WO2022210047A1 - スパンボンド不織布及び衛生材料 - Google Patents

スパンボンド不織布及び衛生材料 Download PDF

Info

Publication number
WO2022210047A1
WO2022210047A1 PCT/JP2022/012798 JP2022012798W WO2022210047A1 WO 2022210047 A1 WO2022210047 A1 WO 2022210047A1 JP 2022012798 W JP2022012798 W JP 2022012798W WO 2022210047 A1 WO2022210047 A1 WO 2022210047A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fibers
spunbond nonwoven
polymer
spunbond
Prior art date
Application number
PCT/JP2022/012798
Other languages
English (en)
French (fr)
Inventor
祥平 税田
泰一郎 市川
浩貴 金谷
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202280024865.4A priority Critical patent/CN117120681A/zh
Priority to JP2023510989A priority patent/JPWO2022210047A1/ja
Priority to EP22780262.6A priority patent/EP4299805A1/en
Priority to KR1020237032802A priority patent/KR20230150993A/ko
Publication of WO2022210047A1 publication Critical patent/WO2022210047A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present disclosure relates to spunbond nonwoven fabrics and sanitary materials.
  • nonwoven fabrics have been widely used for various purposes because of their excellent air permeability and flexibility.
  • Typical uses of nonwoven fabrics include absorbent articles such as paper diapers and sanitary napkins, sanitary masks, medical gauze, and base fabrics for poultice materials.
  • Such nonwoven fabrics are required to have extensibility and the like from the viewpoint of ease of secondary processing, depending on where they are used.
  • Patent Document 1 discloses a spunbond nonwoven fabric that has good heat-sealability at low temperatures and aptitude for stretching.
  • the spunbond nonwoven fabric disclosed in Patent Document 1 is composed of a specific composition.
  • a specific composition comprises a propylene homopolymer having a melting point of 140° C. or higher, polyethylene, and at least one selected from a first polymer and a second polymer.
  • the first polymer is a random copolymer of propylene and at least one selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms.
  • the second polymer is a specific propylene homopolymer with a melting point of less than 120°C. The total content of the first polymer and the second polymer in the composition is within a specified range.
  • Patent Document 1 International Publication No. 2017/006972
  • the nonwoven fabric described in Patent Document 1 has excellent heat-sealing properties at low temperatures, but there are cases where it is required to further improve stretchability.
  • Elongated nonwoven fabrics which are required to have extensibility, are often subjected to a stretching process in order to impart flexibility and desired shaping treatment when used as nonwoven fabrics.
  • a stretching process may cause breakage depending on the properties of the nonwoven fabric to be stretched, making it impossible to perform desired processing. That is, in some cases, the suitability for stretching of the nonwoven fabric to be stretched is not necessarily sufficient.
  • the present disclosure aims to provide a spunbond nonwoven fabric with excellent stretchability and spinnability, and a sanitary material.
  • the means for solving the above problems include the following embodiments.
  • the fiber includes a fiber in which the proportion of island phases having a diameter of less than 0.32 ⁇ m is 60% or more based on the number of island phases in a cross section perpendicular to the axial direction of the fiber,
  • the ratio ( SMD / SCD ) of the tensile strength (SMD) in the machine direction ( MD ) to the tensile strength (SCD) in the direction ( CD ) perpendicular to the machine direction (MD) is 2.0 spunbond nonwoven fabrics with ⁇ 5.1.
  • ⁇ 2> The spunbond nonwoven fabric according to ⁇ 1>, wherein the propylene-based polymer (A) contains a propylene homopolymer.
  • the polymer (B) comprises an ⁇ -olefin homopolymer having 2 to 8 carbon atoms (excluding the propylene-based polymer (A)). Bond non-woven fabric.
  • the polymer (B) contains polyethylene.
  • the polyethylene has a density of 0.94 g/cm 3 to 0.97 g/cm 3 .
  • the sea phase included in the sea-island structure contains the propylene-based polymer (A), The spunbond nonwoven fabric according to any one of ⁇ 1> to ⁇ 5>, wherein the island phase contains the polymer (B).
  • ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, wherein the content of the polymer (B) is 1.0% by mass to 10.0% by mass with respect to the total amount of the resin composition
  • the spunbond nonwoven fabric according to . ⁇ 10> The resin composition contains a low molecular weight olefin polymer having a weight average molecular weight of 500 to 30,000, Any one of ⁇ 1> to ⁇ 9>, wherein the content of the low-molecular-weight olefin polymer is 0.1% by mass to 5.0% by mass with respect to the total amount of the resin composition.
  • thermoplastic elastomer fiber including a thermoplastic elastomer fiber, A laminated nonwoven fabric or a mixed fiber nonwoven fabric, The laminated nonwoven fabric is formed by bonding a spunbond web containing the fibers and a resin layer containing the thermoplastic elastomer fibers laminated on at least one main surface of the spunbond web, The spunbond nonwoven fabric according to any one of ⁇ 1> to ⁇ 10>, wherein the mixed fiber nonwoven fabric is formed by mixing the fibers and the thermoplastic elastomer fibers.
  • thermoplastic elastomer fiber is a thermoplastic polyurethane elastomer fiber or a thermoplastic olefin elastomer fiber.
  • thermoplastic elastomer fiber is a thermoplastic polyurethane elastomer fiber or a thermoplastic olefin elastomer fiber.
  • thermoplastic elastomer fiber is a thermoplastic polyurethane elastomer fiber or a thermoplastic olefin
  • spunbond nonwoven fabrics and sanitary materials with excellent extensibility and spinnability are provided.
  • FIG. 1 is a transmission electron micrograph (magnification: 6000 times) of a cross section of fibers in the spunbond nonwoven fabric of Example 1.
  • FIG. 4 is a transmission electron micrograph (magnification: 6000 times) of a cross section of fibers in the spunbond nonwoven fabric of Comparative Example 1.
  • FIG. 1 is a transmission electron micrograph (magnification: 6000 times) of a cross section of fibers in the spunbond nonwoven fabric of Comparative Example 1.
  • the term "process” includes not only an independent process, but also a process that cannot be clearly distinguished from other processes as long as the purpose of the process is achieved.
  • the content of each component in the thermoplastic resin composition refers to the content of each component in the thermoplastic resin composition when there are multiple types of substances corresponding to each component in the thermoplastic resin composition, unless otherwise specified. means the total amount of the said multiple substances.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • the upper limit or lower limit described in one numerical range is the numerical range described in other stages may be replaced with the upper limit or lower limit of
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in "Examples”.
  • the spunbond nonwoven fabric of the present disclosure is A fiber made of a resin composition containing a propylene-based polymer (A) and at least one polymer (B) selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters including the fibers have a sea-island structure,
  • the fiber contains a fiber in which the proportion of island phases having a diameter of less than 0.32 ⁇ m among the island phases in the cross section perpendicular to the axial direction of the fiber is 60% or more on a number basis,
  • the ratio ( SMD / S CD ) is 2.0 to 5.1.
  • spunbond nonwoven fabric refers to a continuous fiber (filament) group spun from a spinneret by melting or dissolving a thermoplastic resin composition, and laminated on a moving collecting member (for example, a net conveyor). , indicates a nonwoven fabric made by one or more bonding methods.
  • spun-island structure means that a phase (island phase) containing one of at least two components is present (for example, dispersed) in a continuous phase (sea phase) consisting of the other component. A phase-separated structure is shown.
  • a fiber has a sea-island structure indicates that a cross section of the fiber cut in a direction orthogonal to the axial direction of the fiber has a sea-island structure.
  • machine direction (MD) refers to the direction parallel to the direction of travel of the moving collection member.
  • a direction (CD) perpendicular to the direction of machine flow (MD) indicates a direction perpendicular to the advancing direction of the moving collecting member among the surface directions of the moving collecting member.
  • a fiber having a sea-island structure may be referred to as a “sea-island fiber”.
  • ratio of island phases having a diameter of less than 0.32 ⁇ m among the island phases in the cross section orthogonal to the axial direction of the fiber may be simply referred to as “ratio of island phases”.
  • machine direction (MD) will be referred to as the “machine direction (MD)”
  • direction (CD) orthogonal to the machine direction (MD) will be referred to as the "transverse direction (CD)”.
  • ratio (S MD /S CD ) of the tensile strength (S MD ) in the machine direction (MD) to the tensile strength (S CD ) in the direction (CD) perpendicular to the machine direction (MD) is sometimes referred to as "tensile strength ratio ( SMD / SCD )".
  • the spunbond nonwoven fabric of the present disclosure has the above configuration, it is excellent in extensibility and spinnability.
  • “Excellent extensibility” indicates that the spunbond nonwoven fabric has the first property and the second property.
  • the "first property” indicates the property that the outer shape of the spunbond nonwoven fabric is stretched in one direction when an external force is applied to the spunbond nonwoven fabric.
  • “Secondary property” indicates the property that the outer shape of the spunbond nonwoven fabric is unlikely to return even if the external force applied to the spunbond nonwoven fabric is released.
  • a quantitative evaluation method for the extensibility of the spunbond nonwoven fabric is the same as the evaluation method described in Examples.
  • excellent in spinnability means that yarn breakage is unlikely to occur when the thermoplastic resin composition, which is the raw material of the spunbond nonwoven fabric, is discharged from the spinneret and during drawing of the continuous fiber group, and continuous fibers are not easily broken. It shows that no fusion occurs.
  • a quantitative evaluation method for the spinnability of the spunbond nonwoven fabric is the same as the evaluation method described in Examples.
  • the reason why the spunbond nonwoven fabric of the present disclosure is excellent in extensibility and spinnability is not clear, it is presumed as follows. If the island phase ratio of the fibers contained in the spunbond nonwoven fabric is within the above range, the oriented crystallization of the propylene-based polymer (A) is uniformly inhibited inside the sea-island fibers. This improves the extensibility and spinnability of the spunbond nonwoven fabric. Furthermore, if the tensile strength ratio (S MD /S CD ) of the spunbond nonwoven fabric is within the above range, the direction of dispersion of the fibers constituting the spunbond nonwoven fabric tends to be parallel to the machine direction (MD). Thereby, the extensibility of the obtained spunbond nonwoven fabric is excellent. It is presumed that the main reason why the spunbond nonwoven fabric of the present disclosure has excellent extensibility and spinnability is the synergistic effect of these combinations.
  • the tensile strength ratio (S MD /S CD ) of the spunbond nonwovens of the present disclosure is between 2.0 and 5.1. Since the tensile strength ratio (S MD /S CD ) is 2.0-5.1, there are more fibers oriented parallel to the machine direction (MD) than in the transverse direction (CD). Furthermore, the extensibility in the machine direction (MD) of spunbond nonwovens is better. Since the tensile strength ratio (S MD /S CD ) is 5.0 or less, the tensile strength of the spunbonded nonwoven fabric does not increase excessively, and cracking of the fibers constituting the spunbonded nonwoven fabric is suppressed.
  • the tensile strength ratio (S MD /S CD ) may be, for example, 2.0 to 5.0, preferably 2.5 to 5.1, more preferably 2.5 to 5.1, from the viewpoint of improving the extensibility of the spunbond nonwoven fabric. is 2.5 to 5.1, more preferably 3.0 to 5.0, particularly preferably 3.5 to 5.0.
  • the tensile strength ratio (SMD/ SCD ) of the spunbond nonwoven fabric is determined according to JIS L 1906 6.12.1 [method A] (transition to JIS L 1913:2010, It can be measured according to ISO 9073-3:1989).
  • the machine direction (MD) of a spunbond nonwoven can be determined from the spunbond nonwoven itself by measuring the tensile strength of the spunbond nonwoven.
  • the moving speed of the moving collecting member is set early from the viewpoint of productivity. Therefore, the continuous fiber group is likely to be oriented in a direction parallel to the machine direction (MD) when layered on the moving collection member.
  • the machine direction (MD) tensile strength of spunbond nonwovens is higher than the cross direction (CD) tensile strength of spunbond nonwovens. Therefore, by measuring the tensile strength of the spunbond nonwoven, the machine direction (MD) of the spunbond nonwoven can be determined from the spunbond nonwoven itself.
  • Fibers having a sea-island structure contain sea-island fibers.
  • the sea-island fiber is a resin composition containing a propylene-based polymer (A) and at least one polymer (B) selected from the group consisting of polyolefins (excluding the propylene-based polymer (A)) and polyesters. consists of
  • the propylene-based polymer (A) may be referred to as "specific polypropylene (A)".
  • the polymer (B) which is at least one selected from the group consisting of polyolefins (excluding propylene-based polymer (A)) and polyesters, may be referred to as "specific polymer (B)".
  • the sea-island structure has a sea phase and a plurality of island phases.
  • a plurality of island facies are present (eg, dispersed) in the sea facies.
  • the sea phase preferably contains the specific polypropylene (A), and each of the plurality of island phases preferably contains the specific polymer (B).
  • the fiber diameter of the sea-island fiber is preferably 4.0 d (denier) or less, more preferably 3.5 d or less, still more preferably 3.0 d or less.
  • the sea-island fiber may be a long fiber (staple) or a single fiber (filament). Furthermore, the cross-sectional shape of the sea-island fibers is not particularly limited, and examples thereof include circular, elliptical, and modified cross-sections.
  • the island phase ratio of sea-island fibers is 60% or more based on the number. Since the island phase ratio is 60% by number or more based on the number, the oriented crystallization of the specific polypropylene (A) is less likely to be unevenly inhibited inside the fiber. Thereby, the extensibility and spinnability of the spunbond nonwoven fabric are excellent. From the viewpoint of improving the extensibility of the spunbond nonwoven fabric, the island phase ratio is preferably 70 number % or more, more preferably 80 number % or more, and still more preferably 90 number % or more.
  • the method for adjusting the island phase ratio of the sea-island fibers to 60% by number or more on a number basis is not particularly limited, and examples thereof include a raw material adjustment method and a production facility adjustment method.
  • the raw material adjustment method raw materials for sea-island fibers are adjusted.
  • the island phase ratio can be increased to 60% by number or more on a number basis.
  • the manufacturing equipment adjustment method adjusts the manufacturing equipment for the spunbond nonwoven fabric.
  • the manufacturing equipment adjustment method includes a method of selecting a screw having a shape with improved kneading properties, a method of increasing the resin pressure of the die, a method of increasing the exit temperature of the die, and the like.
  • the island phase ratio can be increased to 60% by number or more.
  • the lower limit of the ratio of the island phase area to the total cross-sectional area of the sea-island fiber is preferably 1.0% or more.
  • the upper limit of the island phase area ratio is preferably 20% or less.
  • the oriented crystallization of the specific polypropylene (A) is less likely to be unevenly inhibited inside the sea-island fibers, and the spunbond nonwoven fabric has better extensibility and spinnability.
  • a method for adjusting the island phase area ratio is not particularly limited, and examples include a raw material adjustment method.
  • the sea-island fiber contained in the spunbond nonwoven fabric is made of a resin composition.
  • the presence of each of the above components in the resin composition can be appropriately confirmed by a known method.
  • Specific polypropylene (A) The resin composition of the sea-island fiber contains the specific polypropylene (A). Only one type of specific polypropylene (A) may be used, or two or more types having different melting points, molecular weights, crystal structures, and the like may be used.
  • the specific polypropylene (A) contains structural units derived from propylene.
  • the specific polypropylene (A) is a propylene homopolymer or a propylene copolymer.
  • the propylene copolymer is preferably a copolymer of propylene and a small amount of one or more ⁇ -olefins.
  • the ⁇ -olefin in the propylene copolymer has 2 or more carbon atoms (excluding 3 carbon atoms), preferably 2 to 8 carbon atoms (excluding 3 carbon atoms).
  • ⁇ -olefins in the propylene copolymer include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • the specific polypropylene (A) preferably contains a propylene homopolymer, more preferably a propylene homopolymer.
  • the melting point of the specific polypropylene (A) is preferably 140°C or higher, more preferably 150°C or higher, still more preferably 155°C or higher, and particularly preferably 157°C or higher and 165°C or lower.
  • the melting point of the specific polypropylene (A) is obtained by using a differential scanning calorimeter (DSC) to hold the temperature at ⁇ 40° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10° C./min. It is defined as the peak top of the peak observed on the highest temperature side. Specifically, using a differential scanning calorimeter (manufactured by Perkin-Elmer, product name: DSC-7), 5 mg of the sample was held at -40 ° C. for 5 minutes in a nitrogen atmosphere, and then the temperature was raised at 10 ° C./min. It can be obtained as the peak top of the peak observed on the highest temperature side of the melting endothermic curve obtained by letting
  • the melt flow rate (MFR: Melt Flow Rate) of the specific polypropylene (A) is not particularly limited as long as the thermoplastic resin composition, which is the raw material of the spunbond nonwoven fabric, can be melt-spun, preferably 1 g / 10 minutes to 1000 g / 10 minutes. , more preferably 5 g/10 min to 500 g/10 min, and still more preferably 10 g/10 min to 100 g/10 min.
  • the melt flow rate of the specific polypropylene (A) is measured by a method according to ASTM Standard D-1238.
  • the conditions for measuring the melt flow rate of the specific polypropylene (A) are 230° C. and a load of 2.16 kg.
  • the content of the specific polypropylene (A) is preferably 55.0% by mass to 95.0% by mass, more preferably 65.0% by mass to 95.0% by mass, and still more preferably the total amount of the resin composition. is 75.0% by mass to 95.0% by mass, particularly preferably 85.0% by mass to 95.0% by mass.
  • the content of the specific polypropylene (A) is within the above range, the elongation of the spunbond nonwoven fabric is improved, and the tensile strength of the spunbond nonwoven fabric is maintained within a good range, while the spunbond nonwoven fabric has a low basis weight and is flexible. is.
  • the content of the specific polypropylene (A) is 85.0% by mass to 95.0% by mass, it is possible to suppress excessive aggregation of the island phase and achieve both elongation and spinnability of the spunbond nonwoven fabric. can.
  • the content of the specific polypropylene (A) is within the above range, the specific polypropylene (A) is included in the sea phase and the specific polymer (B) is included in the island phase.
  • a commercially available product may be used as long as it satisfies the specific polypropylene (A) of the present disclosure described above.
  • the sea-island fiber contains a specific polymer (B). Only one type of the specific polymer (B) may be used, or two or more types having different melting points, molecular weights, crystal structures, and the like may be used.
  • the specific polymer (B) is at least one selected from the group consisting of polyolefins (excluding propylene-based polymers (A)) and polyesters.
  • Polyolefins are homopolymers or copolymers of ⁇ -olefins.
  • the ⁇ -olefin is an ⁇ -olefin having 2 or more carbon atoms (excluding 3 carbon atoms), and preferably includes homopolymers of ⁇ -olefins having 2 to 8 carbon atoms (excluding 3 carbon atoms). , a homopolymer of an ⁇ -olefin having 2 to 8 carbon atoms (excluding 3 carbon atoms).
  • Specific examples of ⁇ -olefins include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • the ⁇ -olefin is preferably ethylene.
  • polyolefins include polyethylene (ethylene homopolymer), ethylene/ ⁇ -olefin copolymer, propylene-based polymer, 1-butene-based polymer, poly 4 -methyl-1-pentene and the like.
  • polyethylene include high-pressure low-density polyethylene, linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and the like.
  • ethylene/ ⁇ -olefin copolymers include ethylene/propylene random copolymers and ethylene/1-butene random copolymers.
  • propylene-based polymer examples include propylene/ethylene random copolymers, propylene/ethylene/1-butene random copolymers, propylene block copolymers, propylene/1-butene random copolymers, and the like.
  • 1-butene-based polymers examples include 1-butene homopolymers, 1-butene/ethylene copolymers, 1-butene/propylene copolymers, and the like.
  • the polyester is, for example, an aliphatic polyester or a polyester copolymer.
  • polyester copolymers include those obtained by polymerizing an aliphatic dicarboxylic acid alone or a mixture of an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid with one or more diols.
  • the specific polymer (B) preferably contains polyethylene, more preferably polyethylene.
  • the density of polyethylene is preferably 0.94 g/cm 3 to 0.98 g/cm 3 , more preferably 0.94 g/cm 3 to 0.98 g/cm 3 , from the viewpoint of improving the tensile strength of the spunbond nonwoven fabric and from the viewpoint of the extensibility and flexibility of the spunbond nonwoven fabric. 94 g/cm 3 to 0.97 g/cm 3 .
  • the melting point of the specific polymer (B) is preferably 150°C or higher, more preferably 155°C or higher, even more preferably 155°C to 165°C.
  • the melt flow rate of the specific polymer (B) is not particularly limited as long as the melt of the thermoplastic resin composition which is the raw material of the spunbond nonwoven fabric can be spun, preferably 1 g/10 minutes to 1000 g/10 minutes or less, more preferably 2 g/10 minutes to 500 g/10 minutes, more preferably 3 g/10 minutes to 100 g/10 minutes.
  • the specific polymer (B) is polyethylene
  • the melt flow rate is measured according to ASTM D-1238.
  • the conditions for measuring the melt flow rate of polyethylene are 190° C. and a load of 2.16 kg.
  • the content of the specific polymer (B) is preferably 1.0% by mass to 10.0% by mass, more preferably 3.0% by mass to 8.0% by mass, and still more preferably the total amount of the resin composition. is 5.0% by mass to 7.0% by mass. If the content of the specific polymer (B) is within the above range, the extensibility of the spunbond nonwoven fabric is improved.
  • the resin composition contains a low-molecular-weight olefin-based polymer having a weight-average molecular weight of 500 to 30,000, and the content of the low-molecular-weight olefin-based polymer is , preferably 0.1% by mass to 5.0% by mass with respect to the total amount of the resin composition.
  • the low-molecular-weight olefin-based polymer may be of only one type, or two or more types having different melting points, molecular weights, crystal structures, etc. may be used.
  • the sea-island fibers contain the low-molecular-weight olefin-based polymer and the content of the low-molecular-weight olefin-based polymer is within the above range, the dispersibility of the specific polypropylene (A) and the specific polymer (B) is improved. As a result, the extensibility and spinnability of the spunbond nonwoven fabric are further improved.
  • the content of the low-molecular-weight olefinic polymer is preferably 0.1% by mass to 5.0% by mass relative to the total amount of the resin composition.
  • the lower limit of the content of the low-molecular-weight olefin-based polymer is determined by adding a sufficient amount of the low-molecular-weight olefin-based polymer to the interface between the sea phase and the island phase to improve the dispersibility of the specific polypropylene (A) and the specific polymer (B).
  • the resin composition from the viewpoint of being present in the resin composition, it is more preferably 0.2% by mass or more, still more preferably 1.0% by mass or more, and particularly preferably 1.5% by mass or less.
  • the upper limit of the content of the low-molecular-weight olefin-based polymer is more preferably 4.0% by mass or less, more preferably 3.0%, based on the total amount of the resin composition, from the viewpoint of not causing a significant decrease in strength of the sea-island fiber. % by mass or less, particularly preferably 2.5% by mass or less.
  • the low-molecular-weight olefin-based polymer may contain structural units derived from one type of olefin, or structural units derived from two or more types of olefins.
  • a low-molecular-weight olefin polymer is a waxy polymer.
  • the weight-average molecular weight (Mw) of the low-molecular-weight olefin polymer is lower than that of the specific polypropylene (A) and poly- ⁇ -olefin.
  • the weight average molecular weight (Mw) of the low molecular weight olefin polymer is 500-30,000.
  • the upper limit of the weight average molecular weight (Mw) of the low-molecular-weight olefin polymer is 30000 or less, preferably less than 15000, more preferably 10000 or less, still more preferably 6000 or less, particularly preferably less than 6000, still more preferably 5000 or less.
  • the lower limit of the weight average molecular weight (Mw) of the low molecular weight olefin polymer is 500 or more, preferably 700 or more, more preferably 1000 or more.
  • GPC Gel Permeation Chromatography
  • Mw weight average molecular weight of the low molecular weight olefin polymer.
  • GPC measurement conditions are preferably the first measurement conditions shown below.
  • the weight-average molecular weight (Mw) of the low-molecular-weight olefin polymer is measured, for example, by preparing a calibration curve using commercially available monodisperse standard polystyrene and using the following conversion method.
  • the softening point of the low-molecular-weight olefin polymer is preferably 90°C to 145°C, more preferably 90°C to 135°C, still more preferably 100°C to 125°C.
  • the softening point of the low molecular weight olefin polymer is measured according to JIS K2207.
  • the density of the low-molecular-weight olefin polymer is not particularly limited, and is preferably 0.890 g/cm 3 to 0.980 g/cm 3 . If the density of the low-molecular-weight olefin-based polymer is within the above range, the extensibility of the spunbond nonwoven fabric will be more excellent.
  • the lower limit of the density of the low-molecular-weight olefin polymer is more preferably 0.910 g/cm 3 or more, and still more preferably 0.920 g/cm 3 or more.
  • the upper limit of the density of the low-molecular-weight olefin polymer is more preferably 0.960 g/cm 3 or less, still more preferably 0.940 g/cm 3 or less.
  • the density of the low molecular weight olefin polymer is measured according to JIS K7112.
  • the difference between the density of the low-molecular-weight olefin-based polymer and the density of the specific polypropylene (A) is not particularly limited, and is preferably less than 0.35 g/cm 3 , more preferably less than 0.20 g/cm 3 , and even more preferably less than 0.20 g/cm 3 . is less than 0.15 g/cm 3 . If the difference between the density of the low-molecular-weight olefin-based polymer and the density of the specific polypropylene (A) is within the above range, the spunbond nonwoven fabric will have better extensibility. Although the reason is not clear, it is considered as follows.
  • the specific polymer (B) is formed in the specific polypropylene (A) via the low-molecular-weight olefin-based polymer. It is thought that it will be easier to disperse. That is, the low-molecular-weight olefin polymer effectively acts as a compatibilizer for the specific polypropylene (A) and the specific polymer (B). Therefore, the dispersibility of the specific polypropylene (A) and the specific polymer (B) is improved. As a result, the extensibility of the spunbond nonwoven fabric is considered to be improved.
  • the low-molecular-weight olefinic polymer is an olefinic homopolymer or an olefinic copolymer composed of two or more kinds of olefins.
  • the low-molecular-weight olefin polymer may be either an ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • the ⁇ -olefin preferably has 3 to 8 carbon atoms, more preferably 3 to 4 carbon atoms. If the number of carbon atoms in the ⁇ -olefin is within the above range, the extensibility and spinnability of the spunbonded nonwoven fabric are further improved.
  • the specific polymer (B) is easily dispersed in the specific polypropylene (A) via the low-molecular-weight olefin polymer. That is, the low-molecular-weight olefinic polymer acts as a compatibilizer for the specific polypropylene (A) and the poly- ⁇ -olefin. Therefore, the uniformity of the specific polypropylene (A) and the specific polymer (B) poly is improved. As a result, properties such as elongation of the spunbond nonwoven fabric are considered to be improved.
  • the low-molecular-weight olefin-based polymer may be used alone or as a mixture of two or more thereof.
  • the method for producing the low-molecular-weight olefin-based polymer is not particularly limited, and examples thereof include the first production method and the second production method.
  • the second production method is a method of reducing the molecular weight of a high-molecular-weight ethylene-based polymer by thermal degradation.
  • the low-molecular-weight olefinic polymer may be purified by a method such as solvent fractionation or distillation for fractionation based on the difference in solubility in a solvent.
  • the first production method include a production method using a Ziegler/Natta catalyst, a metallocene catalyst, or the like.
  • Examples of production methods using metallocene-based catalysts include the production methods described in JP-A-08-239414, International Publication No. 2007/114102, and the like.
  • the low-molecular-weight olefin-based polymer may be a commercial product.
  • Commercially available products of low-molecular-weight olefin polymers include "Hi-Wax (registered trademark) 320P", "Excelex (registered trademark) 30200B", “Hi-Wax (registered trademark) 100P” and “Hi-Wax (registered trademark) 100P” manufactured by Mitsui Chemicals, Inc. Hiwax (registered trademark) 110P” and the like.
  • the sea-island fiber contains a fatty acid amide having 15 to 22 carbon atoms, and the content of the fatty acid amide is 0.1% by mass to 5% with respect to the total amount of the resin composition. 0% by mass is preferred. Only one type of fatty acid amide may be used, or two or more types may be used. As a result, the fatty acid amide having 15 to 22 carbon atoms is adsorbed on the fiber surface of the spunbond nonwoven fabric, and the surface of the sea-island fiber is modified. In other words, the softness, tactile feel, blocking resistance, etc. of the spunbond nonwoven fabric are further improved.
  • the adhesion of the nonwoven fabric fibers to members such as various rotating devices in the apparatus used in the embossing process or the like is more effectively suppressed.
  • the extensibility and flexibility of the spunbond nonwoven fabric are further improved.
  • the number of carbon atoms in a fatty acid amide means the number of carbon atoms contained in the molecule, and the carbon atoms in —CONH constituting the amide are also included in the number of carbon atoms.
  • the number of carbon atoms in the fatty acid amide is preferably 18-22.
  • Fatty acid amides having 15 to 22 carbon atoms include fatty acid monoamide compounds, fatty acid diamide compounds, saturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds. Among these, palmitic acid amide (carbon number: 16), stearin Acid amide (carbon number: 18), oleic acid amide (carbon number: 18), erucic acid amide (carbon number: 22) and the like are preferably mentioned.
  • the content of the fatty acid amide having 15 to 22 carbon atoms is preferably 0.1% by mass to 5.0% by mass, more preferably 0.1% by mass to 3.0% by mass, based on the total amount of the resin composition. , more preferably 0.1% by mass to 1.0% by mass.
  • Additives Sea-island fibers may contain additives as optional components within a range that does not impair the purpose of the present disclosure.
  • additives include antioxidants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, hydrophilic agents, antifog agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, fatty acid amides, and the like. be done.
  • the spunbonded nonwoven fabric may be composed only of sea-island fibers, or may be composed of sea-island fibers and fibers having no sea-island structure.
  • the content of the sea-island fibers is preferably based on the total amount of the spunbond nonwoven fabric from the viewpoint of expressing the above-described effects of the spunbond nonwoven fabric. is 5% to 95% by mass, more preferably 15% to 90% by mass, still more preferably 30% to 85% by mass, and particularly preferably 40% to 70% by mass.
  • the basis weight of the spunbond nonwoven fabric is preferably 30 g/m 2 or less, more preferably 28 g/m 2 from the viewpoint of achieving both flexibility and tensile strength of the spunbond nonwoven fabric. below, more preferably 25 g/m 2 or less, and particularly preferably 5 g/m 2 to 20 g/m 2 .
  • the spunbonded nonwoven fabric preferably has a basis weight in the range of 5 g/m 2 to 19 g/m 2 .
  • a spunbond nonwoven may or may not comprise elastic spunbond fibers.
  • the stretchable spunbond fibers are preferably fibers produced by extrusion molding a resin containing a specific thermoplastic polyurethane elastomer and using a spunbond method.
  • the specific thermoplastic polyurethane elastomer has a solidification onset temperature of at least 65° C. in differential scanning calorimeter (DSC) measurement, measured using a particle size distribution analyzer based on the electrical pore resistance method with an aperture of 100 microns.
  • the number of particles of the polar solvent-insoluble matter is 3,000,000/g or less.
  • Elastic spunbond fibers having the properties described above can be produced, for example, by the methods described in WO 2004/065680 and WO 2011/129433.
  • the spunbonded nonwoven fabric may be a laminated nonwoven fabric described below or a mixed fiber nonwoven fabric described below.
  • the spunbond nonwoven fabric may be a laminated nonwoven fabric or a mixed fiber nonwoven fabric depending on the purpose.
  • Laminated nonwoven fabric The laminated nonwoven fabric is formed by bonding a spunbond web and a resin layer. A resin layer is laminated onto at least one side of the spunbond web. A spunbond web includes islands-in-the-sea fibers. Any known bonding method may be used for bonding the spunbond web and the resin layer.
  • spunbond web refers to a product obtained by extruding a molten or melted thermoplastic resin composition from a spinneret and laminating continuous fibers (filaments) on a moving collection member (e.g., net conveyor). Shows a web made. Spunbond webs differ from spunbond nonwovens in that the fibers that make up the spunbond web are not bonded together.
  • the layer structure of the laminated nonwoven fabric is not particularly limited as long as each of the spunbond web and the resin layer is one layer.
  • the spunbond web may have one layer or two or more layers.
  • Laminated nonwoven fabric WHEREIN The resin layer may be one layer, and may be two or more layers.
  • the basis weight of the laminated nonwoven fabric is preferably 100 g/m 2 or less, more preferably 90 g/m 2 or less, still more preferably 80 g/m 2 or less, from the viewpoint of achieving both flexibility and tensile strength of the laminated nonwoven fabric.
  • the basis weight of the laminated nonwoven fabric is preferably in the range of 20 g/m 2 to 70 g/m 2 .
  • the raw material of the resin layer may be different from the thermoplastic resin composition that is the raw material of the sea-island fiber.
  • resin layers include knitted fabrics, woven fabrics, webs, nonwoven fabrics, and films.
  • Nonwoven fabrics, which are examples of the resin layer include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, flash-spun nonwoven fabrics, and spread nonwoven fabrics. These nonwoven fabrics may be stretchable nonwoven fabrics or non-stretchable nonwoven fabrics.
  • the stretch nonwoven has a tertiary property and a quaternary property.
  • the term “tertiary property” refers to the property that the outer shape of the nonwoven fabric stretches in one direction when an external force is applied to the nonwoven fabric.
  • the “fourth property” indicates the property that the outer shape of the nonwoven fabric reverts when the external force applied to the nonwoven fabric is released.
  • Elastic nonwoven fabrics include elastic nonwoven fabrics using low-crystalline polypropylene described in WO 2012/070518.
  • Webs which are examples of the resin layer, include spunbond webs, meltblown webs, meltblown webs, wet webs, dry webs, dry pulp webs, flash spun webs, spread webs, and the like. These webs may be stretchable webs or non-stretchable webs.
  • the film which is an example of the resin layer, is preferably an air-permeable film or a moisture-permeable film when air permeability is required for the laminated nonwoven fabric.
  • the air-permeable film include a film made of a thermoplastic elastomer, a porous film, and the like.
  • Thermoplastic elastomers which are raw materials for films, include moisture-permeable polyurethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and the like.
  • the porous film is made porous by stretching a film made of a thermoplastic resin containing inorganic fine particles or organic fine particles.
  • thermoplastic resin such as high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymer, and combinations thereof are preferred as the thermoplastic resin that is the raw material of the porous film.
  • LLDPE linear low-density polyethylene
  • polypropylene polypropylene random copolymer
  • combinations thereof are preferred as the thermoplastic resin that is the raw material of the porous film.
  • a thermoplastic resin made of one or more thermoplastic resins selected from polyethylene, polypropylene, etc. can be used as a raw material for a film, which is an example of the resin layer.
  • a part of the laminated nonwoven fabric is preferably heat-sealed.
  • the heat-sealing method for heat-sealing a part of the laminated nonwoven fabric include a method using means such as ultrasonic waves, heat embossing using an embossing roll, hot air through, and the like.
  • the heat-sealing method is preferably heat embossing because the long fibers are efficiently drawn when the nonwoven fabric laminate is drawn.
  • the embossed area ratio is usually preferably 5% to 30%, more preferably 5% to 20%.
  • stamped shapes include circles, ellipses, ellipses, squares, diamonds, rectangles, squares, and continuous shapes based on these shapes.
  • the embossing temperature in hot embossing is suitably adjusted by the line speed, crimping pressure, etc. during embossing, and is preferably 85°C to 150°C.
  • the resin layer When the resin layer is a knitted fabric, woven fabric, web or non-woven fabric, the resin layer preferably comprises thermoplastic elastomer fibers. By including thermoplastic elastomer fibers in the resin layer, it is possible to produce a stretchable nonwoven fabric that does not cause blocking.
  • thermoplastic elastomer fiber is not particularly limited as long as it is a thermoplastic elastomer.
  • a thermoplastic elastomer has a soft segment (soft phase) and a hard segment (hard phase).
  • the soft segment (soft phase) has elasticity in the molecule.
  • a hard segment (hard phase) has the property of preventing plastic deformation.
  • thermoplastic elastomer fibers include polyurethane thermoplastic elastomer fibers, olefin thermoplastic elastomer fibers, styrene thermoplastic elastomer fibers, polyester thermoplastic elastomer fibers, and polyamide thermoplastic elastomer fibers.
  • the thermoplastic elastomer fibers are preferably thermoplastic polyurethane fibers or olefin-based thermoplastic elastomer fibers from the viewpoint of the stretchability and spinning stability of the laminated nonwoven fabric.
  • Materials for polyurethane thermoplastic elastomer fibers include: (1) A method of reacting an isocyanate group-terminated prepolymer obtained by reacting a polyol and an isocyanate compound in advance with a chain extender, (2) Polyurethanes produced by mixing a polyol and a chain extender in advance and then reacting this mixture with an isocyanate compound.
  • Polyol which is one of the components constituting the thermoplastic polyurethane elastomer, includes polyoxyalkylene polyol, polytetramethylene ether glycol, polyester polyol, polycaprolactone polyol, and polycarbonate diol.
  • isocyanate compounds include compounds having two or more isocyanate groups in one molecule, such as aromatic ring, aliphatic or alicyclic compounds.
  • chain extender include aliphatic, aromatic, heterocyclic or alicyclic low-molecular-weight polyols having two or more hydroxyl groups in one molecule.
  • thermoplastic polyurethane elastomer fiber a thermoplastic polyurethane elastomer using 1,4-bis(2-hydroxyethoxy)benzene as a chain extender described in WO 2011/129433. is mentioned.
  • Examples of materials for olefin-based thermoplastic elastomer fibers include ethylene- ⁇ -olefin random copolymers and those obtained by copolymerizing dienes as a second component.
  • ethylene-propylene random copolymers examples thereof include ethylene-1-butene random copolymers and EPDM (ethylene-propylene-diene copolymers, the diene component of which is dicyclopentadiene or ethylidene norbornene) as soft segments and polyolefins as hard segments.
  • thermoplastic elastomer fiber materials include Tafmer (manufactured by Mitsui Chemicals, Inc.), Milastomer (manufactured by Mitsui Chemicals, Inc.), Evaflex-EEA (manufactured by Mitsui DuPont Polychemicals, Inc.), Vistamax (manufactured by Exxon Mobil Co., Ltd.), etc.
  • Raw materials for each of the thermoplastic styrene-based elastomer fiber, the thermoplastic polyester-based elastomer fiber, and the thermoplastic polyamide-based elastomer fiber are described in JP-A-2001-179867. What was done is mentioned.
  • the fiber diameter of the thermoplastic elastomer fiber is preferably 4.0d (denier) or less, more preferably 3.5d or less, and even more preferably 3.0d or less.
  • thermoplastic elastomer fiber may be a long fiber (staple) or a single fiber (filament). Furthermore, the cross-sectional shape of the thermoplastic elastomer fiber is not particularly limited, and examples thereof include circular, elliptical, irregular cross-sections, and the like.
  • the mixed fiber nonwoven fabric contains thermoplastic elastomer fibers.
  • the mixed fiber nonwoven fabric is obtained by mixing sea-island fibers and thermoplastic elastomer fibers.
  • the mixed fiber ratio of the sea-island fibers is not particularly limited, and is preferably 5% to 95% by mass, more preferably 25% to 75% by mass, and still more preferably 40% to 60% by mass.
  • the “mixed fiber ratio” indicates the ratio of a specific type of fiber contained in a nonwoven fabric made by mixing two or more types of fibers, or the mixing ratio of various types of fibers in the nonwoven fabric. That is, the “mixing ratio of sea-island fibers" in a mixed nonwoven fabric composed of sea-island fibers and thermoplastic elastomer fibers is ⁇ mass of sea-island fibers ⁇ (mass of sea-island fibers+mass of thermoplastic elastomer fibers) ⁇ .
  • the “mixing ratio of thermoplastic elastomer fibers” is ⁇ mass of thermoplastic elastomer fibers/(mass of sea-island fibers + mass of thermoplastic elastomer fibers) ⁇ .
  • the basis weight of the mixed fiber nonwoven fabric is preferably 100 g/m 2 or less, more preferably 90 g/m 2 or less, still more preferably 80 g/m 2 or less, from the viewpoint of achieving both softness and tensile strength of the mixed fiber nonwoven fabric.
  • the basis weight of the mixed fiber nonwoven fabric is preferably in the range of 20 g/m 2 to 70 g/m 2 .
  • thermoplastic elastomer fibers examples include those exemplified as the thermoplastic elastomer fibers that can be contained in the resin layer of the laminated nonwoven fabric.
  • Sanitary materials of the present disclosure include spunbond nonwoven fabrics of the present disclosure.
  • the spunbond nonwoven fabric of the present disclosure has excellent extensibility. Therefore, the sanitary material of the present disclosure has excellent extensibility.
  • Sanitary materials are suitably used for various sanitary material applications that require extensibility and flexibility.
  • the sanitary material is suitably used for absorbent articles such as disposable diapers and sanitary napkins, medical sanitary materials such as bandages, medical gauze and towels, and sanitary masks.
  • the spunbond nonwoven fabric of the present disclosure is produced by a conventional method using a thermoplastic resin composition as a raw material.
  • the spunbond nonwoven fabric of the present disclosure is produced, for example, as follows. That is, a thermoplastic resin composition is introduced into an extruder and melted. A melt of the thermoplastic resin composition is spun using a spunbond nonwoven fabric molding machine having multiple spinnerets. The obtained continuous fiber group is stretched by controlling the air volume with a blower or the like. At this time, the continuous fiber group is cooled as necessary. The continuous fibers are then deposited on the collecting surface of a spunbond nonwoven fabric forming machine to obtain a spunbond web. The resulting spunbond web is heat and pressure treated with an embossing roll. A spunbond nonwoven fabric is thus obtained.
  • thermoplastic resin composition is the same as that exemplified as the composition of the sea-island fiber described above.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus used for closed spunbonding.
  • a group of continuous fibers melt-spun from a thermoplastic resin composition is stretched while being cooled in a closed space.
  • the spinning section 10 has an extruder 11 , a spinneret 12 , a cooling chamber 13 , a cooling air supply section 14 , a cooling air supply section 15 and a drawing section 16 .
  • Extruder 11 extrudes a thermoplastic polymer.
  • Spinneret 12 spins a melt of thermoplastic polymer.
  • the cooling chamber 13 cools the continuous fiber group 1 spun from the spinneret 12 .
  • the cooling air supply section 14 and the cooling air supply section 15 supply the cooling air A into the cooling chamber 13 and the extension section 16 .
  • the drawing section 16 draws the continuous fiber group 1 .
  • thermoplastic resin composition is introduced into the extruder 11 .
  • the thermoplastic resin composition introduced into the extruder 11 is melt-kneaded within the extruder 11 .
  • a melt of the thermoplastic resin composition is extruded from the extruder 11 .
  • a melt of the thermoplastic resin composition extruded from the extruder 11 is introduced into the spinneret 12 .
  • the melt of the thermoplastic resin composition introduced into the spinneret 12 is extruded from the spinneret 12 and spun.
  • the continuous fiber group 1 is formed.
  • the continuous fiber group 1 is introduced into the cooling chamber 13 .
  • the continuous fiber group 1 introduced into the cooling chamber 13 is cooled by the cooling air A.
  • the cooling air A is supplied from at least one of the cooling air supply section 14 and the cooling air supply section 15 into the cooling chamber 13 and the extending section 16 .
  • the cooled continuous fiber group 1 is introduced into the drawing section 16 arranged on the downstream side of the cooling chamber 13 .
  • the extension portion 16 has a bottleneck portion 16a and a tubular portion 16b.
  • the cylindrical portion 16b is formed at the end portion on the lower side (ie, the moving collection member 21 side) in the vertical direction (ie, the direction of gravity) of the bottleneck portion 16a.
  • the bottleneck portion 16a is bottleneck-shaped.
  • the cylindrical portion 16b is a cylindrical object. The hollow portion of the cylindrical portion 16b widens downward as shown in FIG.
  • the continuous fiber group 1 introduced into the stretching section 16 is stretched by increasing the speed of the cooling air at the bottleneck section 16a.
  • the continuous fiber group 1 that has been stretched and passed through the cylindrical portion 16b is dispersed and collected on the moving collecting member 21 .
  • the dispersed continuous fiber group 1 is efficiently collected on the moving collection member 21 by the suction unit 22 .
  • the suction unit 22 is arranged below the collection surface of the moving collection member 21 .
  • a spunbond web 2 is thus formed.
  • the fibers contained in the spunbond web 2 are then heat and pressure treated and bonded, for example by an embossing roll (not shown).
  • a spunbond nonwoven fabric is thus obtained.
  • the method for producing the spunbond nonwoven fabric of the present disclosure is not limited to the closed spunbond method.
  • the method of making the spunbond nonwoven fabric of the present disclosure may be an open spunbond process. In the open spunbond method, a group of continuous fibers melt-spun from a thermoplastic resin composition is cooled.
  • the melting temperature of the thermoplastic resin composition is not particularly limited as long as it is the softening temperature or the melting temperature of the thermoplastic resin composition or higher and is lower than the thermal decomposition temperature of the thermoplastic resin composition. It is appropriately set according to physical properties and the like.
  • the temperature of the spinneret 12 is appropriately adjusted according to the physical properties of the thermoplastic resin composition. Considering the physical properties of the specific polypropylene (A) contained in the thermoplastic resin composition, the temperature of the spinneret 12 is preferably 180° C. to 240° C., more preferably 190° C. to 230° C., and still more preferably 200° C. to 225° C. °C.
  • the pore diameter of the spinneret 12 is not particularly limited, and is preferably 0.05 mm to 1.00 mm from the viewpoint of the elongation of the spunbond nonwoven fabric.
  • the single hole discharge rate of the melt of the thermoplastic resin composition from the spinneret 12 is preferably 0.1 g/min to 3.0 g/min, more preferably 0.3 g. /min to 1.0 g/min.
  • the temperature of the cooling air that cools the continuous fiber group extruded from the spinneret is not particularly limited as long as it is a temperature at which the thermoplastic resin composition is solidified.
  • the temperature of the cooling air is preferably 5°C to 50°C, more preferably 10°C to 40°C, still more preferably 15°C to 30°C.
  • the fibers contained in the spunbond nonwoven fabric may be partially heat-sealed.
  • the fibers contained in the spunbond nonwoven fabric may be compressed using nip rolls before being heat-sealed.
  • the obtained test piece was subjected to a tensile test using a tensile tester (manufactured by Instron Japan Company Limited, Instron 5564 type) under the conditions of a temperature of 20 ⁇ 2 ° C., a chuck distance of 100 mm, and a tensile speed of 300 mm / min.
  • Tensile load was measured for each test piece, and the average value of the maximum values was taken as the tensile strength (maximum strength) [N/50 mm] in the machine direction (MD).
  • Elongation at tensile strength (maximum strength) was defined as maximum elongation [%] and used as an index for evaluating elongation.
  • the number of island phases with a diameter of 0.32 ⁇ m or more and the number of island phases with a diameter of less than 0.32 ⁇ m were counted.
  • the ratio (that is, the ratio of island phases) was calculated by dividing the number of island phases corresponding to each range by the number of island phases within the observation range (cross section).
  • a transmission electron microscope a transmission electron microscope model H-7650 manufactured by Hitachi High-Tech Co., Ltd. was used.
  • the observation magnification was 6000 times.
  • the diameter of the island phase was obtained by image analysis using Mac-View (Mountech Co., Ltd.). Specifically, the major axis and minor axis of the island phase were measured, and the average value was defined as the diameter.
  • the island phase area ratio was obtained by dividing the total area of the island phase by the total cross-sectional area of the sea-island fiber.
  • Example 1 ⁇ Production of spunbond nonwoven fabric> 92.7 parts by mass of a propylene homopolymer (1) having an MFR (measured according to ASTM D1238 at a temperature of 230°C and a load of 2.16 kg) of 60 g/10 minutes, a density of 0.91 g/cm 3 and a melting point of 160°C; High-density polyethylene (hereinafter referred to as "polyethylene") having an MFR (measured at a temperature of 190°C and a load of 2.16 kg according to ASTM D1238) of 5 g/10 minutes, a density of 0.95 g/cm 3 and a melting point of 134°C.
  • polyethylene High-density polyethylene
  • FIG. 2 shows an image of the cross section of the fibers in the spunbond nonwoven fabric obtained in Example 1, observed with a transmission electron microscope.
  • Example 2 91.7 parts by mass of a propylene homopolymer (1) having a melting point of 160° C., and 2.0 parts by mass of the product name “Hiwax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight: 3000].
  • a spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 1, except that the parts were changed. The number of yarn breakages during the test was zero.
  • Example 3 90.7 parts by mass of a propylene homopolymer (1) having a melting point of 160° C., and 3.0 parts by mass of the product name “Hiwax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight: 3000].
  • a spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 1, except that the parts were changed. The number of yarn breakages during the test was zero.
  • Example 4 87.7 parts by mass of propylene homopolymer (1) having a melting point of 160° C., 10.0 parts by mass of polyethylene, product name “Hiwax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight : 3000] was changed to 2.0 parts by mass, a spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 1. The number of yarn breakages during the test was zero.
  • Example 5 86.7 parts by mass of propylene homopolymer (1) having a melting point of 160° C., and 3.0 parts by mass of product name “Hiwax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight: 3000].
  • a spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 4, except that the parts were changed. The number of yarn breakages during the test was zero.
  • Example 6 The product name "High Wax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight: 3000] is replaced with ethylene-butene copolymer wax [manufactured by Mitsui Chemicals, Inc., product name “Excelex (registered trademark) Trademark) 30200B", density: 0.92 g/cm 3 , weight average molecular weight: 2900]. The number of yarn breakages during the test was zero.
  • Example 7 The product name “Hiwax (registered trademark) 320P” [density: 0.93 g/cm 3 , weight average molecular weight: 3000] was mixed with ethylene polymer wax [manufactured by Mitsui Chemicals, Inc., product name “Hiwax (registered trademark) 100P”. , density: 0.95 g/cm 3 , weight average molecular weight: 900]. The number of yarn breakages during the test was zero.
  • Example 8 The product name "Hi-Wax (registered trademark) 320P" [density: 0.93 g/cm 3 , weight average molecular weight: 3000] is ethylene-propylene copolymer wax [manufactured by Mitsui Chemicals, Inc., product name "Hi-Wax (registered trademark) Trademark) 110P", density: 0.92 g/cm 3 , weight average molecular weight: 1000]. The number of yarn breakages during the test was zero.
  • Example 9 A spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 8, except that 93.7 parts by mass of propylene homopolymer (1) having a melting point of 160°C was used and 5.0 parts by mass of polyethylene was used. The number of yarn breakages during the test was zero.
  • Example 10 A spunbond nonwoven fabric was produced and evaluated in the same manner as in Example 8, except that 94.7 parts by mass of propylene homopolymer (1) having a melting point of 160°C and 4.0 parts by mass of polyethylene were used. The number of yarn breakages during the test was zero.
  • Example 11 A spunbond nonwoven fabric was produced in the same manner as in Example 10, except that the propylene homopolymer (1) having a melting point of 160° C. was 93.0 parts by mass, the polyethylene was 6.0 parts by mass, and erucamide was not used. manufactured and evaluated. The number of yarn breakages during the test was zero.
  • (Comparative example 1) 92.7 parts by mass of a propylene homopolymer (1) having an MFR (measured according to ASTM D1238 at a temperature of 230°C and a load of 2.16 kg) of 60 g/10 minutes, a density of 0.91 g/cm 3 and a melting point of 160°C; MFR (measured at a temperature of 190°C and a load of 2.16 kg according to ASTM D1238) of 5 g/10 minutes, a density of 0.95 g/cm 3 , and a high-density polyethylene having a melting point of 134°C (3: hereinafter referred to as “polyethylene” .) 6 parts by mass; A mixture with 0.3 parts by mass of erucic acid amide was melted using an extruder of 75 mm ⁇ , and a spunbond nonwoven fabric molding machine having a spinneret with 1093 holes (direction perpendicular to the machine flow direction on the collection surface length: 320 mm, see FIG.
  • FIG. 3 shows an image of a cross section of fibers in the spunbonded nonwoven fabric obtained in Comparative Example 1 observed with a transmission electron microscope.
  • Comparative example 2 Except for adjusting the shape of the stretched portion so that the fibers are dispersed in the transverse direction (CD) (more specifically, the vertical length L (see FIG. 1) of the cylindrical portion 16b of the stretched portion 16 is increased by 50 times).
  • a spunbond nonwoven fabric prepared and evaluated a spunbond nonwoven fabric in the same manner as in Example 8. The number of yarn breakages during the test was zero. It should be noted that the cylindrical portion 16b of Comparative Example 2 was not in contact with the moving collection member 21 and the spunbond web 2 formed on the moving collection member 21 .
  • the spunbond nonwoven fabrics of Examples 1 to 11 contain sea-island fibers made of a resin composition containing a propylene homopolymer and polyethylene. All sea-island fibers were confirmed to have a sea-island structure. Sea-island fibers include fibers having an island phase ratio of 60% or more on a number basis.
  • the tensile strength ratio (S MD /S CD ) of the spunbond nonwoven fabrics of Examples 1 to 11 was 2.0 to 5.0. Therefore, the spunbond nonwoven fabrics of Examples 1 to 11 had a spinnability evaluation of "A" and a maximum elongation in the machine direction (MD) of more than 197%.
  • the spunbond nonwoven fabrics of Examples 1 to 11 were found to be excellent in extensibility and spinnability. From these evaluation results, it was found that the spunbond nonwoven fabric of the present disclosure has excellent productivity and is suitable for sanitary material applications that require various secondary workability.
  • the spunbond nonwoven fabrics of Comparative Examples 1 and 3 contain sea-island fibers made of a resin composition containing propylene homopolymer and polyethylene. All sea-island fibers were confirmed to have a sea-island structure. The sea-island fibers did not include fibers with an island phase ratio of 60% or more based on the number. Therefore, the spunbond nonwoven fabrics of Comparative Examples 1 and 3 had a maximum elongation in the machine direction (MD) of 197% or less. Furthermore, the spunbonded nonwoven fabric of Comparative Example 1 was evaluated as "B" in spinnability. As a result, it was found that the spunbond nonwoven fabrics of Comparative Examples 1 and 3 were not excellent in extensibility and spinnability.
  • the spunbond nonwoven fabrics of Comparative Examples 2 and 4 contain sea-island fibers made of a resin composition containing a propylene homopolymer and polyethylene.
  • the tensile strength ratios (S MD /S CD ) of the spunbond nonwoven fabrics of Comparative Examples 2 and 4 were not within the range of 2.0 to 5.0. Therefore, the spunbond nonwoven fabrics of Comparative Examples 2 and 4 had a maximum elongation in the machine direction (MD) of less than 197%. As a result, it was found that the spunbond nonwoven fabrics of Comparative Examples 2 and 4 were not excellent in extensibility and spinnability.

Abstract

スパンボンド不織布は、プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)とを含む樹脂組成物からなる繊維を含む。前記繊維が、海島構造を有する。前記繊維が、前記繊維の軸方向に直交する断面における島相のうち、直径0.32μm未満の島相の割合が個数基準で60個数%以上である繊維を含む。スパンボンド不織布は、機械の流れ方向(MD)に直交する方向(CD)の引張強度(SCD)に対する前記機械の流れ方向(MD)の引張強度(SMD)の比(SMD/SCD)が2.0~5.1である。

Description

スパンボンド不織布及び衛生材料
 本開示は、スパンボンド不織布及び衛生材料に関する。
 近年、不織布は通気性及び柔軟性に優れることから各種用途に幅広く用いられている。不織布の代表的な用途としては、例えば、紙おむつ、生理用ナプキン等の吸収性物品、衛生マスク、医療用ガーゼ、湿布材の基布等が挙げられる。
 このような不織布には、使用される箇所によって、二次加工のしやすさの観点から、伸長性を有すること等が求められている。
 特許文献1は、低温でのヒートシール性及び延伸加工適性が良好なスパンボンド不織布を開示している。特許文献1に開示のスパンボンド不織布は、特定の組成物で構成される。特定の組成物は、融点140℃以上のプロピレン単独重合体と、ポリエチレンと、第1重合体及び第2重合体から選択される少なくとも1種とを含む。第1重合体は、プロピレンと、エチレン及び炭素数が4~20であるα-オレフィンから選ばれる少なくとも1種とのランダム共重合体である。第2重合体は、融点120℃未満の特定のプロピレン単独重合体である。組成物における第1重合体及び第2重合体の総含有量は、特定の範囲内である。
  特許文献1:国際公開第2017/006972号
 特許文献1に記載の不織布は、低温でのヒートシール性に優れているが、伸長性をより向上させることが求められる場合がある。伸長性が求められる伸長不織布は、不織布としての使用場面において、柔軟性を持たせたり、所望の賦形処理をするために延伸工程に供されたりすることが多い。しかしながら、このような延伸工程は、延伸対象となる不織布の性質によっては破断が生じ、所望の加工が行えない場合がある。つまり、延伸対象である不織布の延伸加工適性が必ずしも充分といえない場合がある。品質とコストバランスに優れるスパンボンド不織布を提供するには、特許文献1に記載の不織布の紡糸性をより向上させることが求められている。
 本開示は、上記事情に鑑み、伸長性及び紡糸性に優れるスパンボンド不織布、及び衛生材料を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
 <1> プロピレン系重合体(A)と、
ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、
を含む樹脂組成物からなる繊維を含み、
 前記繊維が、海島構造を有し、
 前記繊維が、前記繊維の軸方向に直交する断面における島相のうち、直径0.32μm未満の島相の割合が個数基準で60個数%以上である繊維を含み、
 機械の流れ方向(MD)に直交する方向(CD)の引張強度(SCD)に対する前記機械の流れ方向(MD)の引張強度(SMD)の比(SMD/SCD)が2.0~5.1である、スパンボンド不織布。
 <2> 前記プロピレン系重合体(A)が、プロピレン単独重合体を含む、前記<1>に記載のスパンボンド不織布。
 <3> 前記ポリマー(B)は、炭素数2~8のα-オレフィンの単独重合体(プロピレン系重合体(A)を除く。)を含む、前記<1>又は<2>に記載のスパンボンド不織布。
 <4> 前記ポリマー(B)は、ポリエチレンを含む、前記<1>~<3>のいずれか1つに記載のスパンボンド不織布。
 <5> 前記ポリエチレンの密度は、0.94g/cm~0.97g/cmである、前記<4>に記載のスパンボンド不織布。
 <6> 前記海島構造に含まれる海相は、前記プロピレン系重合体(A)を含み、
 前記島相は、前記ポリマー(B)を含む、前記<1>~<5>のいずれか1つに記載のスパンボンド不織布。
 <7> 前記比(SMD/SCD)が2.5~5.1である、前記<1>~<6>のいずれか1項に記載のスパンボンド不織布。
 <8> 前記プロピレン系重合体(A)の含有量は、前記樹脂組成物の全量に対して、85.0質量%~95.0質量%である、前記<1>~<7>のいずれか1つに記載のスパンボンド不織布。
 <9> 前記ポリマー(B)の含有量は、前記樹脂組成物の全量に対して、1.0質量%~10.0質量%である、前記<1>~<8>のいずれか1つに記載のスパンボンド不織布。
 <10> 前記樹脂組成物は、重量平均分子量が500~30000である低分子量オレフィン系重合体を含有し、
 前記低分子量オレフィン系重合体の含有量は、前記樹脂組成物の全量に対して、0.1質量%~5.0質量%である、前記<1>~<9>のいずれか1つに記載のスパンボンド不織布。
 <11> 熱可塑性エラストマー繊維を含み、
 積層不織布、又は混繊不織布であり、
 前記積層不織布は、前記繊維を含むスパンボンドウェブと、前記スパンボンドウェブの少なくとも一方の主面上に積層された、前記熱可塑性エラストマー繊維を含む樹脂層とが結合されてなり、
 前記混繊不織布は、前記繊維及び前記熱可塑性エラストマー繊維が混繊されてなる、前記<1>~<10>のいずれか1つに記載のスパンボンド不織布。
 <12> 前記熱可塑性エラストマー繊維が、ポリウレタン系熱可塑性エラストマー繊維、又はオレフィン系熱可塑性エラストマー繊維である、前記<11>に記載のスパンボンド不織布。
 <13> 前記<1>~<12>のいずれか1つに記載のスパンボンド不織布を含む、衛生材料。
 本発明によれば、伸長性及び紡糸性に優れるスパンボンド不織布及び衛生材料が提供される。
密閉式スパンボンド法に用いられる製造装置の一例を示す概略図である。 実施例1のスパンボンド不織布における繊維の断面を撮影した透過型電子顕微鏡写真(撮影倍率:6000倍)である。 比較例1のスパンボンド不織布における繊維の断面を撮影した透過型電子顕微鏡写真(撮影倍率:6000倍)である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。
 本開示において熱可塑性樹脂組成物中の各成分の含有量は、熱可塑性樹脂組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、熱可塑性樹脂組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示では、「発明を実施するための形態」中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。本開示では、「発明を実施するための形態」中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、「実施例」に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
(1)スパンボンド不織布
 本開示のスパンボンド不織布は、
 プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)とを含む樹脂組成物からなる繊維を含み、
 前記繊維が、海島構造を有し、
 前記繊維が、前記繊維の軸方向に直交する断面における島相のうち、直径0.32μm未満の島相の割合)が個数基準で60個数%以上である繊維を含み、
 機械の流れ方向(MD:Machine Direction)に直交する方向(CD:Cross machine Direction)の引張強度(SCD)に対する前記機械の流れ方向(MD)の引張強度(SMD)の比(SMD/SCD)が2.0~5.1である。
 本開示において、「スパンボンド不織布」とは、熱可塑性樹脂組成物の溶融又は溶解によって,紡糸口金から紡糸された連続繊維(フィラメント)群を移動捕集部材(例えば、ネットコンベア)上に積層し、一つ又は二つ以上の結合方法で作られた不織布を示す。
 本開示において、「海島構造」とは、少なくとも2つの成分のうち一方の成分を含む相(島相)が、もう一方の成分からなる連続相(海相)中に存在(例えば、分散)した相分離構造を示す。
 本開示において、「繊維が、海島構造を有する」とは、繊維の軸方向に直交する方向で切断した繊維の断面が海島構造であることを示す。
 本開示において、「機械の流れ方向(MD)」とは、移動捕集部材の進行方向に対して平行な方向を示す。
 本開示において、「機械の流れ方向(MD)に直交する方向(CD)」とは、移動捕集部材の面方向のうち、移動捕集部材の進行方向に対して直交する方向を示す。
 以下、「海島構造を有する繊維」を「海島繊維」という場合がある。
 以下、「繊維の軸方向に直交する断面における島相のうち、直径0.32μm未満の島相の割合」を、単に「島相割合」という場合がある。
 以下、「機械の流れ方向(MD)」を「流れ方向(MD)」といい、「機械の流れ方向(MD)に直交する方向(CD)」を「横方向(CD)」という。
 以下、「機械の流れ方向(MD)に直交する方向(CD)の引張強度(SCD)に対する前記機械の流れ方向(MD)の引張強度(SMD)の比(SMD/SCD)」を「引張強度比(SMD/SCD)」という場合がある。
 本開示のスパンボンド不織布は、上記構成を有するので、伸長性及び紡糸性に優れる。
 「伸長性に優れる」とは、スパンボンド不織布が、第1性質及び第2性質を有することを示す。「第1性質」とは、スパンボンド不織布に外力が加えられると、スパンボンド不織布の外形が一方向に伸びる性質を示す。「第2性質」とは、スパンボンド不織布に加えられた外力が解除されても、スパンボンド不織布の外形は後戻りしにくい性質を示す。スパンボンド不織布の伸長性の定量的な評価方法は、実施例に記載の評価方法と同様である。
 「紡糸性に優れる」とは、スパンボンド不織布の原料である熱可塑性樹脂組成物が紡糸口金から吐き出された時及び連続繊維群の延伸中に、糸切れを生じにくく、且つ、連続繊維同士の融着が生じないことを示す。スパンボンド不織布の紡糸性の定量的な評価方法は、実施例に記載の評価方法と同様である。
 本開示のスパンボンド不織布が伸長性及び紡糸性に優れる理由は明らかではないが、以下のように推定される。
 スパンボンド不織布に含まれる繊維の島相割合が上記範囲内であれば、海島繊維の内部において、プロピレン系重合体(A)の配向結晶化が均一に阻害される。これにより、スパンボンド不織布の伸長性及び紡糸性は向上する。
 更に、スパンボンド不織布の引張強度比(SMD/SCD)が上記範囲内であれば、スパンボンド不織布を構成する繊維の分散方向は、流れ方向(MD)と平行な関係になりやすい。これにより、得られたスパンボンド不織布の伸長性が優れる。
 本開示のスパンボンド不織布が伸長性及び紡糸性に優れるのは、これらの組み合わせによる相乗効果が主要因であると推定される。
(1.1)引張強度比(SMD/SCD
 本開示のスパンボンド不織布の引張強度比(SMD/SCD)は、2.0~5.1である。引張強度比(SMD/SCD)が2.0~5.1であるので、流れ方向(MD)に平行な方向に配向された繊維が横方向(CD)よりも多い。更に、スパンボンド不織布の流れ方向(MD)における伸長性はより優れる。引張強度比(SMD/SCD)が5.0以下であるので、スパンボンド不織布の引張強度が上がり過ぎず、スパンボンド不織布を構成する繊維の割れの発生は抑制される。
 引張強度比(SMD/SCD)は、スパンボンド不織布の伸長性を向上させる観点から、例えば2.0~5.0であってもよく、好ましくは2.5~5.1、より好ましくは2.5~5.1、さらに好ましくは3.0~5.0、特に好ましくは3.5~5.0である。
 スパンボンド不織布の引張強度比(SMD/SCD)は、後述の実施例にて詳述するように、JIS L 1906の6.12.1[A法](JIS L 1913:2010へ移行、ISO 9073-3:1989に対応)に準拠して測定することができる。
 スパンボンド不織布の流れ方向(MD)は、スパンボンド不織布の引張強度を測定することによって、スパンボンド不織布自体から決定することができる。
 一般に、スパンボンド不織布の製造において、移動捕集部材の移動速度は、生産性の観点から、早目に設定される。そのため、連続繊維群は、移動捕集部材上に積層される際に流れ方向(MD)に平行な方向に配向されやすい。その結果、スパンボンド不織布の流れ方向(MD)の引張強度は、スパンボンド不織布の横方向(CD)の引張強度よりも高い。それ故に、スパンボンド不織布の引張強度を測定することによって、スパンボンド不織布自体からスパンボンド不織布の流れ方向(MD)を決定することができる。
(1.2)海島構造を有する繊維
 スパンボンド不織布は、海島繊維を含む。
 海島繊維は、プロピレン系重合体(A)と、ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)とを含む樹脂組成物からなる。
 以下、プロピレン系重合体(A)を「特定ポリプロピレン(A)」という場合がある。
 以下、ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)を「特定ポリマー(B)」という場合がある。
 海島構造は、海相と、複数の島相とを有する。複数の島相は、海相中に存在(例えば、分散)している。
 海相は、特定ポリプロピレン(A)を含むことが好ましく、複数の島相の各々は、特定ポリマー(B)を含むことが好ましい。これにより、主成分の海相の配向結晶化が阻害され、スパンボンド不織布の伸長性が発現する。
 海島繊維の繊維径は、好ましくは4.0d(デニール)以下、より好ましくは3.5d以下、更に好ましくは3.0d以下である。
 海島繊維は、長繊維(ステープル)であってもよいし、単繊維(フィラメント)であってもよい。さらに、海島繊維の断面形状は、特に制限されず、例えば、円形、楕円形、異形断面等が挙げられる。
(1.2.1)島相割合
 海島繊維の島相割合は、個数基準で、60個数%以上である。島相割合が個数基準で60個数%以上であるので、繊維内部において、特定ポリプロピレン(A)の配向結晶化が不均一に阻害されにくい。これにより、スパンボンド不織布の伸長性及び紡糸性は優れる。
 島相割合は、スパンボンド不織布の伸長性を向上させる観点から、個数基準で、好ましくは70個数%以上、より好ましくは80個数%以上、更に好ましくは90個数%以上である。
 海島繊維の島相割合を、個数基準で60個数%以上にする方法は、特に限定されず、原料調整法、製造設備調整法等が挙げられる。
 原料調整法では、海島繊維の原料を調整する。具体的に、海島繊維に後述する低分子量オレフィン系重合体を含有させることで、島相割合を個数基準で60個数%以上にすることができる。
 製造設備調整法では、スパンボンド不織布の製造設備を調整する。具体的に、製造設備調整法としては、混練性を向上させた形状を有するスクリューを選択する方法、ダイの樹脂圧力を上げる方法、ダイの出口温度を上げる方法等が挙げられる。これらの方法により、島相割合を個数基準で60個数%以上にすることができる。
 海島繊維の断面の総面積に対する、島相面積の割合(以下、「島相面積率」という。)の下限は、1.0%以上であることが好ましい。島相面積率の下限が1.0%以上あることで、海島繊維の内部において、特定ポリプロピレン(A)の配向結晶化が阻害されやすくなる。
 島相面積率の上限は、20%以下であることが好ましい。島相面積率の上限が20%以下であると、海島繊維の内部において、特定ポリプロピレン(A)の配向結晶化が不均一に阻害されにくく、スパンボンド不織布の伸長性及び紡糸性はより優れる。
 島相面積割合を調整する方法は、特に限定されず、原料調整法等が挙げられる。
(1.2.2)海島構造を有する繊維の材質
 スパンボンド不織布に含まれる海島繊維は、樹脂組成物からなる。樹脂組成物に上記各成分が含まれることは、公知の方法により、適宜、確認することができる。
(1.2.2.1)特定ポリプロピレン(A)
 海島繊維の樹脂組成物は、特定ポリプロピレン(A)を含む。特定ポリプロピレン(A)は、1種のみであってもよく、融点、分子量、結晶構造などが互いに異なる2種以上であってもよい。
 特定ポリプロピレン(A)は、プロピレンに由来する構成単位を含む。
 特定ポリプロピレン(A)は、プロピレン単独重合体、又はプロピレン共重合体である。プロピレン共重合体は、プロピレンと少量の1種又は2種以上のα-オレフィンとの共重合体であることが好ましい。
 プロピレン共重合体におけるα-オレフィンの炭素数は、2以上(但し炭素数3を除く)であり、好ましくは2~8(但し炭素数3を除く)である。具体的に、プロピレン共重合体におけるα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。
 なかでも、特定ポリプロピレン(A)は、プロピレン単独重合体を含むことが好ましく、プロピレン単独重合体であることがより好ましい。
 特定ポリプロピレン(A)の融点は、好ましくは140℃以上、より好ましくは150℃以上、更に好ましくは155℃以上、特に好ましくは157℃以上165℃以下である。
 特定ポリプロピレン(A)の融点は、示差走査型熱量計(DSC)を用いて、窒素雰囲気下-40℃で5分間保持した後10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される。
 具体的には、示差走査型熱量計(パーキン・エルマー社製、製品名:DSC-7)を用い、試料5mgを窒素雰囲気下-40℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして求めることができる。
 特定ポリプロピレン(A)のメルトフローレート(MFR:Melt Flow Rate)は、スパンボンド不織布の原料である熱可塑性樹脂組成物を溶融紡糸できれば特に限定されず、好ましくは1g/10分~1000g/10分、より好ましくは5g/10分~500g/10分、更に好ましくは10g/10分~100g/10分である。
 特定ポリプロピレン(A)のメルトフローレートは、ASTM規格D-1238に準拠した方法で測定される。特定ポリプロピレン(A)のメルトフローレートの測定条件は、230℃、荷重2.16kgである。
 特定ポリプロピレン(A)の含有量は、樹脂組成物の全量に対して、好ましくは55.0質量%~95.0質量%、より好ましくは65.0質量%~95.0質量%、更に好ましくは75.0質量%~95.0質量%、特に好ましくは85.0質量%~95.0質量%である。
 特定ポリプロピレン(A)の含有量が上記範囲であることで、スパンボンド不織布の伸長性は向上し、かつスパンボンド不織布の引張強度を良好な範囲に維持しつつ、スパンボンド不織布は低目付で柔軟である。特に、特定ポリプロピレン(A)の含有量が85.0質量%~95.0質量%であれば、島相の過度な凝集を抑制し、スパンボンド不織布の伸長性と紡糸性を両立することができる。
 特定ポリプロピレン(A)の含有量が上記範囲であることで、特定ポリプロピレン(A)は海相に含まれ、特定ポリマー(B)は島相に含まれる。
 上記した本開示の特定ポリプロピレン(A)を満たす限り、市販品を用いてもよい。
(1.2.2.2)特定ポリマー(B)
 海島繊維は、特定ポリマー(B)を含有する。特定ポリマー(B)は、1種のみであってもよく、融点、分子量、結晶構造などが互いに異なる2種以上であってもよい。
 特定ポリマー(B)は、ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種である。
 ポリオレフィン(プロピレン系重合体(A)を除く。)は、α-オレフィンの単独又は共重合体である。α-オレフィンは、炭素数2以上(但し炭素数3を除く)のα-オレフィンであり、炭素数2~8(但し炭素数3を除く)のα-オレフィンの単独重合体を含むことが好ましく、炭素数2~8(但し炭素数3を除く)のα-オレフィンの単独重合体であることがより好ましい。α-オレフィンの具体例としては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。なかでも、α-オレフィンは、エチレンであることが好ましい。
 具体的に、ポリオレフィン(プロピレン系重合体(A)を除く。)は、ポリエチレン(エチレン単独重合体)、エチレン・α-オレフィン共重合体、プロピレン系重合体、1-ブテン系重合体、ポリ4-メチル-1-ペンテン等が挙げられる。
 ポリエチレンとしては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE:Linear Low Density Polyethylene)、高密度ポリエチレン(HDPE:High Density Polyethylene)等が挙げられる。
 エチレン・α-オレフィン共重合体としては、エチレン・プロピレンランダム共重合体、エチレン・1-ブテンランダム共重合体等が挙げられる。
 プロピレン系重合体としては、プロピレン・エチレンランダム共重合体、プロピレン・エチレン・1-ブテンランダム共重合体、プロピレンブロック共重合体、プロピレン・1-ブテンランダム共重合体等が挙げられる。
 1-ブテン系重合体としては、1-ブテン単独重合体、1-ブテン・エチレン共重合体、1-ブテン・プロピレン共重合体等が挙げられる。
 ポリエステルとしては、例えば、脂肪族ポリエステル、又はポリエステル共重合体である。ポリエステル共重合体としては、例えば、脂肪族ジカルボン酸単独又は脂肪族ジカルボン酸と芳香族ジカルボン酸との混合物と、1種又は2種以上のジオールとを重合したものが挙げられる。
 なかでも、特定ポリマー(B)は、ポリエチレンを含むことが好ましく、ポリエチレンであることがより好ましい。
 ポリエチレンの密度は、スパンボンド不織布の引張強度を向上させる観点、スパンボンド不織布の伸長性及び柔軟性の観点から、好ましくは0.94g/cm~0.98g/cm、より好ましくは0.94g/cm~0.97g/cmである。
 特定ポリマー(B)の融点は、好ましくは150℃以上、より好ましくは155℃以上、更に好ましくは155℃~165℃である。
 特定ポリマー(B)のメルトフローレートは、スパンボンド不織布の原料である熱可塑性樹脂組成物の溶融物を紡糸できれば特に限定されず、好ましくは1g/10分~1000g/10分以下、より好ましくは2g/10分~500g/10分、更に好ましくは3g/10分~100g/10分である。
 特定ポリマー(B)がポリエチレンの場合、メルトフローレートは、ASTM規格D-1238に準拠した方法で測定される。ポリエチレンのメルトフローレートの測定条件は、190℃、荷重2.16kgである。
 特定ポリマー(B)の含有量は、樹脂組成物の全量に対して、好ましくは1.0質量%~10.0質量%、より好ましくは3.0質量%~8.0質量%、更に好ましくは5.0質量%~7.0質量%である。特定ポリマー(B)の含有量が上記範囲であれば、スパンボンド不織布の伸長性は向上する。
(1.2.2.3)低分子量オレフィン系重合体
 樹脂組成物は、重量平均分子量が500~30000である低分子量オレフィン系重合体を含有し、かつ低分子量オレフィン系重合体の含有量が、樹脂組成物の全量に対して、0.1質量%~5.0質量%であることが好ましい。低分子量オレフィン系重合体は、1種のみであってもよく、融点、分子量、結晶構造などが互いに異なる2種以上であってもよい。
 海島繊維が低分子量オレフィン系重合体を含有し、かつ低分子量オレフィン系重合体の含有量が上記範囲内であれば、特定ポリプロピレン(A)及び特定ポリマー(B)の分散性は向上する。その結果、スパンボンド不織布の伸長性及び紡糸性はより向上する。
 海島繊維が低分子量オレフィン系重合体を含有する場合、低分子量オレフィン系重合体の含有量は、樹脂組成物の全量に対して、好ましくは0.1質量%~5.0質量%である。
 低分子量オレフィン系重合体の含有量の下限は、特定ポリプロピレン(A)及び特定ポリマー(B)の分散性を向上させるために十分な量の低分子量オレフィン系重合体を海相と島相の界面に存在させる観点から、樹脂組成物の全量に対して、より好ましくは0.2質量%以上、更に好ましくは1.0質量%以上、特に好ましくは1.5質量%以下である。
 低分子量オレフィン系重合体の含有量の上限は、海島繊維の著しい強度低下を発生させない観点から、樹脂組成物の全量に対して、より好ましくは4.0質量%以下、更に好ましくは3.0質量%以下、特に好ましくは2.5質量%以下である。
 低分子量オレフィン系重合体は、1種類のオレフィンに由来する構成単位、又は2種類以上のオレフィンに由来する構成単位を含んでもよい。
 低分子量オレフィン系重合体は、ワックス状の重合体である。換言すると、低分子量オレフィン系重合体の重量平均分子量(Mw)は、特定ポリプロピレン(A)及びポリα-オレフィンよりも低い。
 低分子量オレフィン系重合体の重量平均分子量(Mw)は、500~30000である。
 低分子量オレフィン系重合体の重量平均分子量(Mw)が上記範囲であれば、特定ポリプロピレン(A)及び特定ポリマー(B)の分散性はより向上する。その結果、スパンボンド不織布の伸長性及び製紡糸性はより優れる。
 低分子量オレフィン系重合体の重量平均分子量(Mw)の上限は、30000以下であり、好ましくは15000未満、より好ましくは10000以下、更に好ましくは6000以下、特に好ましくは6000未満、一層好ましくは5000以下、一層好ましくは3000以下、一層好ましくは2000以下、一層好ましくは1500以下である。
 低分子量オレフィン系重合体の重量平均分子量(Mw)の下限は、500以上であり、好ましくは700以上、より好ましくは1000以上である。
 低分子量オレフィン系重合体の重量平均分子量(Mw)の測定には、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography)が用いられてもよい。GPCの測定条件は、下記の示す第1測定条件が好ましい。低分子量オレフィン系重合体の重量平均分子量(Mw)は、例えば、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて測定される。
〔第1測定条件〕
 装置:ゲル浸透クロマトグラフAllianceGPC2000型(Waters社製)
 溶剤:o-ジクロロベンゼン
 カラム:TSKgel GMH6-HT×2(東ソー社製)、TSKgel GMH6-HTLカラム×2(東ソー社製)
 流速:1.0ml/分
 試料:0.15mg/mLo-ジクロロベンゼン溶液
 温度:140℃
 分子量換算:ポリエチレン(PE)換算/汎用較正法
 汎用較正の計算には、以下に示すMark-Houwink粘度式の係数を用いた。
 ポリスチレン(PS)の係数:KPS=1.38×10-4、aPS=0.70
 ポリエチレン(PE)の係数:KPE=5.06×10-4、aPE=0.70
 低分子量オレフィン系重合体の軟化点は、好ましくは90℃~145℃、より好ましくは90℃~135℃、更に好ましくは100℃~125℃である。
 低分子量オレフィン系重合体の軟化点は、JIS K2207に従って測定される。
 低分子量オレフィン系重合体の密度は、特に限定されず、好ましくは0.890g/cm~0.980g/cmである。
 低分子量オレフィン系重合体の密度が上記範囲内であれば、スパンボンド不織布の伸長性がより優れる。
 低分子量オレフィン系重合体の密度の下限は、より好ましくは0.910g/cm以上、更に好ましくは0.920g/cm以上である。
 低分子量オレフィン系重合体の密度の上限は、より好ましくは0.960g/cm以下、更に好ましくは0.940g/cm以下である。
 低分子量オレフィン系重合体の密度は、JIS K7112に従って測定される。
 低分子量オレフィン系重合体の密度と、特定ポリプロピレン(A)の密度との差は、特に限定されず、好ましくは0.35g/cm未満、より好ましくは0.20g/cm未満、更に好ましくは0.15g/cm未満である。
 低分子量オレフィン系重合体の密度と、特定ポリプロピレン(A)の密度との差が上記範囲であれば、スパンボンド不織布の伸長性はより優れる。
 その理由は明らかではないが、次のように考えられる。低分子量オレフィン系重合体の密度と特定ポリプロピレン(A)の密度とが上記範囲にあると、例えば、特定ポリプロピレン(A)中に、低分子量オレフィン系重合体を介して、特定ポリマー(B)が分散し易くなると考えられる。すなわち、低分子量オレフィン系重合体が、特定ポリプロピレン(A)及び特定ポリマー(B)の相溶化剤として効果的に作用する。そのため、特定ポリプロピレン(A)及び特定ポリマー(B)の分散性は向上する。その結果、スパンボンド不織布の伸長性は向上すると考えられる。
 低分子量オレフィン系重合体は、オレフィンの単独重合体又は2種類以上のオレフィンからなるオレフィン系共重合体である。
 なかでも、低分子量オレフィン系重合体は、エチレンの単独重合体、又はエチレンと炭素数3~20のα-オレフィンとの共重合体のいずれであってもよい。
 α-オレフィンの炭素数は、好ましくは3~8、より好ましくは3~4である。
 α-オレフィンの炭素数が上述範囲にあれば、スパンボンド不織布の伸長性及び紡糸性はより向上する。その理由は明らかではないが、次のように考えられる。
 α-オレフィンの炭素数が上述範囲内であると、例えば、特定ポリプロピレン(A)中に、低分子量オレフィン系重合体を介して、特定ポリマー(B)が分散し易くなると考えられる。すなわち、低分子量オレフィン系重合体が、特定ポリプロピレン(A)及びポリα-オレフィンの相溶化剤として作用する。そのため、特定ポリプロピレン(A)及び特定ポリマー(B)ポリの均一性は向上する。その結果、スパンボンド不織布の伸度等の特性が向上すると考えられる。
 低分子量オレフィン系重合体は、単独でも、その二種以上の混合物であってもよい。
 低分子量オレフィン系重合体の製造方法は、特に限定されず、例えば、第1製造方法、第2製造方法等が挙げられる、第1製造方法は、通常用いられる低分子量重合体の重合による製造方法を示す。第2製造方法は、高分子量のエチレン系重合体を熱減成によって分子量を低減させる方法を示す。
 低分子量オレフィン系重合体は、溶媒に対する溶解度の差で分別する溶媒分別、又は蒸留などの方法で精製されていてもよい。
 第1製造方法としては、例えば、チーグラー/ナッタ触媒、又はメタロセン系触媒等を用いる製造方法等が挙げられる。メタロセン系触媒等を用いる製造方法としては、特開平08-239414号公報、国際公開第2007/114102号等に記載された製造方法が挙げられる。
 低分子量オレフィン系重合体は、市販品であってもよい。低分子量オレフィン系重合体の市販品としては、三井化学(株)製の「ハイワックス(登録商標)320P」、「エクセレックス(登録商標)30200B」、「ハイワックス(登録商標)100P」、「ハイワックス(登録商標)110P」等が挙げられる。
(1.2.2.4)脂肪酸アミド
 海島繊維は、炭素数15~22の脂肪酸アミドを含み、かつ脂肪酸アミドの含有量が、樹脂組成物の全量に対して、0.1質量%~5.0質量%であることが好ましい。脂肪酸アミドは、1種のみであってもよく、2種以上であってもよい。
 これにより、スパンボンド不織布の繊維表面に、炭素数15~22の脂肪酸アミドが吸着し、海島繊維の表面が改質される。換言すると、スパンボンド不織布の柔軟性、触感、耐ブロッキング性等がより向上する。そのため、エンボス工程等で使用する装置内の各種回転機器等の部材への不織布繊維の付着がより効果的に抑制されると考えられる。その結果、スパンボンド不織布の伸長性、及び柔軟性はより向上する。
 本開示において、「脂肪酸アミドの炭素数」とは、分子中に含まれる炭素数を意味し、アミドを構成する-CONHにおける炭素も上記炭素数に含まれるものとする。
 脂肪酸アミドの炭素数は、18~22であることが好ましい。
 炭素数15~22の脂肪酸アミドとしては、脂肪酸モノアミド化合物、脂肪酸ジアミド化合物、飽和脂肪酸モノアミド化合物、及び不飽和脂肪酸ジアミド化合物が挙げられるが、これらの中でも、パルミチン酸アミド(炭素数:16)、ステアリン酸アミド(炭素数:18)、オレイン酸アミド(炭素数:18)、エルカ酸アミド(炭素数:22)等が好適に挙げられる。
 炭素数15~22の脂肪酸アミドの含有量は、樹脂組成物の全量に対して、好ましくは0.1質量%~5.0質量%、より好ましくは0.1質量%~3.0質量%、更に好ましくは0.1質量%~1.0質量%である。
(1.2.2.6)添加剤
 海島繊維は、本開示の目的を損なわない範囲で、任意成分として、添加剤を含んでもよい。添加剤としては、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、親水剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、脂肪酸アミド等が挙げられる。
(1.3)スパンボンド不織布の構成
 スパンボンド不織布は、海島繊維のみによって構成されていてもよいし、海島繊維と海島構造を有しない繊維とによって構成されていてもよい。
 スパンボンド不織布が海島繊維と海島構造を有しない繊維とによって構成される場合、海島繊維の含有量は、スパンボンド不織布の上述した効果を発現させる観点から、スパンボンド不織布の全量に対して、好ましくは5質量%~95質量%、より好ましくは15質量%~90質量%、更に好ましくは30質量%~85質量%、特に好ましくは40質量%~70質量%である。
 スパンボンド不織布が海島繊維のみによって構成される場合、スパンボンド不織布の目付は、スパンボンド不織布の柔軟性及び引張強度を両立させる観点から、好ましくは30g/m以下、より好ましくは28g/m以下で、更に好ましくは25g/m以下、特に好ましくは5g/m~20g/mである。
 スパンボンド不織布を後述する衛生材料等に適用する場合、スパンボンド不織布の目付は、5g/m~19g/mの範囲にあることが好ましい。
 スパンボンド不織布は、伸縮性スパンボンド繊維を備えてもいてもよい。
 伸縮性スパンボンド繊維は、特定の熱可塑性ポリウレタンエラストマーを含む樹脂を押出成形し、スパンボンド法で製造された繊維であることが好ましい。特定の熱可塑性ポリウレタンエラストマーは、示差走査熱量計(DSC)測定における凝固開始温度が少なくとも65℃であり、細孔電気抵抗法に基づく粒度分布測定装置に100ミクロンのアパーチャーを装着して測定される極性溶媒不溶分の粒子数が300万個/g以下である。
 上記特性を有する伸縮性スパンボンド繊維は、例えば、国際公開第2004/065680号や国際公開第2011/129433号に記載の方法で製造され得る。
 スパンボンド不織布が伸縮性スパンボンド繊維を備える場合、スパンボンド不織布は、後述する積層不織布であってもよいし、後述する混繊不織布であってもよい。
 スパンボンド不織布は、目的に応じて、積層不織布、又は混繊不織布であってもよい。
(1.3.1)積層不織布
 積層不織布は、スパンボンドウェブと、樹脂層とが結合されてなる。樹脂層は、スパンボンドウェブの少なくとも一方の面上に積層されている。スパンボンドウェブは、海島繊維を含む。スパンボンドウェブと、樹脂層とを結合する方法は、公知の結合方法であればよい。
 本開示において、「スパンボンドウェブ」とは、溶融又は溶解された熱可塑性樹脂組成物を紡糸口金から押し出し,連続繊維(フィラメント)を移動捕集部材(例えば、ネットコンベア)上に積層することによって作られたウェブを示す。スパンボンドウェブは、スパンボンドウェブを構成する繊維同士が結合されていない点で、スパンボンド不織布と異なる。
 積層不織布の層構成は、スパンボンドウェブ及び樹脂層の各々が1層あれば特に限定されない。積層不織布において、スパンボンドウェブは1層であってもよいし、2層以上であってもよい。積層不織布において、樹脂層は、1層であってもよいし、2層以上であってもよい。
 積層不織布の目付は、積層不織布の柔軟性及び引張強度を両立させる観点から、好ましくは100g/m以下、より好ましくは90g/m以下で、更に好ましくは80g/m以下である。
 積層不織布を後述する衛生材料等に適用する場合、積層不織布の目付は、20g/m~70g/mの範囲にあることが好ましい。
 樹脂層の原料は、海島繊維の原料である熱可塑性樹脂組成物と異なればよい。
 樹脂層としては、例えば、編布、織布、ウェブ、不織布、フィルム等が挙げられる。
 樹脂層の一例である不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等が挙げられる。
 これらの不織布は、伸縮性不織布であってもよいし、非伸縮性不織布であってもよい。伸縮性不織布は、第3性質及び第4性質を有する。「第3性質」とは、不織布に外力が加えられると、不織布の外形が一方向に伸びる性質を示す。「第4性質」とは、不織布に加えられた外力が解除されると、不織布の外形が後戻りする性質を示す。
 伸縮性不織布としては、国際公開第2012/070518号に記載の低結晶性ポリプロピレンを用いた弾性不織布が挙げられる。
 樹脂層の一例であるウェブとしては、スパンボンドウェブ、メルトブローンウェブ、メルトブローンウェブ、湿式ウェブ、乾式ウェブ、乾式パルプウェブ、フラッシュ紡糸ウェブ、開繊ウェブ等が挙げられる。
 これらのウェブは、伸縮性ウェブであってもよいし、非伸縮性ウェブであってもよい。
 樹脂層の一例であるフィルムは、積層不織布に通気性が要求される場合には、通気性フィルム、又は透湿性フィルムであることが好ましい。 
 通気性フィルムとしては、熱可塑性エラストマーからなるフィルム、多孔フィルム等が挙げられる。フィルムの原料である熱可塑性エラストマーとしては、透湿性を有するポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等が挙げられる。
 多孔フィルムは、無機微粒子又は有機微粒子を含む熱可塑性樹脂からなるフィルムを延伸して多孔化してなる。多孔フィルムの原料である熱可塑性樹脂としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂、LLDPE)、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体、これらの組み合わせ等のポリオレフィンが好ましい。
 積層不織布に通気性が要求されない場合には、樹脂層の一例であるフィルムの原料として、ポリエチレン、ポリプロピレン等から選ばれる1種以上の熱可塑性樹脂からなる熱可塑性樹脂を用いることができる。
 積層不織布は、一部において熱融着されていることが好ましい。
 積層不織布の一部を熱融着する場合の熱融着方法としては、超音波等の手段を用いる方法、エンボスロールを用いる熱エンボス加工、ホットエアースルー等が挙げられる。中でも、熱融着方法は、不織布積層体を延伸する際に長繊維が効率よく延伸される点で、熱エンボス加工であることが好ましい。
 熱エンボス加工により不織布積層体の一部を熱融着する場合は、通常、エンボス面積率は、5%~30%が好ましく、より好ましくは5%~20%である。刻印形状としては、円、楕円、長円、正方、菱、長方、四角やそれら形状を基本とする連続した形等が挙げられる。
 熱エンボス加工におけるエンボス温度は、エンボス加工時のライン速度、圧着圧力等により適宜調整され、85℃~150℃であることが好ましい。
 樹脂層が編布、織布、ウェブ、又は不織布である場合、樹脂層は、熱可塑性エラストマー繊維を含むことが好ましい。
 樹脂層が熱可塑性エラストマー繊維を含むことで、ブロッキングが発生しない伸縮不織布を製造することができる。
 熱可塑性エラストマー繊維の材質は、熱可塑性エラストマーであれば、特に限定されない。熱可塑性エラストマーは、ソフトセグメント(軟質相)と、ハードセグメント(硬質相)とを有する。ソフトセグメント(軟質相)は、分子中に弾力性を有する。ハードセグメント(硬質相)は、塑性変形を防止する性質を有する。
 熱可塑性エラストマー繊維としては、例えば、ポリウレタン系熱可塑性エラストマー繊維、オレフィン系熱可塑性エラストマー繊維、スチレン系熱可塑性エラストマー繊維、ポリエステル系熱可塑性エラストマー繊維、ポリアミド系熱可塑性エラストマー繊維等が挙げられる。なかでも、熱可塑性エラストマー繊維は、積層不織布の伸縮性と紡糸安定性の観点から、熱可塑性ポリウレタン繊維、又はオレフィン系熱可塑性エラストマー繊維であることが好ましい。
 ポリウレタン系熱可塑性エラストマー繊維の材料としては、
(1)ポリオールとイソシアネート化合物とを予め反応させたイソシアネート基末端プレポリマーと、鎖延長剤とを反応させる方法、
(2)ポリオールと鎖延長剤とをあらかじめ混合し、次いでこの混合物とイソシアネート化合物とを反応させる方法などで製造されたポリウレタンが挙げられる。
 上記ポリウレタン系熱可塑性エラストマーを構成する成分の一つであるポリオールとして、ポリオキシアルキレンポリオール、ポリテトラメチレンエーテルグリコール、ポリエステルポリオール、ポリカプロラクトンポリオール、およびポリカーボネートジオール等が挙げられる。
 イソシアネート化合物としては、イソシアネート基を1分子中に2個以上有する、芳香環、脂肪族又は脂環族等の化合物等が挙げられる。
 鎖延長剤としては、1分子中に水酸基を2個以上有する、脂肪族、芳香族、複素環式又は脂環式の低分子量ポリオール等が挙げられる。
 具体的には、ポリウレタン系熱可塑性エラストマー繊維としては、国際公開第2011/129433号に記載された、1,4-ビス(2-ヒドロキシエトキシ)ベンゼンを鎖延長剤として用いてなる熱可塑性ポリウレタンエラストマーが挙げられる。
 オレフィン系熱可塑性エラストマー繊維の材料としては、エチレン-α-オレフィンランダム共重合体や第二成分としてジエンを共重合させたものなどが挙げられ、具体的には、エチレン-プロピレンランダム共重合体、エチレン-1-ブテンランダム共重合体、EPDM(エチレン-プロピレン-ジエン共重合体、ジエン成分としてはジシクロべンタジエン又はエチリデンノルボルネン)をソフトセグメントに、ポリオレフィンをハードセグメントにしたものなどが挙げられる。オレフィン系熱可塑性エラストマー繊維の材料の商品名としては、タフマー(三井化学(株)製)、ミラストマー(三井化学(株)製)、エバフレックス-EEA(三井・デュポンポリケミカル(株)製)、ビスタマックス(エクソンモービル(株)製)などが挙げられる
 スチレン系熱可塑性エラストマー繊維、ポリエステル系熱可塑性エラストマー繊維、及びポリアミド系熱可塑性エラストマー繊維の各々の原料は、特開2001-179867号公報に記載されたものが挙げられる。
 熱可塑性エラストマー繊維の繊維径は、好ましくは4.0d(デニール)以下、より好ましくは3.5d以下、更に好ましくは3.0d以下である。
 熱可塑性エラストマー繊維は、長繊維(ステープル)であってもよいし、単繊維(フィラメント)であってもよい。さらに、熱可塑性エラストマー繊維の断面形状は、特に制限されず、例えば、円形、楕円形、異形断面等が挙げられる。
(1.3.2)混繊不織布
 混繊不織布は、熱可塑性エラストマー繊維を含む。混繊不織布は、海島繊維及び熱可塑性エラストマー繊維が混繊されてなる。
 海島繊維の混繊率は、特に限定されず、好ましくは5質量%~95質量%、より好ましくは25質量%~75質量%、更に好ましくは40質量%~60質量%である。
 「混繊率」とは、2種以上の繊維を混合してなる不織布における、ある特定の種類の繊維が含まれている割合、又は当該不織布における各種繊維の混合割合を示す。すなわち、海島繊維と熱可塑性エラストマー繊維とからなる混繊不織布における「海島繊維の混繊率」とは、{海島繊維の質量÷(海島繊維の質量+熱可塑性エラストマー繊維の質量)}である。「熱可塑性エラストマー繊維の混繊率」とは、{熱可塑性エラストマー繊維の質量÷(海島繊維の質量+熱可塑性エラストマー繊維の質量)}である。
 混繊不織布の目付は、混繊不織布の柔軟性及び引張強度を両立させる観点から、好ましくは100g/m以下、より好ましくは90g/m以下、更に好ましくは80g/m以下である。
 混繊不織布を後述する衛生材料等に適用する場合、混繊不織布の目付は、20g/m~70g/mの範囲にあることが好ましい。
 熱可塑性エラストマー繊維としては、積層不織布の樹脂層に含まれ得る熱可塑性エラストマー繊維として例示したものと同様のものが挙げられる。
(2)衛生材料
 本開示の衛生材料は、本開示のスパンボンド不織布を含む。
 本開示のスパンボンド不織布は、伸長性に優れる。そのため、本開示の衛生材料は、伸長性に優れる。
 衛生材料は、伸長性、及び柔軟性を求められる各種の衛生材料用途に好適に用いられる。具体的に、衛生材料は、紙おむつ、生理用ナプキン等の吸収性物品、包帯、医療用ガーゼ、タオル等の医療用衛生材用、衛生マスク等に好適に用いられる。
(3)スパンボンド不織布の製造方法
 本開示のスパンボンド不織布は、原料として熱可塑性樹脂組成物を用いて、常法により製造される。
 本開示のスパンボンド不織布は、例えば、以下のようにして製造される。
 すなわち、熱可塑性樹脂組成物を押出機に導入して溶融する。熱可塑性樹脂組成物の溶融物を、複数の紡糸口金を有するスパンボンド不織布成形機を用いて紡糸する。得られる連続繊維群をブロア等での風量制御を行って延伸する。この際、必要に応じて連続繊維群を冷却する。その後、スパンボンド不織布成形機の捕集面上に連続繊維群を堆積させて、スパンボンドウェブを得る。得られたスパンボンドウェブをエンボスロールで加熱加圧処理する。これにより、スパンボンド不織布が得られる。
 熱可塑性樹脂組成物の組成は、上述した海島繊維の組成として例示したものと同様である。
 以下、図面を参照して、スパンボンド不織布の製造方法の一例について詳細に説明する。
 図1は、密閉式スパンボンド法に用いられる製造装置の一例を示す概略図である。密閉式スパンボンド法では、熱可塑性樹脂組成物が溶融紡糸された連続繊維群を密閉空間中で冷却しながら延伸する。
 図1に示す密閉式スパンボンド法用製造装置100は、紡糸部10を備える。紡糸部10は、押出機11と、紡糸口金12と、冷却室13と、冷却風供給部14と、冷却風供給部15と、延伸部16とを有する。押出機11は、熱可塑性重合体を押し出す。紡糸口金12は、熱可塑性重合体の溶融物を紡糸する。冷却室13は、紡糸口金12から紡糸された連続繊維群1を冷却する。冷却風供給部14及び冷却風供給部15は、冷却風Aを冷却室13及び延伸部16内に供給する。延伸部16は、連続繊維群1を延伸する。
 まず、押出機11内に熱可塑性樹脂組成物を導入する。押出機11内に導入された熱可塑性樹脂組成物は、押出機11内で溶融混練される。熱可塑性樹脂組成物の溶融物は、押出機11から押し出される。
 押出機11から押し出された熱可塑性樹脂組成物の溶融物は、紡糸口金12に導入される。紡糸口金12に導入された熱可塑性樹脂組成物の溶融物は、紡糸口金12から押し出されて、紡糸される。これにより、連続繊維群1が形成される。
 連続繊維群1は、冷却室13に導入される。冷却室13に導入された連続繊維群1は、冷却風Aによって冷却される。冷却風Aは、冷却風供給部14及び冷却風供給部15の少なくとも一方から冷却室13及び延伸部16内に供給される。冷却された連続繊維群1は、冷却室13の下流側に配置された延伸部16に導入される。
 延伸部16は、隘路部16a及び筒部16bを有する。筒部16bは、隘路部16aの上下方向(すなわち、重力方向)の下側(すなわち、移動捕集部材21側)の端部に形成されている。隘路部16aは、隘路状である。筒部16bは、筒状物である。筒部16bの中空部は、図1に示すように、下側に向けて広がっている。延伸部16に導入された連続繊維群1は、隘路部16aで冷却風の速度が増加することによって、延伸される。延伸されて、筒部16bを通過した連続繊維群1は、分散されて、移動捕集部材21の上に捕集される。
 分散された連続繊維群1は、サクションユニット22によって、移動捕集部材21の上に効率よく補集される。サクションユニット22は、移動捕集部材21の補集面の下部に配置されている。これにより、スパンボンドウェブ2が形成される。
 その後、スパンボンドウェブ2に含まれる繊維は、例えば、エンボスロール(図示せず)によって加熱加圧処理され、結合される。これにより、スパンボンド不織布が得られる。
 本開示のスパンボンド不織布の製造方法として、密閉式スパンボンド法を例に説明したが、本開示のスパンボンド不織布の製造方法は密閉式スパンボンド法に限定されない。本開示のスパンボンド不織布の製造方法は、開放式スパンボンド法であってもよい。開放式スパンボンド法では、熱可塑性樹脂組成物が溶融紡糸された連続繊維群を冷却する。
 熱可塑性樹脂組成物の溶融温度は、熱可塑性樹脂組成物の軟化温度、又は融解温度以上で且つ熱可塑性樹脂組成物の熱分解温度未満であれば特に限定はされず、熱可塑性樹脂組成物の物性等により適宜設定される。
 紡糸口金12の温度は、熱可塑性樹脂組成物の物性等に応じて適宜調整される。紡糸口金12の温度は、熱可塑性樹脂組成物に含まれる特定ポリプロピレン(A)の物性を考慮すると、好ましくは180℃~240℃、より好ましくは190℃~230℃、更に好ましくは200℃~225℃である。
 紡糸口金12の孔径は、特に限定されず、スパンボンド不織布の伸長性の観点から、好ましくは0.05mm~1.00mmである。
 紡糸口金12からの熱可塑性樹脂組成物の溶融物の単孔吐出量は、スパンボンド不織布の伸長性の観点から、好ましくは0.1g/分~3.0g/分、より好ましくは0.3g/分~1.0g/分である。
 紡糸口金から押し出された連続繊維群を冷却する冷却風の温度は、熱可塑性樹脂組成物が固化する温度であれば特に限定はされない。冷却風の温度は、好ましくは5℃~50℃、より好ましくは10℃~40℃、更に好ましくは15℃~30℃である。
 本開示のスパンボンド不織布の製造方法において、スパンボンド不織布に含まれる繊維は、一部を熱融着させてもよい。スパンボンド不織布に含まれる繊維は、熱融着する前に、ニップロールを用いて、押し固めておいてもよい。
 以下、実施例に基づいて本開示の実施形態について更に具体的に説明するが、本発明は、本開示の一実施形態であるこれらの実施例に限定されるものではない。
 実施例及び比較例におけるスパンボンド不織布の物性値等は、以下の方法により測定した。
(1)目付〔g/m
 スパンボンド不織布から、流れ方向(MD)が300mm、横方向(CD)が250mmの試験片を10枚採取した。採取箇所は、スパンボンド不織布の任意の10箇所とした。次いで、採取した各試験片の質量(g)を、上皿電子天秤(研精工業社製)を用いてそれぞれ測定した。各試験片の質量の平均値を求めた。求めた平均値から1m当たりの質量(g)に換算し、小数点第1位を四捨五入して、スパンボンド不織布の目付〔g/m〕とした。
(2)最大伸度、引張強度(最大強度)、及び引張強度比(SMD/SCD
 スパンボンド不織布から、JIS L 1906の6.12.1[A法](JIS L 1913:2010へ移行、ISO 9073-3:1989に対応)に準拠して、JIS Z 8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で、流れ方向(MD)に25cm、横方向(CD)に5cmの試験片を5枚採取した。得られた試験片を、温度20±2℃、チャック間100mm、引張速度300mm/分の条件で引張り試験機(インストロンジャパンカンパニイリミテッド製、インストロン5564型)を用いて引張試験を行い、5枚の試験片について引張荷重を測定し、それらの最大値の平均値を流れ方向(MD)の引張強度(最大強度)〔N/50mm〕とした。
 引張強度(最大強度)における伸度を最大伸度〔%〕とし、伸長性を評価する指標とした。横方向の引張強度及び最大伸度を測定する際は、横方向(CD)に25cm、流れ方向(MD)に5cmの試験片を5枚採取し、同様の条件で引張試験を行った。具体的に、流れ方向の最大伸度〔%〕は、下記式から求められる。
 式:最大伸度〔%〕={(最大長さ-25cm)/25cm}×100
 式中、「最大長さ」とは、試験片の長辺において、引張強度を示すときの試験片の長さ〔cm〕を示す。
 引張強度比(SMD/SCD)は、得られた流れ方向(MD)の引張強度(SMD)の測定値及び横方向(CD)の引張強度(SCD)の測定値から求めた。
(3)繊維径
 スパンボンド不織布から10mm×10mmの試験片を10点採取し、Nikon社製のECLIPSE E400顕微鏡を用い、倍率20倍で、繊維の直径をμm単位で小数点第1位まで読み取った。1試験片毎に任意の20箇所の径を測定し、平均値を求めた。
(4)海島構造の確認、及び島相の割合(%)
 スパンボンド不織布から繊維を取り出し、パラフィンに包埋し、測定試料を作製した。そして、測定試料を、繊維の軸方向に直交する方向と刃が平行になるようにミクロトームに設置し、繊維の軸方向に直交する方向に沿ってスライスした。その後、スライスして得られた繊維にカーボン補強を施した後、スライスして得られた繊維の断面について、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて観察した。繊維の断面において、海島構造の観察を行った。連続した相を海相、分散して存在する相を島相として、観察範囲内(断面)にある島相の直径を測定した。直径が0.32μm以上である島相の個数と、直径が0.32μm未満である島相の個数とを数えた。各範囲に該当する島相の個数を、観察範囲内(断面)の島相数で割って割合(すなわち、島相の割合)を算出した。
 ここで、透過型電子顕微鏡としては、日立ハイテク(株)製の透過型電子顕微鏡型式:H-7650を用いた。観察倍率は6000倍とした。
 島相の直径は、Mac-View(株式会社マウンテック)にて画像解析を行い求めた。具体的には、島相の長径と短径を測定し、その平均値を直径とした。島相面積率は、島相の総面積を海島繊維の断面の総面積で除した値とした。
 (5)紡糸性の評価
 実施例に示すスパンボンド不織布の紡糸時に、30分間に発生した糸切れの回数(以下、「糸切れ回数」という。)を測定した。糸切れ回数の測定結果に基づき、以下の基準により、紡糸性を評価した。紡糸性の許容可能な評価は、「A」である。
  A:糸切れ回数が0回であった。
  B:糸切れ回数が1~3回であった。
  C:糸切れ回数が4回以上であった。
(実施例1)
<スパンボンド不織布の製造>
 MFR(ASTMD1238に準拠して、温度230℃、荷重2.16kgで測定)60g/10分、密度0.91g/cm、融点160℃のプロピレン単独重合体(1)92.7質量部と、
 MFR(ASTMD1238に準拠して、温度190℃、荷重2.16kgで測定)5g/10分、密度0.95g/cm、融点134℃の高密度ポリエチレン(以下、「ポリエチレン」と記載する。)6.0質量部と、
 エチレン・プロピレン共重合体ワックス〔三井化学(株)製、製品名「ハイワックス(登録商標)320P」、密度:0.93g/cm、重量平均分子量:3000〕1.0質量部と、
 エルカ酸アミド0.3質量部と
の混合物を、75mmφの押出機を用い溶融し、孔数1093ホールの紡糸口金を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:320mm、図1参照)を用いて、樹脂温度とダイ温度がともに200℃、樹脂吐出量32kg/h、冷却風温度20℃、延伸エア風速3529m/分の条件でスパンボンド法により溶融紡糸を行い、捕集面上に堆積させ、エンボスロールで加熱加圧処理(エンボス面積率(熱圧着率)18%、エンボス温度90℃)して総目付量が18.0g/mであるスパンボンド不織布を作製した。試験中の糸切れ回数は0回であった。
 実施例1で得られたスパンボンド不織布における繊維の断面を透過型電子顕微鏡で観察したときの像を図2に示す。
(実施例2)
 融点160℃のプロピレン単独重合体(1)91.7質量部とし、製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕を2.0質量部と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例3)
 融点160℃のプロピレン単独重合体(1)90.7質量部とし、製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕を3.0質量部と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例4)
 融点160℃のプロピレン単独重合体(1)87.7質量部とし、ポリエチレン10.0質量部とし、製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕を2.0質量部と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例5)
 融点160℃のプロピレン単独重合体(1)86.7質量部とし、製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕を3.0質量部と変更した以外は、実施例4と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例6)
 製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕をエチレン・ブテン共重合体ワックス〔三井化学(株)製、製品名「エクセレックス(登録商標)30200B」、密度:0.92g/cm、重量平均分子量:2900〕と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例7)
 製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕をエチレン重合体ワックス〔三井化学(株)製、製品名「ハイワックス(登録商標)100P」、密度:0.95g/cm、重量平均分子量:900〕と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例8)
 製品名「ハイワックス(登録商標)320P」〔密度:0.93g/cm、重量平均分子量:3000〕をエチレン・プロピレン共重合体ワックス〔三井化学(株)製、製品名「ハイワックス(登録商標)110P」、密度:0.92g/cm、重量平均分子量:1000〕と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例9)
 融点160℃のプロピレン単独重合体(1)93.7質量部とし、ポリエチレン5.0質量部と変更した以外は、実施例8と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例10)
 融点160℃のプロピレン単独重合体(1)94.7質量部とし、ポリエチレン4.0質量部と変更した以外は、実施例8と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(実施例11)
 融点160℃のプロピレン単独重合体(1)93.0質量部とし、ポリエチレン6.0質量部とし、エルカ酸アミドを使用しなかったこと以外は、実施例10と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(比較例1)
 MFR(ASTMD1238に準拠して、温度230℃、荷重2.16kgで測定)60g/10分、密度0.91g/cm、融点160℃のプロピレン単独重合体(1)92.7質量部と、
 MFR(ASTMD1238に準拠して、温度190℃、荷重2.16kgで測定)5g/10分、密度0.95g/cm、融点134℃の高密度ポリエチレン(3:以下、「ポリエチレン」と記載する。)6質量部と、
 エルカ酸アミド0.3質量部と
の混合物を、75mmφの押出機を用い溶融し、孔数1093ホールの紡糸口金を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:320mm、図1参照)を用いて、樹脂温度とダイ温度がともに200℃、樹脂吐出量32kg/h、冷却風温度20℃、延伸エア風速3529m/分の条件でスパンボンド法により溶融紡糸を行い、捕集面上に堆積させ、エンボスロールで加熱加圧処理(エンボス面積率(熱圧着率)18%、エンボス温度90℃)して総目付量が18.0g/mであるスパンボンド不織布を作製した。試験中の糸切れ回数は1回であった。
 比較例1で得られたスパンボンド不織布における繊維の断面を透過型電子顕微鏡で観察したときの像を図3に示す。
(比較例2)
 横方向(CD)に繊維が分散するよう延伸部の形状を調整したこと(詳しくは、延伸部16の筒部16bの上下方向の長さL(図1参照)を50倍にしたこと)以外は、実施例8と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
 なお、比較例2の筒部16bは、移動捕集部材21、及び移動捕集部材21上に形成されたスパンボンドウェブ2とは接触していなかった。
(比較例3)
 製品名「ハイワックス(登録商標)320P」を低結晶性ポリプロピレン単独重合体〔出光興産(株)製、製品名「S400」、密度:0.87g/cm、重量平均分子量:45000〕と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
(比較例4)
 融点160℃のプロピレン単独重合体(1)83.7質量部とし、ポリエチレン14.0質量部とし、製品名「ハイワックス(登録商標)320P」を2.0質量部と変更した以外は、実施例1と同様の方法でスパンボンド不織布を製造し、評価した。試験中の糸切れ回数は0回であった。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、「低結晶性PP単独重合体」とは、低結晶性ポリプロピレン単独重合体を示す。
 表1に示すように、実施例1~実施例11のスパンボンド不織布は、プロピレン単独重合体と、ポリエチレンとを含む樹脂組成物からなる海島繊維を含む。海島繊維は、いずれも海島構造を有することが確認された。海島繊維は、島相割合が個数基準で60個数%以上である繊維を含む。実施例1~実施例11のスパンボンド不織布の引張強度比(SMD/SCD)は、2.0~5.0であった。そのため、実施例1~実施例11のスパンボンド不織布は、紡糸性の評価が「A」で、流れ方向(MD)の最大伸度は197%超であった。その結果、実施例1~実施例11のスパンボンド不織布は、伸長性及び紡糸性に優れることがわかった。これらの評価結果より、本開示のスパンボンド不織布は、生産性に優れ、種々の二次加工性を必要とする衛生材料の用途に好適であることが分かった。
 これに対し、比較例1及び比較例3のスパンボンド不織布は、プロピレン単独重合体と、ポリエチレンとを含む樹脂組成物からなる海島繊維を含む。海島繊維は、いずれも海島構造を有することが確認された。海島繊維は、島相割合が個数基準で60個数%以上である繊維を含まなかった。そのため、比較例1及び比較例3のスパンボンド不織布は、流れ方向(MD)の最大伸度は197%以下であった。更に、比較例1のスパンボンド不織布は、紡糸性の評価が「B」であった。その結果、比較例1及び比較例3のスパンボンド不織布は、伸長性及び紡糸性に優れないことがわかった。
 比較例2及び比較例4のスパンボンド不織布は、プロピレン単独重合体と、ポリエチレンとを含む樹脂組成物からなる海島繊維を含む。比較例2及び比較例4のスパンボンド不織布の引張強度比(SMD/SCD)は、2.0~5.0の範囲内でなかった。そのため、比較例2及び比較例4のスパンボンド不織布は、流れ方向(MD)の最大伸度は197%未満であった。その結果、比較例2及び比較例4のスパンボンド不織布は、伸長性及び紡糸性に優れないことがわかった。
 2021年3月30日に出願された日本国特許出願2021-058789の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  プロピレン系重合体(A)と、
     ポリオレフィン(プロピレン系重合体(A)を除く。)及びポリエステルからなる群より選択される少なくとも1種であるポリマー(B)と、
    を含む樹脂組成物からなる繊維を含み、
     前記繊維が、海島構造を有し、
     前記繊維が、前記繊維の軸方向に直交する断面における島相のうち、直径0.32μm未満の島相の割合が個数基準で60個数%以上である繊維を含み、
     機械の流れ方向(MD)に直交する方向(CD)の引張強度(SCD)に対する前記機械の流れ方向(MD)の引張強度(SMD)の比(SMD/SCD)が2.0~5.1である、スパンボンド不織布。
  2.  前記プロピレン系重合体(A)が、プロピレン単独重合体を含む、請求項1に記載のスパンボンド不織布。
  3.  前記ポリマー(B)は、炭素数2~8のα-オレフィンの単独重合体(プロピレン系重合体(A)を除く。)を含む、請求項1又は請求項2に記載のスパンボンド不織布。
  4.  前記ポリマー(B)は、ポリエチレンを含む、請求項1~請求項3のいずれか1項に記載のスパンボンド不織布。
  5.  前記ポリエチレンの密度は、0.94g/cm~0.97g/cmである、請求項4に記載のスパンボンド不織布。
  6.  前記海島構造に含まれる海相は、前記プロピレン系重合体(A)を含み、
     前記島相は、前記ポリマー(B)を含む、請求項1~請求項5のいずれか1項に記載のスパンボンド不織布。
  7.  前記比(SMD/SCD)が2.5~5.1である、請求項1~請求項6のいずれか1項に記載のスパンボンド不織布。
  8.  前記プロピレン系重合体(A)の含有量は、前記樹脂組成物の全量に対して、85.0質量%~95.0質量%である、請求項1~請求項7のいずれか1項に記載のスパンボンド不織布。
  9.  前記ポリマー(B)の含有量は、前記樹脂組成物の全量に対して、1.0質量%~10.0質量%である、請求項1~請求項8のいずれか1項に記載のスパンボンド不織布。
  10.  前記樹脂組成物は、重量平均分子量が500~30000である低分子量オレフィン系重合体を含有し、
     前記低分子量オレフィン系重合体の含有量は、前記樹脂組成物の全量に対して、0.1質量%~5.0質量%である、請求項1~請求項9のいずれか1項に記載のスパンボンド不織布。
  11.  熱可塑性エラストマー繊維を含み、
     積層不織布、又は混繊不織布であり、
     前記積層不織布は、前記繊維を含むスパンボンドウェブと、前記スパンボンドウェブの少なくとも一方の主面上に積層された、前記熱可塑性エラストマー繊維を含む樹脂層とが結合されてなり、
     前記混繊不織布は、前記繊維及び前記熱可塑性エラストマー繊維が混繊されてなる、請求項1~請求項10のいずれか1項に記載のスパンボンド不織布。
  12.  前記熱可塑性エラストマー繊維が、ポリウレタン系熱可塑性エラストマー繊維、又はオレフィン系熱可塑性エラストマー繊維である、請求項11に記載のスパンボンド不織布。
  13.  請求項1~請求項12のいずれか1項に記載のスパンボンド不織布を含む、衛生材料。
PCT/JP2022/012798 2021-03-30 2022-03-18 スパンボンド不織布及び衛生材料 WO2022210047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280024865.4A CN117120681A (zh) 2021-03-30 2022-03-18 纺粘无纺布和卫生材料
JP2023510989A JPWO2022210047A1 (ja) 2021-03-30 2022-03-18
EP22780262.6A EP4299805A1 (en) 2021-03-30 2022-03-18 Spun-bonded nonwoven fabric and sanitary material
KR1020237032802A KR20230150993A (ko) 2021-03-30 2022-03-18 스펀본드 부직포 및 위생 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058789 2021-03-30
JP2021-058789 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210047A1 true WO2022210047A1 (ja) 2022-10-06

Family

ID=83456053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012798 WO2022210047A1 (ja) 2021-03-30 2022-03-18 スパンボンド不織布及び衛生材料

Country Status (5)

Country Link
EP (1) EP4299805A1 (ja)
JP (1) JPWO2022210047A1 (ja)
KR (1) KR20230150993A (ja)
CN (1) CN117120681A (ja)
WO (1) WO2022210047A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179867A (ja) 1999-01-22 2001-07-03 Mitsui Chemicals Inc 不織布積層体
WO2004065680A1 (ja) 2003-01-24 2004-08-05 Mitsui Chemicals, Inc. 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法
WO2007114102A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 延伸フィルムの製造方法
WO2009145105A1 (ja) * 2008-05-29 2009-12-03 三井化学株式会社 混繊スパンボンド不織布及びその用途
WO2011129433A1 (ja) 2010-04-15 2011-10-20 三井化学株式会社 スパンボンド不織布、その製造方法及びその用途
WO2012070518A1 (ja) 2010-11-25 2012-05-31 三井化学株式会社 スパンボンド不織布積層体
WO2017006972A1 (ja) 2015-07-06 2017-01-12 三井化学株式会社 スパンボンド不織布及び衛生材料
WO2019146656A1 (ja) * 2018-01-24 2019-08-01 三井化学株式会社 スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
WO2020100654A1 (ja) * 2018-11-13 2020-05-22 日本バイリーン株式会社 不織布及び電気化学素子用セパレータ
WO2020158875A1 (ja) * 2019-01-30 2020-08-06 三井化学株式会社 スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
JP2020143411A (ja) * 2019-03-08 2020-09-10 三井化学株式会社 不織布、積層体、被覆シート、及び不織布の製造方法
JP2020147890A (ja) * 2014-10-30 2020-09-17 三井化学株式会社 スパンボンド不織布、不織布積層体、医療用衣料、ドレープ、及びメルトブローン不織布
JP2021038496A (ja) * 2019-09-02 2021-03-11 百事基材料(青島)股▲分▼有限公司Bestee Material (Tsingtao) Co., Ltd. 植物機能性ポリプロピレンスパンボンド不織布及びその製造方法
JP2021058789A (ja) 2021-01-21 2021-04-15 京楽産業.株式会社 遊技機

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179867A (ja) 1999-01-22 2001-07-03 Mitsui Chemicals Inc 不織布積層体
WO2004065680A1 (ja) 2003-01-24 2004-08-05 Mitsui Chemicals, Inc. 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法
WO2007114102A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 延伸フィルムの製造方法
WO2009145105A1 (ja) * 2008-05-29 2009-12-03 三井化学株式会社 混繊スパンボンド不織布及びその用途
WO2011129433A1 (ja) 2010-04-15 2011-10-20 三井化学株式会社 スパンボンド不織布、その製造方法及びその用途
WO2012070518A1 (ja) 2010-11-25 2012-05-31 三井化学株式会社 スパンボンド不織布積層体
JP2020147890A (ja) * 2014-10-30 2020-09-17 三井化学株式会社 スパンボンド不織布、不織布積層体、医療用衣料、ドレープ、及びメルトブローン不織布
WO2017006972A1 (ja) 2015-07-06 2017-01-12 三井化学株式会社 スパンボンド不織布及び衛生材料
WO2019146656A1 (ja) * 2018-01-24 2019-08-01 三井化学株式会社 スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
WO2020100654A1 (ja) * 2018-11-13 2020-05-22 日本バイリーン株式会社 不織布及び電気化学素子用セパレータ
WO2020158875A1 (ja) * 2019-01-30 2020-08-06 三井化学株式会社 スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
JP2020143411A (ja) * 2019-03-08 2020-09-10 三井化学株式会社 不織布、積層体、被覆シート、及び不織布の製造方法
JP2021038496A (ja) * 2019-09-02 2021-03-11 百事基材料(青島)股▲分▼有限公司Bestee Material (Tsingtao) Co., Ltd. 植物機能性ポリプロピレンスパンボンド不織布及びその製造方法
JP2021058789A (ja) 2021-01-21 2021-04-15 京楽産業.株式会社 遊技機

Also Published As

Publication number Publication date
EP4299805A1 (en) 2024-01-03
JPWO2022210047A1 (ja) 2022-10-06
CN117120681A (zh) 2023-11-24
KR20230150993A (ko) 2023-10-31

Similar Documents

Publication Publication Date Title
EP2292822B1 (en) Filament-mixed spun-bonded nonwoven fabric and use thereof
JP5289459B2 (ja) 捲縮複合繊維、及び当該繊維からなる不織布
JP5484564B2 (ja) 捲縮複合繊維、及び当該繊維からなる不織布
JP2019070221A (ja) 不織布積層体、伸縮性不織布積層体、繊維製品、吸収性物品及び衛生マスク
CN107835876B (zh) 纺粘无纺织物及卫生材料
EP2813611A1 (en) Spun-bonded nonwoven fabric and fiber product
US20150233031A1 (en) Spunbond nonwoven fabric
JP6715056B2 (ja) スパンボンド不織布および衛生材料
JP7013486B2 (ja) スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
WO2022210047A1 (ja) スパンボンド不織布及び衛生材料
EP3848492A1 (en) Nonwoven cloth laminated body, stretchable nonwoven cloth laminated body, fiber product, absorbent article, and sanitary mask
JP7138197B2 (ja) スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
EP3779016B1 (en) Non-woven fabric laminate, stretchable non-woven fabric laminate, and textile product
WO2023190073A1 (ja) スパンボンド不織布、衛生材料及びスパンボンド不織布の製造方法
JP2021161564A (ja) スパンボンド不織布、衛生材料、及びスパンボンド不織布の延伸方法
JPWO2022210047A5 (ja)
JP2023089703A (ja) スパンボンド不織布及び衛生材料
WO2020095947A1 (ja) 不織布及びその製造方法
WO2020095948A1 (ja) 不織布及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032802

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18552733

Country of ref document: US

Ref document number: 2023510989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2301006298

Country of ref document: TH

Ref document number: 2022780262

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780262

Country of ref document: EP

Effective date: 20230928

NENP Non-entry into the national phase

Ref country code: DE