WO2022209007A1 - 摺動材及び流体機械 - Google Patents

摺動材及び流体機械 Download PDF

Info

Publication number
WO2022209007A1
WO2022209007A1 PCT/JP2021/044108 JP2021044108W WO2022209007A1 WO 2022209007 A1 WO2022209007 A1 WO 2022209007A1 JP 2021044108 W JP2021044108 W JP 2021044108W WO 2022209007 A1 WO2022209007 A1 WO 2022209007A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding member
sliding
fluororesin
base material
resin
Prior art date
Application number
PCT/JP2021/044108
Other languages
English (en)
French (fr)
Inventor
颯 斎藤
伸之 成澤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to KR1020237004577A priority Critical patent/KR20230036138A/ko
Priority to CN202180058200.0A priority patent/CN116096808A/zh
Publication of WO2022209007A1 publication Critical patent/WO2022209007A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present disclosure relates to sliding materials and fluid machinery.
  • Reciprocating fluid machines generally include piston fluid machines and oscillating piston fluid machines.
  • the former fluid machine has a bearing at the end of the connecting rod on the side of the compression/expansion chamber, and a piston supported by the bearing so as to be able to swing.
  • the latter fluid machine has no bearing on the compression/expansion chamber side of the connecting rod and has a piston integrated with the connecting rod.
  • gas is compressed by reciprocating the piston while rocking it in a metal cylinder.
  • the piston includes a sliding member that slides on the inner peripheral surface of the cylinder. Examples of the sliding member include lip rings and piston rings.
  • Patent Document 1 describes "In a cylinder device consisting of a cylinder and a piston that engages with the inner peripheral surface of the cylinder via a piston ring, 60 to 80% by weight of polyphenylene sulfide (PPS) resin, Using a resin composition containing 10 to 30% by weight of fluororesin, 2 to 10% by weight of spherical filler, and 2 to 10% by weight of fibrous filler as essential components, the piston ring is formed on the outer peripheral portion of the piston by insert molding. A piston for a cylinder characterized by being formed.” is described.
  • PPS polyphenylene sulfide
  • Patent Document 1 has room for improvement in the wear resistance of the sliding member.
  • the problem to be solved by the present disclosure is to provide a sliding member and a fluid machine having excellent wear resistance.
  • the sliding member of the present disclosure is a sliding member that contacts a sliding surface, and the sliding member includes a first base material resin made of a resin other than fluororesin, and a first member made of a first material containing fluororesin particles and rod-shaped particles dispersed in a first member; a second base material resin made of a fluororesin arranged adjacent to the first member; a second member constructed from a second material including a reinforcing agent dispersed in a second base resin.
  • a first base material resin made of a resin other than fluororesin
  • a first member made of a first material containing fluororesin particles and rod-shaped particles dispersed in a first member
  • a second base material resin made of a fluororesin arranged adjacent to the first member
  • a second member constructed from a second material including a reinforcing agent dispersed in a second base resin.
  • FIG. 10 is a diagram for explaining a transfer film formed during sliding; 1 is a schematic diagram of a fluid machine including a sliding member according to a first embodiment; FIG. It is a sectional view showing a sliding member of a 2nd embodiment. It is a figure explaining the test method of a friction test. It is an energy dispersive X-ray analysis image of the test piece surface after the friction test. It is a figure which shows the test result of the wear amount obtained by the friction test, and a coefficient of friction.
  • FIG. 4 is a diagram showing the correlation between the amount of wear and the coefficient of friction obtained in a friction test, and the content of fluororesin particles.
  • FIG. 1 is a cross-sectional view showing the sliding member 12 of the first embodiment.
  • the sliding member 12 is in contact with a sliding surface 13, which is an inner wall surface of the metal member 11, for example.
  • the sliding member 12 reciprocates (vertically moves) vertically while sliding on the sliding surface 13 as indicated by solid line arrows.
  • the sliding member 12 is configured, for example, as a piston 40 (FIG. 5).
  • the sliding member 12 includes a first member 12a and a second member 12b.
  • FIG. 2 is a cross-sectional view of the first member 12a.
  • the first member 12a is composed of a first material, and the first material includes a first base material resin 21 composed of a resin other than fluororesin, fluororesin particles 22 dispersed in the first base material resin 21, and rod-shaped particles. and particles 23 .
  • the dispersion is preferably evenly distributed throughout the first base material resin 21, but may be unevenly distributed.
  • the first base material resin 21 forms the outer shell of the first member 12a.
  • the first base material resin 21 is composed of a resin other than a fluororesin, and is not particularly limited as long as it is a resin that can fulfill the function of the sliding member 12. Above all, it has excellent heat resistance and a low coefficient of thermal expansion. Resins are preferred. Specific examples include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyethersulfone (PES), phenolic resin (PF), polyimide (PI), and modified products thereof.
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • PES polyethersulfone
  • PF phenolic resin
  • PI polyimide
  • One of the first base material resins 21 may be used alone, or two or more of them may be used in an arbitrary ratio and combination.
  • the first base material resin 21 preferably contains at least one of polyphenylene sulfide and polyetheretherketone. By containing these polymers, the heat resistance of the first member 12a can be improved.
  • the fluororesin particles 22 form a transfer film 14 (FIG. 4) on the sliding surface 13 by transferring the fluororesin to the sliding surface 13 (FIG. 1) when sliding on the sliding surface 13 (FIG. 1). is.
  • the constituent material of the fluororesin particles 22 is not particularly limited as long as it is a fluororesin. polymer (ETFE), polyvinylidene fluoride (PVDF), and the like.
  • the constituent materials of the fluororesin particles 22 may be used singly, or two or more may be used in any ratio and combination.
  • the fluororesin particles 22 preferably contain at least one of polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. By using these polymers, the formation of the transfer film 14 on the sliding surface 13 (FIG. 1) caused by the fluororesin particles 22 can be promoted.
  • the form in which the fluororesin particles 22 are contained is not particularly limited as long as the effects of the present disclosure are not significantly impaired.
  • These particle sizes can be, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the particle size can be measured, for example, as an average particle size measurable with a laser diffraction particle size distribution analyzer.
  • the content of the fluororesin particles 22 is not particularly limited as long as it does not significantly impair the effects of the present disclosure, but is preferably 15% by mass or more and 30% by mass or less with respect to the first material. By setting it within this range, excessive thermal expansion of the first member 12a caused by the fluororesin particles 22 can be suppressed, and the coefficient of friction of the first member 12a with respect to the sliding surface 13 (FIG. 1) can be reduced. Furthermore, peeling of the transfer film 14 (FIG. 4) caused by the fluororesin particles 22 can be suppressed. These can particularly improve the wear resistance of the sliding member 12 .
  • the rod-shaped particles 23 improve the strength of the first member 12a against stress such as tensile stress due to their rod-like shape.
  • the rod-shaped particles 23 can be made of any material as long as the effects of the present disclosure are not significantly impaired, but preferably contain at least one of carbon fiber and glass fiber. By using these fibers, the rod-shaped particles 23 can be constructed using readily available fibers.
  • the length and diameter of the rod-shaped particles 23 are not particularly limited as long as they do not significantly impair the effects of the present disclosure.
  • measured values in a cross-sectional micrograph of the first member 12a can be adopted.
  • the content of the rod-shaped particles 23 is not particularly limited as long as it does not significantly impair the effects of the present disclosure.
  • the content of the carbon fibers is preferably 5% by mass or more and 15% by mass or less with respect to the first material.
  • FIG. 3 is a cross-sectional view of the second member 12b.
  • the second member 12 b is made of a second material, and the second material includes a second base material resin 31 made of fluorocarbon resin and a reinforcing agent 32 dispersed in the second base material resin 31 .
  • the reinforcing agent 32 is preferably dispersed evenly throughout the second base material resin 31, but may be unevenly distributed.
  • the second base material resin 31 forms the outer shell of the second member 12b.
  • the second base material resin 31 is a fluororesin, it is not particularly limited as long as it does not significantly impair the effects of the present disclosure.
  • the second base material resin 31 may be used singly, or two or more of them may be used in an arbitrary ratio and combination.
  • the second base material resin 31 preferably contains polytetrafluoroethylene.
  • the transfer film 14 (FIG. 4) can be formed on the sliding surface 13 (FIG. 1) together with the fluororesin particles 22 (FIG. 2) in the first member 12a (FIG. 2). can promote.
  • the fluororesin particles 22 (FIG. 1) and the second base material resin 31 are preferably made of the same kind of fluororesin. By doing so, the transfer film 14 made of the same constituent material can be formed on the sliding surface 13 by the fluororesin particles 22 and the second base material resin 31, and the transfer can be promoted.
  • the reinforcing agent 32 improves the strength of the second member 12b (especially the second base material resin 31) against stress such as shear stress.
  • a specific material for the reinforcing agent 32 is not particularly limited as long as it does not significantly impair the effects of the present disclosure.
  • One of the reinforcing agents 32 may be used alone, or two or more thereof may be used in any ratio and combination.
  • the reinforcing agent 32 preferably contains at least one of copper, a copper alloy (an alloy containing copper as a main component, such as bronze, etc.), or carbon fiber.
  • the form in which the reinforcing agent 32 is contained is not particularly limited as long as it does not significantly impair the effects of the present disclosure, but it can be, for example, particulate. Also, the particle size of the reinforcing agent 32 is not particularly limited as long as it does not significantly impair the effects of the present disclosure, and is arbitrary.
  • the content of the reinforcing agent 32 is not particularly limited as long as it does not significantly impair the effects of the present disclosure.
  • the second material preferably further contains a solid lubricant 33.
  • a solid lubricant 33 By containing the solid lubricant, a lubricating film (not shown) is formed on the sliding surface 13 (FIG. 1), thereby reducing the friction between the second member 12b and the sliding surface 13, and increasing the durability of the sliding member 12. Abrasion resistance can be further improved.
  • One of the solid lubricants 33 may be used alone, or two or more of them may be used in any ratio and combination.
  • the solid lubricant 33 preferably contains at least one of molybdenum disulfide and spherical carbon.
  • molybdenum disulfide has a weak S—S bond, which causes delamination, thereby exhibiting solid lubricity.
  • the content of the solid lubricant 33 is not particularly limited as long as it does not significantly impair the effects of the present disclosure, but it can be, for example, 1% by mass or more and 15% by mass or less with respect to the second material.
  • the second member 12b is arranged along the sliding surface 13 so as to be adjacent to the first member 12a.
  • adjacent means that the first member 12a and the second member 12b do not need to be in contact with each other in the direction of the sliding surface 13 (sliding direction).
  • an arbitrary member can be arranged between and within a range that does not significantly impair the effects of the present disclosure.
  • the first member 12 a and the second member 12 b are in contact with each other in the direction of the sliding surface 13 .
  • the first member 12a and the second member 12b are arranged continuously in the circumferential motion of the sliding member 12 along the sliding surface 13 .
  • the first member 12a and the second member 12b are arranged so that the second member 12b is sandwiched between at least two first members 12a. By doing so, even if the second base material resin 31 (FIG. 3) in the second member 12b thermally expands, the second member 12b is sandwiched between the first members 12a. Overall deformation of member 12 can be kept within design tolerances. Along with this, the transfer film 14 (FIG. 4) can be formed on the sliding surface 13, and the abrasion resistance of the sliding member 12 can be improved. In the illustrated example, two first members 12a are provided, and when three or more first members 12a are provided, the second member 12b is arranged between any two first members 12a. Just do it.
  • FIG. 4 is a diagram for explaining the transfer film 14 formed during sliding. As the sliding member 12 slides on the sliding surface 13 , the transfer film 14 made of fluororesin is formed on the sliding surface 13 .
  • the coefficient of thermal expansion of the fluororesin forming the fluororesin particles 22 (FIG. 2) and the second base material resin 31 (FIG. 3) is relatively large. For this reason, if the sliding member 12 is composed of only the first member 12a or only the second member 12b, there is a possibility that deformation, uneven wear, and the like will occur especially in a high-temperature friction environment.
  • a specific example of the high-temperature friction environment is the vicinity of the compression/expansion chamber 44 (FIG. 5) in the fluid machine 100 (FIG. 5) such as an oscillating piston reciprocating gas compressor.
  • a member 12 is constructed.
  • the first base material resin 21 made of a resin other than fluororesin has a high coefficient of friction depending on the constituent material. obtain. Therefore, by dispersing the fluororesin particles 22 in the first base material resin 21, the friction coefficient of the first member 12a on the sliding surface 13 can be reduced, the peeling of the transfer film 14 is suppressed, and the wear resistance is improved. can improve.
  • the fluororesin capable of forming the transfer film 14 is derived only from the fluororesin particles 22, so there is still room for improvement in the degree of formation of the transfer film 14. Therefore, in addition to the first member 12a, by using the second member 12b including the second base material resin 31 made of fluororesin, the formation of the transfer film 14 can be promoted, the coefficient of friction can be reduced, and the wear resistance can be reduced. It is possible to improve the quality.
  • the first member 12a and the second member 12b mutually assist the formation of the transfer film 14 (FIG. 4) on the metal member 11, thereby suppressing wear.
  • materials other than the fluororesin contained in the first base material resin 21 and the second base material resin 31 (rod-shaped particles 23 (FIG. 2), reinforcing agent 32 (FIG. 3), and solid lubricant 33 (FIG. 3)) improves toughness or slipperiness. Thereby, the wear resistance of the first member 12a and the second member 12b can be improved.
  • the presence of the first material, the second material, the fluororesin particles 22 (FIG. 2), the rod-shaped particles 23, the reinforcing agent 32, and the solid lubricant 33 can be confirmed, for example, as follows. can run. That is, for example, surface observation and chemical analysis such as optical microscope, energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy, and infrared spectroscopy are performed on the surface or crushed material of the first member 12a or the second member 12b. It can be easily identified by doing.
  • EDX energy dispersive X-ray analysis
  • X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy
  • infrared spectroscopy infrared spectroscopy
  • the metal member 11 can include, for example, transition metals such as iron, nickel, molybdenum, chromium, titanium, and copper, and light metals such as aluminum, silicon, and magnesium.
  • the metal member 11 includes, for example, aluminum-based materials such as aluminum and aluminum alloys, copper-based materials such as copper and copper alloys, titanium-based materials such as titanium and titanium alloys, and iron-based materials such as iron and iron-nickel alloys. It can be composed of materials.
  • the metal member 11 is, for example, a metal material with an untreated surface, but the surface of the metal material may be surface-treated. In that case, the sliding member 12 contacts and slides on the treated surface. That is, the surface of the metal member 11 may be formed of a metal element that constitutes the metal member 11 or may be formed by surface treatment on the metal member 11 .
  • the surface treatment formed on the surface of the metal member 11 is, for example, a surface coating artificially applied to the metal material, a natural oxide film, or the like.
  • the natural oxide film is, for example, aluminum oxide when the metal member 11 is aluminum, and iron oxide when it is iron.
  • the surface coating is formed by, for example, a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, a plating process, a carburizing process, or the like, and is made of a material containing at least one of aluminum, chromium, iron, phosphorus, nickel, and zinc. Configured. Specific examples include alumite treatment, aluminum plating, chrome plating, iron plating, nickel plating, zinc plating, and the like.
  • FIG. 5 is a schematic diagram of a fluid machine 100 including the sliding member 12 of the first embodiment.
  • the fluid machine 100 is an oscillating piston type reciprocating gas compressor in the illustrated example.
  • the fluid machine 100 does not have enough lubricating oil or the like on the inner wall surface 411 (an example of the sliding surface 13 (FIG. 1)) and is used without oil, or does not have any lubricating oil and is oil-free. It is particularly effective when used in However, lubricating oil, grease, or the like may exist on the inner wall surface 411 .
  • the fluid machine 100 includes a cylinder 41 (an example of the metal member 11 (FIG. 1)) and a piston 40 that reciprocates (vertically moves in the illustrated example) inside the cylinder 41 .
  • the piston 40 includes a sliding member 12 that slides on an inner wall surface 411 of the cylinder 41.
  • the sliding member 12 includes a piston body 42 (an example of a first member 12a (FIG. 1)) and a piston ring 43 (second member). 12b (FIG. 1)).
  • the piston ring 43 has, for example, an annular shape, and is fitted into an annular groove (not shown) formed in the outer peripheral side surface of the disk-shaped piston body 42 .
  • a compression/expansion chamber 44 which is a working space for compressing or expanding gas, is provided in the space above the piston 40 in the cylinder 41.
  • the upper end of the cylinder 41 is closed by a partition plate 45, and the partition plate 45 is provided with a suction port 45a and a discharge port 45b.
  • the suction port 45a and the discharge port 45b are provided with a suction valve 45c and a discharge valve 45d, which are connected to pipes (not shown), respectively.
  • the piston 40 is constructed integrally with a connecting rod 46 .
  • gas is sucked into the compression/expansion chamber 44 through the suction port 45 a and compressed in the compression/expansion chamber 44 .
  • the compressed gas is discharged to the outside through the discharge port 45b and recovered by a pipe (not shown).
  • the piston 40 is a separate part from the connecting rod 46 that supports the piston 40 . As the piston 40 moves up and down, the piston 40 configured by the sliding member 12 in the illustrated example slides on the inner wall surface 411 of the cylinder 41 through point contact.
  • the connecting rod 46 may be made of metal or resin.
  • a film may be formed on the inner wall surface 411 of the cylinder 41 by surface treatment of the metal member 11 .
  • the inner peripheral surface of the cylinder 41 may be left with a natural oxide film, or may be subjected to alumite treatment or the like. Also, the inner peripheral surface of the cylinder 41 does not have to be coated.
  • the sliding member 12 may also be used in mechanical devices that require good slidability, such as analytical devices, vacuum devices, and space-related equipment.
  • FIG. 6 is a cross-sectional view showing the sliding member 121 of the second embodiment.
  • the sliding member 121 is the same as the sliding member 12 (FIG. 1) except that the arrangement order of the first member 12a and the second member 12b is different.
  • the first member 12a and the second member 12b are arranged so that the first member 12a is sandwiched between at least two second members 12b.
  • the transfer film 14 (FIG. 4) can be formed starting from the plurality of second members 12b whose base material is fluororesin, and the formation of the transfer film 14 (FIG. 4) can be promoted.
  • the first member 12a (FIG. 2) is made of a first material containing PPS as the first base material resin 21 (FIG. 2), PTFE as the fluororesin particles 22 (FIG. 2), and carbon fiber as the rod-shaped particles 23 (FIG. 2). made.
  • the fluororesin particles 22 and rod-shaped particles 23 were dispersed throughout the first base material resin 21 .
  • the content of the fluororesin particles 22 was set to 15% by mass with respect to the first material.
  • the content of the rod-shaped particles 23 was set to 10% by mass with respect to the first material.
  • the length and diameter of the rod-shaped particles 23 were 100 ⁇ m in length and 8 ⁇ m in diameter as the average length and diameter measured by the above method.
  • the second member 12b (Fig. 3) is made of a second material including PTFE as the second base material resin 31 (Fig. 3), bronze as the reinforcing agent 32 (Fig. 3), molybdenum disulfide and spherical carbon as the solid lubricant 33 (Fig. 3). 3) was produced.
  • the reinforcing agent 32 and the solid lubricant 33 are dispersed throughout the second base material resin 31 .
  • the content of the reinforcing agent 32 was 10% by mass with respect to the second material.
  • the content of molybdenum disulfide was set to 5% by mass with respect to the second material.
  • the content of spherical carbon was set to 10% by mass with respect to the second material. Therefore, in Example 1, the total amount of the solid lubricant 33 composed of molybdenum disulfide and spherical carbon used was set to 15% by mass with respect to the second material.
  • FIG. 7 is a diagram explaining the test method of the friction test.
  • the sliding member 12 of Example 1 was produced such that the produced first member 12 a and second member 12 b were arranged on the sliding surface 13 .
  • the sliding member 12 was produced by surrounding the second member 12b with the first member 12a.
  • the first member 12a had a height H1 of 10 mm in the vertical direction of the paper surface, and a width W1 of 10 mm in the horizontal direction of the paper surface.
  • the height H2 of the second member 12b in the up-down direction of the paper surface was set to 5 mm, and the width W2 in the horizontal direction of the paper surface was set to 4 mm.
  • the lengths (not shown) of the first member 12a and the second member 12b in the front depth direction of the paper surface were both shorter than the vertical length of the test piece 15 described later.
  • the area ratio of the sliding surface 13 between the first member 12a and the second member 12b was set to 6:4.
  • the sliding member 12 was made of an aluminum alloy plate with an alumite-treated surface as the sliding surface 13 (vertical (front depth direction of the paper surface; not shown) 20 mm, horizontal W3 43 mm, thickness H3 3 mm). It was brought into contact with the piece 15 and reciprocated in the horizontal direction of the paper.
  • the contact surface pressure between the sliding member 12 and the test piece 15 is 3 MPa
  • the friction speed is 0.4 m/s
  • the distance of one reciprocation is 20 mm
  • the surface temperature of the test piece 15 temperature of the sliding surface 13
  • the temperature was set at 110°C.
  • the total amount of wear after sliding for a predetermined period of time and the coefficient of friction during sliding for a predetermined period of time were measured. The results of the friction tests are described below with reference to Figures 8-10.
  • Comparative Example 1 A sliding member of Comparative Example 1 was produced in the same manner as in Example 1 except that the fluororesin particles 22 (FIG. 2) and the rod-shaped particles 23 (FIG. 2) were not included, and a friction test was conducted. The results of the friction tests are described below with reference to Figures 8-10.
  • Comparative Example 2 A sliding member of Comparative Example 2 was produced in the same manner as in Example 1 except that the second member 12b was not provided, and a friction test was conducted. The results of the friction tests are described below with reference to Figures 8-10.
  • the sliding member of Comparative Example 2 corresponds to the technique described in Patent Document 1 above.
  • Fig. 8 is an energy dispersive X-ray analysis image (EDX) of the test piece surface after the friction test.
  • the EDX-Al image shows the presence of aluminum on the specimen surface and the EDF-F image shows the presence of fluorine on the specimen surface.
  • the EDX-Al image of Example 1 has almost no white portions, indicating that aluminum is not present on the surface.
  • the EDX-F image of Example 1 has white portions, indicating the presence of fluorine on the surface. Therefore, it is considered that the transfer film 14 (FIG. 4) containing fluorine was formed on the surface of the test piece, and for this reason, almost no aluminum, which is the constituent material of the test piece, was detected.
  • FIG. 9 is a diagram showing the test results of the wear amount (bar graph) and friction coefficient (plot) obtained in the friction test.
  • FIG. 9 shows the total amount of wear when sliding for a predetermined time in the friction test shown in FIG. 7 and the average value of the coefficient of friction during sliding for the predetermined time.
  • the amount of wear was expressed as a relative value when the value of Comparative Example 2 was set to 100.
  • Example 1 Compared to Comparative Examples 1 and 2, Example 1 had a lower coefficient of friction. This can be attributed to the formation of the transfer film 14 (FIG. 4) as described with reference to FIG. Then, it is considered that the sliding member 12 becomes easier to slide due to the decrease in the coefficient of friction, and the amount of wear is reduced. Therefore, the sliding member 12 of the present disclosure exhibits excellent wear resistance.
  • Example 1 when comparing Example 1 with Comparative Examples 1 and 2, the wear amount and friction coefficient of Comparative Examples 1 and 2 were both higher than the wear amount and friction coefficient of Example 1. This is because In Comparative Example 1, which does not contain the fluororesin particles 22, even if the transfer film 14 was formed, it was peeled off by the first member 12a, and this is thought to be because the amount of wear and the coefficient of friction increased. Moreover, in Comparative Example 2, which does not include the second member 12b, it is considered that the transfer film 14 is difficult to form in the first place, and thus the amount of wear and the coefficient of friction are increased.
  • Comparative Examples 1 and 2 if the coefficient of friction is reduced, the slipperiness is improved. However, if, for example, a decrease in strength against shear stress of the material and excessive thermal expansion occur at the same time, the amount of wear increases as a result. Therefore, the wear coefficient is one factor for reducing the amount of wear, and simply reducing the coefficient of friction does not necessarily reduce the amount of wear. Therefore, although the coefficient of friction was smaller in Comparative Example 2, the amount of wear was greater in Comparative Example 2. Therefore, in Example 1, the coefficient of friction was reduced to make it easier to slide, and further, for example, the reduction in strength and excessive thermal expansion of the first member 12a and the second member 12b (both shown in FIG. 7) could be suppressed. , it is thought that the amount of wear could be reduced.
  • FIG. 10 is a diagram showing the correlation between the wear amount (circle plot) and the friction coefficient (rhombus plot) obtained in the friction test and the content of the fluororesin particles 22 (FIG. 2).
  • the results shown in FIG. 10 were obtained by simulating the friction test in FIG. 7 under the conditions of Example 1 except that the content of the fluororesin particles 22 (PTFE) in the first material was changed. It is a thing.
  • the amount of wear was expressed as a relative value when the value when the blending amount of the fluororesin particles 22 was 70% by mass was taken as 100.
  • the amount of wear showed a particularly low value when the content was in the range of 15% by mass to 30% by mass. Therefore, when the content is within this range, particularly high wear resistance is exhibited. On the other hand, when the content was less than 15% by mass and more than 30% by mass, the amount of wear tended to increase.
  • the coefficient of friction showed an almost constant value when the content was 15% by mass or more. Accordingly, it can be said that the transfer film 14 (FIG. 4) having good slipperiness is formed on the test piece when the content is 15% by mass or more. Therefore, it was found from the results of FIG. 10 that the content of the fluororesin particles 22 is preferably 15% by mass or more and 30% by mass or less with respect to the first material.
  • the wear resistance of the piston 40 can be improved by applying the sliding member 12 according to the present disclosure to the piston 40, which is an oscillating piston type sliding portion in, for example, a reciprocating gas compressor. .
  • the life of the piston 40 can be extended, and for example, the maintenance cycle of a reciprocating gas compressor can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

優れた耐摩耗性を有する摺動部材を提供する。この課題の解決のため、摺動面13に接触する摺動部材12であって、摺動部材12は、フッ素樹脂以外の樹脂で構成された第1母材樹脂と、前記第1母材樹脂中に分散したフッ素樹脂粒子及び棒状粒子とを含む第1材料により構成された第1部材12aと、摺動面13に沿って第1部材12aと隣り合うように配置され、フッ素樹脂により構成された第2母材樹脂と、前記第2母材樹脂中に分散した強化剤とを含む第2材料により構成された第2部材12bと、を含む。

Description

摺動材及び流体機械
 本開示は、摺動材及び流体機械に関する。
 気体を圧縮又は膨張可能な流体機械として、例えばレシプロ式の流体機械(気体圧縮機等)が知られている。レシプロ式の流体機械は、通常ピストン方式の流体機械と、揺動ピストン方式の流体機械とを含む。前者の流体機械は、コンロッドの圧縮膨張室側端部に軸受を備え、その軸受により首振り可能に支持されたピストンを備える。後者の流体機械は、コンロッドの圧縮膨張室側に軸受を備えず、コンロッドと一体になったピストンを有する。これらのうち、揺動ピストン方式の流体機械では、金属製のシリンダ内をピストンが揺動しながら往復動することで気体が圧縮される。ピストンは、シリンダの内周面を摺動する摺動部材を備え、摺動部材としては、例えばリップリング、ピストンリング等が挙げられる。
 摺動部材に関する技術として、特許文献1には「シリンダーと、該シリンダーの内周面とピストンリングを介して係合するピストンよりなるシリンダー装置において、ポリフェニレンサルファイド(PPS)樹脂60~80重量%、フッ素樹脂10~30重量%、球状充填材2~10重量%、繊維状充填材2~10重量%を必須成分とする樹脂組成物を用いて、インサート成形により前記ピストンリングを前記ピストン外周部に形成させたことを特徴とするシリンダー用ピストン。」が記載されている。
特開平3-74681号公報
 詳細は実施例を参照しながら後記するが、特許文献1に記載の技術には、摺動部材の耐摩耗性に向上の余地がある。
 本開示が解決しようとする課題は、優れた耐摩耗性を有する摺動部材及び流体機械の提供である。
 本開示の摺動部材は、摺動面に接触する摺動部材であって、前記摺動部材は、フッ素樹脂以外の樹脂で構成された第1母材樹脂と、前記第1母材樹脂中に分散したフッ素樹脂粒子及び棒状粒子とを含む第1材料により構成された第1部材と、前記第1部材と隣り合うように配置され、フッ素樹脂により構成された第2母材樹脂と、前記第2母材樹脂中に分散した強化剤とを含む第2材料により構成された第2部材と、を含むことを特徴とする。その他の解決手段は発明を実施するための形態において後記する。
 本開示によれば、優れた耐摩耗性を有する摺動部材及び流体機械を提供できる。
第1実施形態の摺動部材を示す断面図である。 第1部材の断面図である。 第2部材の断面図である。 摺動時に形成される移着膜を説明する図である。 第1実施形態の摺動部材を備える流体機械の模式図である。 第2実施形態の摺動部材を示す断面図である。 摩擦試験の試験方法を説明する図である。 摩擦試験後の試験片表面についてのエネルギ分散型X線分析像である。 摩擦試験で得た摩耗量及び摩擦係数の試験結果を示す図である。 摩擦試験で得た摩耗量及び摩擦係数と、フッ素樹脂粒子の含有量との相関を示す図である。
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の一の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。
 図1は、第1実施形態の摺動部材12を示す断面図である。摺動部材12は、例えば金属部材11の内壁面である摺動面13に接触するものである。摺動部材12は、図示の例では、摺動面13を摺動しながら、実線矢印で示すように往復動(上下動)上下動する。摺動部材12は、例えばピストン40(図5)として構成される。摺動部材12は、第1部材12a及び第2部材12bを含む。
 図2は、第1部材12aの断面図である。第1部材12aは第1材料により構成され、第1材料は、フッ素樹脂以外の樹脂で構成された第1母材樹脂21と、第1母材樹脂21中に分散したフッ素樹脂粒子22及び棒状粒子23とを含む。分散は、第1母材樹脂21の全体に万遍無く分散していることが好ましいが、一部に偏在していてもよい。
 第1母材樹脂21は、第1部材12aの外郭を形成するものである。第1母材樹脂21は、フッ素樹脂以外の樹脂で構成され、摺動部材12としての機能を果たすことができる樹脂であれば特に制限されないが、中でも、耐熱性に優れ、熱膨張率が低い樹脂が好ましい。具体的には例えば、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン(PES)、フェノール樹脂(PF)、ポリイミド(PI)等の他、これらの変性体が挙げられる。第1母材樹脂21は、1種を単独で使用してもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 第1母材樹脂21は、ポリフェニレンサルファイド、又は、ポリエーテルエーテルケトンの少なくとも一方を含むことが好ましい。これらのポリマーを含むことで、第1部材12aの耐熱性を向上できる。
 フッ素樹脂粒子22は、摺動面13(図1)での摺動時、摺動面13へのフッ素樹脂の移着により、摺動面13に移着膜14(図4)を形成するものである。フッ素樹脂粒子22の構成材料は、フッ素樹脂であれば特に制限されず、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)等が挙げられる。フッ素樹脂粒子22の構成材料は、1種を単独で使用してもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 フッ素樹脂粒子22は、ポリテトラフルオロエチレン、又は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体の少なくとも一方を含むことが好ましい。これらのポリマーを使用することで、フッ素樹脂粒子22に起因する摺動面13(図1)への移着膜14の形成を促進できる。
 フッ素樹脂粒子22の含有形態としては、本開示の効果を著しく損なわない範囲で特に制限されないが、例えば、粒子状(粒状)にできる。これらの粒径は、例えば5μm以上200μm以下にすることができる。粒径は、例えば、レーザー回折式粒度分布測定装置により測定可能な平均粒径として測定できる。
 フッ素樹脂粒子22の含有量は、本開示の効果を著しく損なわない限り特に制限されないが、第1材料に対して、15質量%以上30質量%以下であることが好ましい。この範囲にすることで、フッ素樹脂粒子22に起因する第1部材12aの過度の熱膨張を抑制でき、摺動面13(図1)に対する第1部材12aの摩擦係数を低減できる。更には、フッ素樹脂粒子22に起因する移着膜14(図4)の剥離を抑制できる。これらにより、摺動部材12の耐摩耗性を特に向上できる。
 棒状粒子23は、棒状という形態により、例えば引っ張り応力等の応力に対する第1部材12aの強度を向上させるものである。棒状粒子23は、本開示の効果を著しく損なわない限り任意の材料により構成できるが、炭素繊維、又は、ガラス繊維の少なくとも一方を含むことが好ましい。これらの繊維を使用することで、容易に入手可能な繊維を使用して棒状粒子23を構成できる。
 棒状粒子23の長さ及び径は、本開示の効果を著しく損なわない限り特に制限されないが、例えば、長さは例えば10μm以上300μm以下、径は例えば1μm以上30μm以下にすることができる。長さ及び径は、第1部材12aの断面顕微鏡写真における実測値を採用できる。
 棒状粒子23の含有量は、本開示の効果を著しく損なわない限り特に制限されないが、第1材料に対して、例えば5質量%以上20質量%以下にすることができる。
 ただし、棒状粒子23が炭素繊維を含む場合、炭素繊維の含有量は、第1材料に対して、5質量%以上15質量%以下であることが好ましい。このようにすることで、例えばせん断応力等の応力に対する第1部材12aの強度を向上できる。
 図3は、第2部材12bの断面図である。第2部材12bは第2材料により構成され、第2材料は、フッ素樹脂により構成された第2母材樹脂31と、第2母材樹脂31中に分散した強化剤32とを含む。強化剤32の分散は、第2母材樹脂31の全体に万遍無く分散していることが好ましいが、一部に偏在していてもよい。
 第2母材樹脂31は、第2部材12bの外郭を形成するものである。第2母材樹脂31は、フッ素樹脂であれば、本開示の効果を著しく損なわない範囲で特に制限されず、例えば、フッ素樹脂粒子22(図2)の構成材料の上記例示物を採用できる。第2母材樹脂31は、1種を単独で使用してもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 第2母材樹脂31は、ポリテトラフルオロエチレンを含むことが好ましい。ポリテトラフルオロエチレンを含むことで、第1部材12a(図2)中のフッ素樹脂粒子22(図2)とともに、摺動面13(図1)への移着膜14(図4)の形成を促進できる。
 上記のフッ素樹脂粒子22(図1)と、第2母材樹脂31とは、同種のフッ素樹脂により構成されることが好ましい。このようにすることで、フッ素樹脂粒子22及び第2母材樹脂31により、同じ構成材料の移着膜14を摺動面13に形成でき、移着を促進できる。
 強化剤32は、例えばせん断応力などの応力に対する第2部材12b(特に第2母材樹脂31)の強度を向上させるものである。強化剤32の具体的な材料は、本開示の効果を著しく損なわない限り特に制限されない。強化剤32は、1種を単独で使用してもよく、2種以上を任意の比率及び組み合わせで使用してもよい。
 強化剤32は、銅、銅合金(銅を主成分とする合金。例えば青銅等)、又は炭素繊維の少なくとも1つを含むことが好ましい。これらの材料を使用することで、第2部材12bから仮に脱落して摺動面13に入り込んでも、柔らかい材料であるため摺動面13での傷の発生を抑制できる。
 強化剤32の含有形態としては、本開示の効果を著しく損なわない範囲で特に制限されないが、例えば、粒子状にできる。また、強化剤32の粒径も、本開示の効果を著しく損なわない範囲で特に制限されず、任意である。
 強化剤32の含有量は、本開示の効果を著しく損なわない限り特に制限されないが、第2材料に対して、例えば5質量%以上30質量%以下にすることができる。
 第2材料は、更に、固体潤滑剤33を含むことが好ましい。固体潤滑剤を含むことで、摺動面13(図1)に潤滑膜(不図示)を形成することで第2部材12bと摺動面13との摩擦を低減でき、摺動部材12の耐摩耗性を更に向上できる。固体潤滑剤33は、1種を単独で使用してもよく、2種以上を任意の比率及び組み合わせで使用してもよい。
 固体潤滑剤33は、二硫化モリブデン、又は、球状炭素の少なくとも一方を含むことが好ましい。これらの少なくとも一方を含むことで、第2部材12bと摺動面13との摩擦を低減でき耐摩耗性を向上できるとともに、例えばせん断応力等の応力に対する第2部材12bの強度を向上できる。例えば二硫化モリブデンであれば、S-S結合が弱いため、層間剥離を生じ、これにより、固体潤滑性を示す。
 固体潤滑剤33の含有量は、本開示の効果を著しく損なわない限り特に制限されないが、第2材料に対して、例えば1質量%以上15質量%以下にすることができる。
 図1に戻って、第2部材12bは、摺動面13に沿って第1部材12aと隣り合うように配置される。ここでいう「隣り合う」は、摺動面13の方向(摺動方向)において、第1部材12aと第2部材12bとが接触している必要は無く、第1部材12aと第2部材12bとの間に、本開示の効果を著しく損なわない範囲で任意の部材が配置されることを許容する意味である。図示の例では、第1部材12aと第2部材12bとが摺動面13の方向において接触している。第1部材12aと第2部材12bとは、摺動面13に沿って摺動部材12の周動向に連続的に配置される。
 第1部材12a及び第2部材12bは、第2部材12bを少なくとも2つの第1部材12aで挟むように配置される。このようにすることで、第2部材12b中の第2母材樹脂31(図3)が熱膨張しても、第2部材12bを第1部材12aで挟んでいるため、熱膨張による摺動部材12全体の変形を、設計の許容範囲内に留めることができる。これとともに、摺動面13に移着膜14(図4)を形成でき、摺動部材12の耐摩耗性を向上できる。なお、図示の例では、第1部材12aは2つ備えられ、第1部材12aが3つ以上備えられる場合には、何れか2つの第1部材12aの間に第2部材12bが配置されればよい。
 図4は、摺動時に形成される移着膜14を説明する図である。摺動部材12が摺動面13を摺動することで、摺動面13にはフッ素樹脂により構成される移着膜14が形成される。
 フッ素樹脂粒子22(図2)及び第2母材樹脂31(図3)を構成するフッ素樹脂の熱膨張率は比較的大きい。このため、仮に第1部材12aのみ、又は、第2部材12bのみにより摺動部材12を構成すれば、特に高温の摩擦環境で、変形、偏摩耗等の発生の可能性がある。なお、高温の摩擦環境の具体例としては、例えば揺動ピストン方式のレシプロ式気体圧縮機等の流体機械100(図5)における圧縮膨張室44(図5)の付近等が挙げられる。
 そこで、フッ素樹脂粒子22を分散した第1母材樹脂21(図2)を備える第1部材12aと、フッ素樹脂により構成された第2母材樹脂31を備える第2部材12bとにより、摺動部材12が構成される。フッ素樹脂以外の樹脂で構成された第1母材樹脂21は構成材料によっては摩擦係数が高く、第2母材樹脂31に起因して摺動面13に形成された移着膜14が剥離され得る。そこで、第1母材樹脂21にフッ素樹脂粒子22を分散させることで摺動面13での第1部材12aの摩擦係数を低減でき、移着膜14の剥離を抑制して、耐摩耗性を向上できる。
 一方で、第1部材12aのみでは、移着膜14を形成可能なフッ素樹脂がフッ素樹脂粒子22のみに由来するため、移着膜14の形成の程度に依然向上の余地がある。そこで、第1部材12aに加え、フッ素樹脂により構成された第2母材樹脂31を備える第2部材12bを併用することで、移着膜14の形成を促進でき、摩擦係数の低減及び耐摩耗性の向上を図ることができる。
 また、摺動部材12では、第1部材12a及び第2部材12bにより、金属部材11への移着膜14(図4)の形成を相互補助し、摩耗抑制が図られる。また、第1母材樹脂21及び第2母材樹脂31にそれぞれ含まれるフッ素樹脂以外の材料(棒状粒子23(図2)、強化剤32(図3)及び固体潤滑剤33(図3))により、靭性又は滑り易さが向上する。これにより、第1部材12a及び第2部材12bの耐摩耗性を向上できる。
 なお、摺動部材12において、第1材料、第2材料、フッ素樹脂粒子22(図2)、棒状粒子23、強化剤32、及び固体潤滑剤33の存在の確認は、例えば以下のようにして実行できる。即ち、例えば第1部材12a又は第2部材12bの表面又は破砕物について、光学顕微鏡、エネルギ分散型X線分析(EDX)、X線光電子分光分析、赤外分光分析等の表面観察及び化学分析を行うことにより、容易に特定できる。
 図1に戻って、金属部材11は、例えば鉄、ニッケル、モリブデン、クロム、チタン、銅等の遷移金属、アルミニウム、ケイ素、マグネシウム等の軽金属を含んで構成できる。具体的には、金属部材11は、例えばアルミニウム、アルミニウム合金等のアルミニウム系材料、銅、銅合金等の銅系材料、チタン、チタン合金等のチタン系材料、鉄、鉄ーニッケル合金等の鉄系材料により構成できる。
 金属部材11は、例えば表面が未処理の金属材であるが、金属材の表面に、表面処理が形成されていてもよい。その場合、摺動部材12は、表面処理された表面に接触し、摺動する。即ち、金属部材11の表面は、金属部材11を構成する金属元素により形成されていてもよく、金属部材11の上に形成された、表面処理により形成されていてもよい。
 金属部材11の表面に形成される表面処理は、例えば、金属材に人工的に施した表面コーティング、自然酸化膜等である。自然酸化膜は、例えば金属部材11がアルミニウムの場合には酸化アルミニウム、鉄の場合には酸化鉄である。表面コーティングは、例えば、化学蒸着(CVD)法、物理蒸着(PVD)法、めっき処理、浸炭処理等により形成され、アルミニウム、クロム、鉄、リン、ニッケル、亜鉛のうち少なくとも一つを含む材料により構成される。具体的には、例えば、アルマイト処理、アルミニウムめっき、クロムめっき、鉄めっき、ニッケルめっき、亜鉛めっき等が挙げられる。
 図5は、第1実施形態の摺動部材12を備える流体機械100の模式図である。流体機械100は、図示の例では揺動ピストン方式のレシプロ式気体圧縮機である。流体機械100は、内壁面411(摺動面13(図1)の一例)に十分な潤滑油等が存在せず、オイルレスで使用したとき、又は、潤滑油が全く存在せず、オイルフリーで使用したときに、特に大きな効果を示す。ただし、内壁面411には、潤滑油、グリース等が存在してもよい。
 流体機械100は、シリンダ41(金属部材11(図1)の一例)と、シリンダ41の内部を往復動(図示の例では上下動)するピストン40とを備える。ピストン40は、シリンダ41の内壁面411を摺動する摺動部材12を備え、摺動部材12は、ピストン本体42(第1部材12a(図1)の一例)及びピストンリング43(第2部材12b(図1)の一例)により構成される。ピストンリング43は、例えば円環状であり、円盤状のピストン本体42の外周側面に形成された円環状の溝(不図示)に嵌められる。
 シリンダ41内の、ピストン40の上部の空間には、気体を圧縮又は膨張させる作動空間の圧縮膨張室44が備えられる。シリンダ41の上端は、仕切り板45により閉鎖されており、仕切り板45には、吸入口45aと吐出口45bとが設けられている。吸入口45a及び吐出口45bには、吸入弁45c及び吐出弁45dが設けられており、それぞれ配管(不図示)に接続されている。
 気体圧縮の作動原理について説明する。ピストン40はコンロッド46と一体で構成されている。クランクシャフト47の回転に伴い、ピストン40が上下動することで、吸入口45aから圧縮膨張室44内に気体が吸入され、圧縮膨張室44内で気体が圧縮される。圧縮気体は、吐出口45bを通って外部に排出され、配管(不図示)により回収される。
 ピストン40は、ピストン40を支持するコンロッド46とは別部品である。ピストン40の上下動に伴い、図示の例では摺動部材12により構成されるピストン40がシリンダ41の内壁面411と点接触により摺動する。コンロッド46は、金属製であってもよいし、樹脂製であってもよい。
 シリンダ41の内壁面411には、金属部材11に対する表面処理により、被膜が形成されてもよい。例えば、シリンダ41の内周面は自然酸化膜が生じたままでもよいし、アルマイト処理等を形成してもよい。また、シリンダ41の内周面には、被膜を形成しなくてもよい。
 なお、摺動部材12は、図5のような流体機械100のほか、例えば分析装置、真空装置、宇宙関連機器等の、良好な摺動性が求められる機械装置に使用してもよい。
 図6は、第2実施形態の摺動部材121を示す断面図である。摺動部材121では、第1部材12aと第2部材12bとの配置順が異なること以外は、摺動部材12(図1)と同様である。
 摺動部材121では、第1部材12a及び第2部材12bは、第1部材12aを少なくとも2つの第2部材12bで挟むように配置される。このように配置することで、フッ素樹脂を母材とする複数の第2部材12bを起点として移着膜14(図4)を形成でき、移着膜14(図4)の形成を促進できる。
<実施例1>
 第1母材樹脂21(図2)としてPPS、フッ素樹脂粒子22(図2)としてPTFE、及び棒状粒子23(図2)として炭素繊維を含む第1材料により第1部材12a(図2)を作製した。フッ素樹脂粒子22及び棒状粒子23は、第1母材樹脂21の全体に分散させた。フッ素樹脂粒子22の含有量は、第1材料に対して15質量%にした。また、棒状粒子23の含有量は、第1材料に対して10質量%にした。棒状粒子23の長さ及び径は、上記の方法により測定した平均長さ及び径として、長さ100μm、径8μmとした。
 第2母材樹脂31(図3)としてPTFE、強化剤32(図3)として青銅、固体潤滑剤33(図3)として二硫化モリブデン及び球状炭素を含む第2材料により第2部材12b(図3)を作製した。強化剤32及び固体潤滑剤33は、第2母材樹脂31の全体に分散させた。強化剤32の含有量は、第2材料に対して10質量%にした。また、二硫化モリブデンの含有量は、第2材料に対して5質量%にした。球状炭素の含有量は、第2材料に対して10質量%にした。従って、実施例1では二硫化モリブデン及び球状炭素により構成される固体潤滑剤33の使用総量は、第2材料に対して15質量%にした。
 図7は、摩擦試験の試験方法を説明する図である。作製した第1部材12a及び第2部材12bが摺動面13に配置されるように実施例1の摺動部材12を作製した。摺動部材12は、第1部材12aによって第2部材12bを囲うようにして作製した。第1部材12aの紙面上下方向である高さH1は10mm、紙面横方向である幅W1は10mmとした。第2部材12bの紙面上下方向である高さH2は5mm、紙面横方向である幅W2は4mmとした。第1部材12a及び第2部材12bの紙面正面奥行方向の長さ(不図示)は、いずれも、後記の試験片15の縦の長さよりも短くした。第1部材12aと第2部材12bとの摺動面13における面積割合は、6:4とした。
 摺動部材12を、摺動面13としての表面をアルマイト処理したアルミニウム合金製プレート(縦(紙面正面奥行方向。不図示)20mm、横W3が43mm、厚さH3が3mm)により構成された試験片15に接触させ、紙面左右方向に往復動させた。摩擦試験の条件として、摺動部材12と試験片15との接触面圧3MPa、摩擦速度0.4m/s、1往復動の距離20mm、試験片15の表面温度(摺動面13の温度)110℃とした。そして、摩擦試験において所定時間摺動させた場合の摩耗量の合計と、所定時間の摺動中の摩擦係数とを測定した。摩擦試験の結果は、図8~図10を参照しながら後記する。
<比較例1>
 フッ素樹脂粒子22(図2)及び棒状粒子23(図2)を含まないこと以外は実施例1と同様にして、比較例1の摺動部材を作製し、摩擦試験を行った。摩擦試験の結果は、図8~図10を参照しながら後記する。
<比較例2>
 第2部材12bを備えないこと以外は実施例1と同様にして、比較例2の摺動部材を作製し、摩擦試験を行った。摩擦試験の結果は、図8~図10を参照しながら後記する。なお、比較例2の摺動部材は、上記の特許文献1に記載の技術に相当する。
 下記表1に、実施例1、比較例1及び比較例2の摺動部材の構成材料を示す。「〇」は使用、「-」は不使用を示す
Figure JPOXMLDOC01-appb-T000001
 
 図8は、摩擦試験後の試験片表面についてのエネルギ分散型X線分析像(EDX)である。EDX-Al像は、試験片表面でのアルミニウムの存在を示し、EDF-F像は、試験片表面でのフッ素の存在を示す。実施例1のEDX-Al像には白色部分はほとんど存在せず、表面にアルミニウムが存在しないことがわかる。一方で、実施例1のEDX-F像には白色部分が存在し、表面にフッ素が存在することがわかる。従って、試験片の表面には、フッ素を含む移着膜14(図4)が形成されており、これにより、試験片の構成材料であるアルミニウムが殆ど検出されなかったと考えられる。
 一方で、比較例1及び比較例2のEDX-Al像には、白色部分が存在し、試験片の表面にアルミニウムが存在することがわかる、一方で、比較例1及び2のEDX-F像には白色部分が存在せず、表面にはフッ素が存在しないことがわかる。従って、試験片の表面には、フッ素を含む移着膜14(図4)が殆ど形成されず、試験片の構成材料であるアルミニウムの多くがそのまま露出していたと考えられる。
 これらの結果は、第1部材12a及び第2部材12bの双方にフッ素樹脂を含むことで奏された結果と考えられる。即ち、本開示に係る摺動部材12のように、第1部材12a及び第2部材12bを備えることで、移着膜14を形成できたと考えられる。しかし、比較例1のように、例えばフッ素樹脂粒子22を使用しない場合、上記のように、第2部材12bにより形成された移着膜14が第1部材12aによって剥離される結果、移着膜14が残存し難いと考えられる。また、比較例2のように、フッ素樹脂である第2母材樹脂31を使用しないため、移着膜14の形成が行われ難く、移着膜14の形成の程度に向上の余地があることがわかる。
 図9は、摩擦試験で得た摩耗量(棒グラフ)及び摩擦係数(プロット)の試験結果を示す図である。図9は、図7に示す摩擦試験において所定時間摺動させた場合の摩耗量の合計と、所定時間の摺動中の摩擦係数の平均値とを示している。なお、結果を理解しやすくするため、摩耗量は比較例2を100とした時の相対値で表した。
 実施例1は、比較例1及び比較例2に比べて、摩擦係数が低下した。これは、図8を参照して説明したように、移着膜14(図4)が形成されたことに起因すると考えらえる。そして、摩擦係数の低下により摺動部材12が摺動し易くなり、摩耗量が低減したと考えられる。このため、本開示の摺動部材12では、優れた耐摩耗性を示す。
 一方で、実施例1と比較例1及び2とを比較すると、比較例1及び2の摩耗量及び摩擦係数は、いずれも実施例1の摩耗量及び摩擦係数よりも高くなった、これは、フッ素樹脂粒子22を含まない比較例1では、移着膜14が形成されても第1部材12aによって剥離されてしまい、摩耗量及び摩擦係数が大きくなったためと考えられる。また、第2部材12bを備えない比較例2では、そもそも移着膜14が形成され難いため、摩耗量及び摩擦係数が大きくなったためと考えられる。
 また、比較例1及び2に関して、摩擦係数が小さくなれば、滑り性が向上する。しかし、例えば、材料のせん断応力等に対する強度低下、過剰な熱膨張等が例えば同時に生じてしまうと、結果として摩耗量は増大する。従って、摩耗係数は摩耗量低減のための一要素であり、単に摩擦係数を小さくしても、必ずしも摩耗量は低減しない。このため、摩擦係数は比較例2の方が小さかったものの、摩耗量は比較例2の方が多くなったと考えられる。従って、実施例1では、摩擦係数を小さくして滑り易くできたとともに、更には第1部材12a及び第2部材12b(いずれも図7)の例えば強度低下及び過剰な熱膨張等を抑制できたため、摩耗量を低減できたと考えられる。
 図10は、摩擦試験で得た摩耗量(丸プロット)及び摩擦係数(菱形プロット)と、フッ素樹脂粒子22(図2)の含有量との相関を示す図である。図10に示す結果は、図7の摩擦試験をシミュレーションにより行って得たものであり、第1材料に対するフッ素樹脂粒子22(PTFE)の含有量を変えたこと以外は実施例1の条件で行ったものである。なお、摩耗量は、フッ素樹脂粒子22の配合量が70質量%の値を100とした時の相対値で表した。
 摩耗量は、含有量が15質量%以上30質量%以下の範囲で、特に低い値を示した。従って、含有量がこの範囲で、特に高い耐摩耗性が示される。一方で、含有量が15質量%未満及び30質量%を超えると、摩耗量が増加する傾向であった。
 摩擦係数は、含有量が15質量%以上では、ほぼ一定値を示した。これにより、含有量が15質量%以上であれば、試験片に滑り易さが良好な移着膜14(図4)が形成されるといえる。従って、図10の結果から、フッ素樹脂粒子22の含有量は、第1材料に対して、15質量%以上30質量%以下であることが好ましいことがわかった。
 以上のように、本開示に係る摺動部材12を、例えばレシプロ式気体圧縮機における、揺動ピストン方式の摺動部であるピストン40に適用することで、ピストン40の耐摩耗性を向上できる。これにより、ピストン40を長寿命化でき、例えばレシプロ式気体圧縮機のメンテナンスサイクルを延長できる。
100 流体機械
11 金属部材
12 摺動部材
12a 第1部材
12b 第2部材
13 摺動面
14 移着膜
15 試験片
21 第1母材樹脂
22 フッ素樹脂粒子
23 棒状粒子
31 第2母材樹脂
32 強化剤
33 固体潤滑剤
40 ピストン
41 シリンダ
411 内壁面
42 ピストン本体
43 ピストンリング
44 圧縮膨張室
45 仕切り板
45a 吸入口
45b 吐出口
45c 吸入弁
45d 吐出弁
46 コンロッド
47 クランクシャフト

Claims (14)

  1.  摺動面に接触する摺動部材であって、
     前記摺動部材は、
      フッ素樹脂以外の樹脂で構成された第1母材樹脂と、前記第1母材樹脂中に分散したフッ素樹脂粒子及び棒状粒子とを含む第1材料により構成された第1部材と、
      前記摺動面に沿って前記第1部材と隣り合うように配置され、フッ素樹脂により構成された第2母材樹脂と、前記第2母材樹脂中に分散した強化剤とを含む第2材料により構成された第2部材と、を含む
     ことを特徴とする摺動部材。
  2.  前記第1母材樹脂は、ポリフェニレンサルファイド、又は、ポリエーテルエーテルケトンの少なくとも一方を含む
     ことを特徴とする請求項1に記載の摺動部材。
  3.  前記フッ素樹脂粒子は、ポリテトラフルオロエチレン、又は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体の少なくとも一方を含む
     ことを特徴とする請求項1又は2に記載の摺動部材。
  4.  前記棒状粒子は、炭素繊維、又は、ガラス繊維の少なくとも一方を含む
     ことを特徴とする請求項1又は2に記載の摺動部材。
  5.  前記第2母材樹脂は、ポリテトラフルオロエチレンを含む
     ことを特徴とする請求項1又は2に記載の摺動部材。
  6.  前記強化剤は、銅、銅合金、又は炭素繊維の少なくとも1つを含む
     ことを特徴とする請求項1又は2に記載の摺動部材。
  7.  前記第2材料は、更に、固体潤滑剤を含む
     ことを特徴とする請求項1又は2に記載の摺動部材。
  8.  前記固体潤滑剤は、二硫化モリブデン、又は、球状炭素の少なくとも一方を含む
     ことを特徴とする請求項7に記載の摺動部材。
  9.  前記第1部材及び前記第2部材は、前記第2部材を少なくとも2つの前記第1部材で挟むように配置される
     ことを特徴とする請求項1又は2に記載の摺動部材。
  10.  前記第1部材及び前記第2部材は、前記第1部材を少なくとも2つの前記第2部材で挟むように配置される
     ことを特徴とする請求項1又は2に記載の摺動部材。
  11.  前記フッ素樹脂粒子と、前記第2母材樹脂とは、同種のフッ素樹脂により構成される
     ことを特徴とする請求項1又は2に記載の摺動部材。
  12.  前記フッ素樹脂粒子の含有量は、前記第1材料に対して、15質量%以上30質量%以下である
     ことを特徴とする請求項1又は2に記載の摺動部材。
  13.  前記棒状粒子は炭素繊維を含み、
     前記炭素繊維の含有量は、前記第1材料に対して、5質量%以上15質量%以下である
     ことを特徴とする請求項12に記載の摺動部材。
  14.  シリンダと、
     前記シリンダの内壁面を摺動する摺動部材を備えるピストンと、を備え、
     前記摺動部材は、
      フッ素樹脂以外の樹脂で構成された第1母材樹脂と、前記第1母材樹脂中に分散したフッ素樹脂粒子及び棒状粒子とを含む第1材料により構成された第1部材と、
      前記内壁面に沿って前記第1部材と隣り合うように配置され、フッ素樹脂により構成された第2母材樹脂と、前記第2母材樹脂中に分散した強化剤とを含む第2材料により構成された第2部材と、を含む
     ことを特徴とする流体機械。
PCT/JP2021/044108 2021-03-29 2021-12-01 摺動材及び流体機械 WO2022209007A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237004577A KR20230036138A (ko) 2021-03-29 2021-12-01 미끄럼 이동 부재 및 유체 기계
CN202180058200.0A CN116096808A (zh) 2021-03-29 2021-12-01 滑动部件和流体机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055927 2021-03-29
JP2021055927A JP2022152957A (ja) 2021-03-29 2021-03-29 摺動材及び流体機械

Publications (1)

Publication Number Publication Date
WO2022209007A1 true WO2022209007A1 (ja) 2022-10-06

Family

ID=83455830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044108 WO2022209007A1 (ja) 2021-03-29 2021-12-01 摺動材及び流体機械

Country Status (4)

Country Link
JP (1) JP2022152957A (ja)
KR (1) KR20230036138A (ja)
CN (1) CN116096808A (ja)
WO (1) WO2022209007A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374681A (ja) * 1989-08-11 1991-03-29 Nippon Seiko Kk シリンダ用ピストン
JP2002372155A (ja) * 2001-06-14 2002-12-26 Nok Corp 密封装置
JP2009085051A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 摺動材及び流体圧縮機械
JP2015218205A (ja) * 2014-05-15 2015-12-07 三菱電線工業株式会社 バックアップリング、並びにそれを用いたシール材及びシール構造
JP2017089701A (ja) * 2015-11-05 2017-05-25 株式会社荒井製作所 密封装置
JP2018066427A (ja) * 2016-10-19 2018-04-26 株式会社日立産機システム 機械装置及びこれに用いる摺動材
JP2018159450A (ja) * 2017-03-23 2018-10-11 株式会社リケン ピストンリング
US20190186407A1 (en) * 2017-12-14 2019-06-20 Ford Global Technologies, Llc Cylinder liner for an internal combustion engine and method of forming

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374681A (ja) * 1989-08-11 1991-03-29 Nippon Seiko Kk シリンダ用ピストン
JP2002372155A (ja) * 2001-06-14 2002-12-26 Nok Corp 密封装置
JP2009085051A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 摺動材及び流体圧縮機械
JP2015218205A (ja) * 2014-05-15 2015-12-07 三菱電線工業株式会社 バックアップリング、並びにそれを用いたシール材及びシール構造
JP2017089701A (ja) * 2015-11-05 2017-05-25 株式会社荒井製作所 密封装置
JP2018066427A (ja) * 2016-10-19 2018-04-26 株式会社日立産機システム 機械装置及びこれに用いる摺動材
JP2018159450A (ja) * 2017-03-23 2018-10-11 株式会社リケン ピストンリング
US20190186407A1 (en) * 2017-12-14 2019-06-20 Ford Global Technologies, Llc Cylinder liner for an internal combustion engine and method of forming

Also Published As

Publication number Publication date
KR20230036138A (ko) 2023-03-14
CN116096808A (zh) 2023-05-09
JP2022152957A (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
US10077807B2 (en) Composite plain bearing, cradle guide, and sliding nut
US8128168B2 (en) Bearing bush for seat reclining device and seat reclining device
JP6122488B2 (ja) 摺動部材
EP1837534A2 (en) Titanium spherical plain bearing with liner and treated surface
CN109702199A (zh) 一种高熵合金基自润滑含油轴承材料
JP2007203125A (ja) 摺動部材
WO2022209007A1 (ja) 摺動材及び流体機械
WO2023127350A1 (ja) 摺動部材および軸受
JP6911996B2 (ja) 軸受部材
JP6951561B2 (ja) 流体機械、機械要素およびフッ素樹脂材
WO2018092857A1 (ja) 樹脂組成物および摺動部材
JP4927067B2 (ja) 無潤滑の往復動圧縮機用ピストンリング及びそれを用いた往復動圧縮機
JP2005264049A (ja) シール材及びそれを備えた揺動式圧縮機
WO2023228435A1 (ja) 摺動材及び気体圧縮機械
US7849783B2 (en) Plastic shoes for compressors
CN101725503A (zh) 一种压缩机滑动件
WO2018092856A1 (ja) 樹脂組成物および摺動部材
WO2024195879A1 (ja) シール材、圧縮機用シール部材、往復動圧縮機用カップシール、およびスクロール型圧縮機用チップシール
WO2020250743A1 (ja) 摺動材
JP7521131B2 (ja) 摺動機構
JP2010019091A (ja) 斜板式圧縮機
JP2012017851A (ja) 往復動圧縮機
JP2024137934A (ja) シール材、圧縮機用シール部材、往復動圧縮機用カップシール、およびスクロール型圧縮機用チップシール
WO2024161674A1 (ja) 摺動部材及び軸受
EP3792513B1 (en) Bearing member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317007891

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237004577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935160

Country of ref document: EP

Kind code of ref document: A1