)を[C]で表したときに、(1.668-2.13[C])μm以上とした。全セメンタイトの平均円相当直径は、好ましくは(1.669-2.13[C])μm以上である。一方、セメンタイトが粗大化しすぎると、冷間加工後の焼入れ処理工程で高温保持時に、セメンタイトが十分溶解せず、焼入れで十分高い硬さを得ることができない。よって本開示では、全セメンタイトの平均円相当直径を(1.863-2.13[C])μm以下とした。好ましくは、(1.858-2.13[C])μm以下である。
 特許文献3には、フェライト結晶粒界に存在するセメンタイトは、フェライト結晶粒内に存在するセメンタイトに比べ、冷間加工時に受けるひずみ量が小さくなるため、変形抵抗を低減させることが示されている。しかし特許文献3では、全セメンタイトの平均サイズを制御しておらず、その結果、焼入れ処理工程の高温保持中にセメンタイトを十分溶解できず、焼入れ性に劣る。本開示は、優れた冷間加工性と優れた焼入れ性を兼備した機械構造部品用鋼線を実現すべく、セメンタイト中のCrとMnの合計含有量の割合と全セメンタイトの平均サイズの双方に着目した技術である。
 本実施形態に係る機械構造部品用鋼線の金属組織は、球状化したセメンタイトを有する球状化組織であり、後述する化学成分組成を満たす条鋼に、例えば、後述する球状化焼鈍を施すことによって得ることができる。
 本実施形態の機械構造部品用鋼線の金属組織は、実質フェライトおよびセメンタイトより構成される。上記「実質」とは、本実施形態の機械構造部品用鋼線の金属組織に占めるフェライトが面積率で90%以上であり、アスペクト比が3以上の棒状セメンタイトが面積率で5%以下と、冷間加工性に及ぼす悪影響が小さければ、AlN等の窒化物と、窒化物以外の介在物を面積率で3%未満とを許容することを意味する。前記フェライトの面積率は、更には95%以上であってもよい。
 本明細書において、「フェライト」とは、結晶構造がbcc構造である部分を指し、フェライトとセメンタイトの層状組織であるパーライト中のフェライトも含む。
 また、「フェライト結晶粒径」の測定対象である「フェライト結晶粒」とは、球状化が不十分で球状化焼鈍中に生成される棒状セメンタイトを含む結晶粒も評価対象であるが、球状化焼鈍前から残存し得る棒状セメンタイトを含む結晶粒(パーライト結晶粒)は対象外である。具体的には、ナイタール(硝酸2体積%、エタノール98体積%)を用いてエッチング後に、光学顕微鏡を用いて1000倍で観察したときに確認できる、「セメンタイトが粒内に存在しない結晶粒」と「セメンタイトが粒内に存在し、セメンタイトの形状が観察できる(すなわち、セメンタイトとフェライトの境界が明瞭に観察できる)結晶粒」をいう。上記光学顕微鏡を用いて1000倍ではセメンタイトの形状を観察できない(すなわち、セメンタイトとフェライトの境界が明瞭に観察できない)結晶粒は、本実施形態では判断対象外であり、「フェライト結晶粒」には含めない。
 [フェライト結晶粒径の平均値:30μm以下]
 本実施形態に係る機械構造部品用鋼線は、前記金属組織におけるフェライト結晶粒径の平均値が30μm以下であることが好ましい。フェライト結晶粒径の平均値が30μm以下であれば、機械構造部品用鋼線の延性を向上でき、冷間加工時の割れ発生を更に抑制することができる。フェライト結晶粒径の平均値は、より好ましくは25μm以下であり、更に好ましくは20μm以下である。フェライト結晶粒径の平均値は、小さければ小さいほど好ましいが、可能な製造条件等を考慮すれば、下限はおおよそ2μmとなりうる。
 (特性)
 下記の化学成分組成を満たし、かつ上述した金属組織を有する本実施形態に係る機械構造部品用鋼線は、冷間加工を良好に実施できる低硬度と、焼入れ処理後の高硬度とを両立できる。本実施形態では、鋼中のC量(質量%)、Cr量(質量%)、Mo量(質量%)を各々[C]、[Cr]、[Mo]で表したときに(含まれない元素はゼロ質量%とする)、硬さ、後述する実施例では球状化焼鈍後の硬さが、下記式(2)を満たすと共に、焼入れ処理後の硬さが下記式(3)を満たす場合に、硬さが十分低く冷間加工性に優れると共に、焼入れ処理後の高硬度を達成、すなわち焼入れ性に優れると判定した。
 (球状化焼鈍後の)硬さ(HV)<91([C]+[Cr]/9+[Mo]/2)+91 ・・・(2)
 焼入れ処理後の硬さ(HV)>380ln([C])+1010 ・・・(3)
 2.化学成分組成
 本実施形態に係る機械構造部品用鋼線の化学成分組成について説明する。
 [C:0.05質量%~0.60質量%]
 Cは、鋼材の強度を支配する元素であり、含有量を増加させるほど焼入れ焼き戻し後の強度が高くなる。上記の効果を有効に発揮させるため、C量の下限は、0.05質量%とした。C量は、好ましくは0.10質量%以上であり、より好ましくは0.15質量%以上、更に好ましくは0.20質量%以上である。しかし、C量が過剰であると、球状化焼鈍後の組織において球状セメンタイトの数が過剰となり、硬さが増加するため冷間加工性が低下する。そこで、C量の上限は、0.60質量%と定めた。C量は、好ましくは0.55質量%以下であり、より好ましくは0.50質量%以下である。
 [Si:0.005質量%~0.50質量%]
 Siは、溶製時に脱酸材として用いられる他、強度の向上に寄与する。該効果を有効に発揮させるため、Si量の下限は0.005質量%とした。Si量は、好ましくは0.010質量%以上であり、より好ましくは0.050質量%以上である。しかし、Siは、フェライトの固溶強化に寄与し、球状化焼鈍後の強度をかなり高める作用を有する。Si含有量が過剰であると、上記作用により冷間加工性が劣化するため、Si量の上限は0.50質量%とした。Si量は、好ましくは0.40質量%以下であり、より好ましくは0.35質量%以下である。
 [Mn:0.30質量%~1.20質量%]
 Mnは、脱酸材として有効に作用すると共に、焼入れ性の向上に寄与する元素である。該効果を十分に発揮させるため、Mn量の下限は、0.30質量%とした。Mn量は、好ましくは0.35質量%以上であり、より好ましくは0.40質量%以上である。しかし、Mn量が過剰であると、偏析が起こり易くなり、靱性が低下する。そのため、Mn量の上限は、1.20質量%とした。Mn量は、好ましくは1.10質量%以下であり、より好ましくは1.00質量%以下である。
 [P:0質量%超、0.050質量%以下]
 P(リン)は、不可避不純物であり、鋼中で粒界偏析を起こして鍛造性および靱性に悪影響を及ぼす有害元素である。よって、P量は、0.050質量%以下とした。P量は、好ましくは0.030質量%以下であり、より好ましくは0.020質量%以下である。P量は、少なければ少ないほど好ましいが、通常0.001質量%以上含まれる。
 [S:0質量%超、0.050質量%以下]
 S(硫黄)は、不可避不純物であり、鋼中でMnSを形成し、延性を劣化させるので、冷間加工性には有害な元素である。そこで、S量は、0.050質量%以下とした。S量は、好ましくは0.030質量%以下であり、より好ましくは0.020質量%以下である。S量は、少なければ少ないほど好ましいが、通常0.001質量%以上含まれる。
 [Al:0.001質量%~0.10質量%]
 Alは脱酸材として含まれる元素であり、脱酸に伴って不純物を低減する効果がある。この効果を発揮させるため、Al量の下限は、0.001質量%とした。Al量は、好ましくは0.005質量%以上であり、より好ましくは0.010質量%以上である。しかし、Al量が過剰であると、非金属介在物が増加し、靱性が低下する。そのため、Al量の上限は、0.10質量%と定めた。Al量は、好ましくは0.08質量%以下であり、より好ましくは0.05質量%以下である。
 [Cr:0質量%超、1.5質量%以下]
 Crは、鋼の焼入れ性を向上させ強度を高める効果を有するとともに、セメンタイトの球状化を促進する効果を有する元素である。具体的には、Crは、セメンタイトに固溶して球状化焼鈍の加熱時にセメンタイトの溶解を遅延させる。加熱時にセメンタイトが溶解せずに一部残存することで、冷却時に、アスペクト比の大きい棒状セメンタイトが生成しにくくなり、球状化組織が得やすくなる。そのため、Cr量は、0質量%超とし、0.01質量%以上とすることが好ましい。更に0.05質量%以上としてもよく、より更には0.10質量%以上としてもよい。セメンタイトの球状化をより促進させる観点からは、更に0.30質量%超とすることができ、更に0.50質量%超とすることもできる。Cr量が過剰であると、炭素を含む元素の拡散が遅延し、セメンタイトの溶解を必要以上に遅延させて、球状化組織が得られにくくなる。その結果、本発明による硬さ低減の効果が低下し得る。そのため、Cr量は、1.50質量%以下、好ましくは1.40質量%以下、より好ましくは1.25質量%以下である。Cr量は、元素の拡散をより早める観点からは、更に1.00質量%以下、更に0.80質量%以下、更に0.30質量%以下にすることができる。
 [N:0質量%超、0.02質量%以下]、
 Nは、鋼に不可避的に含まれる不純物であるが、鋼中に固溶Nが多く含まれていると、ひずみ時効による硬度上昇、延性低下を招き、冷間加工性が劣化する。したがって、N量は、0.02質量%以下であり、好ましくは0.015質量%以下、より好ましくは0.010質量%以下である。
 [残部]
 残部は、鉄および不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる微量元素(例えば、As、Sb、Snなど)の混入が許容される。なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
 本実施形態に係る機械構造部品用鋼線は、化学成分組成において、上記元素を含んでいればよい。下記に述べる選択元素は、含まれていなくてもよいが、上記元素と共に必要に応じて含有させることにより、焼入れ性等の確保をより容易に達成させることができる。以下、選択元素について述べる。
 [Cu:0質量%超、0.25質量%以下、Ni:0質量%超、0.25質量%以下、Mo:0質量%超、0.50質量%以下、およびB:0質量%超、0.01質量%以下よりなる群から選択される1種以上]
 Cu、Ni、MoおよびBは、いずれも鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素であり、必要によって単独または2種以上が含有される。これらの元素による効果はその含有量が増加するにつれて大きくなる。上記効果を有効に発揮させるための好ましい下限は、Cu、Ni、Moの各々では0質量%超、より好ましくは0.02質量%以上、更に好ましくは0.05質量%以上であり、Bでは0質量%超、より好ましくは0.0003質量%以上、更に好ましくは0.0005質量%以上である。
 一方、これらの元素の含有量が過剰になると、強度が高くなり過ぎ、冷間加工性が劣化し得るので、上記のように夫々の好ましい上限を定めた。より好ましくは、Cu,Niの各々の含有量は、0.22質量%以下、更に好ましくは0.20質量%以下であり、Moの含有量は、より好ましくは0.40質量%以下、更に好ましくは0.35質量%以下であり、B含有量は、より好ましくは0.007質量%以下、更に好ましくは0.005質量%以下である。
 [Ti:0質量%超、0.2質量%以下、Nb:0質量%超、0.2質量%以下、およびV:0質量%超、0.5質量%以下よりなる群から選択される1種以上]
 Ti,NbおよびVは、Nと化合物を形成し、固溶Nを低減することで、変形抵抗低減の効果を発揮するため、必要によって単独でまたは2種以上を含有させることができる。これらの元素による効果はその含有量が増加するにつれて大きくなる。いずれの元素についても上記効果を有効に発揮させるための好ましい下限は0質量%超、より好ましくは0.03質量%以上、更に好ましくは0.05質量%以上である。しかしながら、これらの元素の含有量が過剰になると、形成される化合物が変形抵抗の上昇を招き、却って冷間加工性が低下し得るので、TiおよびNbの各々の含有量は0.2質量%以下、Vの含有量は0.5質量%以下とすることが好ましい。TiおよびNbの各々の含有量は、より好ましくは0.18質量%以下、更に好ましくは0.15質量%以下であり、V含有量は、より好ましくは0.45質量%以下、更に好ましくは0.40質量%以下である。
 [Mg:0質量%超、0.02質量%以下、Ca:0質量%超、0.05質量%以下、Li:0質量%超、0.02質量%以下、および希土類元素(Rare Earth Metal:REM):0質量%超、0.05質量%以下よりなる群から選択される1種以上]
 Mg、Ca、LiおよびREMは、MnS等の硫化化合物系介在物を球状化させ、鋼の変形能を向上させるのに有効な元素である。こうした作用はその含有量が増加するにつれて増大する。上記効果を有効に発揮させるには、Mg、Ca、LiおよびREMの含有量は夫々、好ましくは0質量%超、より好ましくは0.0001質量%以上、更に好ましくは0.0005質量%以上である。しかし過剰に含有させてもその効果は飽和し、含有量に見合う効果が期待できないので、MgおよびLiの含有量は夫々、好ましくは0.02質量%以下、より好ましくは0.018質量%以下、更に好ましくは0.015質量%以下であり、CaとREMの含有量は夫々、好ましくは0.05質量%以下、より好ましくは0.045質量%以下、更に好ましくは0.040質量%以下である。なお、Mg、Ca、LiおよびREMは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。前記REMとは、ランタノイド元素(LaからLuまでの15元素)、Sc(スカンジウム)およびY(イットリウム)を含む意味である。
 本実施形態に係る機械構造部品用鋼線の形状等は特に限定されない。例えば直径が5.5mm~60mmのものが挙げられる。
 3.製造方法
 本実施形態に係る機械構造部品用鋼線の金属組織を得るには、該機械構造部品用鋼線を製造するにあたり、球状化焼鈍条件を以下に説明の通り適切に制御することが好ましい。球状化焼鈍に供する線材又は棒鋼を製造するための、熱間圧延工程に関しては特に限定されず、定法に従えば良い。後述の通り、球状化焼鈍前に伸線加工を付与してもよい。球状化焼鈍に供する条鋼である線材、鋼線、棒鋼の直径は特に限定されず、線材と鋼線の場合は、例えば5.5mm~55mm、棒鋼の場合は、例えば18mm~105mmである。
 図1を参照しながら、本発明の実施形態に係る機械構造部品用鋼線の製造方法における球状化焼鈍条件について説明する。図1は、本発明の実施形態に係る製造方法における球状化焼鈍の条件を説明するダイアグラムの一例を示すものであり、冷却-加熱工程の繰り返し回数等について、この図1に限定されない。
 本発明の実施形態に係る機械構造部品用鋼線の製造方法は、下記(1)~(3)の工程を含む球状化焼鈍工程を含む。
(1)(A1+8℃)~(A1+31℃)の温度T1に加熱した後に、該温度T1で1時間超、6時間以下加熱保持し、
(2)650℃超、(A1-17℃)以下の温度T2まで冷却し、次いで、75℃/時間~160℃/時間の平均昇温速度で(A1+8℃)~(A1+31℃)の温度T3まで加熱する、冷却-加熱工程を合計2~6回行い、
(3)冷却-加熱工程の最終回の温度T3から冷却する。
 ここで、A1は、下記式(1)で算出される。
 A1(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9×[Ni]・・・(1)
 ただし、[元素]は、各元素の含有量(質量%)を表し、含まれない元素の含有量はゼロとする。
 [(1)(A1+8℃)~(A1+31℃)の温度T1に加熱した後に、該温度T1で1時間超、6時間以下加熱保持(図1の[2])]
 (A1+8℃)~(A1+31℃)の温度T1に加熱することによって、圧延の段階で生成したアスペクト比の大きい棒状セメンタイトの溶解を促進させる。温度T1が低過ぎると、加熱保持時に棒状セメンタイトが溶解されず、フェライト結晶粒内に残存し、硬さが増加する。十分に軟質化された鋼線を得るには、温度T1は、(A1+8℃)以上にする必要がある。温度T1は、好ましくは(A1+15℃)以上であり、より好ましくは(A1+20℃)以上である。一方、温度T1が高過ぎると、結晶粒が粗大になり過ぎて、次工程の冷却過程でフェライト結晶粒界に球状セメンタイトが析出し難くなり、棒状セメンタイトが増加し、硬さが増加する。そのため、温度T1は(A1+31℃)以下とした。温度T1は、好ましくは(A1+30℃)以下であり、より好ましくは(A1+29℃)以下である。
 また、温度T1での加熱保持時間(t1)が短過ぎると、棒状セメンタイトがフェライト結晶粒内に残存し、硬さが増加する。十分に軟質化された鋼線を得るには、加熱保持時間(t1)は、1時間超、6時間以下にする必要がある。好ましい加熱保持時間(t1)は、1.5時間以上であり、より好ましくは2.0時間以上である。加熱保持時間(t1)が長過ぎると、熱処理時間が長くなり生産性が低下する。そのため、加熱保持時間(t1)は、6時間以下であり、好ましくは5時間以下であり、より好ましくは4時間以下である。なお、(A1+8℃)~(A1+31℃)の温度T1まで加熱時(図1の[1])の平均昇温速度は鋼材特性に影響しないので、任意の速度で昇温を行えばよい。例えば、30℃/時間~100℃/時間で昇温すればよい。
 なお、上記A1点の温度は、レスリー鉄鋼材料学(丸善)の第273頁に記載の下記式(1)で算出される。
 A1(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9×[Ni]・・・(1)
 ただし、[元素]は、各元素の含有量(質量%)を表し、含まれない元素の含有量はゼロとする。
 [(2)650℃超、(A1-17℃)以下の温度T2まで冷却し、次いで、75℃/時間~160℃/時間の平均昇温速度で(A1+8℃)~(A1+31℃)の温度T3まで加熱する、冷却-加熱工程を合計2~6回実施(図1の[3]~[7])]
 (2-i)650℃超、(A1-17℃)以下の温度T2まで冷却(図1の[3])
 上記(1)の加熱保持の後、MnとCrの濃度の高いセメンタイトの析出を促進させるために、650℃超、(A1-17℃)以下の温度T2まで冷却する。温度T2が低すぎると、焼鈍時間の長時間化につながる。また、温度T2が低すぎると、セメンタイトが微細化しすぎて、CrとMnの含有量の少ないセメンタイトが生成しやすくなる。従って、冷却の到達温度T2は、650℃超とする必要がある。本実施形態に係る製造方法によれば、冷却の到達温度T2が650℃超であっても、長時間の焼鈍を行うことなく所望のセメンタイトを得ることができる。温度T2は、好ましくは670℃以上である。一方、温度T2が高すぎると、セメンタイトが十分に析出せず、その結果、セメンタイトにCr、Mnが十分濃化されず、セメンタイト中のCrとMnの合計含有量が少なく、硬さが増大して、冷間加工性が低下する。従って、温度T2の上限は、A1-17℃とした。温度T2は、好ましくはA1-18℃以下である。また、温度T2に達した後、保持すると、熱処理時間の長時間化を招く。よって、これらの観点から保持しない方がよい。しかし、炉内の温度ばらつきを均一にするため、短時間であれば保持してもよい。冷却の到達温度T2での保持時間(t2)は、1時間以内とするのが好ましい。
 なお、冷却-加熱工程における冷却時(図1の[3])の平均冷却速度は特に限定されない。母相中のMnとCrのセメンタイト中への侵入をより促進させる観点からは、温度T1または温度T3から、温度T2まで冷却時の平均冷却速度を、100℃/時間以下とすることが好ましい。また、(2)の工程で生成したセメンタイトの過剰な粗大化をより抑制して、焼入れ性をより高めること、および生産性をより高める観点からは、上記平均冷却速度を、5℃/時間以上とすることが好ましい。
 (2-ii)75℃/時間~160℃/時間の平均昇温速度で(A1+8℃)~(A1+31℃)の温度T3まで加熱(図1の[5]および[6])
 上記(2-i)の冷却で析出したセメンタイト中のCrとMnの含有量を高めるため、温度T2から、75℃/時間~160℃/時間の平均昇温速度Rで、(A1+8℃)~(A1+31℃)の温度T3まで加熱する。平均昇温速度Rが速すぎると、CrとMnの拡散が不十分となり、上記加熱保持で生成したセメンタイト中の、CrとMnの含有量が不足し、硬さが増大して、冷間加工性が低下する。従って、平均昇温速度Rは、160℃/時間以下とする。平均昇温速度Rは、好ましくは、155℃/時間以下であり、より好ましくは150℃/時間以下である。更により好ましくは120℃/時間以下、特に好ましくは100℃/時間以下である。一方、平均昇温速度Rが遅すぎると、セメンタイトが必要以上に溶解し、その結果、セメンタイトに含まれる中のCrとMnの合計含有量が減少する。さらに平均昇温速度Rが遅すぎると、温度T1からの冷却時に生成したセメンタイトが過剰に粗大化し、その結果、焼入れ処理工程の高温保持中にセメンタイトが十分に溶解されず、焼入れ処理後の硬さが低下、すなわち焼入れ性の劣化を招く。更に焼鈍時間の長時間化につながり、生産性が低下する。従って、平均昇温速度Rは、75℃/時間以上とし、好ましくは、80℃/時間以上である。
 また冷却-加熱工程における、加熱の到達温度である温度T3が低すぎると、CrとMnの拡散が不十分となり、上記加熱保持の工程で生成したセメンタイト中の、CrとMnの含有量が不足し、硬さが増大して、冷間加工性が低下する。従って、温度T3は、(A1+8℃)以上にする必要がある。温度T3は、好ましくは(A1+15℃)以上であり、より好ましくは(A1+20℃)以上である。一方、加熱の到達温度である温度T3が高すぎると、セメンタイトが必要以上に溶解し、その結果、セメンタイトに含まれる中のCrとMnの合計含有量が減少する。従って、加熱の到達温度(T3)は(A1+31℃)以下とした。温度T3は、好ましくは(A1+30℃)以下であり、より好ましくは(A1+29℃)以下である。
 加熱の到達温度である温度T3に到達後、該温度T3で保持してもよいが、該温度T3での保持時間(t3)が長すぎると、温度T1で加熱保持の工程で生成した球状セメンタイトが再溶解しやすく、硬さが増加し得る。また、上記温度T3での保持時間(t3)が長すぎると、焼鈍時間の長時間化につながり、生産性が低下し得る。そのため、上記温度T3での保持時間(t3)は、1時間以内が好ましい。
 本実施形態に係る製造方法では、後述の通り、上記(2-i)の冷却と上記(2-ii)の加熱の冷却-加熱工程を複数回繰り返すが、各回において、冷却の到達温度である温度T2、平均昇温速度Rおよび温度T3が上記範囲を満たしている必要がある。
 なお、上記温度T3と上記温度T1との大小関係は、特に限定されず、例えば、上記温度T3を上記温度T1と同じ温度としてもよいし、上記温度T3を上記温度T1よりも高くしてもよい。または、棒状セメンタイトを十分にオーステナイト中に固溶させる観点から、上記温度T1を、上記温度T3よりも高くしてもよい。
 (2-iii)冷却-加熱工程を合計2~6回実施(図1の[7])
 セメンタイト中のMnとCrの濃度を増加させるとともに、セメンタイトの粗大化を促進させるため、上記冷却-加熱の工程を合計2~6回行う必要がある。上記冷却-加熱の工程を繰り返し行わない場合、セメンタイト中のMnとCrの濃度が不十分となるか、セメンタイトの粗大化が不十分となる。その結果、球状化焼鈍後の硬さが増大する。よって、上記冷却-加熱工程を2回以上行う。好ましくは3回以上である。実施回数を多くする程硬さが低減されるが、実施回数が多過ぎてもその効果は飽和する。また、焼鈍時間の長時間化につながり、生産性を低下させる。従って、冷却-加熱工程の実施回数は6回以下とした。なお、図1の場合、上記冷却-加熱の工程の実施回数は4回である。各回の冷却の到達温度である温度T2、平均昇温速度R、および加熱の到達温度である温度T3は、それぞれ規定する範囲内で異なっていてもよい。
 [(3)冷却-加熱工程の最終回の温度T3から冷却(図1の[8])]
 冷却-加熱工程の最終回の温度T3から冷却する。該冷却時の平均冷却速度と冷却到達温度は特に限定されない。棒状セメンタイトの再析出をより抑制する観点から、平均冷却速度を、例えば100℃/時間以下としてしてもよい。また、セメンタイトの過剰な粗大化をより抑制する観点から、平均冷却速度を5℃/時間以上としてもよい。また、冷却到達温度は、例えば(A1-30℃)以下とすることができる。例えば(A1-30℃)以下、(A1-100℃)以上の温度域まで、上記平均冷却速度で冷却し、その後、空冷することが挙げられる。または、冷却到達温度を、例えば(A1-100℃)未満とすることで、棒状セメンタイトの再析出をより抑制し、冷間加工性をより高めてもよい。この場合、焼鈍時間を短縮化する観点から、冷却到達温度は(A1-250℃)以上、更には(A1-200℃)以上、更には(A1-150℃)以上としてもよい。
 上記のような球状化焼鈍((1)~(3)の工程)を1回または複数回繰り返し行ってもよい。セメンタイトの過剰な粗大化の抑制と、生産性確保の観点からは、例えば、4回以下とすることが好ましく、より好ましくは3回以下である。上記球状化焼鈍を複数回繰り返す場合、上記規定の範囲内で、同じ条件で繰り返しても良く、異なる条件で繰り返しても良い。また、上記球状化焼鈍を複数回繰り返す場合、球状化焼鈍間に伸線加工を加えてもよい。例えば、後述する球状化焼鈍前の伸線加工→1回目の球状化焼鈍→伸線加工→2回目の球状化焼鈍の順に実施することができる。
 本実施形態に係る機械構造部品用鋼線の製造方法において、上記球状化焼鈍工程以外の工程は特に限定されない。例えば、球状化焼鈍後に、寸法を調整する目的で減面率が好ましくは15%以下の伸線加工を施す工程を含めてもよい。減面率を15%以下とすることで、冷間加工前の硬さ増加を抑制できる。減面率は、より好ましくは10%以下であり、更に好ましくは8%以下、より更により好ましくは5%以下である。
 本発明の組織形態の生成を促進するため、球状化焼鈍前に、線材に対して、5%超の減面率で伸線加工を施す工程を設けることが好ましい。上記減面率で伸線加工を施すことで、鋼中のセメンタイトが破壊され、その後の球状化焼鈍でセメンタイトの凝集を促進できるため、セメンタイトを適度に粗大化でき、軟質化に有効である。また、上記減面率で伸線加工を施すことで、界面の移動や元素の拡散が活発になり、セメンタイト中のCrとMnの含有量が増加する。減面率は、より好ましくは10%以上、更に好ましくは15%以上、より更に好ましくは20%以上である。一方、減面率を過度に大きくすると、断線リスクを招く可能性がある。そのため、減面率は好ましくは50%以下とする。伸線加工を複数回行う場合、伸線加工の回数は、特に限定されず、例えば2回とすることができる。なお、複数回の伸線加工が行われる場合、上記「伸線加工時の減面率」とは、伸線加工前の鋼材から複数回の伸線加工が行われた後の鋼材への減面率を意味する。
 以下、実施例を挙げて本開示をより具体的に説明する。本開示は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本開示の技術的範囲に包含される。
 表1に示す化学成分組成の供試材を転炉溶製した後、鋳造して得られた鋼片に熱間圧延を施し、直径12~16mmの線材を製造した。尚、後述する表2において、球状化焼鈍前の伸線加工「有」の場合、すなわち、製造条件Bで製造した、表3のサンプルNo.2では、上記線材に対して、25%の減面率で伸線加工を行って得た鋼線を、球状化焼鈍に供した。
 上記線材または鋼線を用い、ラボ炉を用いて焼鈍を実施した。焼鈍では、線材または鋼線を、表2に示すT1まで昇温してt1時間保持した。次いで、表2の温度T2まで、平均冷却速度5~100℃/時間で冷却してから、表2に示す平均昇温速度Rで温度T3まで加熱した。この冷却と加熱の工程を、表2に示す冷却-加熱実施回数分実施した。そして、冷却-加熱工程の最終回での加熱温度から冷却して、サンプルを得た。
 比較例として、表3に示すサンプルNo.12では、製造条件H1として、図2に示す熱処理工程、すなわち冷却-加熱工程が0回の熱処理工程を実施した。尚、この製造条件H1では、焼鈍前に25%の減面率で伸線加工を行っていない。また、表3に示すサンプルNo.13では、製造条件H2として、焼鈍前に25%の減面率で伸線加工を行って得た鋼線を用いて、図2に示す熱処理工程、すなわち冷却-加熱工程が0回の熱処理工程を実施した。
 更に比較例として、表3に示すサンプルNo.14では、製造条件Iとして、特許文献3の製造条件を満たす熱処理条件、詳細には、特許文献3の実施例においてSA2と示された条件を実施、すなわち図3に示す熱処理工程を5回繰り返した。表3に示すサンプルNo.18では、製造条件Mとして、特許文献1の製造条件を満たす熱処理条件、詳細には特許文献1の表2のNo.1における5番目の球状化焼きなまし条件を実施、すなわち図4に示す熱処理工程を3回繰り返した。また、表3に示すサンプルNo.19では、製造条件Nとして、特許文献2の製造条件を満たす熱処理条件、詳細には特許文献2の表2の条件c、すなわち図5に示すパターンの熱処理を行った。
 表2に記載の焼鈍パラメータであるT1、T2およびT3は熱処理炉の設定温度である。鋼材に熱電対をつけて、実際の鋼材の温度と設定温度の乖離について試験したところ、鋼材の温度と設定温度は同程度であることを確認した。
 上記焼鈍により得られたサンプルを用い、金属組織の評価として、フェライト結晶粒径の平均値、全セメンタイトの平均サイズ、およびセメンタイト中のCrとMnの合計含有量を、以下の通り求めた。また、特性として、球状化焼鈍後の硬さと、焼入れ処理後の硬さを下記の方法によって測定し、評価した。
 〔金属組織の評価〕
 [フェライト結晶粒径の平均値]
 まず、フェライト結晶粒度の測定を次の通り行った。球状化焼鈍後の鋼線の横断面、すなわち鋼線の軸方向と直交する断面のD/4位置(D:鋼線の直径)を観察できるように試験片を樹脂埋めし、腐食液として、ナイタール(硝酸2体積%、エタノール98体積%)を用いて上記試験片のエッチングを行い、組織を現出させた。そして、光学顕微鏡にて、上記組織を現出させた試験片の組織観察を倍率400倍で行い、評価面内で、鋼線全体の組織を代表する平均的なサイズのフェライト結晶粒を観察できる1視野を選定し、顕微鏡写真を得た。次いで、フェライト結晶粒度(G)の値を、撮影した顕微鏡写真からJIS G0551(2020)の比較法に基づいて算出した。そして、算出したフェライト結晶粒度(G)の値を用い、「入門講座 専門用語-鉄鋼材料編-3 結晶粒度番号と結晶粒径」,梅本 実, ふぇらむ Vol.2(1997)No.10,p29~34の、p32の表1に記載の結晶粒度と粒径に関する諸量間の関係において、フェライト結晶粒度G(orN)とフェライト結晶粒径の平均値dnの関係として示された、下記式(4)から、フェライト結晶粒径の平均値dnを求めた。その結果を表3に示す。なお、本実施例において、表3のサンプルNo.1~11はいずれも、フェライトの面積率が90%以上であった。
 dn=0.254/(2(G-1)/2) ・・・(4)
 [全セメンタイトの平均サイズ]
 球状化焼鈍後の鋼線の全セメンタイトの平均サイズの測定は、横断面が観察できるように試験片を樹脂埋めし、エメリー紙、ダイヤモンドバフによって切断面を鏡面研磨した。次いで、切断面に対し、腐食液として、ナイタール(硝酸2体積%、エタノール98体積%)を用いて30秒間~1分間のエッチングを行い、D/4位置(D:鋼線の直径)のフェライト結晶粒界およびセメンタイトを現出させた。そして、FE-SEM(Field-Emission Scanning Electron Microscope、電解放出型走査電子顕微鏡)を用いて、上記セメンタイト等を現出させた試験片の組織観察を行い、倍率2500倍にて、3視野を撮影した。
 上記撮影した顕微鏡写真にOHPフィルムを重ね、OHPフィルムの上から顕微鏡写真の全セメンタイトを塗りつぶし、解析する投影画像を得た。その投影画像を2値化して白黒写真とし、画像パッケージソフト「粒子解析ver3.5」(日鉄テクノロジー株式会社)を用いて、全セメンタイトの円相当直径を算出した。なお、表3に記載の全セメンタイトの平均サイズは、3視野から算出した値の平均値である。また、測定するセメンタイトの最小サイズ(円相当直径)は0.3μmとした。
 [セメンタイト中のCrとMnの合計含有量の測定(電解抽出残渣測定)]
 鋼線の表層部(1mm未満)を除いた箇所から、約9gのサンプルを電解できるように切断または研磨して供試材を作製した。その供試材を、電解液(10%アセチルアセトン-1%テトラメチルアンモニウムクロライド-メタノール)中に浸漬させ、通電させて上記供試材のうちの約9gを定電流電解した。その後、電解後の電解液を、孔径0.10μmのフィルター(アドバンテック東洋株式会社製ポリカーボネートタイプメンブレンフィルター)でろ過して、フィルター上に残った残渣を鋼中のセメンタイトとして得た。次いで、上記残渣を酸溶液に溶かし、ICP発光分光分析法で分析して、セメンタイト中のCr量とMn量を求め、その合計値を、セメンタイト中の質量%でのCrとMnの合計含有量{Cr+Mn}として得た。
 また、鋼中の質量%でのCrとMnの合計含有量は次の通り測定した。上記サンプルから約4gの試料を採取し、酸溶液で溶解した後、ICP発光分光分析法で分析して、鋼中のCr量とMn量を求め、その合計値[Cr+Mn]を得た。そして、上記セメンタイト中の質量%でのCrとMnの合計含有量{Cr+Mn}を、鋼中の質量%でのCrとMnの合計含有量[Cr+Mn]で除して、濃度比{Cr+Mn}/[Cr+Mn]の値を得た。
 〔特性の評価〕
 [球状化焼鈍後の硬さの測定]
 冷間加工性を評価するため、球状化焼鈍後の各サンプルの硬さを、次の通り測定した。試験片の横断面のD/4位置(D:鋼線の直径)で、JIS Z2244(2009)に準拠してビッカース硬さ試験を実施した。3点以上の平均を算出して得られるビッカース硬さを、球状化焼鈍後の硬さとした。その測定結果を表3に示す。表3では球状化焼鈍後の硬さを「球状化硬さ」と示す。本実施例では、球状化焼鈍後の硬さが、鋼中のC量(質量%)、Cr量(質量%)、Mo量(質量%)を各々[C]、[Cr]、[Mo]で表したときに(含まれない元素はゼロ質量%とする)、下記式(2)を満たす場合を、冷間加工性に優れるとして「OK」と評価し、下記式(2)を満たさない場合を、冷間加工性に劣るとして「NG」と評価した。
 球状化焼鈍後の硬さ(HV)<91([C]+[Cr]/9+[Mo]/2)+91 ・・・(2)
 [焼入れ処理後の硬さの測定]
 焼入れ性を評価するため、焼入れ処理後の各サンプルの硬さを、次の通り測定した。まず、焼入れ処理用試料として、球状化焼鈍後の各サンプルを、焼入れ処理で焼きが十分に入るように、圧延方向の長さである厚み(t)が5mmとなるように加工した試料を用意した。該試料に対し、焼入れ処理として、A3+(30~50℃)で5分間の高温保持を行い、該高温保持後に水冷した。前記A3は、下記式(5)から導出される値である。また、ここでの高温保持の時間は、炉温が設定温度に達してからの時間とした。
 A3(℃)=910-203×√([C])-14.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]-30×[Mn]-11×[Cr]-20×[Cu]+700×[P]+400×[Al]+120×[As]+400×[Ti]・・・(5)
 ただし、[元素]は、各元素の含有量(質量%)を表し、含まれない元素は、0%として計算する。
 そして、上記焼入れ処理後の試料の、t/2位置かつD/4位置(D:鋼線の直径、t:サンプルの厚み)において、ビッカース硬さ試験を実施した。3点以上の平均を算出して得られるビッカース硬さを、焼入れ処理後の硬さとした。その測定結果を表3に示す。表3では焼入れ処理後の硬さを「焼入れ硬さ」と示す。本実施例では、焼入れ処理後の硬さが、鋼中のC量(質量%)を[C]で表したときに、下記式(3)を満たす場合を、焼入れ性に優れるとして「OK」と評価し、下記式(3)を満たさない場合を、焼入れ性に劣るとして「NG」と評価した。
 焼入れ処理後の硬さ(HV)>380ln([C])+1010 ・・・(3)
 表3において、上記球状化焼鈍後の硬さと焼入れ処理後の硬さがいずれもOKの場合を、優れた冷間加工性と優れた焼入れ性を兼備するとして総合判定「OK」とし、上記球状化焼鈍後の硬さと焼入れ処理後の硬さの少なくともいずれかがNGの場合を、優れた冷間加工性と優れた焼入れ性を兼備できないとして総合判定「NG」とした。表2および表3において、下線を付した数値は、本開示の規定範囲から外れるか、所望の特性を満たしていないことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表の結果について考察する。以下のNo.は表3のサンプルNo.を示す。No.1~11は、本発明の実施形態で規定する成分組成、金属組織および球状化焼鈍条件をすべて満足する発明例である。
 No.12、20、22および23は、冷却-加熱工程の回数が不足しているため、セメンタイト中のCrとMnの合計含有量が低いか、セメンタイトの粗大化が不十分となり、球状化焼鈍後の硬さが基準値よりも高く、冷間加工性に劣る結果となった。
 No.13は、25%の減面率で伸線加工後に焼鈍を行った例であり、伸線加工により、セメンタイト中のCrとMnの合計含有量を高めることができたが、冷却-加熱工程が0回であったため、全セメンタイトの平均サイズを一定以上とすることができず、球状化焼鈍後の硬さが基準値よりも高く、冷間加工性に劣る結果となった。
 No.14は、特許文献3に示された製造条件を満たす製造条件Iとして、特許文献3の焼鈍条件SA2で焼鈍を行った例である。この製造条件では、焼鈍によってセメンタイトが過剰に粗大化し、焼入れ処理後の硬さが基準値より低く、焼入れ性に劣る結果となった。
 No.15は、温度T2がA1-17℃よりも高い710℃であるため、温度T1から冷却時にセメンタイトの粗大化が不十分となり、且つセメンタイト中のCrとMnの合計含有量が低くなり、球状化焼鈍後の硬さが基準値よりも高く、冷間加工性に劣る結果となった。
 No.16および17は、温度T2からの平均昇温速度Rが低いため、セメンタイト中のCrとMnの合計含有量が低くなり、球状化焼鈍後の硬さが基準値未満とならず、冷間加工性に劣るか、焼入れ処理後の硬さが基準値より低く、焼入れ性に劣る結果となった。
 No.18は、特許文献1に示された製造条件を満たす、製造条件Mで焼鈍を行った例である。この製造条件では、特に温度T1での加熱保持時間が0.5時間と短いため、サイズの小さい棒状セメンタイトが結晶粒内に多く残存し、全セメンタイトの平均サイズが一定以上とならず、球状化焼鈍後の硬さが基準値よりも高く、冷間加工性に劣る結果となった。
 No.19は、特許文献2に示された製造条件を満たす製造条件Nとして、特許文献2の条件cで焼鈍した例である。この製造条件では温度T1での保持がない等により、サイズの小さい棒状セメンタイトが結晶粒内に多く残存し、全セメンタイトの平均サイズが一定以上とならず、また、温度T2からの平均昇温速度Rが低いため、セメンタイト中のCrとMnの合計含有量が低くなり、球状化焼鈍後の硬さが基準値未満とならず、冷間加工性に劣る結果となった。
 No.21は、温度T3が730℃であり、(A1+8℃)を下回っているため、セメンタイト中のCrとMnの合計含有量が低くなり、球状化焼鈍後の硬さが基準値未満とならず、冷間加工性に劣る結果となった。
 No.24~27は冷却-加熱工程を行っていないか、繰り返し実施していないため、セメンタイトの粗大化が不十分となり、全セメンタイトの平均サイズが一定以上とならず、球状化焼鈍後の硬さが基準値未満とならず、冷間加工性に劣る結果となった。
 本出願は、日本国特許出願である特願2021-061575号と特願2021-211501号を基礎出願とする優先権主張を伴う。特願2021-061575号と特願2021-211501号は参照することにより本明細書に取り込まれる。
 本実施形態に係る機械構造部品用鋼線は、各種機械構造部品を製造するときの室温における変形抵抗が低く、金型などの塑性加工用冶工具の磨耗や破壊を抑制でき、また、例えば圧造加工時の割れ発生も抑制できるといった優れた冷間加工性を発揮する。更には、焼入れ性に優れているため、冷間加工後の焼入れ処理で高硬度を確保することもできる。これらのことから、本実施形態に係る機械構造部品用鋼線は、冷間加工用機械構造部品用鋼線として有用である。例えば、本実施形態に係る機械構造部品用鋼線は、冷間鍛造、冷間圧造、冷間転造等の冷間加工に供することで、自動車用部品、建設機械用部品等の各種機械構造部品の製造に用いられる。こうした機械構造部品として、具体的には、ボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コア、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクタ、プーリ、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフト、コモンレール等の機械部品、電装部品等が挙げられる。

Claims (5)

  1.  C :0.05質量%~0.60質量%、
     Si:0.005質量%~0.50質量%、
     Mn:0.30質量%~1.20質量%、
     P :0質量%超、0.050質量%以下、
     S :0質量%超、0.050質量%以下、
     Al:0.001質量%~0.10質量%、
     Cr:0質量%超、1.5質量%以下、および
     N :0質量%超、0.02質量%以下
    を含有し、残部が鉄および不可避不純物からなり、
     金属組織におけるセメンタイト中のCrとMnの合計含有量(質量%)を{Cr+Mn}とし、鋼中のCrとMnの合計含有量(質量%)を[Cr+Mn]とし、かつ鋼中のC量(質量%)を[C]で表したときに、濃度比{Cr+Mn}/[Cr+Mn]が(0.5[C]+0.040)以上であり、更に、
     全セメンタイトの平均円相当直径が、鋼中のC量(質量%)を[C]で表したときに、(1.668-2.13[C])μm以上、(1.863-2.13[C])μm以下である、機械構造部品用鋼線。
  2.  下記(a)~(c)のうちの1以上を満足する、請求項1に記載の機械構造部品用鋼線。
    (a)更に、
    Cu:0質量%超、0.25質量%以下、
    Ni:0質量%超、0.25質量%以下、
    Mo:0質量%超、0.50質量%以下、および
    B :0質量%超、0.01質量%以下よりなる群から選択される1種以上を含有する
    (b)更に、
    Ti:0質量%超、0.2質量%以下、
    Nb:0質量%超、0.2質量%以下、および
    V :0質量%超、0.5質量%以下よりなる群から選択される1種以上を含有する
    (c)更に、
    Mg:0質量%超、0.02質量%以下、
    Ca:0質量%超、0.05質量%以下、
    Li:0質量%超、0.02質量%以下、および
    REM:0質量%超、0.05質量%以下よりなる群から選択される1種以上を含有する
  3.  フェライト結晶粒径の平均値が30μm以下である、請求項1または2に記載の機械構造部品用鋼線。
  4.  請求項1または2に記載の機械構造部品用鋼線の製造方法であって、
     請求項1または2に記載の化学成分組成を満たす条鋼に、
    下記(1)~(3)の工程を含む球状化焼鈍を施す工程を含む、機械構造部品用鋼線の製造方法。
    (1)(A1+8℃)~(A1+31℃)の温度T1に加熱した後に、該温度T1で1時間超、6時間以下加熱保持し、
    (2)650℃超、(A1-17℃)以下の温度T2まで冷却し、次いで、75℃/時間~160℃/時間の平均昇温速度で(A1+8℃)~(A1+31℃)の温度T3まで加熱する、冷却-加熱工程を合計2~6回実施し、
    (3)冷却-加熱工程の最終回の温度T3から冷却する。
     ここで、A1は、下記式(1)で算出される。
     A1(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9×[Ni]・・・(1)
     ただし、[元素]は、各元素の含有量(質量%)を表し、含まれない元素の含有量はゼロとする。
  5.  前記条鋼は、線材に、5%超の減面率で伸線加工を施して得られた鋼線である、請求項4に記載の機械構造部品用鋼線の製造方法。
PCT/JP2022/013281 2021-03-31 2022-03-22 機械構造部品用鋼線およびその製造方法 WO2022210126A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280024495.4A CN117062932A (zh) 2021-03-31 2022-03-22 机械结构零件用钢丝及其制造方法
US18/552,755 US20240175112A1 (en) 2021-03-31 2022-03-22 Steel wire for machine structural parts and method for manufacturing the same
KR1020237036186A KR20230159707A (ko) 2021-03-31 2022-03-22 기계 구조 부품용 강선 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-061575 2021-03-31
JP2021061575 2021-03-31
JP2021211501A JP2022158884A (ja) 2021-03-31 2021-12-24 機械構造部品用鋼線およびその製造方法
JP2021-211501 2021-12-24

Publications (1)

Publication Number Publication Date
WO2022210126A1 true WO2022210126A1 (ja) 2022-10-06

Family

ID=83455303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013281 WO2022210126A1 (ja) 2021-03-31 2022-03-22 機械構造部品用鋼線およびその製造方法

Country Status (4)

Country Link
US (1) US20240175112A1 (ja)
KR (1) KR20230159707A (ja)
TW (1) TWI806526B (ja)
WO (1) WO2022210126A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073137A (ja) * 1998-08-26 2000-03-07 Kobe Steel Ltd 冷間加工性に優れた鋼線材
JP2006225701A (ja) * 2005-02-16 2006-08-31 Nippon Steel Corp 球状化処理後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2013147728A (ja) * 2011-12-19 2013-08-01 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法
JP2015168882A (ja) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 合金鋼の球状化熱処理方法
WO2016148037A1 (ja) * 2015-03-13 2016-09-22 株式会社神戸製鋼所 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256456A (ja) 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd 冷間鍛造用鋼の製造方法
JP5576785B2 (ja) 2010-12-28 2014-08-20 株式会社神戸製鋼所 冷間鍛造性に優れた鋼材、及びその製造方法
JP6479538B2 (ja) 2015-03-31 2019-03-06 株式会社神戸製鋼所 機械構造部品用鋼線
WO2019198415A1 (ja) * 2018-04-12 2019-10-17 日本製鉄株式会社 浸炭処理が行われる部品用の鋼材
TW202039881A (zh) * 2019-04-17 2020-11-01 日商日本製鐵股份有限公司 鋼板及其製造方法、以及成形體

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073137A (ja) * 1998-08-26 2000-03-07 Kobe Steel Ltd 冷間加工性に優れた鋼線材
JP2006225701A (ja) * 2005-02-16 2006-08-31 Nippon Steel Corp 球状化処理後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2013147728A (ja) * 2011-12-19 2013-08-01 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法
JP2015168882A (ja) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 合金鋼の球状化熱処理方法
WO2016148037A1 (ja) * 2015-03-13 2016-09-22 株式会社神戸製鋼所 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板

Also Published As

Publication number Publication date
US20240175112A1 (en) 2024-05-30
TWI806526B (zh) 2023-06-21
TW202248425A (zh) 2022-12-16
KR20230159707A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
JP5357994B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5486634B2 (ja) 冷間加工用機械構造用鋼及びその製造方法
JP5026626B2 (ja) 冷間鍛造性に優れた鋼線及びその製造方法
JP5812048B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP5776623B2 (ja) 冷間加工性に優れた鋼線材・棒鋼とその製造方法
WO2011062012A1 (ja) 低温焼鈍用鋼線及びその製造方法
JP5618917B2 (ja) 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
TWI606124B (zh) 冷間加工用機械構造用鋼及其製造方法
CN107406949B (zh) 机械结构零件用钢线
JP5576785B2 (ja) 冷間鍛造性に優れた鋼材、及びその製造方法
JP2017048459A (ja) 機械構造部品用鋼線
KR20170007406A (ko) 냉간 가공용 기계 구조용 강 및 그의 제조 방법
WO2017098964A1 (ja) 機械構造部品用鋼線
JP2004204263A (ja) 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材とその製造方法
WO2022210126A1 (ja) 機械構造部品用鋼線およびその製造方法
WO2022210124A1 (ja) 機械構造部品用鋼線およびその製造方法
WO2017038436A1 (ja) 機械構造部品用鋼線
JP2022158884A (ja) 機械構造部品用鋼線およびその製造方法
WO2022210125A1 (ja) 機械構造部品用鋼線およびその製造方法
JP2022158882A (ja) 機械構造部品用鋼線およびその製造方法
JP2022158883A (ja) 機械構造部品用鋼線およびその製造方法
CN117062932A (zh) 机械结构零件用钢丝及其制造方法
JP2018044235A (ja) 機械構造部品用鋼線
CN117062933A (zh) 机械结构零件用钢丝及其制造方法
JP5098486B2 (ja) 浸炭部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024495.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18552755

Country of ref document: US

Ref document number: 2301006200

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237036186

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036186

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780341

Country of ref document: EP

Kind code of ref document: A1