WO2022209559A1 - エアフィルタ及びその製造方法 - Google Patents

エアフィルタ及びその製造方法 Download PDF

Info

Publication number
WO2022209559A1
WO2022209559A1 PCT/JP2022/009050 JP2022009050W WO2022209559A1 WO 2022209559 A1 WO2022209559 A1 WO 2022209559A1 JP 2022009050 W JP2022009050 W JP 2022009050W WO 2022209559 A1 WO2022209559 A1 WO 2022209559A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
air filter
water
repellent film
nonwoven fabric
Prior art date
Application number
PCT/JP2022/009050
Other languages
English (en)
French (fr)
Inventor
真也 白石
Original Assignee
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル電子化成株式会社
Publication of WO2022209559A1 publication Critical patent/WO2022209559A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers

Definitions

  • the present invention relates to an air filter that cleans air containing oil mist and dust, and a manufacturing method thereof. More particularly, the present invention relates to an air filter in which a water-repellent and oil-repellent film having water and oil repellency is formed on the fiber surface of a nonwoven fabric, and a method for producing the same.
  • This air filter medium includes a first PTFE (polytetrafluoroethylene) porous membrane and a second PTFE porous membrane, and an airflow passes through the first PTFE porous membrane from a first main surface of the air filter medium.
  • the second porous PTFE membrane in that order, to the second main surface of the air filter medium.
  • the thickness of the first porous PTFE membrane is in the range of 4 to 40 ⁇ m
  • the specific surface area of the first porous PTFE membrane is 0.5 m 2 /g or less
  • the specific surface area of the second porous PTFE membrane is is in the range of 1.5 to 10 m 2 /g or less, which is higher than that of the first porous PTFE membrane.
  • the first and second porous PTFE membranes a mixture of PTFE fine powder and a liquid lubricant is formed into a sheet-like molding.
  • the first porous PTFE membrane is produced by stretching a sheet-shaped compact while heating it in the longitudinal (MD) direction at a temperature above the melting point (327°C) of PTFE and at a magnification of 50 times or more, and then in the transverse (TD) direction. It is produced by stretching while heating at a temperature of 130 to 400° C. to a length of 5 to 8 times the length before stretching.
  • the second porous PTFE membrane is formed by stretching a PTFE sheet-like molded body at a temperature below the melting point of PTFE (270 to 290° C.) at a magnification of 15 to 40 times while heating in the MD direction, and then stretching it in the TD direction. Further, the film is stretched at a temperature of 120 to 130° C. while being heated at the same magnification as in MD stretching so as to be 15 to 40 times the length before stretching.
  • the first porous PTFE membrane is manufactured at a higher stretching temperature and a larger stretching ratio than the second porous PTFE membrane. 2)
  • the specific surface area of the first porous PTFE membrane is reduced to 0.5 m 2 /g or less, thereby collecting large particle size dust and oil mist.
  • the specific surface area of the second porous PTFE membrane is increased to 1.5 to 10 m 2 /g to collect dust and oil mist with small particle sizes.
  • a large number of pores are formed between fibers penetrating between one surface into which air containing oil mist and dust flows and the other surface facing the one surface and through which the air flows out.
  • An air filter comprising a nonwoven fabric, wherein a water- and oil-repellent film is formed on the fiber surface of the nonwoven fabric, and the water- and oil-repellent film has a perfluoroether structure represented by the following general formula (1) or (2): a fluorine-based functional group component (A) containing , when the water- and oil-repellent film is 100% by mass, it is contained in the water- and oil-repellent film at a rate of 0.5% by mass to 10% by mass, and the air permeability of the air filter is 1 ml/cm 2 /sec.
  • An air filter characterized by ⁇ 130 ml/cm 2 /sec.
  • p, q and r are the same or different integers of 1 to 6, and may be linear or branched.
  • X is a hydrocarbon group having 2 to 10 carbon atoms and is selected from an ether bond, a CO—NH bond, an O—CO—NH bond and a sulfonamide bond. may contain one or more bonds that
  • Y is a hydrolyzate of silane or a main component of silica sol-gel.
  • Y is a site that binds to the layered inorganic compound particles (B).
  • Y includes a structure in which the Z portion is hydrolyzed.
  • Y also includes a main component of silica sol-gel obtained by mixing a silane compound of formula (3) or formula (4) and a silicon alkoxide such as tetraethoxysilane or tetramethoxysilane and hydrolyzing and polymerizing the mixture.
  • the silane compound of formula (3) or (4), a silicon alkoxide such as tetraethoxysilane or tetramethoxysilane, and a silane containing an epoxy group, a vinyl group, or an ether group are mixed,
  • a main component of hydrolytically polymerized silica sol-gel and the like are also included.
  • the carboxyl group- and/or acetyl group-containing material (C) is used as a binder component for adhering the layered inorganic compound particles (B) to which the fluorine-based functional group component (A) is bonded to the substrate of the nonwoven fabric. Used.
  • a second aspect of the present invention is an invention based on the first aspect, wherein the layered inorganic compound particles (B) are 5% by mass to 50% by mass when the water- and oil-repellent film is taken as 100% by mass. is contained in the water- and oil-repellent film at a ratio of , and air permeability of the air filter is 1 ml/cm 2 /sec to 40 ml/cm 2 /sec.
  • a third aspect of the present invention is an invention based on the first aspect, wherein the carboxyl group- and/or acetyl group-containing material (C) is a polyolefin-based aqueous dispersion having a carboxyl group, an ethylene-vinyl acetate
  • the air filter is a polymer self-emulsifying liquid or an ethylene-vinyl acetate-acrylic acid copolymer self-emulsifying liquid.
  • a fourth aspect of the present invention is an invention based on the first or second aspect, wherein the layered inorganic compound particles (B) are montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, steven Sight or vermiculite air filter.
  • the layered inorganic compound particles (B) are montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, steven Sight or vermiculite air filter.
  • a fifth aspect of the present invention is an invention based on the first aspect, and is an air filter in which the nonwoven fabric is composed of a single layer or a laminate of multiple layers.
  • a sixth aspect of the present invention is an invention based on either the first or fifth aspect, wherein the fibers constituting the nonwoven fabric are polyethylene terephthalate (PET), polypropylene (PP), and polytetrafluoro
  • the air filter is made of one or more fibers selected from the group consisting of ethylene (PTFE), glass, alumina, carbon, cellulose, pulp, nylon and metal.
  • a seventh aspect of the present invention is an aqueous dispersion of fluorine-containing layered inorganic compound particles;
  • a method for producing an air filter comprising the steps of: dipping a nonwoven fabric in a diluted solution of a water- and oil-repellent film-forming liquid composition; and removing and drying the dipped nonwoven fabric.
  • the eighth aspect of the present invention is an invention based on the seventh aspect, wherein the aqueous dispersion of the fluorine-containing layered inorganic compound particles is obtained by adding and mixing a fluorine-based compound to the aqueous dispersion of the layered inorganic compound particles, A method for manufacturing an air filter is prepared by adding and mixing a catalyst to this mixed liquid.
  • a ninth aspect of the present invention is an invention based on the eighth aspect, wherein the layered inorganic compound particles are montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite or vermiculite.
  • a method for manufacturing a filter is an invention based on the eighth aspect, wherein the layered inorganic compound particles are montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite or vermiculite.
  • a tenth aspect of the present invention is an invention based on the seventh aspect, wherein the carboxyl group- and/or acetyl group-containing material (C) is a polyolefin-based aqueous dispersion having a carboxyl group, an ethylene-vinyl acetate
  • C carboxyl group- and/or acetyl group-containing material
  • a water- and oil-repellent film is formed on the surface of the fibers of the nonwoven fabric contained in the air filter, and the water- and oil-repellent film is represented by the general formula (1) or (2) described above.
  • the oil-repellent film is taken as 100% by mass, it is contained in the water- and oil-repellent film at a rate of 0.5% by mass to 10% by mass, and the air permeability of the air filter is 1 ml/cm 2 /second to 130 ml/cm 2 / seconds.
  • the oil mist acts as a water-repellent on the fiber surface of the nonwoven fabric. It does not adhere to the oily film and is repelled and adheres.
  • the air filter continues to be used, the amount of oil mist collected inside the nonwoven fabric increases. When the air filter is arranged vertically, the collected oil mist gathers at the lower end of the air filter due to its own weight and does not clog the pores of the nonwoven fabric. As a result, clogging of pores due to oil mist is suppressed.
  • the air permeability of the air filter is 1 ml/cm 2 /sec to 130 ml/cm 2 /sec, dust adheres directly to the water- and oil-repellent film on the fiber surface of the nonwoven fabric, or adheres directly to the water- and oil-repellent film. Adheres to the oil mist that adheres to the For this reason, if the air filter is clogged with dust after using it for a long period of time, by giving an impact to the air filter with an air knocker, etc., the dust adhering together with the oil mist can be easily removed, and the air filter can be closed. can be played.
  • the layered inorganic compound particles (B) are included in the water- and oil-repellent film at a rate of 5% by mass to 50% by mass when the water- and oil-repellent film is 100% by mass.
  • the air filter has a permeability of 1 ml/cm 2 /sec to 40 ml/cm 2 /sec. Therefore, when the layered inorganic compound particles are contained in the water- and oil-repellent film at the above ratio, the wear strength of the water- and oil-repellent film increases, and the effect of filling the air holes of the nonwoven fabric increases, and the oil on the surface of the air filter increases. Particles can be blocked.
  • the carboxyl group- and/or acetyl group-containing material (C) contains a carboxyl group-containing polyolefin aqueous dispersion, an ethylene-vinyl acetate copolymer self-emulsified liquid, or an ethylene- Since it is a self-emulsifying liquid of vinyl acetate-acrylic acid copolymer, this aqueous dispersion or self-emulsifying liquid acts as a binder for the fluorine-containing layered inorganic compound particles, and when the liquid composition is formed on the substrate surface. Additionally, the membrane can be firmly attached to the substrate surface.
  • the layered inorganic compound particles contained in the water- and oil-repellent film are montmorillonite or the like, the multi-layered structure and large swelling property of montmorillonite or the like provide an interlayer with a large capacity. , resulting in better film appearance and greater film strength.
  • the nonwoven fabric when the nonwoven fabric is composed of a single layer, it becomes an air filter with a simple structure, and when the nonwoven fabric is composed of a multi-layer laminate, Each layer can be formed according to properties such as the particle size of the dust and the size of the oil particles of the oil mist.
  • the material of the fibers constituting the nonwoven fabric is polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), glass, alumina, carbon, cellulose, pulp, It can be selected from nylon and metal, depending on properties such as the particle size of incoming dust and the size of oil particles in oil mist.
  • an aqueous dispersion of fluorine-containing layered inorganic compound particles, a carboxyl group- and/or acetyl group-containing material (C), and water or 1 to 1 carbon atoms A water- and oil-repellent film-forming liquid composition is prepared by mixing the solvent of 4 which is water with an alcohol content of 40% by mass or less. Since the air filter is manufactured by dipping the nonwoven fabric to remove the liquid from the nonwoven fabric and drying it, a water- and oil-repellent film can be uniformly formed on the fiber surface of the nonwoven fabric.
  • the layered inorganic compound particles whose particle surfaces are water- and oil-repellent are present in the carboxyl group- and/or acetyl-group-containing material, it becomes easy to lower the air permeability of the nonwoven fabric while maintaining the water- and oil-repellency. . Furthermore, unlike the PTFE porous membrane of Patent Document 1, the water- and oil-repellent membrane is less likely to generate static electricity, and the air filter can be easily manufactured.
  • the fluorine-containing compound is added to and mixed with the aqueous dispersion of the layered inorganic compound particles, and the catalyst is added to and mixed with this mixture, so that the fluorine-containing layered inorganic compound particles are A homogeneously distributed dispersion is obtained.
  • the layered inorganic compound particles are montmorillonite or the like.
  • the strength of the film can be further increased.
  • the carboxyl group- and/or acetyl group-containing material (C) contains a polyolefin-based aqueous dispersion having a carboxyl group, a self-emulsifying liquid of an ethylene-vinyl acetate copolymer, Alternatively, since it is a self-emulsifying liquid of ethylene-vinyl acetate-acrylic acid copolymer, this aqueous dispersion or self-emulsifying liquid acts as a binder for the fluorine-containing layered inorganic compound particles and forms the liquid composition on the substrate surface. When formed into a film, the film can be firmly attached to the substrate surface.
  • FIG. 1 is a side view of a single layer nonwoven fabric of the present embodiment
  • FIG. 1 is a side view of a two-layer nonwoven fabric of this embodiment
  • FIG. 4 is a flow chart for manufacturing the air filter of the present embodiment
  • the air filter 10 of the present embodiment includes a nonwoven fabric 20 and a water- and oil-repellent water- and oil-repellent film 21 formed on the fiber surface of the nonwoven fabric.
  • the nonwoven fabric 20, which is the main component of the air filter 10 has one surface 20a into which air containing oil mist and dust flows, and the other surface 20b, which faces the one surface 20a and outflows the air, and consists of a single layer.
  • the air filter 50 may be configured by a two-layer laminate of an upper nonwoven fabric 30 and a lower nonwoven fabric 40 .
  • the laminated body is not limited to two layers, and may be composed of a plurality of layers such as three layers and four layers.
  • the nonwoven fabric 20 is formed by entangling a large number of fibers 20c, and pores 20d are formed between the fibers. 20 d of pores penetrate between the one side 20a of the nonwoven fabric 20, and the other side 20b.
  • a water- and oil-repellent film 21 is formed on the surface of the fibers 20c of the nonwoven fabric.
  • the basis weight of the nonwoven fabric is preferably in the range of 100 g/m 2 to 400 g/m 2 , but is not limited to this range.
  • the water-repellent and oil-repellent film 21 contains layered inorganic compound particles (B) and carboxyl group- and/or acetyl group-containing material (C) as a binder component.
  • the average particle size of the layered inorganic compound particles (B) is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the layered inorganic compound particles (B) are bound to the fluorine-based functional group component (A) represented by the general formula (1) or (2) described above.
  • the fluorine-based functional group component (A) is contained in the water- and oil-repellent film 21 at a rate of 0.5% by mass to 10% by mass when the water- and oil-repellent film 21 is taken as 100% by mass.
  • the carboxyl group- and/or acetyl group-containing substance (C) is preferably contained in a proportion of 10% by mass to 70% by mass when the water- and oil-repellent film 21 is taken as 100% by mass.
  • the mass ratio (A/B) of the fluorinated functional group component (A) to the layered inorganic compound particles (B) is in the range of 0.01 to 0.50.
  • the water- and oil-repellent film 21 is composed of a large number of layered inorganic compound particles 21a whose particle surfaces are covered with fluorine-based functional group components. is bound with a binder component 21b consisting of Since the water-repellent and oil-repellent film 21 contains the layered inorganic compound particles 21a, it appears to be a thick film, and the pores 20d between the fibers can be narrowed.
  • the film thickness can be controlled by changing the particle size of the layered inorganic compound particles and the content of the layered inorganic compound particles in the film component.
  • the nonwoven fabric has a basis weight in the range of 200 g/m 2 to 350 g/m 2 .
  • the nonwoven fabric 20 is manufactured to have an air permeability of 1 ml/cm 2 /sec to 130 ml/cm 2 /sec. If the air permeability is less than 1 ml/cm 2 /sec, the air permeability is poor and it becomes difficult for air containing oil mist and dust to pass through.
  • Air permeability is preferably 1.5 ml/cm 2 /sec to 125 ml/cm 2 /sec. Air permeability is measured using a Frazier type tester described in JIS-L1913:2000.
  • the water and oil repellent film 21 is 100% by mass
  • the proportion of the fluorine-based functional group component (A) contained in the water and oil repellent film is less than 0.5% by mass, the oil repellent effect is poor and oil mist is generated. performance becomes insufficient. That is, when the oil mist reaches the air filter, the oil mist spreads over the surface of the fibers and easily clogs the pores 20d.
  • the proportion of the fluorine-based functional group component (A) contained in the water- and oil-repellent film exceeds 10% by mass, the adhesion of the water- and oil-repellent film to the nonwoven fabric deteriorates.
  • the content of the fluorine-based functional group component (A) in the water- and oil-repellent film 21 is preferably 0.7 mass % to 8 mass %.
  • the layered inorganic compound particles (B) contained in the water- and oil-repellent film 21 preferably have an average particle diameter in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the mass ratio (A/B) of the fluorine functional group component (A) to the layered inorganic compound particles (B) is preferably 0.01 to 0.50. If the mass ratio (A/B) is less than 0.01, the water- and oil-repellent film has poor oil repellency, and if it exceeds 0.50, the adhesion of the water- and oil-repellent film to the fiber surface is reduced.
  • dust particles 23 also adhere to the water- and oil-repellent film 21 and stop there. Since the layered inorganic compound particles 21a are included in the water- and oil-repellent film 21, the film becomes uneven, and while the oil particles 22 adhere to the film to a low degree, the dust particles 23 tend to adhere to the film. As a result, the oil mist particles 22 and the dust particles 23 are collected by the nonwoven fabric, and the air containing the oil mist and dust is separated from the pores formed between the fibers 20c shown in the enlarged view of FIG. After passing through 20d, it reaches the other side 20b, becomes air without oil mist and dust, and passes through the nonwoven fabric 20. - ⁇
  • the amount of oil mist collected inside the non-woven fabric increases.
  • the oil mist is accompanied and gathers on the other surface of the air filter and the air filter is arranged vertically, the oil mist thus collected gathers at the lower end of the air filter due to its own weight and does not clog the pores of the nonwoven fabric.
  • the dust adheres directly to the water- and oil-repellent film on the fiber surface of the nonwoven fabric, or adheres to the oil mist that adheres to the water- and oil-repellent film.
  • the oil mist and dust accumulated on the nonwoven fabric 20 can be removed from the air filter 10 by periodically impacting the air filter 10 with an air knocker or the like.
  • An air filter is generally manufactured by the following method. As shown in FIG. 3, an aqueous dispersion 51 of layered inorganic compound particles is mixed with a fluorine-based compound 52 containing a fluorine-based functional group component (A), and further mixed with a catalyst 53 to obtain a water dispersion of fluorine-containing layered inorganic compound particles. A dispersion 54 is prepared. By mixing this aqueous dispersion 54, a binder component 55 comprising a carboxyl group- and/or acetyl group-containing material, and a solvent 56, a water- and oil-repellent film-forming liquid composition 60 is prepared. The nonwoven fabric 20 is dipped in this liquid composition 60 . Subsequently, the nonwoven fabric 20 is drained and dried to manufacture the air filter 10 .
  • a nonwoven fabric having an air permeability of 1.1 ml/cm 2 /sec to 150 ml/cm 2 /sec is prepared.
  • a nonwoven fabric having an air permeability of 1 ml/cm 2 /sec to 130 ml/cm 2 /sec is prepared in a state in which a water- and oil-repellent film, which will be described later, is formed on the fiber surface of the nonwoven fabric to form an air filter. do.
  • a nonwoven fabric with high air permeability is selected, and when the water- and oil-repellent film is formed in a thin film, a nonwoven fabric with low air permeability is selected.
  • nonwoven fabric examples include a cellulose mixed ester membrane filter, glass fiber filter paper, a nonwoven fabric containing a mixture of polyethylene terephthalate fiber and glass fiber (manufactured by Azumi Roshi Co., Ltd., trade name: 336 or trade name: 356), and polyethylene terephthalate fiber.
  • Non-woven fabric manufactured by Toray Industries, product name: G2260-1S or Toyobo Co., Ltd., product name: 191001
  • non-woven fabric made of polypropylene fiber manufactured by Mitsui Chemicals, product name: M03150
  • non-woven fabric made of metal fiber Nichie Techno company
  • the nonwoven fabric is one or two selected from the group consisting of polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), glass, alumina, carbon, cellulose, pulp, nylon and metal. made from more fibers.
  • the fibers may be fibers that are a mixture of two or more fibers.
  • the fiber thickness (fiber diameter) is preferably 0.01 ⁇ m to 10 ⁇ m so as to obtain the above air permeability.
  • the thickness of the non-woven fabric is 0.2 mm to 0.8 mm when the air filter is a single layer, and the thickness of the laminate is 0.2 mm to 5 mm when it is a laminate of multiple layers. is preferred.
  • the layered inorganic compound particles are dispersed in an aqueous solvent to prepare an aqueous dispersion of the layered inorganic compound particles.
  • the layered inorganic compound particles preferably have an average particle size of 0.1 ⁇ m to 10 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the layered inorganic compound particles tend to aggregate and become difficult to disperse in the medium.
  • the layered inorganic compound particles are likely to fall off from the water-repellent and oil-repellent film when the liquid composition is formed into a film.
  • layered inorganic compound particles include montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, and vermiculite air filters.
  • the aqueous solvent examples include water or a mixed solvent of water and an alcohol having 1 to 4 carbon atoms.
  • water desirably pure water such as ion-exchanged water or distilled water is used in order to prevent contamination of impurities.
  • the reason why an aqueous solvent is used as the solvent and no organic solvent is used is for safety in handling.
  • the average particle size of the layered inorganic compound particles refers to the average value of 200 particle sizes measured by image analysis among the particle shapes observed with a scanning electron microscope (SEM).
  • Examples of the catalyst include organic acids, inorganic acids, alkalis and titanium compounds.
  • Examples of organic acids include formic acid and oxalic acid.
  • examples of inorganic acids include hydrochloric acid, nitric acid and phosphoric acid.
  • Examples include sodium oxide, lithium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia.
  • Examples of titanium compounds include tetrapropoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanium, and titanium lactate. Catalysts are not limited to those listed above.
  • a fluorine-based compound containing a fluorine-based functional group component is represented by the following general formula (3) or formula (4). More specifically, the perfluoroether groups in these formulas (3) and (4) include perfluoroether structures represented by the following formulas (5) to (13).
  • examples of X in the above formulas (3) and (4) include structures represented by the following formulas (14) to (18).
  • the following formula (14) is an ether bond
  • the following formula (15) is an ester bond
  • the following formula (16) is an amide bond
  • the following formula (17) is an urethane bond
  • the following formula (18) is an example containing a sulfonamide bond. is shown.
  • R 2 and R 3 are hydrocarbon groups having 0 to 10 carbon atoms
  • R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • Examples of hydrocarbon groups for R 3 include alkylene groups such as methylene and ethylene groups
  • examples of hydrocarbon groups for R 4 include alkyl groups such as methyl and ethyl, and phenyl groups. is also mentioned.
  • R 1 includes a methyl group, an ethyl group, and the like.
  • Z is not particularly limited as long as it is a hydrolyzable group capable of forming a Si--O--Si bond upon hydrolysis.
  • hydrolyzable groups include alkoxy groups such as methoxy, ethoxy, propoxy and butoxy; aryloxy groups such as phenoxy and naphthoxy; and acyloxy groups such as aralkyloxy group, acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, pivaloyloxy group, and benzoyloxy group.
  • alkoxy groups such as methoxy, ethoxy, propoxy and butoxy
  • aryloxy groups such as phenoxy and naphthoxy
  • acyloxy groups such as aralkyloxy group, acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, pivaloyloxy group, and benzoyloxy group.
  • the fluorine-based compound contained in the water-repellent and oil-repellent film-forming liquid composition of the present embodiment contains a perfluoroalkyl group having a short chain length of 6 or less carbon atoms and a perfluoroalkylene group in the molecule of an oxygen atom. Since it has a perfluoroether group in which multiple groups are bonded and has a high fluorine content in the molecule, it can impart excellent water and oil repellency to the formed film.
  • the carboxyl group- and/or acetyl group-containing material (C) as a binder component is a polyolefin-based aqueous dispersion having a carboxyl group, an ethylene-vinyl acetate copolymer self-emulsified liquid, or an ethylene-vinyl acetate-acrylic acid copolymer. It is a coalescing self-emulsifying liquid.
  • Examples of commercially available polyolefin-based products having carboxyl groups include Zaixen A, Zaixen L, and Zaixen N (all manufactured by Sumitomo Seika Co., Ltd.).
  • Ethylene-vinyl acetate products include Sepolsion VA406N, Sepolsion VA407N (both manufactured by Sumitomo Seika), Sumikaflex S-201HQ, S-355HQ, S-401Q, S-465HQ, S-483HQ, S-830. , S-950HQ (both manufactured by Sumitomo Chemical Co., Ltd.), Quatex EC-1800 and EC-1200 (both manufactured by Japan Coating Resin Co., Ltd.).
  • Examples of the ethylene-vinyl acetate-acrylic acid type include Sumikaflex S-900HL (manufactured by Sumitomo Chemical Co., Ltd.).
  • the liquid composition for forming a water-repellent and oil-repellent film of the present embodiment is produced by the above-described production method, and comprises layered inorganic compound particles (B) to which the above-described fluorine-based functional group component (A) is bonded, and It contains a carboxyl group- and/or acetyl group-containing material (C) and a solvent (D).
  • This fluorine-based functional group component (A) has a perfluoroether structure represented by the above general formula (1) or formula (2), and when the amount of all components except the solvent (D) is 100% by mass, It is contained in an amount of 0.5% by mass to 10% by mass in the liquid composition.
  • the mass ratio (A/B) of the fluorinated functional group component (A) to the layered inorganic compound particles (B) is preferably in the range of 0.01 to 0.50.
  • the solvent (D) is water or water containing 40% by mass or less of an alcohol having 1 to 4 carbon atoms.
  • the reason why the content of the alcohol having 1 to 4 carbon atoms is 40% by mass or less is for safety in handling and storage stability of the liquid composition. Also, by using a mixed solvent in which water and an alcohol having 1 to 4 carbon atoms are mixed, the drying speed is improved and the film formability is improved.
  • Alcohols having 1 to 4 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and 2-methyl-2-propanol.
  • the non-woven fabric is dipped in the liquid composition for forming a water- and oil-repellent film, pulled up from the diluted solution, and placed horizontally in the atmosphere at room temperature. Spread it on a wire mesh or the like and remove the liquid until it reaches a certain liquid volume.
  • the pulled-up nonwoven fabric is shaken off to remove excess liquid, or the pulled-up nonwoven fabric is passed through a mangle roll (squeezing machine) to remove the liquid.
  • the drained nonwoven fabric is dried in air at a temperature of 25° C. to 140° C. for 0.5 hour to 24 hours.
  • a liquid obtained by diluting this liquid composition with a solvent obtained by mixing water and an alcohol having a boiling point of less than 120° C. and having 1 to 4 carbon atoms is used.
  • the mixing ratio of water and alcohol (water:alcohol) in this solvent is 1:0-5 in mass ratio.
  • the mass ratio of the solvent to the liquid composition (liquid composition:solvent) is 1:0.1-10.
  • the non-woven fabric may be dipped in the diluted solution thus prepared.
  • a water- and oil-repellent film 21 is formed on the surface of the fibers 20c forming the nonwoven fabric 20, as shown in the enlarged view in the center of FIG.
  • a thick water- and oil-repellent film is formed on the fiber surface of the nonwoven fabric, and when the amount of liquid removed is large, a thin water- and oil-repellent film is formed on the fiber surface of the nonwoven fabric.
  • Synthesis Examples 2 to 7 and Comparative Synthesis Examples 1 and 2 the type of layered inorganic compound particles was changed to a different type from Synthesis Example 1, the fluorine-based compound was changed to a different type from Synthesis Example 1, and nitric acid was used as a catalyst.
  • the blending amount was the same as in Synthesis Example 1, and the mass ratio (A/B) of the fluorine-based functional group component (A) to the layered inorganic compound particles (B) was changed to be different from that in Synthesis Example 1.
  • Example 1 [Examples 1 to 7 and Comparative Examples 1 and 2 for preparation of liquid composition for forming water- and oil-repellent film and production of air filter] ⁇ Example 1>
  • aqueous dispersion of the fluorine-containing layered inorganic compound particles obtained in Synthesis Example 1 7.57 g of an ethylene acetate-based emulsion having an acetyl group as a binder component (Sumikaflex S-355HQ, manufactured by Sumitomo Chemical Co., Ltd.) was added. and 2.39 g of water as a solvent were mixed to prepare 100 g of a liquid composition for forming a water- and oil-repellent film.
  • nonwoven fabric G2260-1S made by Toray Industries, Inc., which is made of PET fibers and has an air permeability of 15 ml/m 2 /s, was used.
  • This non-woven fabric was dipped in the water-repellent and oil-repellent film-forming liquid composition, the excess liquid was shaken off, and the non-woven fabric was dried at room temperature for 24 hours to produce an air filter with an air permeability of 11 ml/cm 2 /sec.
  • Tables 2 and 3 The contents are shown in Tables 2 and 3 below.
  • Table 2 shows the content of "fluorinated functional group component (A) in the liquid composition excluding the solvent", the content of “layered inorganic compound particles (B) in the liquid composition excluding the solvent”, and " The content ratio of the binder component (C) in the liquid composition excluding the solvent is also shown.
  • the content ratio (%) of the fluorine-based functional group component (A) in the liquid composition excluding the solvent is a percentage of [(A) / [(A) + (B) + (C)]].
  • the content ratio (%) of the layered inorganic compound particles (B) in the liquid composition excluding the solvent is a percentage of [(B) / [(A) + (B) + (C)]], excluding the solvent
  • the content (%) of the binder component (C) in the liquid composition is a percentage of [(C)/[(A)+(B)+(C)]].
  • Examples 2 to 7 and Comparative Examples 1 to 3 As shown in Table 2, in Examples 2 to 7 and Comparative Examples 1 and 2, aqueous dispersions of fluorine-containing layered inorganic compound particles obtained in Synthesis Examples 1 to 7 or Comparative Synthesis Examples 1 and 2 shown in Table 1 was used to determine the respective weighing weight. In Comparative Example 3, the aqueous dispersion of the fluorine-containing layered inorganic compound particles obtained in Synthesis Example 7 shown in Table 1 was used, and the weight was determined. As shown in Table 2, in Examples 2 to 7 and Comparative Examples 1 to 3, a binder component comprising a carboxyl group- and/or acetyl group-containing material was used and its weight was determined. In this manner, each of the water- and oil-repellent film-forming liquid compositions of Examples 2 to 7 and Comparative Examples 1 to 3 was prepared.
  • Nonwoven fabrics with different air permeability shown in Table 3 and types of base materials for air filters were selected, and each liquid composition for forming a water- and oil-repellent film of Examples 2 to 7 and Comparative Examples 1 to 3 was added from the nonwoven fabric.
  • the base material was dipped, deliquored and dried to obtain an air filter having the properties shown in Table 3.
  • Comparative Example 2 since the viscosity of the water- and oil-repellent liquid film composition increased, the liquid composition was diluted with a solvent, and the base material made of nonwoven fabric was dipped in this diluted solution, followed by removing the liquid and drying.
  • the oil repellency of the air filter is considered to be “poor”, and after the simulated liquid is collected by the air filter, it slightly passes through the air filter. In addition, the simulated liquid falls from the surface of the air filter, but if the amount of falling is reduced, the oil repellency of the air filter is considered to be "slightly good", and the simulated liquid is collected by the air filter, The oil repellency of the air filter was judged to be "good” if it did not pass through the air filter and fell off the surface of the air filter.
  • the content of the fluorine-based functional group component (A) in the liquid composition excluding the solvent was too high at 11.3% by mass, and the water-repellent and oil-repellent film liquid composition was not spread evenly on the nonwoven fabric. It was not coated, and a water- and oil-repellent film was not uniformly formed on the fiber surface of the nonwoven fabric. As a result, the water- and oil-repellent film becomes porous, and the water- and oil-repellent film does not exhibit oil repellency, and the simulated liquid is collected by the air filter. Oiliness was "poor".
  • the air filter of Example 6 since the water-repellent and oil-repellent film liquid composition in which the content of the layered inorganic compound particles (B) in the liquid composition excluding the solvent is 4% by mass, the content ratio of the layered inorganic compound particles was reduced, while the binder component (C) composed of the ethylene-vinyl acetate copolymer was the main component.
  • a nonwoven fabric having a high air permeability of 140 ml/cm 2 /sec before coating was used. For these reasons, the simulated liquid was collected by the air filter, but slightly passed through the air filter. The simulated liquid fell from the surface of the air filter, but the amount of falling was reduced, and the oil repellency was "slightly good".
  • the air filter of the present invention is used in a work environment with machine tools such as cutting machines and turning machines that process metal products using cutting oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)

Abstract

オイルミストと粉塵を含む空気が流入する一面(20a)と、この一面に対向し空気が流出する他面(20b)との間を貫通する多数の気孔(20d)が繊維(20c)間に形成された不織布(20)を含むエアフィルタ(10)である。不織布の繊維表面に、式(1)のペルフルオロエーテル構造を含むフッ素系官能基成分(A)と、層状無機化合物粒子(B)とバインダ成分(21b)としてのカルボキシル基及び/又はアセチル基含有物(C)とを含む撥水撥油性膜(21)が形成される。フッ素系官能基成分(A)が、撥水撥油性膜を100質量%とするとき、0.5質量%~10質量%の割合で撥水撥油性膜に含まれ、エアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒である。

Description

エアフィルタ及びその製造方法
 本発明は、オイルミストと粉塵を含む空気を清浄にするエアフィルタ及びその製造方法に関する。更に詳しくは、撥水性と撥油性を有する撥水撥油性膜が不織布の繊維表面に形成されたエアフィルタ及びその製造方法に関するものである。
  金属製品を切削油を用いて加工する切削機や旋削機等の工作機械からは機械の高速稼働により切削油が飛散して、オイルミストが発生し、同時に粉塵も発生する。これらのオイルミスト及び粉塵は作業環境を悪化させ、その作業効率を低下させる。このため、従来より、オイルミストと粉塵を含む空気を清浄にするエアフィルタとして、空気中に浮遊する粉塵だけでなく、オイルミストによる目詰まりを抑制できるエアフィルタ濾材が提案されている(例えば、特許文献1(請求項1、段落[0006]、段落[0021]、段落[0045]、段落[0053]~段落[0060])。
  このエアフィルタ濾材は、第1のPTFE(ポリテトラフルオロエチレン)多孔質膜と、第2のPTFE多孔質膜を含み、気流が、エアフィルタ濾材の第1主面から第1のPTFE多孔質膜、第2のPTFE多孔質膜の順にエアフィルタ濾材の第2主面へと、通過するようになっている。第1のPTFE多孔質膜の厚さは4~40μmの範囲にあり、第1のPTFE多孔質膜の比表面積は0.5m2/g以下にあり、第2のPTFE多孔質膜の比表面積は、第1のPTFE多孔質膜のそれより大きい1.5~10m2/g以下の範囲にある。
 第1及び第2のPTFE多孔質膜は、それぞれPTFE微粉末と液状潤滑剤を加えた混合物をシート状成形体に成形する。第1のPTFE多孔質膜は、シート状成形体をPTFEの融点(327℃)以上の温度と50倍以上の倍率で、長手(MD)方向に加熱しつつ延伸し、次いで横(TD)方向に130~400℃の温度で、延伸前の長さに対して5~8倍になるように、加熱しつつ延伸することにより、製造される。第2のPTFE多孔質膜は、PTFEのシート状成形体をPTFEの融点未満の温度(270~290℃)で、かつ15~40倍の倍率でMD方向に加熱しつつ延伸し、次いでTD方向に更に120~130℃の温度で、延伸前の長さに対して15~40倍になるように、とMD方向延伸時と同じ倍率で加熱しつつ延伸することにより、製造される。
特開2018-51546号公報
  特許文献1に開示されたエアフィルタ濾材では、第1のPTFE多孔質膜を、第2のPTFE多孔質膜と比較して、延伸温度を高くし、延伸倍率を大きくして、製造することにより、第1のPTFE多孔質膜の比表面積を0.5m2/g以下と小さくし、これにより、大きい粒径の粉塵及びオイルミストを捕集する。一方、第2のPTFE多孔質膜の比表面積を1.5~10m2/gと大きくし、これにより、小さい粒径の粉塵及びオイルミストを捕集している。
  しかしながら、特許文献1に開示されるエアフィルタ濾材では、第1及び第2のPTFE多孔質膜により、粒径の異なる粉塵とオイルミストを捕集するとしても、PTFE多孔質膜は、静電気が発生し易く、かつ発生した静電気の除去が困難であるため、フィルタ形状に加工することが容易でなかった。また撥油性よりも撥水性が高いため、大気中に含まれる水分がPTFE多孔質膜を塞ぐことがあり、そこに粉塵が付着し易かった。そのため、エアフィルタ濾材を使用し続けると、オイルミストがエアフィルタ濾材の内部に残留し続け、エアフィルタ濾材が目詰まりし易く、その結果、エアフィルタを通過する風量が低下し易く、新しいエアフィルタと頻繁に交換しなければならない課題があった。
 本発明の目的は、オイルミストと粉塵を含む空気を清浄にし、目詰まりを抑制するエアフィルタを提供することにある。本発明の別の目的は、オイルミストと粉塵を含む空気を清浄にし、目詰まりを抑制するエアフィルタを簡便に製造する方法を提供することにある。
 本発明の第1の観点は、オイルミストと粉塵を含む空気が流入する一面と、この一面に対向し前記空気が流出する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含むエアフィルタであって、前記不織布の繊維表面に撥水撥油性膜が形成され、前記撥水撥油性膜は、下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含むフッ素系官能基成分(A)と、層状無機化合物粒子(B)とバインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)とを含み、前記フッ素系官能基成分(A)が、前記撥水撥油性膜を100質量%とするとき、0.5質量%~10質量%の割合で前記撥水撥油性膜に含まれ、前記エアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒であることを特徴とするエアフィルタである。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)及び式(2)中、p、q及びrは、それぞれ同一又は互いに異なる1~6の整数であって、直鎖状又は分岐状であってもよい。また上記式(1)及び式(2)中、Xは、炭素数2~10の炭化水素基であって、エーテル結合、CO-NH結合、O-CO-NH結合及びスルホンアミド結合から選択される1種以上の結合を含んでいてもよい。更に上記式(1)及び式(2)中、Yはシランの加水分解体又はシリカゾルゲルの主成分である。
 このYについて更に述べると、Yは、層状無機化合物粒子(B)と結合する部位である。具体例としては、後述する式(3)又は式(4)において、Yとして、Z部分が加水分解した構造が挙げられる。また、Yとして、式(3)又は式(4)のシラン化合物と、テトラエトキシシランやテトラメトキシシラン等のケイ素アルコキシドとを混合し、加水分解重合したシリカゾルゲルの主成分等も挙げられる。更に、Yとして、式(3)又は式(4)のシラン化合物と、テトラエトキシシランやテトラメトキシシラン等のケイ素アルコキシドと、エポキシ基やビニル基、エーテル基を含有したシラン等とを混合し、加水分解重合したシリカゾルゲルの主成分等も挙げられる。因みに、上記カルボキシル基及び/又はアセチル基含有物(C)は、上記フッ素系官能基成分(A)が結合した層状無機化合物粒子(B)を、不織布の基材に密着させるためのバインダ成分として用いられる。
 本発明の第2の観点は、第1の観点に基づく発明であって、層状無機化合物粒子(B)が、前記撥水撥油性膜を100質量%とするとき、5質量%~50質量%の割合で前記撥水撥油性膜に含まれ、前記エアフィルタの通気度が1ml/cm2/秒~40ml/cm2/秒であるエアフィルタである。
 本発明の第3の観点は、第1の観点に基づく発明であって、前記カルボキシル基及び/又はアセチル基含有物(C)は、カルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液であるエアフィルタである。
 本発明の第4の観点は、第1又は第2の観点に基づく発明であって、前記層状無機化合物粒子(B)が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティブンサイト又はバーミキュライトであるエアフィルタである。
 本発明の第5の観点は、第1の観点に基づく発明であって、前記不織布が単一層により構成されるか、又は複数層の積層体により構成されるエアフィルタである。
 本発明の第6の観点は、第1又は第5の観点のうちいずれかの観点に基づく発明であって、前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維であるエアフィルタである。
 本発明の第7の観点は、図3に示すように、フッ素含有層状無機化合物粒子の水分散液と、バインダ成分としてのカルボキシル基及び/又はアセチル基含有物と、水又は炭素数1~4のアルコールの含有割合が40質量%以下の水である溶媒とを混合して撥水撥油性膜形成用液組成物(以下、単に液組成物ということもある。)を調製する工程と、前記撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングする工程と、前記ディッピングした不織布を脱液し乾燥する工程とを含むエアフィルタの製造方法である。
 本発明の第8の観点は、第7の観点に基づく発明であって、前記フッ素含有層状無機化合物粒子の水分散液が、層状無機化合物粒子の水分散液にフッ素系化合物を添加混合し、この混合液に触媒を添加混合して、調製されるエアフィルタの製造方法である。
 本発明の第9の観点は、第8の観点に基づく発明であって、前記層状無機化合物粒子が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティブンサイト又はバーミキュライトであるエアフィルタの製造方法である。
 本発明の第10の観点は、第7の観点に基づく発明であって、前記カルボキシル基及び/又はアセチル基含有物(C)は、カルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液であるエアフィルタの製造方法である。
  本発明の第1の観点のエアフィルタは、エアフィルタに含まれる不織布の繊維表面に撥水撥油性膜が形成され、撥水撥油性膜が、前述した一般式(1)又は式(2)で示されるフッ素系官能基成分(A)と、層状無機化合物粒子(B)と、カルボキシル基及び/又はアセチル基含有物(C)とを含み、フッ素系官能基成分(A)が、撥水撥油性膜を100質量%とするとき、0.5質量%~10質量%の割合で撥水撥油性膜に含まれ、エアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒である。このため、エアフィルタ内にオイルミストと粉塵を含む空気がエアフィルタの一面から流入すると、オイルミストと粉塵が不織布で捕集され、空気だけが不織布の気孔を通過しエアフィルタの他面から流出して、空気が清浄になり、目詰まりが抑制される。
 このとき、撥水撥油性膜の撥油性能のため、またエアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒であるため、オイルミストが不織布の繊維表面の撥水撥油性膜に吸着せずに弾かれて付着するに止まる。エアフィルタを使用し続けてオイルミストの不織布内部における捕集量が増えると、エアフィルタが水平に配置される場合には、オイルミストは液状化して通過する空気に随伴されてエアフィルタの他面に集まり、エアフィルタが鉛直に配置される場合には、捕集されたオイルミストが自重によりエアフィルタの下端に集まり、不織布の気孔を閉塞しない。これにより、オイルミストによる気孔の目詰まりは抑制される。
  一方、粉塵は、エアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒であるため、不織布の繊維表面の撥水撥油性膜に直接付着するか、或いは撥水撥油性膜に付着したオイルミストに付着する。このため、エアフィルタを長期間使用して粉塵等で目詰まりしたときに、エアノッカー等でエアフィルタに衝撃を与えると、オイルミストと一緒に付着した粉塵を容易に落とすことができ、エアフィルタを再生することができる。
 本発明の第2の観点のエアフィルタでは、層状無機化合物粒子(B)が、撥水撥油性膜を100質量%とするとき、5質量%~50質量%の割合で撥水撥油性膜に含まれ、エアフィルタの通気度が1ml/cm2/秒~40ml/cm2/秒である。このため、層状無機化合物粒子が上記割合で撥水撥油性膜に含まれると、撥水撥油性膜の摩耗強度が高まるとともに、不織布の通気孔の孔埋め効果が高まり、エアフィルタの表面で油粒子をブロックすることができる。
  本発明の第3の観点のエアフィルタでは、カルボキシル基及び/又はアセチル基含有物(C)がカルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液であるため、この水分散液又は自己乳化液がフッ素含有層状無機化合物粒子のバインダとして作用するとともに、液組成物を基材表面に成膜したときに、膜を基材表面に堅牢に結着させることができる。
  本発明の第4の観点のエアフィルタでは、撥水撥油性膜に含まれる層状無機化合物粒子がモンモリロナイト等であるため、モンモリロナイト等の有する多層構造及び大きな膨潤性により容量の大きな層間を有することで、より良好な膜の外観が得られ、かつ膜の強度もより高まる。
 本発明の第5の観点のエアフィルタでは、不織布が単一層により構成される場合には、簡単な構成のエアフィルタになり、不織布が複数層の積層体により構成される場合には、流入する粉塵の粒径、オイルミストの油粒子のサイズ等の性状に応じて各層を構成することができる。
  本発明の第6の観点のエアフィルタでは、不織布を構成する繊維の材質を、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属から、流入する粉塵の粒径、オイルミストの油粒子のサイズ等の性状に応じて、選択することができる。
  本発明の第7の観点の方法では、図3に示すように、フッ素含有層状無機化合物粒子の水分散液と、カルボキシル基及び/又はアセチル基含有物(C)と、水又は炭素数1~4のアルコールの含有割合が40質量%以下の水である溶媒とを混合して撥水撥油性膜形成用液組成物を調製し、この撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングして不織布を脱液し乾燥することにより、エアフィルタが製造されるため、不織布の繊維表面に撥水撥油性膜を均一に形成することができる。また粒子表面が撥水撥油性である層状無機化合物粒子がカルボキシル基及び/又はアセチル基含有物中に存在するため、撥水撥油性を維持しながら不織布の通気度を低くすることが容易になる。更に特許文献1のPTFE多孔質膜とは異なり、撥水撥油性膜には静電気が発生しにくく、簡便にエアフィルタを製造することができる。
  本発明の第8の観点のエアフィルタの製造方法では、層状無機化合物粒子の水分散液にフッ素系化合物を添加混合し、この混合液に触媒を添加混合するため、フッ素含有層状無機化合物粒子が均一に分散した分散液が得られる。
  本発明の第9の観点のエアフィルタの製造方法では、層状無機化合物粒子がモンモリロナイト等であるため、モンモリロナイト等の有する多層構造及び大きな膨潤性により容量の大きな層間を有することで、膜の外観を良好にすることができ、かつ膜の強度をより高めることができる。
  本発明の第10の観点のエアフィルタの製造方法では、カルボキシル基及び/又はアセチル基含有物(C)がカルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液であるため、この水分散液又は自己乳化液がフッ素含有層状無機化合物粒子のバインダとして作用するとともに、液組成物を基材表面に成膜したときに、膜を基材表面に堅牢に結着させることができる。
本実施形態の単一層の不織布の側面図である。 本実施形態の二層の不織布の側面図である。 本実施形態のエアフィルタを製造するフロー図である。
 次に本発明を実施するための形態について図面を参照して説明する。
〔エアフィルタ〕
 図1に示すように、本実施形態のエアフィルタ10は、不織布20とこの不織布の繊維表面に形成された撥水性と撥油性を有する撥水撥油性膜21とを備える。このエアフィルタ10の主たる構成要素である不織布20は、オイルミストと粉塵を含む空気が流入する一面20aと、この一面20aに対向し前記空気が流出する他面20bを有し、単一層からなる。図2に示すように、上層の不織布30と下層の不織布40の二層の積層体により構成されるエアフィルタ50でもよい。この場合、上層の不織布30の上面がオイルミストと粉塵を含む空気が流入する一面30aとなり、下層の不織布40の下面がこの一面30aに対向する他面40bとなる。なお、積層体は二層に限らず、三層、四層等の複数層から構成することもできる。
 図1中央の拡大図に示すように、不織布20は多数の繊維20cが絡み合って形成され、繊維と繊維の間には気孔20dが形成される。気孔20dは不織布20の一面20aと他面20bとの間を貫通する。不織布の繊維20cの表面には撥水撥油性膜21が形成される。不織布の目付は、100g/m2~400g/m2の範囲にあることが好ましいが、この範囲に限定されるものではない。撥水撥油性膜21は、層状無機化合物粒子(B)とバインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)とを含む。層状無機化合物粒子(B)の平均粒子径は0.1μm~10μmであることが好ましい。この層状無機化合物粒子(B)には、前述した一般式(1)又は式(2)で示されるフッ素系官能基成分(A)が結合する。フッ素系官能基成分(A)は、撥水撥油性膜21を100質量%とするとき、0.5質量%~10質量%の割合で撥水撥油性膜21に含まれる。またカルボキシル基及び/又はアセチル基含有物(C)は、撥水撥油性膜21を100質量%とするとき、10質量%~70質量%の割合で含まれることが好ましい。更に層状無機化合物粒子(B)に対するフッ素系官能基成分(A)の質量比(A/B)が0.01~0.50の範囲にあることが好ましい。
 図1上部の更なる拡大図に示すように、撥水撥油性膜21は、粒子表面がフッ素系官能基成分に覆われた多数の層状無機化合物粒子21aがカルボキシル基及び/又はアセチル基含有物からなるバインダ成分21bで結着して構成される。撥水撥油性膜21は層状無機化合物粒子21aを含むため、見かけ上、厚膜となり、繊維と繊維の間の気孔20dを狭くすることができる。また膜厚は、層状無機化合物粒子の粒子径と膜成分中の層状無機化合物粒子の含有割合を変えることにより制御することができる。
 不織布の目付が100g/m2未満であると、繊維間の気孔が大き過ぎることから、粉塵を捕集する能力が不足し易い。400g/m2を超えると、通気度が1ml/cm2/秒未満となり、粉塵が直ぐに繊維間の気孔に詰まり易くなるか、或いは通気度が低過ぎるため、エアフィルタに送り込む空気の抵抗によりエアフィルタで圧力損失が生じ易く、送風エネルギーの効率が悪化し易い。不織布の目付は、200g/m2~350g/m2の範囲にあることが更に好ましい。
 繊維表面に撥水撥油性膜21が形成されたエアフィルタ10の状態で、不織布20は1ml/cm2/秒~130ml/cm2/秒の通気度を有するように作製される。通気度が1ml/cm2/秒未満では、通気性に劣り、オイルミストと粉塵を含む空気が通過しにくくなる。130ml/cm2/秒を超えると、不織布の気孔20dの大きさが流入する空気中のオイルミストの油粒子22及び粉塵の粒子23の各粒径よりも遙かに大きくなり、油粒子22及び粉塵の粒子23が空気とともに不織布の気孔を通してエアフィルタ10から通過し、オイルミストと粉塵を捕集することができない。通気度は1.5ml/cm2/秒~125ml/cm2/秒であることが好ましい。通気度はJIS-L1913:2000に記載のフラジール形試験機を用いて測定される。
 撥水撥油性膜21を100質量%とするとき、フッ素系官能基成分(A)の撥水撥油性膜に含まれる割合が0.5質量%未満では、撥油性の効果に乏しく、オイルミストを弾く性能が不十分になる。即ち、オイルミストがエアフィルタに到達したときに、オイルミストが繊維表面上に濡れ広がり、気孔20dを塞ぎ易くなる。フッ素系官能基成分(A)の撥水撥油性膜に含まれる割合が10質量%を超えると、撥水撥油性膜の不織布への密着性が悪くなる。撥水撥油性膜21中のフッ素系官能基成分(A)の含有割合は、0.7質量%~8質量%であることが好ましい。
 撥水撥油性膜21に含まれる層状無機化合物粒子(B)は、平均粒子径が0.1μm~10μmの範囲にあることが好ましい。層状無機化合物粒子(B)に対するフッ素系官能基成分(A)の質量比(A/B)が0.01~0.50であることが好ましい。質量比(A/B)が0.01未満では、撥水撥油性膜が撥油性に劣り、0.50を超えると、撥水撥油性膜の繊維表面への密着性が低下する。
  このようなエアフィルタ10の作用について説明する。図1に示すように、オイルミストと粉塵を含む空気が、エアフィルタ10を構成する不織布20の一面20aに到来する。ここでエアフィルタ10は所定の通気度を有するため、また撥水撥油性膜21が撥油性を示すため、オイルミストの油粒子22は気孔20dの孔径より粒径が大きい場合は勿論のこと、気孔20dの孔径より粒径が僅かに小さくても、エアフィルタ10を通過できず、不織布20の繊維20cと繊維20cの間に、撥水撥油性膜21によって弾かれながら、撥水撥油性膜21に付着して止まる。同時に粉塵の粒子23も撥水撥油性膜21に付着して止まる。撥水撥油性膜21中に層状無機化合物粒子21aを含むため、膜が凹凸になり、油粒子22の膜への付着の程度は低い一方、粉塵の粒子23は付着し易くなる。これにより、オイルミストの油粒子22及び粉塵の粒子23が不織布に捕集され、オイルミストと粉塵を含んだ空気が、図1の拡大図に示す繊維20cと繊維20cの間に形成された気孔20dを通過して他面20bに至り、オイルミストと粉塵のない空気となって、不織布20を通過する。
  エアフィルタを使用し続けてオイルミストの不織布内部における捕集量が増えると、エアフィルタが水平に配置される場合には、膜への付着の程度が低いオイルミストは液状化して通過する空気に随伴されてエアフィルタの他面に集まり、エアフィルタが鉛直に配置される場合には、捕集されたオイルミストが自重によりエアフィルタの下端に集まり、不織布の気孔を閉塞しない。これにより、オイルミストによる気孔の目詰まりは抑制される。粉塵は不織布の繊維表面の撥水撥油性膜に直接付着するか、或いは撥水撥油性膜に付着したオイルミストに付着する。不織布20に溜まったオイルミストと粉塵は、定期的にエアノッカー等でエアフィルタ10に衝撃を与えることにより、エアフィルタ10から除去することができる。
〔エアフィルタの製造方法〕
  エアフィルタは次の方法により、概略製造される。
  図3に示すように、層状無機化合物粒子の水分散液51にフッ素系官能基成分(A)を含むフッ素系化合物52を混合し、更に触媒53を混合してフッ素含有層状無機化合物粒子の水分散液54を調製する。この水分散液54と、カルボキシル基及び/又はアセチル基含有物からなるバインダ成分55と、溶媒56とを混合することにより、撥水撥油性膜形成用液組成物60を調製する。この液組成物60に不織布20をディッピングする。続いて不織布20を脱液し、乾燥することによりエアフィルタ10を製造する。
 以下、エアフィルタの製造方法を詳述する。
〔不織布の準備〕
 先ず、1.1ml/cm2/秒~150ml/cm2/秒の通気度を有する不織布を準備する。具体的には、後述する撥水撥油性膜が不織布の繊維表面に形成されたエアフィルタになった状態で、1ml/cm2/秒~130ml/cm2/秒の通気度を有する不織布を準備する。撥水撥油性膜が厚膜に形成される場合には、通気度の大きい不織布が選定され、撥水撥油性膜が薄膜に形成される場合には、通気度の小さい不織布が選定される。
 この不織布としては、例えば、セルロース混合エステル性のメンブレンフィルター、ガラス繊維ろ紙、ポリエチレンテレフタレート繊維とガラス繊維を混用した不織布(安積濾紙社製、商品名:336又は商品名:356)、ポリエチレンテレフタレート繊維からなる不織布(東レ社製、商品名:G2260-1S又は東洋紡績社製、商品名:191001)、ポリプロピレン繊維からなる不織布(三井化学社製、商品名:M03150)又は金属繊維からなる不織布(日エテクノ社製)がある。このように不織布は、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維から作られる。繊維は、2以上の繊維を混合した繊維でもよい。繊維の太さ(繊維径)は、上記通気度が得られるように、0.01μm~10μmの太さが好適である。不織布の厚さは、エアフィルタが単一層である場合には、0.2mm~0.8mm、複数層の積層体である場合には、積層体の厚さが0.2mm~5mmになる厚さが好ましい。
〔撥水撥油性膜形成用液組成物の製造方法〕
〔層状無機化合物粒子の水分散液の調製〕
 先ず、先ず、水性溶媒中に、層状無機化合物粒子を分散させて層状無機化合物粒子の水分散液を調製する。層状無機化合物粒子は、好ましくは0.1μm~10μmの平均粒子径を有する。平均粒子径が0.1μm未満では、層状無機化合物粒子の凝集が起こりやすくなり、媒体中に分散しにくくなる。10μmを超えると、液組成物を成膜したときに、層状無機化合物粒子が撥水撥油性膜から脱落しやすくなる。層状無機化合物粒子としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティブンサイト又はバーミキュライトであるエアフィルタが例示される。
 水性溶媒としては、水又は水と炭素数1~4のアルコールとの混合溶媒が例示される。上記水としては、不純物の混入防止のため、イオン交換水、蒸留水などの純水を使用するのが望ましい。ここで、溶媒として水性溶媒を用いて、有機溶媒を用いないのは、取扱い上の安全性のためである。なお、本明細書において、層状無機化合物粒子の平均粒子径とは、走査型電子顕微鏡(SEM)で観察した粒子形状のうち、200点の粒子サイズを画像解析により測定したものの平均値をいう。
〔フッ素含有層状無機化合物粒子の分散液の調製〕
  次に、調製された層状無機化合物粒子の水分散液中に、上述した式(1)又は式(2)で表されるフッ素系官能基成分を含むフッ素系化合物を添加して、層状無機化合物粒子とフッ素系官能基成分とがナノコンポジット化された複合材料を合成する。更に反応を促進するために、触媒を添加する。これにより、フッ素含有層状無機化合物粒子の水分散液が調製される。
  上記触媒としては、有機酸、無機酸、アルカリ又はチタン化合物が挙げられ、有機酸としてはギ酸、シュウ酸が例示され、無機酸としては塩酸、硝酸、リン酸が例示され、アルカリとしては、水酸化ナトリウム、水酸化リチウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、アンモニアが例示され、チタン化合物としてはテトラプロポキシチタン、テトラブトキシチタン、テトライソプロポキシチタン、乳酸チタン等が例示される。触媒は上記のものに限定されない。
  フッ素系官能基成分を含むフッ素系化合物は、下記一般式(3)又は式(4)で示される。これらの式(3)又は式(4)中のペルフルオロエーテル基としては、より具体的には、下記式(5)~(13)で示されるペルフルオロエーテル構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
  また、上記式(3)及び式(4)中のXとしては、下記式(14)~(18)で示される構造を挙げることができる。なお、下記式(14)はエーテル結合、下記式(15)はエステル結合、下記式(16)はアミド結合、下記式(17)はウレタン結合、下記式(18)はスルホンアミド結合を含む例を示している。
Figure JPOXMLDOC01-appb-C000006
  ここで、上記式(14)~(18)中、R2及びR3は炭素数が0から10の炭化水素基、R4は水素原子又は炭素数1から6の炭化水素基である。R3の炭化水素基の例とは、メチレン基、エチレン基等のアルキレン基が挙げられ、R4の炭化水素基の例とは、メチル基、エチル基等のアルキル基の他、フェニル基等も挙げられる。
  また、上記式(3)及び式(4)中、R1は、メチル基、エチル基等が挙げられる。
  また、上記式(3)及び式(4)中、Zは、加水分解されてSi-O-Si結合を形成可能な加水分解性基であれば特に限定されるものではない。このような加水分解性基としては、具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、フェノキシ基、ナフトキシ基などのアリールオキシ基、ベンジルオキシ基、フェネチルオキシ基などのアラルキルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基などのアシルオキシ基等が挙げられる。これらの中でも、エトキシ基を適用することが好ましい。
  ここで、上記式(3)又は式(4)で表されるペルフルオロエーテル構造を有するフッ素系官能基成分を含むフッ素系化合物の具体例としては、例えば、下記式(19)~(27)で表される構造が挙げられる。なお、下記式(19)~(27)中、Rはメチル基又はエチル基である。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上述したように、本実施の形態の撥水撥油性膜形成用液組成物に含まれるフッ素系化合物は、分子内に酸素原子に炭素数が6以下の短鎖長のペルフルオロアルキル基とペルフルオロアルキレン基が複数結合したペルフルオロエーテル基を有しており、分子内のフッ素含有率が高いため、形成した膜に優れた撥水撥油性を付与することができる。
〔カルボキシル基及び/又はアセチル基含有物〕
 バインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)は、カルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液である。市販品として、カルボキシル基を有するポリオレフィン系のものとしては、ザイクセンA、ザイクセンL、ザイクセンN(いずれも住友精化社製)が挙げられる。エチレン-酢酸ビニル系のものとしては、セポルジョンVA406N、セポルジョンVA407N(いずれも住友精化社製)、スミカフレックスS-201HQ、S-355HQ、S-401Q、S-465HQ、S-483HQ、S-830、S-950HQ(いずれも住友化学社製)、クアテックスEC-1800、EC-1200(いずれもジャパンコーティングレジン社製)が挙げられる。また、エチレン-酢酸ビニル-アクリル酸系のものとしてはスミカフレックスS-900HL(住友化学社製)などが挙げられる。
〔撥水撥油性膜形成用液組成物〕
  本実施の形態の撥水撥油性膜形成用液組成物は、上記製造方法で製造され、前述したフッ素系官能基成分(A)が結合した層状無機化合物粒子(B)と、バインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)と、溶媒(D)とを含む。このフッ素系官能基成分(A)は、上記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を有し、溶媒(D)を除く全成分量を100質量%とするとき、液組成物中、0.5質量%~10質量%含まれる。フッ素系官能基成分が0.5質量%未満では形成した膜に撥油性を付与できず、10質量%を超えると膜の弾き等が発生し成膜性に劣る。更に層状無機化合物粒子(B)に対するフッ素系官能基成分(A)の質量比(A/B)が、好ましくは0.01~0.50の範囲にある。
 質量比(A/B)が0.01未満では、撥水撥油性膜が撥油性に劣り易く、0.50を超えると、撥水撥油性膜の不織布の繊維表面への密着性が低下し易い。上記溶媒(D)は、水又は炭素数1~4のアルコールの含有割合が40質量%以下の水である。炭素数1~4のアルコールの含有割合を40質量%以下とするのは取扱い上の安全性と液組成物の保存安定性のためである。また水と炭素数1~4のアルコールとを混合した混合溶媒にすることにより、乾燥速度が向上し、成膜性が改善される。炭素数1~4のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノールが挙げられる。
〔不織布の繊維表面への撥水撥油性膜の形成方法〕
  本実施形態の不織布の繊維表面に撥水撥油性膜を形成するには、撥水撥油性膜形成用液組成物に不織布をディッピングして希釈液から引上げ、大気中、室温で不織布を水平な金網等の上に拡げて一定の液分量になるまで脱液する。別法として、引き上げた不織布を振り払って余分な液を除去するか、或いは引き上げた不織布をマングルロール(絞り機)に通して脱液する。脱液した不織布は、大気中、25℃~140℃の温度で0.5時間~24時間乾燥する。撥水撥油性膜液組成物の粘度が高い場合には、この液組成物を、水と沸点が120℃未満の炭素数1~4の範囲にあるアルコールとを混合した溶媒で希釈した液を調製する。この溶媒における水とアルコールとの混合割合(水:アルコール)は質量比で1:0~5である。また液組成物に対する溶媒の質量比(液組成物:溶媒)は1:0.1~10の割合である。このように調製した希釈液に、不織布をディッピング等してもよい。
 これにより、図1中央の拡大図に示すように、不織布20を構成している繊維20cの表面に撥水撥油性膜21が形成される。脱液量が少ない場合には、撥水撥油性膜は厚膜に不織布の繊維表面に形成され、脱液量が多い場合には、撥水撥油性膜は薄膜に不織布の繊維表面に形成される。
 次に本発明の実施例を比較例とともに詳しく説明する。先ず、フッ素含有層状無機化合物粒子の水分散液を調製する合成例1~7及び比較合成例1、2を説明し、次いでこれらの合成例及び比較合成例を用いた撥水撥油性膜形成用液組成物の調製とエアフィルタの製造に関する実施例1~7及び比較例1~3を説明する。
〔フッ素含有層状無機化合物粒子の分散液を調製するための合成例1~7、比較合成例1、2〕
<合成例1>
 層状無機化合物として、スメクトンST(クニミネ工業社製、スティブンサイト)2gと水98gをビーカー中で撹拌して、層状無機化合物粒子の水分散液を得た。得られた水分散液90gに、上述した式(19)で表される、フッ素系官能基成分(A)を含むフッ素系化合物を0.04g添加し混合した。次に、硝酸を0.005g添加し、40℃で2時間混合し、層状無機化合物粒子にフッ素系化合物が結合したフッ素含有層状無機化合物粒子の水分散液を得た。層状無機化合物粒子(B)に対するフッ素系官能基成分(A)の質量比(A/B)は0.019であった。
 以下の表1に合成例1のフッ素含有層状無機化合物粒子の水分散液の調製条件を示す。
Figure JPOXMLDOC01-appb-T000009
<合成例2~7及び比較合成例1、2>
  合成例2~7及び比較合成例1、2では、層状無機化合物粒子の種類を合成例1と異なる種類に変更し、フッ素系化合物を合成例1と異なる種類に変更し、触媒としての硝酸の配合量は合成例1と同一にし、層状無機化合物粒子(B)に対するフッ素系官能基成分(A)の質量比(A/B)を合成例1とは異なるように変更した。それ以外は合成例1と同様にして、上記表1に示すように、合成例2~7及び比較合成例1、2の各フッ素含有層状無機化合物粒子の水分散液を調製した。なお、表1において、フッ素系化合物として式(19)~式(21)及び式(27)で表わされるフッ素含有シランの式中のRはすべてエチル基である。
〔撥水撥油性膜形成用液組成物の調製とエアフィルタの製造のための実施例1~7、比較例1、2〕
<実施例1>
  合成例1で得られたフッ素含有層状無機化合物粒子の水分散液90.04gに、バインダ成分であるアセチル基を有する酢酸エチレン系エマルジョン液(スミカフレックス S-355HQ、住友化学社製)7.57gと、溶媒としての水2.39gとを混合し、撥水撥油性膜形成用液組成物100gを調製した。エアフィルタの基材として、PET繊維からなるからなる、通気度が15ml/m2/sの東レ社製不織布G2260-1Sを用いた。上記撥水撥油性膜形成用液組成物にこの不織布をディッピングし、余分な液を振り払い、室温で24時間乾燥させ、通気度が11ml/cm2/秒のエアフィルタを作製した。この内容を以下の表2及び表3に示す。
  表2には、『溶媒を除く液組成物中のフッ素系官能基成分(A)』の含有割合、『溶媒を除く液組成物中の層状無機化合物粒子(B)』の含有割合、及び『溶媒を除く液組成物中のバインダ成分(C)』の含有割合も示す。なお、溶媒を除く液組成物中のフッ素系官能基成分(A)の含有割合(%)は、[(A)/[(A)+(B)+(C)]]の百分率であり、溶媒を除く液組成物中の層状無機化合物粒子(B)の含有割合(%)は、[(B)/[(A)+(B)+(C)]]の百分率であり、溶媒を除く液組成物中のバインダ成分(C)の含有割合(%)は、[(C)/[(A)+(B)+(C)]]の百分率である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<実施例2~7及び比較例1~3>
 表2に示すように、実施例2~7及び比較例1、2では、表1に示す合成例1~7又は比較合成例1、2で得られたフッ素含有層状無機化合物粒子の水分散液をそれぞれ用いて、それぞれの秤量を決定した。比較例3では、表1に示す合成例7で得られたフッ素含有層状無機化合物粒子の水分散液を用いて、その秤量を決定した。表2に示すように、実施例2~7及び比較例1~3では、カルボキシル基及び/又はアセチル基含有物からなるバインダ成分を用いて、その秤量を決定した。
 このようにして、実施例2~7及び比較例1~3の各撥水撥油性膜形成用液組成物を調製した。
 表3に示す通気度の異なる不織布と、エアフィルタの基材の種類を選定して、実施例2~7及び比較例1~3の各撥水撥油性膜形成用液組成物に、不織布からなる基材を、実施例1と同様にして、ディッピングし、脱液・乾燥して表3に示す特性を有するエアフィルタを得た。比較例2では、撥水撥油性膜液組成物の粘度が上昇したため、液組成物を溶媒で希釈し、この希釈液に不織布からなる基材をディッピングし、脱液・乾燥した。
 実施例4と実施例7のPETとガラス繊維の混合繊維は、安積濾紙社製の商品名:356と336をそれぞれ用いた。また実施例1~7及び比較例1~3の不織布はすべて単一層からなっていた。
<比較試験及び評価>
 金属製品を切削油を用いて加工する工作機械から飛散するオイルミストと粉塵に模して、n-ヘキサデカンと酸化鉄(III)(富士フイルム和光純薬社製)を質量比で80:20の割合で自転公転撹拌機(シンキー社製ARE-310)に投入して撹拌混合し、模擬液を得た。得られた模擬液1mlを、実施例1~7及び比較例1~3で得られた10種類の水平に置いたエアフィルタに上方から滴下した後、エアフィルタを鉛直に立てて、模擬液の転落性を確認した。模擬液がエアフィルタに捕集された後、エアフィルタを通過するものは、エアフィルタの撥油性が『不良』であるとし、模擬液がエアフィルタに捕集された後、エアフィルタを若干通過し、かつ模擬液がエアフィルタの表面から転落するが、その転落量が減少するものは、エアフィルタの撥油性が『やや良好』であるとし、模擬液がエアフィルタに捕集されるとともに、エアフィルタを通過せず、エアフィルタの表面から転落するものをエアフィルタの撥油性が『良好』であるとした。
  表3から明らかなように、比較例1のエアフィルタでは、溶媒を除く液組成物中のフッ素系官能基成分(A)の含有割合が0.4質量%と少な過ぎ、撥水撥油性膜に撥油性が発揮されず、模擬液がエアフィルタに捕集されるが、模擬液がエアフィルタを通過したため、撥油性は『不良』であった。
  比較例2のエアフィルタでは、溶媒を除く液組成物中のフッ素系官能基成分(A)の含有割合が11.3質量%と多過ぎ、撥水撥油性膜液組成物が不織布に均一に塗工されず、撥水撥油性膜が不織布の繊維表面に均一に形成されなかった。このため、撥水撥油性膜が多孔質となって、撥水撥油性膜に撥油性が発揮されず、模擬液がエアフィルタに捕集されるが、模擬液がエアフィルタを通過したため、撥油性は『不良』であった。
 比較例3のエアフィルタでは、不織布として金属繊維を用いた上、塗工液の濃度が希薄であったため、その通気度が136ml/cm2/秒と高くなり過ぎた。このため、模擬液が容易にエアフィルタに捕集された後、容易にエアフィルタから通過した。模擬液はエアフィルタの表面から転落せず、撥油性は『不良』であった。
 これらに対して、実施例1~7のエアフィルタでは、第1の観点の発明の範囲を満たしていることから、模擬液が捕集されるとともに、エアフィルタから転落し、その撥油性はすべて『やや良好』又は『良好』であることを確認できた。
  ここで、実施例6のエアフィルタでは、溶媒を除く液組成物中の層状無機化合物粒子(B)の含有割合が4質量%である撥水撥油性膜液組成物を用いたため、撥水撥油性膜は、層状無機化合物粒子の含有割合が少なくなる一方、エチレン-酢酸ビニル共重合体からなるバインダ成分(C)が主成分となった。また、塗工前の通気度が140ml/cm2/秒と高い不織布を用いた。これらのため、模擬液がエアフィルタに捕集されるが、エアフィルタを若干通過した。模擬液はエアフィルタの表面から転落するが、その転落量が減少し、撥油性は『やや良好』であった。
  また、実施例7のエアフィルタでは、溶媒を除く液組成物中の層状無機化合物粒子(B)の含有割合が55質量%である撥水撥油性膜液組成物を用いたため、この液組成物の粘度が上昇した。そのため、この液に不織布をディッピングし、脱液・乾燥したが、粘度が高い塗工液であったため、やや不均一な膜となった。このため、模擬液がフィルタに捕集され、エアフィルタを通過しない一方、模擬液はエアフィルタの表面から転落するが、その転落量が減少し、撥油性は『やや良好』であった。
 本発明のエアフィルタは、金属製品を切削油を用いて加工する切削機や旋削機等の工作機械のある作業環境で用いられる。

Claims (10)

  1.  オイルミストと粉塵を含む空気が流入する一面と、この一面に対向し前記空気が流出する他面との間を貫通する多数の気孔が繊維間に形成された不織布を含むエアフィルタであって、
     前記不織布の繊維表面に撥水撥油性膜が形成され、
      前記撥水撥油性膜は、下記の一般式(1)又は式(2)で示されるペルフルオロエーテル構造を含むフッ素系官能基成分(A)と、層状無機化合物粒子(B)とバインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)とを含み、
     前記フッ素系官能基成分(A)が、前記撥水撥油性膜を100質量%とするとき、0.5質量%~10質量%の割合で前記撥水撥油性膜に含まれ、
     前記エアフィルタの通気度が1ml/cm2/秒~130ml/cm2/秒であることを特徴とするエアフィルタ。
    Figure JPOXMLDOC01-appb-C000001
     上記式(1)及び式(2)中、p、q及びrは、それぞれ同一又は互いに異なる1~6の整数であって、直鎖状又は分岐状であってもよい。また上記式(1)及び式(2)中、Xは、炭素数2~10の炭化水素基であって、エーテル結合、CO-NH結合、O-CO-NH結合及びスルホンアミド結合から選択される1種以上の結合を含んでいてもよい。更に上記式(1)及び式(2)中、Yはシランの加水分解体又はシリカゾルゲルの主成分である。
  2.  前記層状無機化合物粒子(B)が、前記撥水撥油性膜を100質量%とするとき、5質量%~50質量%の割合で前記撥水撥油性膜に含まれ、前記エアフィルタの通気度が1ml/cm2/秒~40ml/cm2/秒である請求項1記載のエアフィルタ。
  3.   前記カルボキシル基及び/又はアセチル基含有物(C)は、カルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液である請求項1記載のエアフィルタ。
  4.  前記層状無機化合物粒子(B)が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティブンサイト又はバーミキュライトである請求項1又は2記載のエアフィルタ。
  5.  前記不織布が単一層により構成されるか、又は複数層の積層体により構成される請求項1記載のエアフィルタ。
  6.  前記不織布を構成する繊維がポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ガラス、アルミナ、炭素、セルロース、パルプ、ナイロン及び金属からなる群より選ばれた1種又は2種以上の繊維である請求項1又は5記載のエアフィルタ。
  7.  フッ素含有層状無機化合物粒子の水分散液と、バインダ成分としてのカルボキシル基及び/又はアセチル基含有物(C)と、水又は炭素数1~4のアルコールの含有割合が40質量%以下の水である溶媒(D)とを混合して撥水撥油性膜形成用液組成物を調製する工程と、
     前記撥水撥油性膜形成用液組成物の希釈液に不織布をディッピングする工程と、
     前記ディッピングした不織布を脱液し乾燥する工程と
     を含むエアフィルタの製造方法。
  8.   前記フッ素含有層状無機化合物粒子の水分散液が、層状無機化合物粒子(B)の水分散液にフッ素系化合物を添加混合し、この混合液に触媒を添加混合して、調製される請求項7記載のエアフィルタの製造方法。
  9.  前記層状無機化合物粒子(B)が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティブンサイト又はバーミキュライトである請求項7又は8記載のエアフィルタ。
  10.   前記カルボキシル基及び/又はアセチル基含有物(C)は、カルボキシル基を有するポリオレフィン系水分散液、エチレン-酢酸ビニル共重合体の自己乳化液、又はエチレン-酢酸ビニル-アクリル酸共重合体の自己乳化液である請求項7記載のエアフィルタの製造方法。
PCT/JP2022/009050 2021-03-29 2022-03-03 エアフィルタ及びその製造方法 WO2022209559A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055430 2021-03-29
JP2021055430A JP2022152602A (ja) 2021-03-29 2021-03-29 エアフィルタ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022209559A1 true WO2022209559A1 (ja) 2022-10-06

Family

ID=83458532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009050 WO2022209559A1 (ja) 2021-03-29 2022-03-03 エアフィルタ及びその製造方法

Country Status (2)

Country Link
JP (1) JP2022152602A (ja)
WO (1) WO2022209559A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126428A (ja) * 1993-09-08 1995-05-16 Japan Gore Tex Inc 撥油防水性通気フィルター
JP2003093818A (ja) * 2001-09-25 2003-04-02 Toray Ind Inc エアフィルタ用濾材
JP2015074781A (ja) * 2013-10-09 2015-04-20 ビジョン開発株式会社 撥水撥油性複合材料の製造方法、及び撥水撥油性複合材料
WO2016017754A1 (ja) * 2014-07-30 2016-02-04 三菱マテリアル株式会社 濾材、濾材の製造方法、水処理用モジュール及び水処理装置
JP2020037618A (ja) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 被覆膜、被覆膜を有する被覆体、被覆膜を有する電気機器、被覆膜を有する電気機器の部品
WO2020175310A1 (ja) * 2019-02-27 2020-09-03 三菱マテリアル電子化成株式会社 油水分離フィルター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126428A (ja) * 1993-09-08 1995-05-16 Japan Gore Tex Inc 撥油防水性通気フィルター
JP2003093818A (ja) * 2001-09-25 2003-04-02 Toray Ind Inc エアフィルタ用濾材
JP2015074781A (ja) * 2013-10-09 2015-04-20 ビジョン開発株式会社 撥水撥油性複合材料の製造方法、及び撥水撥油性複合材料
WO2016017754A1 (ja) * 2014-07-30 2016-02-04 三菱マテリアル株式会社 濾材、濾材の製造方法、水処理用モジュール及び水処理装置
JP2020037618A (ja) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 被覆膜、被覆膜を有する被覆体、被覆膜を有する電気機器、被覆膜を有する電気機器の部品
WO2020175310A1 (ja) * 2019-02-27 2020-09-03 三菱マテリアル電子化成株式会社 油水分離フィルター

Also Published As

Publication number Publication date
JP2022152602A (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
Liu et al. Super-hydrophobic cellulose nanofiber air filter with highly efficient filtration and humidity resistance
CN110302594B (zh) 包含树状聚合物和/或其他组分的过滤介质和制品
WO2018143364A1 (ja) 繊維処理用の処理剤、繊維及びその製造方法、並びに繊維シート及びその製造方法
CN113564918B (zh) 具有液滴单向渗透性的Janus织物及其制备方法
Guo et al. Preparation of superhydrophobic materials for oil/water separation and oil absorption using PMHS–TEOS-derived xerogel and polystyrene
WO2021125257A1 (ja) エアフィルタ及びその製造方法
JP7391670B2 (ja) 油水分離フィルター
CN111073510B (zh) 一种疏水疏油自清洁材料及其制备方法和应用
JP5148888B2 (ja) エアフィルタ用濾材及びその製造方法
WO2022209559A1 (ja) エアフィルタ及びその製造方法
JP6996911B2 (ja) 油水分離フィルター
JP6923630B2 (ja) エアフィルタ
JP7417469B2 (ja) エアフィルタ及びその製造方法
CN111346524B (zh) 复合体
JP2023018691A (ja) エアフィルタ及びその製造方法
JP7458304B2 (ja) エアフィルタ及びその製造方法
JP6923697B1 (ja) エアフィルタ及びその製造方法
JP5536537B2 (ja) エアフィルタ用濾材
JP6923724B1 (ja) エアフィルタ及びその製造方法
Wang et al. Superhydrophobic wrinkled skin grown on polypropylene membranes enhances oil-water emulsions separation
JP2023070902A (ja) エアフィルタ及びその製造方法
JP7490453B2 (ja) 油水分離フィルタ及びその製造方法
Zhou et al. Green and facile preparation of superhydrophobic cotton fabric using cationic POSS/PDMS-modified polyacrylate emulsion for oil–water separation
JP2021181076A (ja) 油水分離フィルタ及びその製造方法
JP2022084333A (ja) 油水分離フィルタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779784

Country of ref document: EP

Kind code of ref document: A1